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Abstract
Automated text analysis allows researchers to analyze large quantities of text. Yet, comparative researchers

are presented with a big challenge: across countries people speak different languages. To address this issue,

some analysts have suggested using Google Translate to convert all texts into English before starting the

analysis (Lucas et al. 2015). But in doing so, dowe get lost in translation? This paper evaluates the usefulness

of machine translation for bag-of-words models—such as topic models. We use the europarl dataset and

compare term-document matrices (TDMs) as well as topic model results from gold standard translated text

and machine-translated text. We evaluate results at both the document and the corpus level. We first find

TDMs for both text corpora to be highly similar, with minor differences across languages. What is more, we

find considerable overlap in the set of features generated from human-translated and machine-translated

texts. With regard to LDA topic models, we find topical prevalence and topical content to be highly similar

with again only small differences across languages. We conclude that Google Translate is a useful tool for

comparative researchers when using bag-of-words text models.

Keywords: automated content analysis, statistical analysis of texts, bag-of-words models, Google Translate,

LDA

Introduction

Automated text analysis is like a gold rush. Many researchers have noticed its potential and are

now using methods such as topic modeling, scaling and sentiment analysis to analyze political

texts (for an overview see Grimmer and Stewart 2013). But researchers interested in cross-country

comparisons face a problem: people speak different languages. In order to make comparisons

across countries, researchers first need to translate texts from several languages into one. On

the plus side, nowadays this can be automated by using machine translation, such as Google

Translate. But does the meaning of these texts get lost in Google translation? That is, do we lose

(too much) information if we Google Translate texts before we analyze them? Or does doing so

leave us like the poor souls who journeyed west for gold but were left with nothing?

This paper evaluates the usefulness of machine translation for automated bag-of-words

models.1 We identify and evaluate four reasons why the meaning of a text may get lost

Authors’ note: Replication code and data are available at the Political Analysis Dataverse (De Vries, Schoonvelde, and

Schumacher 2018) while the supplementary materials for this article are available on the Political Analysis web site. The

authors would like to thank James Cross, Aki Matsuo, Christian Rauh, Damian Trilling, Mariken van der Velden and Barbara

Vis for helpful comments and suggestions. GS and MS acknowledge funding from the European Union’s Horizon 2020

research and innovationprogramunder grant agreementNo649281, EUENGAGE. EdVacknowledges funding for a research

assistantship from the Access Europe (since 2018: UVAccess Europe) research center at the University of Amsterdam.

1 The goal in this paper differs frommuch work in computational linguistics or Natural Language Processing (NLP), as that

type of research is mostly concerned with syntax, readability and the correct use of grammar in translations (e.g., Scarton

and Specia (2014), Kaljahi and Samad (2015), Aharoni (2015)). In contrast, this paper compares bag-of-words vectors and

topic models that are based on them. Both are used regularly in applications of automated text analysis in the social

sciences.
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in translation. First, a general problem occurs when words or stems in machine-translated

documents are translated differently than those in gold standard documents, leading to

different term-document matrices (TDMs).2 We evaluate this issue by comparing the overlap

between gold standard and machine-translated TDMs. Other translation problems relate

more specifically to LDA topic modeling, a popular bag-of-words model that identifies

the topics in a corpus, and assigns documents and words to these topics. In this case,

translation issues may arise because (1) topics might be distributed differently in the machine-

translated corpus than in the gold standard corpus, (2) machine-translated documents

are assigned to different topics than gold standard documents and (3) a topic in the

machine-translated corpus consists of different words than the same topic in the gold standard

corpus. We evaluate each issue by systematically comparing topic models estimated using

machine-translated documents with those estimated using human-translated (gold standard)

documents.

To set up our comparisons, we use the europarl dataset (Koehn 2005), which contains the

official transcriptions of debates in the European Parliament both in English and in most other

official languages of the EU. From this dataset we take debate transcriptions in Danish, German,

Spanish, French and Polish for the period of January 2007 to November 2011. Delivered by

professional translators, these official transcriptions serve as our gold standard.3 We first compare

the bag-of-words vectors of each document in the machine translation and the gold standard

translation.We then compare theoutput of the LDA topicmodels in threeways: topical prevalence

at the document level, topical prevalence at the corpus level and topical content at the corpus

level.4

We find that TDMs for both sets of data are highly similar, with significant butminor differences

across languages. What is more, we find considerable overlap in the set of features (stems)

appearing in human- and machine-translated texts. With regards to LDA topic models, at both

the document and the corpus levels we find topical prevalence to be similar with only small

differences across languages, and we find topical content to strongly overlap as well. These

findings suggest that Google Translate does in fact generate useful TDMs, and, what is more, it

deals successfully with the above-mentioned risks of machine translation when estimating topic

models. We conclude that Google Translate is a useful tool for researchers who use or want to use

bag-of-words text models for comparative questions.

Background

Numerous bag-of-words based studies have analyzedmachine-translated texts, yet little is known

about the quality of machine translations and its impact on subsequent analyses. Generally,

authors either assume machine-translated text to be suitable for their purposes or they do not

pay attention to the issue at all. For example, Agarwal et al. (2011) use Twitter data which was

machine-translated by an unidentified commercial source, but they do not address the possibility

that machine translation may have influenced their results. Schwarz, Traber, and Benoit (2017)

use Google Translate in themultilingual Swiss context.While these authors describe themachine-

translation process in more detail, they do not discuss comparisons between different machine-

translation strategies, or the quality of their translations.

Tobe clear,wedonot imply thatmachine translation is not useful for analyzing texts inmultiple

languages. As Lotz and Van Rensburg (2014) show, developments in machine-translation systems

2 Throughout the paper, we use the terms bag-of-words vectors and term-document matrices (TDMs) interchangeably.

3 Partly because of thorough quality requirements, the costs of hiring professional translators in the European

Union are high, by some estimates as much as e2 per EU inhabitant per year (see http://ec.europa.eu/dgs/

translation/faq/index_en.htm). A gold standard indeed.

4 Topical prevalence refers to which topics appear in a document or in the corpus as a whole (i.e., topic distributions),

whereas topical content refers to what words constitute a topic (i.e., word distributions). (Lucas et al. 2015).
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are moving fast and their quality is clearly increasing with time. Balahur and Turchi (2014) give a

comprehensive account of using machine-translated text for automated analyses in the context

of sentiment analysis, and Courtney et al. (2017) find that machine-translated newspaper articles

can be reliably categorized by human coders. But while these contributions are highly relevant,

they do not evaluate the implications of machine translation for bag-of-words methods more

generally. The same is true for Lucas et al. (2015), whowrite extensively about the possible pitfalls

of analyzingmachine-translated text but do not evaluate its quality empirically. Adding to this line

of research, this paper systematically evaluates both the bag-of-words approach in general and

topic modeling in particular.

Another issue relevant to this study concerns the impact of specific languages and language

groups on machine-translation quality. For example, machine-translated texts may be of

better quality when translated from French to English than when translated from Polish to

English. There are two reasons for this. First, some language pairs are simply more easily

translated than others (Koehn andMonz 2006). Furthermore, larger parallel corpora are available

to train machine-translation models for some language pairs than for others (e.g., there is

more parallel data available for French and English than there is for Polish and English).

To examine this possibility we include in our analysis languages from different language

groups: French and Spanish (belonging to the Italic language group), German and Danish

(belonging to the Germanic language group), and Polish (belonging to the Balto-Slavic language

group).5

Data and Measurement

To evaluate the quality of machine translation, we need to compare its output to gold standard

translations of identical documents.6 The europarldataset (Koehn 2005) contains parallel corpora

which allow us to set up such comparisons. The dataset consists of official European Parliament

debate transcriptions inmost of the official EU languages.7 The europarl dataset ranges fromApril

1996untilNovember2011, but someSlavic language translationswere includedonly sinceJanuary

2007. Because of that, we focus our analysis on translations between 2007 and 2011.

The primary purpose of the europarl dataset is to train, test and improve machine-translation

algorithms (e.g. Koehn 2005; Popescu-Belis et al. 2012; Loaiciga, Meyer, and Popescu-Belis 2014).

The data is available in both the raw form and as text files with sentence-aligned language pairs.

We use the raw data, because the sentence-aligned text files do not distinguish between different

dates and debate chapters. The raw data files are organized per session (typically one day) and

chapter. Each chapter is a different item on the agenda (e.g a debate, questioning of EU official

or vote) of a session.8 When estimating topic models, we consider each chapter to be a single

document, because each chapter in a session concerns a specific agenda item. Each agenda item

may in turn consist of multiple topics.

5 While there are different topologies of language groups in the field of linguistics, this paper uses the topology described in

Gray and Atkinson (2003).

6 Replication code and data are available at the Political Analysis Dataverse (De Vries, Schoonvelde, and Schumacher 2018)

while the Supplementary materials for this article are available on the Political Analysisweb site.

7 Contributions to debates in the European Parliament can be either in English or in one of the other official EU member

state languages. Contributions in those languages are then translated—by official translators—in all other recognized EU

languages either directly or indirectly through English. What we consider our gold standard data of the debates is the

English corpus which consists of (1) English contributions, (2) contributions in one of the EU languages translated into

English by official translators. What we consider our machine-translated data consists of Google translations into English

of these same contributions in (1) one of our five languages and (2) in other EU languages that have been translated into

these five languages either directly or indirectly by official translators.

8 Because the provided data is not exactly the same for all languages (e.g. Chapter 5 in the session of 04-01-2007 might

be present in the English but not in the German data, while the German data does contain other chapters from that

same session), we had to match all language pairs (EN–DA, EN–DE, EN–ES, EN–FR, EN–PL) by checking for the presence

of each chapter in each session for both languages. This results in between 2148 (DE) and 2347 (FR) chapters per language

pair.
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Figure 1. Research design.

Note: This figure shows the different steps of our research design. In both cases we start with non-English

texts, which have been translated into English, either through Google Scholar or through EU-employed

expert translators (Step 1). The English translations are then preprocessed and turned into TDMs (Step 2),

on which we then estimate a topic model (Step 3). We then compare our four different outcome variables

(Step 4). The comparisons are the following: Comparison 1: document-to-document comparison TDM

similarity; Comparison 2: document-to-document comparison of topic distributions (topical prevalence);

Comparison 3: topic-to-topic comparison of stem weights (topical content); Comparison 4: topic-to-topic

comparison of topic distribution (topical prevalence).

Methods

Figure 1 shows the steps we take to compare machine-translated and gold standard documents.

In both cases we start with identical non-English texts, which have been translated into English,

either through Google Translate or through EU-employed expert translators (Step 1). These

translations are preprocessed and turned into TDMs (Step 2) on which we then estimate a topic

model (Step 3). We then compare the similarities of the TDMs, the topical prevalence at the level

of individual documents and the corpus at large, and the topical content (Step 4). In what follows

we discuss each step in more detail.

Step 1. Machine translation and Google Translate
We use Google Translate as the specific machine-translation service to evaluate the performance

of machine-translated texts in bag-of-words analyses. We chose Google Translate because of its

translation quality, which is top-tier when compared to other onlinemachine translating services

(Hampshire and Salvia 2010). We translated the texts using the Google Website Translator plugin
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which can translate web pages. To be able to use this plugin we converted the raw text data to

bare htmlweb pages. The translation process took place in August and September 2016.9 We have

translated the texts into English, becausemachine-translation algorithmsare expected toperform

best when translating to and from English.10

Step 2. Preprocessing and generating TDMs
When using bag-of-words models, it is common to preprocess the data in order to remove noise.

In our case we have removed punctuation, numbers and general stopwords, and all remaining

words have been lowercased and stemmed. The preprocessing steps on both the gold standard

andmachine-translated texts are identical, and were applied to the translated texts.11 To perform

these preprocessing steps,weusedbothPython andR libraries. For stemming, stopword removal,

number removal, lowercasing, and punctuation removal, we used regular expressions in Python

and the NLTK package (Bird, Klein, and Loper 2009). To create the TDMs we switched to R and the

quantedapackage (Benoit andNulty 2013).12 We compare theTDMsof themachine-translatedand

gold standard documents and we also use them as input for the topics models described below.

Readers primarily interested in our analysis of the TDMsmaydecide to skip thenext section,which

contains more technical details regarding the specification of our topic models.

Step 3. Fitting topic models
To assess the quality ofmachine-translated texts, we estimated topicmodels on the gold standard

andmachine-translated texts separately using the LDA algorithm (Blei, Ng, and Jordan 2003) and

Gibbs sampling. For this we used the LDA function in the R topicmodels package (Hornik and Grün

2011). LDA is a generative model. It takes the words in each text as input and then estimates the

topical prevalence and topical content in the corpus. To run the model researchers need to set a

few parameters: the number of topics in the corpus, the model seed, burn-in time, the number

of iterations and which and how many iterations to keep for use in the final model. To ensure

that differences between a model based on the gold standard corpus and a model based on the

machine-translated corpus are solely the result of language differences between these corpora,

theparameters for the topicmodelsbasedongold standard translationsandmachine translations

were kept identical. This means that the number of topics was kept constant, and a fixed seed

was used—based on the sys.time variable—as suggested by Hornik and Grün (2011). This seed

(1473943969) has been used for all models described below. Furthermore, the burn-in (1000) and

number of iterations (300) were also kept constant. The algorithm keeps every 100th model and

returns the model with the highest posterior likelihood (the best-fitting model). Consequently,

all variation between the models—when the model parameters are kept the same—results from

differences caused by the translation process.

Themost important parameter to set is the number of topics in the topic model. This is crucial

because thenumberof topicsaffects thedistributionofwordsover topics (topical content) and the

9 We conducted the translations before Google rolled out their deep learning/neural network-based translation algorithms.

Because this may have improved the quality of Google Translate, our results are likely to be conservative.

10 The reason for this is that English is the lingua franca of the internet and, by consequence, most translations are from or

to English. This produces large parallel corpora between English and other languages. Machine-translation algorithms are

trained on these models, and typically the more data the better the performance of the algorithm.

11 Recent research shows that seemingly innocuous preprocessing steps might impact the outcome of (unsupervised)

automated text analyses (Denny andSpirling 2018; Greene et al. 2016). Our comparison, however, is between gold standard

andmachine-translated texts onwhichweapplied identical preprocessing steps. Althoughwecannot be certain,wedonot

expect these preprocessing steps to have had a systematically different impact on both corpora.We should note, however,

that, in general, the removal of stopwords will influence word and topic distributions within a topic model, and this will

also apply to themodel resultswe present here. But since stopwords contain—by definition—no topical contentwe expect

their removal to have hadminimal substantive implications.

12 We switched fromPython to R for practical reasons only: we started this project using Python because of the large amount

of scraping and cleaning required. We then switched to R because we considered it more suitable for the modeling and

plotting tasks at hand.
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Figure 2.Model harmonic mean.

distribution of topics over documents (topical prevalence). When the number of topics changes

so do these distributions. It was practically infeasible to run and optimize the number of topics

for each language pair. Also, all language pairs are based on roughly similar data from the same

timeperiod. Therefore the optimumnumber of topics for allmodelswas determinedbased on the

French dataset. This is the largest gold standard and machine-translated dataset. We estimated

the best-fitting number of topics by evaluating the model harmonic mean of models that contain

between 10 and 150 topics, in increments of 10. Themodel harmonicmean indicates the extent to

which word counts in the documents used to construct the model match the word distributions

in the model itself. Put differently, it indicates the extent to which themodel accurately describes

the distribution ofwords in the documents. In this case, a larger harmonicmean indicates that the

model fits the data better. The results of the optimization runs are displayed in Figure 2. The gold

standardmodel has anoptimumof 90 topics. After 90 topics addingmore topics does not improve

model fit. The machine-translated model peaks at 100 topics. To isolate the effect of language

differences between gold standard and machine-translated texts it is important to choose the

same number of topics for both models. Therefore, we settled for 90 topics. That said, we also

evaluated comparisons of models with 90 topics for the gold standard models and 100 topics

for the machine-translated models. This produced results almost identical to the topic model

comparisons with 90 topics. These results are available in the Supplementary Appendix.

Our next challenge is to match the topics generated by the gold standard and machine-

translated models. This is because the topic order in both models may differ (i.e., topic 1 in

the machine-translated model may match best with, for example, topic 2 in the gold standard

model). Our matching procedure is as follows: for each stem we find the highest loading in the

machine-translated topic model and the gold standard topic model. For example, take the stem

“agricultur”. This stem loads highest on (is most important in) topic 12 of the machine-translated
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Table 1. Comparisons between gold standard andmachine-translated data.

Stems Topics

Document level Stem counts per document pair Topic distribution per document pair

Corpus level Stem loadings per topic pair Topic distribution per topic pair

model, and topic 45 in the gold standard model. This results in a 12–45 topic pairing for that

specific stem.Wesubsequently count the topicpairingsof all sharedstems.Wematch topicsbased

on the highest count of topic pairings. For example, we pair topic 12 of the machine-translated

model with topic 45 in the gold standard model because they have the highest number of

important, shared stems like the stem “agricultur” (see the Supplementary Appendix for a

numerical example of our topic matching procedure). 13 Using this procedure we matched 90

topics for the German corpus and 89 topics for all other languages.14,15

Step 4. Comparing term-document matrices and topic models
We make four different comparisons, which vary on two dimensions: stems versus topics and

documents versus corpora (see Table 1). The comparison of TDMs takes place at the level of

stems and documents (Comparison 1 in Figure 1). Furthermore, we report three comparisons

based on our topic models, all of which give us evidence on howmuch the matched topics in the

machine-translated and the gold standard topics overlap in content and prevalence. We evaluate

topical content by means of stem loadings per topic pair (Comparison 3 in Figure 1). We evaluate

topical prevalence bymeans of topic distributions over document pairs (Comparison 2 in Figure 1),

and topic distributions across the corpus at large (Comparison 4 in Figure 1).

It is important toevaluate results atboth thedocumentand thecorpus levelbecause the former

only speak to how similar individual documents are being characterized by the topic model (i.e.,

the extent to which topical prevalence for gold standard and machine-translated documents is

similar). However, such a comparison does not tell us how similar the fitted topics themselves

are. For example, both the gold standard and machine-translated document might have a high

topic loading on topic 1, making them highly similar on the document level, but if topic 1 is about

cars in the gold standard topic model and about trees in the machine-translated model, then

document-level similarity does not tell us much. While the chances of this happening are slim,

structural and consistent translation errors by Google Translate might cause such differences.

As a consequence, the level of topical similarity does say something about the quality of the

translation. We thus need comparisons on both the document and corpus level.

Our outcome measure for the TDM comparisons is different from that of the topic model

comparisons. For the TDM comparisons, we use cosine similarity because—in contrast to

correlation—it takes into account the absolute differences in values. This is relevant for comparing

TDMs because of our goal of knowing how similar the counts of all TDM features per document

pair are to each other. Cosine similarity varies between 0 and 1, with the latter indicating a

13 It is of course possible that a topic in the machine-translated model is matched to several different topics in the gold

standard model. For example, while “agricultur” is matched 12–45, it could be that the stem “farmer” loads highest on

topics 12 and 33, resulting in two different topic pairings for topic 12 in the machine-translated model (namely 12–45 and

12–33). In those cases, we use the topic combination with the highest number of topic pairings, while ignoring the other.

This results in topic pairs that always consist of the two topics that share their highest loading words with each other.

14 The reason that not all topics canbematched for all languages is becausewhen every shared stem loads higher on another

topic in the same model, there are simply no stems to base a match on. We can again take “agricultur” as an example.

This stem is the most important (highest loading) in both topic 12 (word loading: 0.12) and 19 (word loading: 0.09). Yet

our procedure only registers on which topic “agricultur” loads highest (which in this case is topic 12). So topic 19 will

not be matched to another topic based on this stem alone. If not a single stem loads highest on a topic, then that topic

cannot bematched andwediscard it. In practice thismeans thatwhile the unmatched topicsmight have some substantive

importance, all their stems are—by design—more important to other topics.

15 Even though our matching procedure worked well, we should note there are other possible ways to match topics, using

for example the Hungarian algorithm (see e.g., Chuang et al. 2013; Roberts, Stewart, and Airoldi 2016).
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Table 2. Cosine similarity distribution per language.

Language N Mean St. Dev. Min Max

Danish 2,301 0.915 0.063 0.549 0.992

German 2,148 0.915 0.074 0.488 0.991

Spanish 2,335 0.929 0.059 0.483 0.991

French 2,347 0.925 0.064 0.564 0.989

Polish 2,338 0.913 0.073 0.475 0.989

Total: 11,469 0.919 0.066 0.475 0.992

Note: Statistically significant but substantively small difference between languages (ANOVA results:

F(4, 11464) = 27.855, ρ < 0.001, η2 = 0.010).

perfect match (i.e., two identical vectors). For the topic model comparisons, correlations are a

more suitable similarity measure because they detect trends rather than absolute values. This is

important becausewemake comparisons between differentmodels.16 Correlations vary between

−1 and 1, with the latter indicating a perfect linear positive relationship, and the former indicating
a perfect linear negative relationship.

Results

This section contains the results of our four comparisons, starting with the TDM analysis, and

continuing with the topic model analyses.

Comparing TDMs
We first compare—at thedocument level—machine-translated andgold standardbags ofwords to

eachother, using thebuilt-in similarity function in thequantedaRpackage (Benoit andNulty2013).

Figure 3 displays the distribution of the cosine similarity scores for each language. Most notably,

the average similarity between the gold standard documents and their machine-translated

counterparts is very high (M = 0.92, SD = 0.07). Furthermore, more than 92% of all document

pairs achieve a cosine similarity score of 0.80 or higher. These results show that the TDMs

of machine-translated and gold standard documents are very similar. Very often the stems in

the machine-translated and gold standard documents occur with (approximately) the same

frequency.

Table 2 shows the means and standard deviations for document cosine similarity scores per

language. The differences between languages are tiny: the lowest mean cosine similarity (Polish

=0.913) is only0.016 smaller than thehighestmeancosine similarity (Spanish=0.929). TheFrench

andSpanishdocumentshavesignificantlyhigheraveragecosine similarities than theoverallmean

(French: t = 7.07, p < 0.001; Spanish: t = 5.11, p < 0.001), but the size of these differences

is, again, very small (French: 0.005 and Spanish: 0.009). The Danish, Polish and German cosine

similarities between document pairs are not significantly different from the overall mean.

We also consider the total number of unique stems (features), as well as the number of shared

stemsbetween the gold standard andmachine-translated TDMs. The higher the number of shared

stems, the more overlap there is. Figure 4 shows that the shared features of the TDMs of the gold

standard andmachine-translated documents overlap to a large degree (about 75%or higher). The

number of shared features is also quite similar for each language (DA, 28431; DE, 27732; ES, 28578;

FR, 28162; PL, 26916). The same goes for the features that are unique to either the gold standard

or machine-translated TDMs.

16 As discussed before, changing the number of topics influences both the document-level and corpus-level topic

distributions as well as stem distributions per topic, and because of that absolute values are no longer meaningful.
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Figure 3. Distribution of cosine similarity per language pair.

The exception is French, and to a lesser extent Spanish. In the Spanish case, more unique

features are present in the machine-translated than in the gold standard texts, which indicates

that Google Translate adds new features to the texts (by using different English translations for

the same Spanish word). Similarly, French translations are simplified (different French words

are translated as the same English word).17 However, regardless of these differences, both the

substantial overlap among features and the high cosine similarity scores for both Spanish and

French show that their machine-translated and gold standard TDMs are highly similar.

Comparing topic models
Each document in our corpus is about one or more topics. Do the topic models with the

machine-translated text as input assign the same topics to a document as the topic models

with the gold standard translated texts? Figure 5 displays for each language how similar topical

prevalence is for each pair of gold standard and machine-translated documents (based on

an equal number of topics; for the comparison between unequal number of topics, see the

Appendix). These correlations denote the extent to which topical prevalence in individual gold

standard and machine-translated documents overlaps. The higher the correlation the more

17 It would be very interesting to see if these unique features are actually caused by inaccurate—but in meaning similar—

translations. However, due to the automated nature of all the analyses conducted here, this is not within the scope of the

current paper.
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Figure 4. Unique TDM features for gold standard andmachine-translated corpora. Reading example: for the

French language, the amount of overlapping features is around 28,000, while the total number of features is

around 33,000 for the machine-translated documents and around 38,000 for the gold standard documents.

the overlap.18 It shows that document-level topical prevalence is similar for gold standard and

machine-translated corpora, with on average—across all languages—65% of document pairs

having a topic distribution correlation of 0.8 or higher. Put differently, a particular document is

likely to be assigned to identical topics regardless of whether it was machine-translated or gold

standard translated.

That said, there are statistically significant differences between languages (see Table 3).19

Table 3 breaks down mean topical prevalence for each language, as well as their standard

deviations. The highest mean topic distribution per document pair is obtained for Spanish (0.83),

and the lowest for French (0.75). Again, the absolute differences are small, and across languages

it appears that topical prevalence at the level of individual documents is similar.

Each topic in our data is discussed in several documents. Are these the same documents in the

topic models of the machine-translated text and the gold standard translations? To evaluate this

18 Aside from a very small number of documents with negative correlation in case of an unequal number of topics, the

overall distributions of correlations in the comparison of unequal models and equal models are similar. This indicates

that changing the number of topics toward the optimum for both datasets does not affect document topic distribution

scores much.

19 Note that t -values for all languages are significant regardless of comparing equal or unequal numbers of topics, so the
statistical significance of differences cannot be attributed to a specific language.
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Figure 5. Similarity of document-level topical prevalence with equal number of topics.

Table 3. Similarity of document-level topical prevalence with equal number of topics.

Language N Mean St. Dev. Min Max

Danish 2,301 0.783 0.202 −0.031 0.998

German 2,148 0.824 0.216 −0.031 0.999

Spanish 2,335 0.826 0.165 0.028 0.997

French 2,347 0.753 0.194 −0.043 0.996

Polish 2,338 0.809 0.206 −0.031 0.998

Total 11469 0.799 0.197 −0.043 0.999

Note: ANOVA results: F(4, 11464) = 56.414, ρ < 0.001, η2 = 0.019.

we calculate the correlations between the topical prevalence of each topic in the gold standard

and the machine-translated documents (Figure 6 show the results of 446 topic distribution

comparisons).20 As in the case of document-level topic distributions, these corpus-level

correlations are generally quite similar, having a mean of 0.69. This indicates that on average

topics are similarly distributed across all documents in the corpus. This indicates that a topic is

20 90 comparisons for German, and 89 comparisons for Danish, Spanish, French and Polish, summing to 446.
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Figure 6. Similarity of corpus-level topical prevalence with equal number of topics. Overall descriptives:

N = 446,M = 0.699, SD = 0.321.

likely to be distributed similarly across documents, regardless ofwhether these documentswhere

machine translations or gold standard translations of the same source.

Finally, we also compare the similarity in the content of paired topics. To do so, we analyze

for each topic pair the stem loadings of all shared features in the gold standard and machine-

translated TDMs. The results are presented in Figure 7. Again, the average correlation is about

0.70 across languages indicating that topical content, as measured by the distribution of stem

loadings, is similar for both themachine-translated and the gold standard corpora.21 That implies

that topics are discussed using the same terms in both themachine-translation and gold standard

translation documents.

Conclusion

The results in this paper support the claim that Google Translate is a useful tool for researchers

using bag-of-words text models for comparative questions. We first found TDMs for machine

translations and gold standard translations to be highly similar, with substantively small

differences across languages. What is more, we found considerable overlap in the set of features

21 A question that remains is the spike in topic correlations on the low end of Figures 6 and 7. The reason is that these are

topic pairs that contain very few documents. As such these differences are unlikely to affect the topic model output of

theoretical interest. Results discussed in the Supplementary Appendix present evidence for this explanation.
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Figure 7. Similarity of topical content with equal number of topics.Overall descriptives:N = 446,M = 0.708,
SD = 0.345.

(stems) generated fromboth corpora.With regards to LDA topicmodels, at both thedocument and

the corpus levels we found topical prevalence to be generally similar with only small differences

across languages. Furthermore, we found topical content to be highly similar.

Do our findings extend to other bag-of-words approaches such as position scaling or sentiment

analysis? If a topic model with 90 models using machine-translated documents is highly similar

to the topic model with the gold standard documents, we believe it to be very likely that a

2-dimensional or 3-dimensional scaling model can be similarly reproduced. In addition, for

sentiment analysis machine-translation is already used. Sentiment dictionaries are sometimes

translated from English to other languages without validation. This is problematic since the

specificmeaning ofwords ismore relevant. Somewordsmaybe translated in such away that they

lack emotional content, while other words may gain emotional content in translation. As long as

these translation issues are random, the problem of the identification of false positives or false

negatives is reduced when sentiment scores are aggregated over entire documents. Then again,

we do not quite know whether these translation issues are random or not. We leave these issues

for future work.

Supplementarymaterial

For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2018.26.
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