POLYNOMIAL HULLS OF SETS INVARIANT UNDER AN ACTION OF THE SPECIAL UNITARY GROUP

JOHN T. ANDERSON

1. Introduction. If K is a compact subset of \mathbf{C}^{n}, \hat{K} will denote the polynomial hull of K :

$$
\hat{K}=\left\{z \in \mathbf{C}^{n}: \quad|P(z)| \leqq \sup _{w \in K}|P(w)| \text { for all polynomials } P\right\} .
$$

\hat{K} arises in the study of uniform algebras as the maximal ideal space of the algebra $P(K)$ of uniform limits on K of polynomials (see [3]). The condition $K=\hat{K}$ (K is polynomially convex) is a necessary one for uniform approximation on K of continuous functions by polynomials $(P(K)=$ $C(K)$). If K is not polynomially convex, the question of existence of analytic structure in $\hat{K} \backslash K$ is of particular interest. For $n=1, \hat{K}$ is the union of K and the bounded components of $\mathbf{C} \backslash K$. The determination of \hat{K} in dimensions greater than one is a more difficult problem. Among the special classes of compact sets K whose polynomial hulls have been determined are those invariant under certain group actions on \mathbf{C}^{7}. In [12] J. Wermer investigated a class of disks K in \mathbf{C}^{2} invariant under the S^{1} action

$$
\begin{equation*}
(z, w) \rightarrow\left(z e^{i \theta}, w e^{-i \theta}\right) \tag{1.1}
\end{equation*}
$$

He found that $\hat{K} \backslash K$ was foliated by a one-parameter family of analytic disks (analytic images of the unit disk in \mathbf{C}) with boundaries on K. Gamelin [6] later gave a description of \hat{K} for arbitrary sets $K \subset \mathbf{C}^{2}$ invariant under the same action. He found that through each point of $\hat{K} \backslash K$ there exists an analytic disk in \hat{K}. Also, Björk [2] studied the general question of algebras invariant under the action of a compact group.

Recently, Debiard and Gaveau [5] investigated actions of the unitary and special unitary groups on \mathbf{C}^{3} identified with the space of 2×2 symmetric complex matrices by

$$
\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left[\begin{array}{ll}
z_{1} & z_{3} \\
z_{3} & z_{2}
\end{array}\right]=Z .
$$

The action is then

$$
\begin{equation*}
Z \rightarrow g Z^{t} g \tag{1.2}
\end{equation*}
$$

[^0]for $g \in U(2)$ or $S U(2)$, where ${ }^{t} g$ denotes the transpose of g. They described the hull of the $S U(2)$ orbit of any point $Z \in \mathbf{C}^{3}$, and gave a partial description of the $U(2)$ orbit of an arbitrary point, finding a family of analytic disks with boundaries on the orbit.

In this paper we give an explicit description (Theorem 2) of \hat{K} for a class of compact sets invariant under the $S U(2)$ action (1.2). We apply this to obtain a complete description of the hull of any $U(2)$ orbit (Corollary 2). Even for "special" orbits, which are three (real) dimensional subsets of \mathbf{C}^{3}, this hull contains an open subset of \mathbf{C}^{3}. These results are presented in Section 3. In Section 2 we give a general discussion of orbits of the analogous action on $\mathbf{C}^{N}, N=n(n+1) / 2$; in particular we prove that if $Z=I$ is the point identified with the identity matrix, and K is the orbit of Z, then $P(K)=C(K)$. For our main results, we use ideas from the papers of Björk, Gamelin, and Wermer mentioned above. The key ingredient is a result of Wermer stating that a certain function on the fibers of a projection from the maximal ideal space of a uniform algebra into \mathbf{C} is subharmonic.

The author wishes to thank John Wermer for pointing out his own work and that of Gamelin, and for helpful discussions on these problems.
2. Orbits. M_{n} will denote the ring of $n \times n$ complex matrices. $\operatorname{det}(A)$ and $\operatorname{tr}(A)$ will denote the determinant and trace of $A \in M_{n}$, and $G l(n)$, the general linear group of invertible elements of M_{n}. We denote by $O(n)$, $S O(n), U(n)$, and $S U(n)$ the subgroups of $G l(n)$ consisting of the orthogonal, special orthogonal, unitary and special unitary matrices respectively. I_{n} will denote the $n \times n$ identity matrix. We identify the space S_{n} of symmetric matrices in M_{n} with $\mathbf{C}^{N}, N=n(n+1) / 2$, by

$$
\left(z_{1}, \ldots, z_{N}\right) \rightarrow\left[\begin{array}{cccccc}
z_{1} & z_{n+1} & z_{2 n} & \cdot & \cdot & z_{N} \\
z_{n+1} & z_{2} & z_{n+2} & \cdot & \cdot & \cdot \\
\cdot & & \cdot & \cdot & & \\
\cdot & & \cdot & & & \\
\cdot & & & & & z_{2 n-1} \\
z_{N} & & & & & z_{n}
\end{array}\right]
$$

For G a subgroup of $G l(n)$ we define an action of G on S_{n} by
(2.1) $Z \rightarrow g Z^{t} g$ for $g \in G, Z \in S_{n}$.
O_{Z}^{G} will denote the G-orbit of $Z \in S_{n}$,

$$
O_{Z}^{G}=\left\{W \in S_{n}: \quad W=g Z^{t} g \quad \text { for some } g \in G\right\}
$$

If G is compact, so is $O_{Z}^{G}, \mathscr{I}_{Z}^{G}$ will denote the isotropy subgroup of Z in G, i.e.,

$$
\mathscr{I}_{Z}^{G}=\left\{g \in G: \quad g Z{ }^{t} g=Z\right\} .
$$

If the coset space G / \mathscr{I}_{Z}^{G} is given the quotient topology then $O_{Z}^{G} \simeq G / \mathscr{I}_{Z}^{G}$, where \simeq denotes homeomorphism (see [7]). We will be concerned first and primarily with the case $G=S U(n)$, and we drop the superscript G for the remainder of the discussion. Note that if $Z \in S_{n}$, and $W=$ $g Z^{t} g \in O_{Z}$, then $\operatorname{det}(Z)=\operatorname{det}(W)$. Also, since $W \bar{W}=g Z \bar{Z} g^{-1}, W \bar{W}$ and $Z \bar{Z}$ have the same eigenvalues; in particular $\operatorname{tr}(Z \bar{Z})=\operatorname{tr}(W \bar{W})$. Denote by $\Delta\left(c_{1}, \ldots, c_{n}\right)$ the $n \times n$ matrix with entries c_{1}, \ldots, c_{n} on the main diagonal and zeroes elsewhere. The following lemma is due to Hua [10].

Lemma 1. Let $Z \in S_{n}$. Then there exists $g \in U(n)$ such that

$$
g Z^{t} g=\Delta\left(c_{1}, \ldots, c_{n}\right)
$$

with $c_{1} \geqq c_{2} \geqq \ldots \geqq c_{n} \geqq 0$.
It follows that every $S U(n)$ orbit contains a diagonal element, for if $Z \in S_{n}$, and $D=\Delta\left(c_{1}, \ldots, c_{n}\right)=g Z^{t} g$ with $g \in U(n)$ and $\operatorname{det}(g)=e^{i \alpha}$, set

$$
g^{\prime}=\Delta\left(e^{-i \alpha}, 1,1, \ldots, 1\right)
$$

Then $h=g g^{\prime} \in S U(n)$ and $Z=h D^{\prime t} h$, where

$$
D^{\prime}=\left(g^{\prime}\right)^{-1} D\left(g^{\prime}\right)^{-1}=\Delta\left(c_{1} e^{2 i \alpha}, c_{2}, \ldots, c_{n}\right)
$$

Note that if $\operatorname{det}(Z)=0$, then we can take $\alpha=0$.
Lemma 2. If $Z \in S_{n}$, then O_{Z} consists of all those $W \in S_{n}$ such that 1. $\operatorname{det}(Z)=\operatorname{det}(W)$ and
2. The set of eigenvalues of $Z \bar{Z}$ and the set of eigenvalues of $W \bar{W}$ are the same.

Proof. We have seen that if $W \in O_{Z}$, then W satisfies (1) and (2). Conversely, suppose W satisfies (1) and (2). By the remarks following Hua's lemma we can choose

$$
\begin{aligned}
& D_{1}=\Delta\left(c_{1} e^{i \alpha}, c_{2}, \ldots, c_{n}\right) \in O_{Z} \text { and } \\
& D_{2}=\Delta\left(d_{1} e^{i \beta}, d_{2}, \ldots, d_{n}\right) \in O_{W}
\end{aligned}
$$

with $c_{1} \geqq c_{2} \geqq \ldots \geqq c_{n} \geqq 0, d_{1} \geqq d_{2} \geqq \ldots \geqq d_{n} \geqq 0$. The eigenvalues of $D_{1} \bar{D}_{1}$ are the same as those of $Z \bar{Z}$, and similarly for $D_{2} \bar{D}_{2}$ and $W \bar{W}$, so by (2),

$$
\left\{c_{1}^{2}, \ldots, c_{n}^{2}\right\}=\left\{d_{1}^{2}, \ldots, d_{n}^{2}\right\}
$$

Since the c_{i} and d_{i} are non-negative and arranged in decreasing order, $c_{i}=d_{i}, i=1, \ldots, n$. If $\operatorname{det}(Z)=0$, then $\operatorname{det}(W)=0$, so we can take $\alpha=\beta=0$. Otherwise,

$$
c_{1} c_{2} \ldots c_{n} e^{i \alpha}=d_{1} d_{2} \ldots d_{n} e^{i \beta}
$$

and neither side of this equation vanishes, so that $\alpha \equiv \beta(\bmod 2 \pi)$. In either case, $D_{1}=D_{2}$. Thus $O_{Z}=O_{W}$.

Now we can determine the isotropy subgroups. These are divided into types according to the multiplicities of the eigenvalues of $Z \bar{Z}$. Fix $Z \in S_{n}$, and choose $D \in O_{Z}$ of the form

$$
D=\Delta\left(c_{1} e^{i \alpha}, c_{2}, \ldots, c_{n}\right)
$$

with $c_{1} \geqq c_{2} \geqq \ldots \geqq c_{n} \geqq 0$. Then $O_{Z}=O_{D} \simeq S U(n) / \mathscr{J}_{D}$. Rewrite

$$
\left\{c_{1}, \ldots, c_{n}\right\}=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}
$$

where the λ_{i} are distinct, and λ_{i} occurs with multiplicity l_{i} in the list c_{1}, \ldots, c_{n}. Let $E=D \bar{D}$. If $g \in \mathscr{I}_{D}$, then $g D^{t} g=D$, so $g E=E g$. From this we see that g must have the form:
(2.2) $\quad g=\left[\begin{array}{lllll}g_{1} & & & & \\ & g_{2} & & & \\ & & \cdot & & \\ & & & & g_{r}\end{array}\right]$
where g_{i} is a block of size $l_{i}, i=1, \ldots, r$. Since $g^{t} \bar{g}=I_{n}, g_{i}^{t} \bar{g}_{i}=I_{l_{i}}$, and so
(2.3) $g_{i} \in U\left(l_{i}\right), \quad i=1, \ldots, r$.

Moreover from $g D^{t} g=D$ we obtain $\lambda_{i} g_{i}^{t} g_{i}=\lambda_{i} I_{i}$, and so
(2.4) if $\lambda_{i}>0, g_{i} \in O\left(l_{i}\right)$.

Conversely, any matrix $g \in S U(n)$ of the form (2.2) satisfying (2.3) and (2.4) is easily seen to be an element of \mathscr{I}_{D}, and so we obtain the following:

Lemma 3. \mathscr{I}_{D} is the subgroup of $\operatorname{SU}(n)$ consisting of matrices of the form (2.2) with $g_{i} \in O\left(l_{i}\right)$ for $i=1, \ldots, r$, if $\lambda_{r}>0$; and $g_{i} \in O\left(l_{i}\right)$ for $i<r, g_{r} \in U\left(l_{r}\right)$ if $\lambda_{r}=0$.

An interesting special case is obtained by taking $Z=I_{n}$. By the preceding lemma, the isotropy subgroup consists of the matrices $g \in O(n)$ which are elements of $S U(n)$, i.e., which are elements of the special orthogonal group $S O(n)$, and so

$$
O_{I_{n}} \simeq S U(n) / S O(n)
$$

which is of real dimension $n^{2}-1-(n(n-1) / 2)=(n+2)(n-1) / 2$. For the following discussion we fix n and write $O_{I_{n}}=O_{I}$.

Lemma 4. O_{I} is polynomially convex.
Proof. By Lemma 2,

$$
O_{I} \subset\{Z: \quad \operatorname{det}(Z)=1, \operatorname{tr}(Z \bar{Z})=n\} .
$$

In fact, denoting the latter set by $X, O_{I}=X$, for if $Z \in X$, then we can choose

$$
D=\Delta\left(c_{1}, \ldots, c_{n}\right) \in O_{Z}
$$

with

$$
c_{1} c_{2} \ldots c_{n}=1 \quad \text { and } \quad \sum_{i=1}^{n} c_{i}^{2}=n
$$

The minimum of the function $\sum_{i=1}^{n} c_{i}^{2}=B$ subject to the constraint $c_{1} c_{2} \ldots c_{n}=1$ occurs exactly when $c_{1}=c_{2}=\ldots=c_{n}=1$, i.e., when $B=n$. Thus $D=I$, and so $X=O_{I}$. We can easily compute that in the coordinates of \mathbf{C}^{N}.

$$
\operatorname{tr}(Z \bar{Z})=\sum_{i=1}^{n}\left|z_{i}\right|^{2}+2\left(\sum_{i=n+1}^{N}\left|z_{i}\right|^{2}\right) .
$$

The ellipsoid $\operatorname{tr}(Z \bar{Z}) \leqq c$ for any $c>0$ is polynomially convex. Also, \hat{O}_{I} must be contained in $\{\operatorname{det}(Z)=1\}$, so

$$
\hat{O}_{I} \subset\{\operatorname{det}(Z)=1, \operatorname{tr}(Z \bar{Z}) \leqq n\} .
$$

By our previous observation, the latter set is O_{I}.
More is true; in fact:
Theorem 1. $P\left(O_{I}\right)=C\left(O_{I}\right)$.
Proof. For a real submanifold M of an open subset of \mathbf{C}^{k}, the space $H_{p} M$ of complex tangents to M at p can be defined as follows: Any real tangent vector $L \in T_{p} \mathbf{C}^{k}$ can be written in the form

$$
L=\sum_{j=1}^{n} a_{j} \partial / \partial x_{j}+\sum_{j=1}^{n} b_{j} \partial / \partial y_{j}
$$

where $z_{j}=x_{j}+i y_{j}$ are the coordinates on \mathbf{C}^{k}. We define a map J on $T_{p} \mathbf{C}^{k}$ by setting

$$
J(L)=-\sum_{j=1}^{n} b_{j} \partial / \partial x_{j}+\sum_{j=1}^{n} a_{j} \partial / \partial y_{j} .
$$

Then identifying the tangent space $T_{p} M$ to M at p with a subspace of $T_{p} \mathbf{C}^{k}$,

$$
H_{p} M=T_{p} M \cap J\left(T_{p} M\right)
$$

In the natural complex structure on $T_{p} \mathbf{C}^{k}, H_{p} M$ is the largest real subspace of $T_{p} M$ which is also a complex subspace of $T_{p} \mathbf{C}^{k} . M$ is said to be totally real if $H_{p} M=\{0\}$ for each $p \in M$. By a theorem of Hormander and

Wermer [9], if M is totally real, and K is a compact polynomially convex subset of M, then $P(K)=C(K)$. By Lemma 4, it thus suffices to show that $M=O_{I}$ is totally real. The map $Z \rightarrow g Z^{t} g$ for fixed g is nonsingular and complex linear, which implies that the dimension of $H_{p} M$ is constant on M. Thus it suffices to check that $H_{p} M=\{0\}$ for $p=I$. We consider $S U(n)$ as a submanifold of $G l(n)$. Let T be the map $T(g)=g^{t} g$ of $G l(n)$ into itself. The image of T restricted to $S U(n)$ is M, and the image of T_{*} restricted to the tangent space of $S U(n)$ at I is $T_{I} M . G l(n)$ we identify with a subset of $\mathbf{C}^{n^{2}}$ by using the coordinates $z_{k l}=x_{k l}+i y_{k l}$ for the (k, l)-th entry of $A \in G l(n)$. The tangent space to $G l(n)$ at I can be identified with M_{n} by assigning to the tangent vector

$$
L=\sum_{k, l=1}^{n} a_{k l} \partial / \partial x_{k l}+b_{k l} \partial / \partial y_{k l}
$$

the matrix

$$
\widetilde{L}=\left[a_{k l}+i b_{k l}\right]
$$

Under this identification, $J L=i \widetilde{L}$. The tangent space to $S U(n)$ at I is then identified with the space $s u(n)$ of skew-Hermitian matrices of trace zero (see [1]). It is easy to compute that for $A \in M_{n}, T_{*} A=A+{ }^{t} A$ and so $T_{*} A=A-\bar{A}$ for $A \in \operatorname{su}(n)$. In particular, $T_{*} A$ is purely imaginary. It follows that $J\left(T_{I} M\right) \cap T_{I} M=\{0\}$, and so M is totally real.

Remark. According to a theorem of A. Browder [4], for a compact manifold $M, C(M)$ requires at least $\operatorname{dim}(M)+1$ generators. If $M=O_{I_{n}}$,

$$
\operatorname{dim}(M)+1=n(n+1) / 2=N,
$$

and so $C(M)$ in this case has the minimum possible number of generators $\left(z_{1}, \ldots, z_{N}\right)$.

We have not yet determined hulls of orbits with more complicated isotropy groups for $n>2$. In what follows, we review the case $n=2$ in preparation for the work of Section 3. Most of these results are contained in [5].
$S U(2)$ can be identified with the unit sphere in \mathbf{C}^{2} by associating to the point $\left(\lambda_{1}, \lambda_{2}\right)$ with $\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}=1$ the matrix

$$
\left[\begin{array}{rr}
\lambda_{1} & -\bar{\lambda}_{2} \\
\lambda_{2} & \bar{\lambda}_{1}
\end{array}\right] .
$$

For $n=2, N=3$, the eigenvalues of $Z \bar{Z}$ are uniquely determined by $\operatorname{tr}(Z \bar{Z})$ and $\operatorname{det}(Z \bar{Z})=|\operatorname{det}(Z)|^{2}$, so that by Lemma 2, if $\operatorname{det}(Z)=A$ and $\operatorname{tr}(Z \bar{Z})=B$,

$$
O_{Z}=\left\{W \in \mathbf{C}^{3}: \quad \operatorname{det}(W)=A, \operatorname{tr}(W \bar{W})=B\right\}
$$

Note that since $\operatorname{det}(Z)$ is a polynomial and the set $\operatorname{tr}(Z \bar{Z}) \leqq c$ is polynomially convex, for any Z,

$$
\begin{equation*}
\hat{O}_{Z}=\left\{W \in \mathbf{C}^{n}: \quad \operatorname{det}(W)=A, \operatorname{tr}(W \bar{W}) \leqq B\right\} \tag{2.5}
\end{equation*}
$$

Since the eigenvalues of $Z \bar{Z}$ are real, the equation

$$
\operatorname{det}(Z \bar{Z}-\lambda I)=\lambda^{2}-B \lambda+|A|^{2}=0
$$

has real roots, so that $B^{2} \geqq 4|A|^{2}$, i.e.,
(2.6) $\quad B \geqq 2|A|$.

Equality holds if and only if the roots are repeated, which by Lemma 5 implies that $O_{Z}=O_{c I}$ for some $c \in \mathbf{C}$. If $c=0$, then $O_{Z}=(0,0,0)=\hat{O}_{Z}$. If $c \neq 0$, then O_{Z} is biholomorphic by a simple dilation to O_{I}, and by the previous discussion, $\hat{O}_{Z}=O_{Z}$ and $P\left(O_{Z}\right)=C\left(O_{Z}\right)$. Note that $O_{Z} \simeq S U(2) / S O(2)$. This quotient is obtained by identifying the matrices

$$
X_{\theta}=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

to I. It is essentially equivalent to that obtained from the Hopf fibration $S^{3} / S^{1} \simeq P^{1} \simeq S^{2}$ which identifies $\left(z_{1}, z_{2}\right)$ with $\left(\lambda z_{1}, \lambda z_{2}\right)$ if $|\lambda|=1$; in terms of $S U(2)$ this amounts to identifying the matrices

$$
Y_{\theta}=\left[\begin{array}{ll}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right]
$$

to I. Since $g X_{\theta} g^{-1}=Y_{\theta}$, where

$$
g=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
i & -1 \\
1 & -i
\end{array}\right) \in S U(2)
$$

the two quotients are homeomorphic and $O_{Z} \simeq S^{2}$.
If $B>2|A|$, then the eigenvalues of $Z \bar{Z}$ are distinct, which by Lemma 2.3 implies that the associated isotropy subgroup is just $\{ \pm I\}$. (The same conclusion is reached whether or not $Z \bar{Z}$ has a zero eigenvalue.) In this case $O_{Z} \simeq S U(2) /\{ \pm I\}$, which is homeomorphic to real projective threespace. Following [5] we refer to an orbit for which $B=2|A|$ as special, and orbits for which $B>2|A|$ as general.

It is helpful to visualize the parameter space (A, B) of the orbits in $\mathbf{C} \times \mathbf{R} \simeq \mathbf{R}^{3}$ (see Fig. 1) .

The cone $B=2|A|$ represents the special orbits, its interior $B>2|A|$ the general orbits. By (2.5) the hull of a given general orbit O consists of a vertical segment joining O to the cone. Note that the hull of a given general orbit contains a special orbit. Also, to determine the hull of an

Figure 1
arbitrary set \hat{K} invariant under the $S U(2)$ action (1.2) we need only determine the following:
(i) $Y=$ the set of all $\zeta \in \mathbf{C}$ with

$$
\{Z \in \hat{K}: \quad \operatorname{det}(Z)=\zeta\}=F_{\hat{K}(\zeta)}
$$

nonempty, and for each $\zeta \in Y$,
(ii) $t(\zeta)=\sup _{Z \in F_{\hat{K}}(\xi)}\{\operatorname{tr}(Z \bar{Z})\}$.

Then

$$
\hat{K}=\left\{Z \in \mathbf{C}^{3}: \quad \operatorname{det}(Z)=\zeta \in Y, \operatorname{tr}(Z \bar{Z}) \leqq t(\zeta)\right\}
$$

In Section 3 we first determine Y for any invariant K and then we find $t(\zeta)$ for a particular class of invariant K. As a preliminary, the following lemma describes $M=t(\zeta)$ for a single orbit $K=O_{Z^{0}}$.

Lemma 6. For $Z^{0} \in \mathbf{C}^{3}$, let

$$
M=M\left(Z^{0}\right)=\max \left\{\left|z_{1}\right|: \quad Z \in O_{Z^{0}}\right\} .
$$

Then
(a) $M=\max \left\{\left|z_{1}\right|: Z \in O_{Z^{0}}\right.$ and $\left.z_{3}=0\right\}$.
(b) $M>0$ unless $Z^{0}=(0,0,0)$.
(c) $\operatorname{tr}\left(Z^{0} \bar{Z}^{0}\right)=M^{2}+|A|^{2} / M^{2}$, where $A=\operatorname{det}\left(Z^{0}\right)$, and this function is strictly increasing in M for $|A|$ fixed.
(d) If $W \in \mathbf{C}^{3}, \operatorname{det}(W)=\operatorname{det}\left(Z^{0}\right)$, and $M(W) \leqq M\left(Z^{0}\right)$, then $W \in$ $\hat{O}_{Z^{0}}$.

Proof. By the remarks following Lemma 1, there exists $D \in O_{Z^{0}}$ of the form

$$
D=\left[\begin{array}{ll}
x e^{i \alpha} & 0 \\
0 & y
\end{array}\right]
$$

with $x \geqq y \geqq 0$. If $g \in S U(2)$ we can write

$$
g=\left[\begin{array}{cc}
\cos (\theta) e^{i \beta} & -\sin (\theta) e^{-i \gamma} \\
\sin (\theta) e^{i \gamma} & \cos (\theta) e^{-i \beta}
\end{array}\right]
$$

Set $Z=g D^{t} g \in O_{Z^{0}}$. Then

$$
z_{1}=x \cos ^{2}(\theta) e^{i(\alpha+2 \beta)}+y \sin ^{2}(\theta) e^{-2 i \gamma}
$$

and so

$$
\begin{aligned}
\left|z_{1}\right|^{2} & =x^{2} \cos ^{4}(\theta)+y^{2} \sin ^{4}(\theta) \\
& +2 x y \cos ^{2}(\theta) \sin ^{2}(\theta) \cos (\alpha+2 \beta+2 \gamma) \\
& \leqq\left(x \cos ^{2}(\theta)+y \sin ^{2}(\theta)\right)^{2} \leqq x^{2} \leqq M^{2}
\end{aligned}
$$

which proves the first assertion. If Z is any element of $O_{Z^{0}}$ with $z_{3}=0$, then $\left|z_{1}\right|^{2}$ and $\left|z_{2}\right|^{2}$ are eigenvalues of $Z \bar{Z}$, so

$$
\left\{\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}\right\}=\left\{x^{2}, y^{2}\right\}
$$

and since $x \geqq y,\left|z_{1}\right| \leqq x$. So $x=M$. Note that $\operatorname{tr}\left(Z \bar{Z}^{0}\right)>0$ unless $Z^{0}=(0,0,0) ;$ since

$$
\operatorname{tr}\left(Z^{0} \bar{Z}^{0}\right)=\operatorname{tr}(D \bar{D})=x^{2}+y^{2}
$$

and $x \geqq y, x=M$ is positive if $Z^{0} \neq(0,0,0)$, which proves (b). Since $\operatorname{det}\left(Z^{0}\right)=\operatorname{det}(D), y=|A| / M$. Thus

$$
\operatorname{tr}\left(Z^{0} \bar{Z}^{0}\right)=M^{2}+|A|^{2} / M^{2}
$$

and (c) is proved. Note that $x \geqq y$ implies that $M^{2} \geqq|A|$. It is easily verified that this function is strictly increasing in M for $M^{2} \geqq|A|$. It follows that under the conditions in part $(\mathrm{d}), \operatorname{tr}(W \bar{W}) \leqq \operatorname{tr}\left(Z^{0} \bar{Z}^{0}\right)$, and so $W \in \hat{O}_{Z^{0}}$.
3. Hulls of invariant sets. Let K be a compact subset of \mathbf{C}^{3} invariant under the $S U(2)$ action (2.1) and let \hat{K} denote the polynomial hull of K. Since the map $T_{g}: Z \rightarrow g Z^{t} g$ for fixed $g \in S U(2)$ is non-singular and complex linear, \hat{K} is also invariant under this action. Let $i(K)$ denote the closed subalgebra of $P(K)$ consisting of all $f \in P(K)$ such that $f \circ T_{g}=f$ for all $g \in S U(2)$, the invariant algebra. For $f \in P(K)$ define the projection of f onto $i(K)$ by

$$
\mathscr{P}(f)(z)=\int_{S U(2)} f\left(T_{g}(z)\right) d \mu(g)
$$

where μ denotes normalized Haar measure on $S U(2)$. Then $\mathscr{P}(f) \in i(K)$, $\mathscr{P}(f)=f$ if $f \in i(K)$, and

$$
\|\mathscr{P}(f)\|_{K} \leqq\|f\|_{K} .
$$

Moreover, if Q is a polynomial, so is $\mathscr{P}(Q)$. (See [2].) Set $F(Z)=\operatorname{det}(Z) \in$ $i(K)$, and let $X=F(K) . X$ is a compact subset of \mathbf{C}. Note that if $X=\left\{c_{1}, \ldots, c_{s}\right\}$ is a finite set, then \hat{X} is easy to describe: if

$$
B_{i}=\max \left\{\operatorname{tr}(Z \bar{Z}): \quad F(Z)=c_{i}, Z \in K\right\},
$$

then

$$
\hat{K}=\bigcup_{i=1}^{n}\left\{Z: \quad \operatorname{tr}(Z \bar{Z}) \leqq B_{i}, F(Z)=c_{i}\right\} .
$$

Henceforth we assume that X is infinite.
Lemma 7. $i(K)$ is generated by $F(Z)$.
Proof. First we claim that if P is a polynomial in $i(K)$, then P is a polynomial in F. The proof is by induction on the degree of P. The claim is true for polynomials of degree 0 . Assume $\operatorname{deg}(P)>0$. Fix $Z^{0} \in K$, $Z^{0} \neq(0,0,0)$. Let $c=F\left(Z^{0}\right)$. P is constant on $O_{Z^{0}}$, say $P=d$. Then P is constant $=d$ on $\hat{O}_{Z^{0}}$. Since the hull of each orbit contains a special orbit, P is constant on a special orbit $Y: \quad F(Z)=c, \operatorname{tr}(Z \bar{Z})=2|c|$. By the proof of Theorem 1 any special orbit is totally real. It is well-known (see [11]) that if M is a complex manifold of complex dimension n, Y a totally real submanifold of M of real dimension n, and f is any holomorphic function on M vanishing on Y, then $f \equiv 0$ on M. Applying this to $M=$ $\{F(Z)=c\}$ of complex dimension 2 and the special orbit Y of real dimension 2, we find that P is constant on M. It follows from the Nullstellensatz that

$$
P(Z)-d=(F(Z)-c)^{m} Q(Z)
$$

for some polynomial Q with $\operatorname{deg}(Q)<\operatorname{deg}(P)$, and some integer $m>0$. Note that Q is invariant on the set $K^{\prime}=K \backslash\{F(Z)=c\}$. Since $F\left(K^{\prime}\right)$ is infinite, by induction we may assume that Q is a polynomial in F, and the claim is proved. Now suppose $f \in i(K)$ and choose polynomials P_{n} converging uniformly on K to f. Since

$$
\left\|\mathscr{P}\left(P_{n}\right)-f\right\|=\left\|\mathscr{P}\left(P_{n}-f\right)\right\| \leqq\left\|P_{n}-f\right\|,
$$

we can assume $P_{n} \in i(K)$ for all n, and the proof of the lemma is complete.

In the following lemma we use an argument of Wermer [12].

Lemma 8. $F(\hat{K})=\hat{X}$.
Proof. It is immediate that $F(\hat{K}) \subset \hat{X}$. Fix $\zeta_{0} \in \hat{X} \backslash X$. If $\zeta_{0} \notin F(\hat{K})$, then

$$
g(Z)=\left(F(Z)-\zeta_{0}\right)
$$

does not vanish on \hat{K}, so $g^{-1} \in P(K)$. Clearly then $g^{-1} \in i(K)$. By the previous lemma, there exists a sequence of polynomials in $\zeta=F(Z)$ converging to g^{-1} on K, so $P_{n}(\xi)$ converges to $\left(\zeta-\zeta_{0}\right)^{-1}$ on X, implying that $\left(\zeta-\zeta_{0}\right)^{-1} \in P(X)$, which is a contradiction.

Now we turn to the problem of determining \hat{K}. We assume that:
(3.1) $F(K)=X$ is a simple closed curve in \mathbf{C}, given as the image of a one-to-one continuous map $\gamma:[0,1] \rightarrow \mathbf{C}$ with $\gamma(0)=\gamma(1)$ and (3.2) $0 \notin X$.

Let Ω be the bounded component of $\mathbf{C} \backslash X$. By Lemma 8, $F(\hat{K})=\hat{X}=$ $\bar{\Omega}$. Let \mathscr{F}_{K} and \mathscr{F}_{K} be the K and \hat{K} fibers of the projection F, respectively:

$$
\mathscr{F}_{K}(\zeta)=\{Z \in K: \quad F(Z)=\zeta\}, \quad \mathscr{F}_{K} \hat{\beta}(\zeta)=\{Z \in \hat{K}: \quad F(Z)=\zeta\}
$$

and set

$$
\begin{aligned}
& M_{K}(\zeta)=\max \left\{\left|z_{1}\right|: \quad Z \in \mathscr{F}_{K}(\zeta)\right\} \\
& M_{\hat{K}}(\zeta)=\max \left\{\left|z_{1}\right|: \quad Z \in \mathscr{F}_{\hat{K}}(\zeta)\right\} \\
& \Psi_{K}(\zeta)=\log \left(M_{K}(\zeta)\right), \quad \Psi_{\hat{K}}(\zeta)=\log \left(M_{\hat{K}}(\zeta)\right.
\end{aligned}
$$

For any function f on X denote by H_{f} the Perron solution to the Dirichlet problem with boundary values f, i.e.,

$$
H_{f}=\sup \left\{u(\zeta): \quad u \in \mathscr{L}_{f}\right\}
$$

where \mathscr{L}_{f} is the class of functions subharmonic or identically $-\infty$ in Ω, bounded above on Ω, and satisfying

$$
\lim _{\zeta \in \Omega \rightarrow 5^{0}} u(\zeta) \leqq f\left(\zeta^{0}\right), \quad \text { all } \zeta^{0} \in X
$$

We use the following facts from potential theory (see [8]): If f is bounded on X, then H_{f} is harmonic and bounded on Ω. Moreover the existence of a barrier at each point $\zeta^{0} \in X$ implies that
(3.3) $\lim _{\zeta \in \Omega \rightarrow \zeta^{0}} H_{f}(\zeta) \leqq \lim _{\zeta \in X \rightarrow \zeta^{\circ}} f(\zeta)$.

Take $f=\Psi_{K}$ and let $H=H_{\Psi_{K}}$. By assumption (3.2) combined with Lemma 6 (b), Ψ_{K} is bounded, and so H is harmonic on Ω.

Theorem 2. Let K be a compact set in \mathbf{C}^{3} invariant under the $S U(2)$ action (2.1), and assume that (3.1) and (3.2) hold. Then

$$
\begin{equation*}
\hat{K}=\left\{Z \in \mathbf{C}^{3}: \quad F(Z)=\zeta \in \hat{X}, \operatorname{tr}(Z \bar{Z}) \leqq t(\zeta)\right\} \tag{3.4}
\end{equation*}
$$

where

$$
t(\zeta)=\beta^{2}+|\zeta|^{2} \beta^{-2}
$$

and

$$
\beta(\zeta)=e^{2 H(\zeta)} \text { for } \zeta \in \Omega, \beta(\zeta)=M_{K}(\zeta) \text { for } \zeta \in X
$$

We begin the proof with the following lemma:
Lemma 9. $\lim _{\zeta \in \Omega \rightarrow \sup ^{0}} H(\zeta) \leqq \Psi_{K}\left(\zeta^{0}\right), \quad$ all $\zeta^{0} \in X$.

$$
\zeta \in \Omega \rightarrow \zeta^{0}
$$

Proof. By (3.3) it suffices to show that

$$
\begin{equation*}
\lim _{\zeta \in X \rightarrow \zeta^{0}} \Psi_{K}(\zeta) \leqq \Psi_{K}\left(\zeta^{0}\right), \quad \text { all } \zeta^{0} \in X \tag{3.5}
\end{equation*}
$$

Choose a sequence $\left\{Z_{j}\right\}, Z_{j} \in K$, all j, with $\zeta_{j}=F\left(Z_{j}\right) \in X$ converging to ζ^{0}. If $Z_{j^{\prime}}$ is a subsequence converging to $Z^{0} \in K$, then

$$
F\left(Z^{0}\right)=\zeta^{0} \quad \text { and } \quad\left|\left(z_{1}\right)_{j^{\prime}}\right| \rightarrow \mid z_{1}^{9}
$$

from which (3.5) follows.
Next we make use of the following result of Wermer [12]:
Let A be a uniform algebra on a compact Hausdorff space K, and let M_{A} denote the maximal ideal space of A. Fix $F \in A$, and let \hat{F} denote the Gelfand transform of F. For each $\zeta \in \mathbf{C}$, let $\mathscr{F}(\zeta)$ be the fiber of the projection \hat{F},

$$
\mathscr{F}(\zeta)=\left\{x \in M_{A}: \quad \hat{F}(x)=\zeta\right\}
$$

Then for any $g \in A$, the function

$$
\Psi(\zeta)=\log \left(\max _{x \in \mathscr{F}(\zeta)}|g(x)|\right)
$$

is subharmonic on $\mathbf{C} \backslash F(K)$.
Applying this result to the algebra $A=P(K)$, where $M_{A}=\hat{K}$, and taking $F(Z)=\operatorname{det}(Z)=\hat{F}(Z), g(Z)=z_{1}$, we see that the function $\Psi_{\hat{K}}(\zeta)$ is subharmonic on $\mathbf{C} \backslash X$.

Lemma 10. $\lim _{\zeta \in \Omega \rightarrow \mathrm{S}^{0}} \Psi_{\hat{K}}(\zeta) \leqq \Psi_{K}\left(\zeta^{0}\right), \quad$ all $\zeta^{0} \in X$.

$$
\zeta \in \Omega \rightarrow 5^{\circ}
$$

Proof. We follow very closely the proof of a similar statement in [12]. Suppose the assertion of the lemma is false. Then by an argument similar to that in Lemma 9, there exists a point $Z^{0} \in \hat{K}$ with $\operatorname{det}\left(Z^{0}\right)=\zeta^{0} \in X$, and

$$
\left|z_{1}^{0}\right|>\sup _{Z \in \mathscr{F}_{K}\left(5^{0}\right)}\left|z_{1}\right| .
$$

Let B denote the maximum of $\operatorname{tr}(Z \bar{Z})$ on $\mathscr{F}_{K}\left(\zeta^{0}\right)$. By Lemma 6 (c), $\operatorname{tr}\left(Z^{0} \bar{Z}^{0}\right)>B$. Let

$$
Y=\{Z: \quad F(Z)=\zeta, \operatorname{tr}(Z \bar{Z}) \leqq B\}
$$

Then $Y \subset \hat{K}, Y$ is polynomially convex, and $Z^{0} \notin Y$. Choose a polynomial P with $|P|<1$ on a neighborhood N of Y in \hat{K}, and $\left|P\left(Z^{0}\right)\right|>2$. Then $X_{1}=F(K \backslash N)$ is a closed subset of $X \backslash\{\zeta\}$. Since each point of X is a peak point for the algebra $P(X)$, there exists a polynomial h with $h(\zeta)=1$, $|h|<1$ on $X \backslash\}\}$. Choose $\rho>0$ so that $|h|<1-\rho$ on X_{1}. Then $|h \circ F|$ $<1-\rho$ on $K \backslash N$, and $|h \circ F| \leqq 1$ on K. Choose n so that

$$
(1-\rho)^{n} \max _{K}|P|<1
$$

and set $Q=(h \circ F)^{n} P$. Then $|Q|<1$ on K, but

$$
\left|Q\left(Z^{0}\right)\right|=\left|h\left(\zeta^{0}\right)\right|\left|P\left(Z^{0}\right)\right|>2,
$$

which contradicts $Z^{0} \in K$, and we are done.
It follows from the preceding lemma that $\Psi_{\hat{K}}$ belongs to the class $\mathscr{L}_{\Psi_{K}}$, and so
(3.6) $H(\zeta) \geqq \Psi_{\hat{K}}(\zeta) \quad$ for $\zeta \in \Omega$.

Let H^{*} denote the harmonic conjugate of H in Ω, and set

$$
\varphi=e^{H+i H^{*}}
$$

Then φ is analytic, bounded, and non-vanishing on Ω. Let D be the image of the map $G: \quad \Omega \rightarrow \mathbf{C}^{3}$ given by

$$
G(\zeta)=(\varphi(\zeta), \zeta / \varphi(\zeta), 0)
$$

Note that $F(G(\zeta))=\zeta$. Also, for $\zeta \in \Omega$, by (3.6),

$$
|\boldsymbol{\varphi}(\zeta)|=e^{H(\zeta)} \geqq e^{\Psi \hat{K}(\zeta)}=M_{\hat{K}}(\zeta)
$$

so that

$$
|\xi| /|\varphi(\zeta)| \leqq|\zeta| / M_{\hat{K}}(\zeta) .
$$

Choosing $Z \in \mathscr{F}_{\hat{K}}(\zeta)$ with $\left|z_{1}\right|=M_{\hat{K}}(\zeta)$, by the proof of Lemma 6 ,

$$
M_{\hat{K}}(\zeta)^{2}=M^{2}(Z) \geqq|\zeta|,
$$

where

$$
M(Z)=\left\{\max \left|w_{1}\right|: \quad W \in O_{Z}\right\}
$$

which implies that
(3.7) $|\zeta| /|\varphi(\zeta)| \leqq M_{\hat{K}}(\zeta)$.

If $Z^{0} \in \partial D$, then there exists a sequence $\left\{\zeta_{n}\right\}, \zeta_{n} \in \Omega$, converging to $\zeta^{0} \in X$, with

$$
Z_{n}=\left(\varphi\left(\zeta_{n}\right), \zeta_{n} / \varphi\left(\zeta_{n}\right), 0\right)
$$

converging to Z^{0}. It follows that $F\left(Z^{0}\right)=\zeta^{0}$, and so by Lemma 9 ,

$$
\left|z_{1}^{0}\right| \leqq \limsup _{\zeta \rightarrow \zeta^{0}}|\boldsymbol{\varphi}(\zeta)|=\limsup _{\zeta \rightarrow \zeta^{0}} e^{H(\zeta)} \leqq e^{\Psi} K^{\left(\zeta^{0}\right)}=M_{K}\left(\zeta^{0}\right)
$$

and also

$$
\left|z_{2}^{0}\right| \leqq \lim _{\zeta \in \Omega \rightarrow 5^{0}}\left|\zeta^{n}\right| /\left|\varphi\left(\zeta^{n}\right)\right| \leqq \lim _{\zeta \in \Omega \rightarrow 5^{0}} M_{\hat{K}}(\zeta) \leqq M_{K}\left(\zeta^{0}\right)
$$

by (3.7) and Lemma 10 . Since $z_{3}=0$, as in the proof of Lemma 6 ,

$$
\max \left\{\left|z_{1}^{0}\right|,\left|z_{2}^{0}\right|\right\}=M\left(Z^{0}\right)
$$

and so $M\left(Z^{0}\right) \leqq M_{K}\left(\zeta^{0}\right)$. By Lemma 6 (d), $O_{Z^{0}} \subset \hat{K}$. It follows that $\partial D \subset \hat{K}$, and so $D \subset \hat{K}$. Thus for $\zeta \in \Omega$, by definition of $M_{\hat{K}}$,

$$
e^{H(\zeta)}=|\boldsymbol{\varphi}(\zeta)| \leqq M_{\hat{K}}(\zeta)=e^{\Psi_{\hat{K}}(\zeta)}
$$

so $H(\zeta) \leqq \Psi_{\hat{K}}(\zeta)$. Combining this with (3.6) gives

$$
H(\zeta)=\Psi_{\hat{K}}(\zeta) \quad \text { for all } \zeta \in \Omega
$$

If $F(Z)=\zeta \in \Omega$, and $Z \in \hat{K}$, then $M(Z) \leqq e^{H(\zeta)}$ implies by Lemma 6 (c) that (3.4) holds. Conversely, if $\operatorname{det}(Z)=\zeta$, and (3.4) holds, by Lemma 6 (c),

$$
M(Z) \leqq \beta(\zeta)=e^{H(\zeta)}=M_{\hat{K}}(\zeta)
$$

and so by Lemma 2.6 (d), $O_{Z} \subset \hat{O}_{W} \subset \hat{K}$. If $F(Z)=\zeta \in X$, a similar argument shows that $Z \in \hat{K}$ if and only if (3.4) holds. The proof is complete.

Corollary 1. Under the assumptions in Theorem 2, each point in $\hat{K} \backslash K$ lies on an analytic disk in \hat{K}.

Proof. If $Z \in \hat{K} \backslash K$, and $\operatorname{det}(Z)=\zeta$, then by Theorem 2, and equation (2.6), one of the following holds:
(i) $\operatorname{tr}(Z \bar{Z})=t(\zeta)$
(ii) $2|\zeta|^{2}<\operatorname{tr}(Z \bar{Z})<t(\zeta)$
(iii) $\operatorname{tr}(Z \bar{Z})=2|\zeta|^{2}<t(\zeta)$.

Let D be the disk constructed in the proof of Theorem 2, the image of

$$
\zeta \rightarrow(\varphi(\zeta), \zeta / \varphi(\zeta), 0)=Z(\zeta) \subset \hat{K}
$$

Then $\operatorname{det}(Z(\zeta))=\zeta$, and if (i) holds,

$$
\operatorname{tr} Z(\zeta) \bar{Z}(\zeta)=t(\zeta)=\operatorname{tr}(Z \bar{Z})
$$

so that $Z=\lambda_{0}$ for some $g \in S U(2)$, so Z belongs to the disk $\zeta \rightarrow \lambda_{0}$. If (ii) holds then an open neighborhood of Z in \mathbf{C}^{3} belongs to \hat{K}. If (iii) holds then Z belongs to the orbit of $\lambda_{0} I$ for some $\lambda_{0} \in \mathbf{C}$; so

$$
Z=g\left(\lambda_{0}, \lambda_{0}, 0\right)^{t} g \quad \text { for some } g \in S U(2)
$$

Moreover by (iii) for some $\epsilon>0$, the disk $\lambda \rightarrow g(\lambda, \lambda, 0)^{t} g$ lies in \hat{K} for $\left|\lambda-\lambda_{0}\right|<\epsilon$, and contains Z.

We now apply Theorem 2 to the study of orbits under the action (2.1) where the group G is taken to be $U(2)$. Such orbits are a fortiori invariant under the same action with $G=S U(2)$. Since each element g of $U(2)$ can be written as $g=e^{i \alpha} g^{\prime}$ with $g^{\prime} \in S U(2)$, we see that

$$
O_{Z}^{U(2)}=\left\{W \in \mathbf{C}^{3}: \quad|\operatorname{det}(W)|=|\operatorname{det}(Z)|, \operatorname{tr}(W \bar{W})=\operatorname{tr}(Z \bar{Z})\right\}
$$

and

$$
O_{Z}^{U(2)} \simeq O_{Z}^{S U(2)} \times S^{1}
$$

In particular, if $O_{Z}^{S U(2)}$ is special, $O_{Z}^{U(2)} \simeq S^{2} \times S^{1}$ is three dimensional.
Fix $Z^{0} \in \mathbf{C}^{3}$ with

$$
A=\operatorname{det}\left(Z^{0}\right), \quad B=\operatorname{tr}\left(Z^{0} \bar{Z}^{0}\right), \quad M=\max _{Z \in O_{Z^{0}}}\left|z_{1}\right|
$$

Set $K=O_{Z}^{U(2)}$. Then

$$
X=F(K)=\{\zeta \in \mathbf{C}: \quad|\zeta|=A\}, \quad \text { and } \quad F(\hat{K})=\{|\zeta| \leqq A\}
$$

By Lemma 2.6, M depends only on B and $|A|$, in fact, we easily compute that

$$
\begin{equation*}
M=\left[\frac{B+\left(B^{2}-4|A|^{2}\right)^{1 / 2}}{2}\right]^{1 / 2} \tag{3.8}
\end{equation*}
$$

so that $\Psi_{K}(\zeta)=\log (M)$ is constant on X. Thus $H \equiv \log (M)$ on \hat{X}, and we have:

Corollary 2. If $\operatorname{det}(Z)=A, \operatorname{tr}(Z \bar{Z})=B$, and $K=O_{Z}^{U(2)}$, then

$$
\hat{K}=\left\{Z \in \mathbf{C}^{3}: \quad \operatorname{det}(Z)=|\zeta| \leqq|A|, \operatorname{tr}(Z \bar{Z}) \leqq M^{2}+|\xi|^{2} / M^{2}\right\}
$$

where M is given by (3.8).
The hull of the $U(2)$ orbit of I (for which $|A|=1, B=2, M=1$) is shown (in the parameter space) in Fig. 2.

Note in particular that $\hat{K} \backslash K$ is an open subset of \mathbf{C}^{3} : If $\zeta \in \Omega$, then

$$
\mathscr{F}_{\mathcal{K}}(\zeta)=\left\{Z: 2|\zeta|^{2} \leqq \operatorname{tr}(Z \bar{Z}) \leqq M^{2}+|\zeta|^{2} / M^{2}\right\} .
$$

As noted in the proof of Lemma $6, M \geqq|A| / M$, so if $|\zeta|<|A|$,

$$
(M-|\xi| / M)^{2}>0
$$

and thus
$M^{2}-|\xi|^{2} / M^{2}>2|\xi|^{2}$.
It is likely that these methods could be used to determine the hulls of more general sets invariant under the $S U(2)$ action (2.1).

Figure 2

References

1. F. Adams, Lectures on Lie groups (W. A. Benjamin, N.Y., 1969).
2. J.-E. Bjork, Compact groups operating on Banach algebras, Math. Ann. 205 (1973), 281-297.
3. A. Browder, Introduction to function algebras (W. A. Benjamin, N.Y., 1969).
4. - Cohomology of maximal ideal spaces, Bull. A.M.S. 67 (1961), 515-516.
5. A. Debiard and B. Gaveau, Equations de Cauchy-Riemann sur $S U(2)$ et leurs enveloppes d'holomorphie, Can. J. Math. 38 (1986), 1009-1024.
6. T. Gamelin, Hartogs series, Hartogs functions, and Jensen measures, in Spaces of analytic functions, Kristiansand, Norway (1975), Lecture Notes in Mathematics 512 (SpringerVerlag, N.Y., 1976).
7. S. Helgason, Differential geometry and symmetric spaces (Academic Press, N.Y., 1962).
8. L. L. Helms, Introduction to potential theory (John Wiley \& Sons, N.Y., 1969).
9. L. Hormander and J. Wermer, Uniform approximation on compact subsets in \mathbf{C}^{n}, Math. Scand. 23 (1968), 5-21.
10. L. K. Hua, On the theory of automorphic functions of a matrix variable I, Geometrical basis, Amer. J. Math. 66 (1944), 470-480.
11. W. Rudin, Function theory on the unit ball in \mathbf{C}^{n} (Springer-Verlag, N.Y., 1980).
12. J. Wermer, Subharmonicity and hulls, Pac. J. Math. 38 (1975), 283-290.

College of the Holy Cross,
Worcester, Massachusetts

[^0]: Received August 5, 1988.

