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POLYNOMIAL HULLS OF SETS INVARIANT UNDER 
AN ACTION OF THE SPECIAL UNITARY GROUP 

JOHN T. ANDERSON 

1. Introduction. If K is a compact subset of C", K will denote the poly
nomial hull of K: 

K = {z e C7: \P(z) | g sup \P(w) | for all polynomials />}. 
W G K 

A 

K arises in the study of uniform algebras as the maximal ideal space of the 
algebra P(K) of uniform limits on K of polynomials (see [3] ). The 
condition K = K(K is polynomially convex) is a necessary one for uniform 
approximation on K of continuous functions by polynomials (P(K) = 
C(K) ). If K is not polynomially convex, the question of existence of 
analytic structure in K\K is of particular interest. For n = 1, i t is the 
union of K and the bounded components of C\K. The determination of K 
in dimensions greater than one is a more difficult problem. Among the 
special classes of compact sets K whose polynomial hulls have been 
determined are those invariant under certain group actions on C'7. In [12] 
J. Wermer investigated a class of disks K in C invariant under the S 
action 

(1.1) (z, w) -> (zei0
9 we~i6). 

A 

He found that K\K was foliated by a one-parameter family of analytic 
disks (analytic images of the unit disk in C) with boundaries on K. 
Gamelin [6] later gave a description of K for arbitrary sets K c C2 in
variant under the same action. He found that through each point of K\K 

A 

there exists an analytic disk in K. Also, Bjôrk [2] studied the general 
question of algebras invariant under the action of a compact group. 

Recently, Debiard and Gaveau [5] investigated actions of the unitary 
and special unitary groups on C3 identified with the space of 2 X 2 
symmetric complex matrices by 

(z,, z2, z3) -> 

The action is then 

(1.2) Z^gZ'g 

Z. 
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POLYNOMIAL HULLS 1257 

for g G U(2) or SU(2), where lg denotes the transpose of g. They 
described the hull of the SU(2) orbit of any point Z G C3, and gave a 
partial description of the U(2) orbit of an arbitrary point, finding a family 
of analytic disks with boundaries on the orbit. 

In this paper we give an explicit description (Theorem 2) of K for a class 
of compact sets invariant under the SU(2) action (1.2). We apply this to 
obtain a complete description of the hull of any U{2) orbit (Corollary 2). 
Even for "special" orbits, which are three (real) dimensional subsets of C3, 
this hull contains an open subset of C . These results are presented in 
Section 3. In Section 2 we give a general discussion of orbits of the 
analogous action on C^, N = n(n + l) /2; in particular we prove that if 
Z = / is the point identified with the identity matrix, and K is the orbit of 
Z, then P(K) = C(K). For our main results, we use ideas from the papers 
of Bjôrk, Gamelin, and Wermer mentioned above. The key ingredient is 
a result of Wermer stating that a certain function on the fibers of a 
projection from the maximal ideal space of a uniform algebra into C is 
subharmonic. 

The author wishes to thank John Wermer for pointing out his own work 
and that of Gamelin, and for helpful discussions on these problems. 

2. Orbits. Mn will denote the ring of n X n complex matrices. det(^ ) 
and ir(A) will denote the determinant and trace of A G Mn9 and G/(«), the 
general linear group of invertible elements of Mn. We denote by 0{n), 
SO(n), U(n), and SU(n) the subgroups of Gl(n) consisting of the orthog
onal, special orthogonal, unitary and special unitary matrices respectively. 
In will denote the n X n identity matrix. We identify the space Sn of 
symmetric matrices in Mn with C^, N = n(n + l)/2, by 

(zl9...,zN)-

cn+\ c2n 

ùn + \ 

ù2n-\ 

For G a subgroup of Gl(n) we define an action of G on Sn by 

(2.1) Z^gZlg for g G G,Z G Sn. 

CFZ will denote the G-orbit of Z G Sn, 

CPZ= [W G Sn: W = gZlg for some g G G} . 

If G is compact, so is O^, J^f will denote the isotropy subgroup of Z in 
G, i.e., 

JG
Z = {g e G: gZ'g = Z). 
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1258 JOHN T. ANDERSON 

If the coset space G/J^ is given the quotient topology then 0% ~ GA/f, 
where ~ denotes homeomorphism (see [7] ). We will be concerned 
first and primarily with the case G = SU(n), and we drop the superscript 
G for the remainder of the discussion. Note that if Z G Sn, and W = 
gZlg e_O z , then det(Z) = det(W). Also, since WW = gZZg~\ WW 
and ZZ have the same eigenvalues; in particular tr(ZZ) = tr( WW). 
Denote by A(cl5 . . . , cn) the n X n matrix with entries q , . . . , cn on the 
main diagonal and zeroes elsewhere. The following lemma is due to Hua 
[10]. 

LEMMA 1. Let Z G Sn. Then there exists g G U(n) such that 

gZtg = A ( c „ . . . , c w ) 

with cx i^ c2 = . . . = cn = 0. 

It follows that every SU(n) orbit contains a diagonal element, for if 
Z G Sn, and D = A(çl5 . . . , cn) = gZlg with g G U(n) and det(g) = eia, 
set 

g' = A(e~ia, 1 , 1 , . . . , 1). 

Then h = gg' <E SU(n) and Z = /*D'r/z, where 

D' = (gTXD(g>)~X = A(Cle
2^, c2, . . . , c„). 

Note that if det(Z) = 0, then we can take a = 0. 

LEMMA 2. If Z G Sn, then Oz consists of all those W G Sn such that 
1. det(Z) = det(W) and 
2. The set of eigenvalues of ZZ and the set of eigenvalues of WW are 

the same. 

Proof. We have seen that if W G O Z , then W satisfies (1) and (2). 
Conversely, suppose W satisfies (1) and (2). By the remarks following 
Hua's lemma we can choose 

Dx = A(cxe
l0L, c2, . . . , cn) G Oz and 

D2 = à(dxe
l^d2,...,dn) G Ow 

with cx ê c2 = . . . = cn â 0, dx ^ d2 è . . . ^ dn ^ 0. The eigenvalues 
of DXDX are the same as those of ZZ, and similarly for D2D2 and WW, 
so by (2), 

{cl...,c2„} = {di...,d2
n}. 

Since the ct and dt are non-negative and arranged in decreasing order, 
ci = dt, i = 1, . . . , « . If det(Z) = 0, then det(W) = 0, so we can take 
a = ft = 0. Otherwise, 

cxc2 . . . cne
m = dxd2 . . . dne

1^, 

and neither side of this equation vanishes, so that a = ft (mod 2m). In 
either case, Dx = D2. Thus Oz = Ow. 
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Now we can determine the isotropy subgroups. These are divided into 
types according to the multiplicities of the eigenvalues of ZZ. Fix Z G Sn, 
and choose D G O z of the form 

D = A(qe<a, c2, . . . , cn\ 

with cx ^ c2 ^ . . . ^ cM ^ 0. Then Oz = OD ~ SU(n)/JPD. Rewrite 

{ q , . . . , cw} = {\l9...,\r} 

where the A, are distinct, and \ occurs with multiplicity lt in the list 
c l 5 . . . , cw. Let £ = DD. If g G j ^ , then g/)'g = Z), so gE = .Eg. From 
this we see that g must have the form: 

(2-2) g S2 

where g, is a block of size / , - , / = 1,. . . , r. Since g'g = /„, g/g, = /,., 
and so 

(2.3) g, G f/(/,), i = 1 r. 

Moreover from gD*g = D we obtain \gfgi = A,-//., and so 

(2.4) if X,. > 0, g,- e <?(/.). 

Conversely, any matrix g G SU(n) of the form (2.2) satisfying (2.3) and 
(2.4) is easily seen to be an element of JD, and so we obtain the 
following: 

LEMMA 3. JD is the subgroup of SU(n) consisting of matrices of the 
form (2.2) with gt G 0(/z) for i = 1, . . . , r, if\r > 0; awd gt G 0(/,) /or 
/ < r, gr G £/(/,) , / \ r = 0. 

An interesting special case is obtained by taking Z = In. By the pre
ceding lemma, the isotropy subgroup consists of the matrices g G 0(n) 
which are elements of SU(n), i.e., which are elements of the special or
thogonal group SO(n), and so 

0In ^ SU(n)/SO(n) 

which is of real dimension n2 — 1 — (n(n — l)/2) = (n + 2)(n — l ) /2. 
For the following discussion we fix n and write 07 = Oj. 

LEMMA 4. 07 is polynomially convex. 

Proof. By Lemma 2, 

<97 c {Z: det(Z) = 1, tr(ZZ) = «}. 
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1260 JOHN T. ANDERSON 

In fact, denoting the latter set by X, Or = X, for if Z e X, then we 
can choose 

D = A( C „ . . . , c„ ) e Oz 

with 

n 

cxc2 • . . cn = 1 and 2 cz = w. 

The minimum of the function 2z
A7

=i cj = B subject to the constraint 
cxc2 . . . cn = 1 occurs exactly when cx = c2 = . . . = c„ = 1, i.e., when 
B = n. Thus D = I, and s o I = 07. We can easily compute that in the 
coordinates of CN. 

tr(ZZ) = 2 |zz|
2 -f 2( 2 W21 

The ellipsoid tr(ZZ) ^ c for any c > 0 is polynomially convex. Also, 07 

must be contained in (det(Z) = 1}, so 

Oj c (det(Z) = 1, tr(ZZ) g n}. 

By our previous observation, the latter set is 07. 

More is true; in fact: 

THEOREM 1. P(Or) = C(07). 

Proof. For a real submanifold M of an open subset of Ck, the space i^Af 
of complex tangents to M at p can be defined as follows: Any real tangent 
vector L e TC^ can be written in the form 

n n 

L = 2 ajd/dxj 4- 2 67-3/3jJ-
y=i y'=i 

where z- = x- + iy- are the coordinates on C*. We define a map J on TpC
k 

by setting 

n n 

J(L) = - 2 fya/axy + 2 a^/dy. 
7 = 1 7 = 1 

Then identifying the tangent space T M to M at /? with a subspace 
of ÇC*, 

tf,M = TpM n / ( C M ) . 

In the natural complex structure on TpC
k, HpM is the largest real subspace 

of TpM which is also a complex subspace of TpC
k. M is said to be totally 

real if H M = {0} for each p G M. By a theorem of Hormander and 
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Wermer [9], if M is totally real, and K is a compact polynomially convex 
subset of M, then P(K) = C(K). By Lemma 4, it thus suffices to show that 
M = Of is totally real. The map Z —> gZlg for fixed g is nonsingular and 
complex linear, which implies that the dimension of H M is constant on 
M. Thus it suffices to check that H M = {0} for p = I. We consider 
SU(n) as a submanifold of Gl(n). Let T be the map T(g) = glg of Gl(n) 
into itself. The image of T restricted to SU(n) is M, and the image of 7i 
restricted to the tanaent space of SU(n) at / is TjM. Gl(n) we identify 
with a subset of C" by using the coordinates zkl = xkl + iykl for the 
(/c, /)-th entry of A e Gl(n). The tangent space to Gl(n) at / can be 
identified with Mn by assigning to the tangent vector 

n 

L = 2 akfi/dxkl + bkld/dykl 
kj=\ 

the matrix 

L - [akl + i6A/]. 

Under this identification, JL = iL. The tangent space to SU(n) at / is 
then identified with the space su(n) of skew-Hermitian matrices of trace 
zero (see [1] ). It is easy to compute that for^l e Mn, T*A = A + lA and so 
T*A = A —A for A G su(n). In particular, T*A is purely imaginary. It 
follows that J(TjM) n TjM = {0}, and so M is totally real. 

Remark. According to a theorem of A. Browder [4], for a compact mani
fold M, C(M) requires at least dim(Af ) + 1 generators. If M = Of, 

dim(M) + 1 = n(n + l) /2 = N9 

and so C(M) in this case has the minimum possible number of generators 

We have not yet determined hulls of orbits with more complicated 
isotropy groups for n > 2. In what follows, we review the case n = 2 in 
preparation for the work of Section 3. Most of these results are contained 
in [5]. 

SU(2) can be identified with the unit sphere in C by associating to the 
point (Xj, X2) with IAJ2 + |A2|

2 = 1 the matrix 

[X2 Xj 

For n = 2, TV = 3, the eigenvalues of ZZ are uniquely determined by 
tr(ZZ) and det(ZZ) = |det(Z) |2, so that by Lemma 2, if det(Z) = A 
and tr(ZZ) - B, 

Oz = {W <E C3: det(J*0 - A, tr(WW) = B}. 

https://doi.org/10.4153/CJM-1988-054-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-054-9


1262 JOHN T. ANDERSON 

Note that since det(Z) is a polynomial and the set tr(ZZ) â c is poly-
nomially convex, for any Z, 

(2.5) Oz = {W e C1: det(»0 = ^ , t r ( » W ) ë B). 

Since the eigenvalues of ZZ are real, the equation 

det(ZZ - XI) = X2 - BX + \A\2 = 0 

has real roots, so that B ^ 4\A | , i.e., 

(2.6) B â 2|,4|. 

Equality holds if and only if the roots are repeated, which by Lemma 5 
implies that Oz = OcI for some c e C. If c = 0, then O z = (0, 0, 0) = Oz. 
If c ¥= 0, then O z is biholomorphic by a simple dilation to Oh and 
by the previous discussion, Oz = Oz and P(Oz) = C(0Z) . Note that 
0 Z ^ SU(2)/SO(2). This quotient is obtained by identifying the 
matrices 

[cos(0) -s in(0) | 
9 ~ [sin(fl) cos(<9)J 

to / . It is essentially equivalent to that obtained from the Hopf fibration 
S3/S] ~ P] ~ S2 which identifies (z„ z2) with (Xz„ Xz2) if |X| = 1; in 
terms of SU(2) this amounts to identifying the matrices 

W6 0 1 

to / . Since gXeg = YQ, where 

the two quotients are homeomorphic and Oz~ S2. 
If B > 2\A\, then the eigenvalues of ZZ are distinct, which by Lemma 

2.3 implies that the associated isotropy subgroup is just { ± / } . (The same 
conclusion is reached whether or not ZZ has a zero eigenvalue.) In this 
case Oz ^ SU(2)/{±I}9 which is homeomorphic to real projective three-
space. Following [5] we refer to an orbit for which B = 2\A \ as special, and 
orbits for which B > 2\A\ as general. 

It is helpful to visualize the parameter space (A, B) of the orbits in 
C X R - R3 (see Fig. 1). 

The cone B = 2\A\ represents the special orbits, its interior B > 2\A\ 
the general orbits. By (2.5) the hull of a given general orbit O consists of a 
vertical segment joining O to the cone. Note that the hull of a given 
general orbit contains a special orbit. Also, to determine the hull of an 

https://doi.org/10.4153/CJM-1988-054-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-054-9


POLYNOMIAL HULLS 1263 

1mA 

Figure 1 

arbitrary set K invariant under the SU(2) action (1.2) we need only 
determine the following: 

(i) Y = the set of all ? e C with 

(Z e K: det(Z) = J} = 

nonempty, and for each f £ Y, 

FA o 

(io m 
Then 

A 

K 

sup (tr(ZZ) }. 

{Z G C3: det(Z) = { E 7 , tr(ZZ) ë /(f) }. 

In Section 3 we first determine Y for any invariant AT and then we find t(Ç) 
for a particular class of invariant K. As a preliminary, the following lemma 
describes M = t(Ç) for a single orbit K = Ozo. 

LEMMA 6. For Z° G C3, let 

M = M(Z°) = max{ IzJ: Z G <9ZO}. 

(a) M = max{ |zj|: Z G <9zo W z 3 = 0}. 
(b) M >0 unless Z° = (0, 0, 0). 
(c) tr(Z°Z°) = M2 + U| 2 /M 2 , w/zere.4 = det(Z°), and this function is 

strictly increasing in M for \A | fixed. 

A (d) / / W 
Ozo. 

C3, det("»0 = det(Z°), an J M(W) M(ZU), then W 
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Proof. By the remarks following Lemma 1, there exists D 
the form 

Ozo of 

D = 
\xem 0 

[o y \ 
with x ^ y è 0. If g G S£/(2) we can write 

[cos(0)e# -sin(0)e>~ZYl 

g " [sin(0) ezy cos(0) e~ 

Set Z = gi)'g G <9zo. Then 

z, = JC cos2(0) e''<« + 2 0 + y sin2(0) e~2iy 

and so 

|z,|2 = x2cos4(0) 4- / sin4(0) 

+ 2xy cos2(6) sin2(0) cos(a + 2/3 + 2y) 

S (x cos2(0) + y sin2(0) )2 ^ x2 ^ M2 

which proves the first assertion. If Z is any element of Ozo with z3 

then |zj|2 and |z2|2 are eigenvalues of ZZ, so 
0, 

{\zx\\ |z2|2} = {x\y2l 

and since x ^ y, \zx\ ta x. So x = M. Note that tr(ZZ°) > 0 unless 
Z° = (0, 0, 0); since 

tr(Z°Z°) tr(DD) = x2 + / , 

and x ^ y, x = M is positive if Z° ¥= (0, 0, 0), which proves (b). Since 
det(Z°) = det(D), y = \A\IM. Thus 

tr(Z°Z°) = M2 + \A \2/M2, 

and (c) is proved. Note that x ^ y implies that M2 ^ \A\. It is easily 
verified that this function is strictly increasing in M for M2 ^ \A\. It 
follows that under the conditions in part (d), tr(WW) ^ tr(Z°Z°), and so 
IT G Ôzo. 

3. Hulls of invariant sets. Let AT be a compact subset of C invariant 
under the SU(2) action (2.1) and let K denote the polynomial hull of K. 
Since the map Tg: Z —> gZ*g for fixed g e SU(2) is non-singular and 
complex linear, K is also invariant under this action. Let i(K) de
note the closed subalgebra of P(K) consisting of all / e P(K) such that 
/ o Tg = f for all g e SU"(2), the invariant algebra. For / e P(K) 
define the projection o f / onto i(K) by 
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^ * > = L(2,/<W>*<s> 
where \i denotes normalized Haar measure on SU(2). Then &*(f) G i(K), 
@(f) = / i f / e i(K),and 

mf)\\K^ un* 
Moreover, if Q is a polynomial so is &>(Q). (See [2].) Set F(Z) = det(Z) e 
/(/T), and let X = F(K). X is a compact subset of C. Note that if 
X = { q , . . . , cs} is a finite set, then X is easy to describe: if 

Bt = max{tr(ZZ): F(Z) = cz, Z G K), 

then 

£ = .U {Z: tr(ZZ) ^ Pz, P(Z) = cz}. 

Henceforth we assume that X is infinite. 

LEMMA 7. z'(X) w generated by F(Z). 

Proof. First we claim that if P is a polynomial in i(K), then P is a 
polynomial in F. The proof is by induction on the degree of P. The claim 
is true for polynomials of degree 0. Assume deg(P) > 0. Fix Z° e K, 
Z° * (0, 0, 0). Let c = F(Z°). P is constant on <9zo, say P = d. Then P is 
constant = d on Ozo. Since the hull of each orbit contains a special orbit, 
P is constant on a special orbit 7: P(Z) = c, tr(ZZ) = 2|c|. By the proof 
of Theorem 1 any special orbit is totally real. It is well-known (see [11] ) 
that if M is a complex manifold of complex dimension «, 7 a totally 
real submanifold of M of real dimension n, and / is any holomorphic 
function on M vanishing on 7, then / == 0 on M. Applying this to M = 
{F(Z) = c} of complex dimension 2 and the special orbit 7 of real 
dimension 2, we find that P is constant on M. It follows from the 
Nullstellensatz that 

P(Z) -d= (F(Z) - c)mQ(Z) 

for some polynomial Q with deg(<2) < deg(P), and some integer m > 0. 
Note that Q is invariant on the set K = K\{F(Z) = c). Since F(K') is 
infinite, by induction we may assume that Q is a polynomial in F, and the 
claim is proved. Now suppose / e i(K) and choose polynomials Pn con
verging uniformly on K to / . Since 

mp„)-f\\ - mp„-f>\\ ^ \\p„ - / I L 
we can assume Pn G i(K) for all n, and the proof of the lemma is 
complete. 

In the following lemma we use an argument of Wermer [12]. 
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LEMMA 8. F(K) = X. 

Proof. It is immediate that F(K) c X. Fix f0 G X \ X If f0 « F(K), 
then 

g(Z) = (F(Z) - £0) 

does not vanish on £ so g" 1 G />(#). Clearly then g ] e /(#)• By the 
previous lemma, there exists a sequence of polynomials in f = F(Z) 
converging to g~l on K, so P„(f) converges to (J — f 0 ) _ 1 o n ^> implying 
that (f — fo)_ 1 G ^(^0> which is a contradiction. 

Now we turn to the problem of determining K. We assume that: 

(3.1) F(K) = X is a simple closed curve in C, given as the image of a 
one-to-one continuous map y: [0, 1] —» C with y(0) = y(l) and 

(3.2) 0 £ X. 
A A 

Let 12 be the bounded component of C\X. By Lemma 8, F(K) = X = 
12. Let J ^ and J*£ be the AT and K fibers of the projection F, 
respectively: 

•W) = iz e ^ ^(z) = H, ^Kf) = ( z e K: F(Z) = H 
and set 

M^(f)=-max{|z 1 | : Z e ^ ( f ) } , 

M^f) = max{ Izjl: Z G J^tf) }, 

%(0 = log(M^(f) ), ¥#£) = log(M^(f). 

For any function f on X denote by FF the Perron solution to the Dirichlet 
problem with boundary values / , i.e., 

Hf = sup{w(f): u G ^ } 

where JŜ - is the class of functions subharmonic or identically - c o in 12, 
bounded above on £2, and satisfying 

lim sup n(f) ^ /(f°), all f° G X 

We use the following facts from potential theory (see [8] ): If / i s bounded 
on X, then /&• is harmonic and bounded on 12. Moreover the existence of a 
barrier at each point f G I implies that 

(3.3) lim sup Hf(0 ^ lim sup / ( f ) . 

Take / = ^ and let / / = / /^ . By assumption (3.2) combined with Lemma 
6 (b), ^K is bounded, and so H is harmonic on 12. 
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THEOREM 2. Let K be a compact set in C invariant under the SU(2) 
action (2.1), and assume that (3.1) and (3.2) hold. Then 

(3.4) K = {Z e C3: F(Z) = £ e X, tr(ZZ) ^ t(Ç) } 

where 

We begin the proof with the following lemma: 

LEMMA 9. lim sup H(Ç) ^ % ( t \ all J° e X 

Proof. By (3.3) it suffices to show that 

(3.5) lim sup %(S) ^ %«\ all f° G X 

Choose a sequence {Zy}, Z- e X, all 7, with ^ = ^(Zy) G Xconverging to 
f°. If Z-, is a subsequence converging to Z° G X, then 

F(Z°) = f° and I (2,)/l -» l 4 
from which (3.5) follows. 

Next we make use of the following result of Wermer [12]: 

Let A be a uniform algebra on a compact Hausdorff space K, and let MA 

denote the maximal ideal space of A. Fix F e A, and let F denote the 
Gelfand transform of F. For each f e C , let J*"(J) be the fiber of the pro-

A 

jection i7, 

&(£) = {x G MA: F(x) = H-

Then for any g e A, the function 

*(£) = logf max \g(x) \ ) 

is subharmonic on C\F(K). 
Applying this result to the algebra A = P(K), where MA = X, and 

taking F(Z) = det(Z) = F(Z\ g(Z) = zx, we see that the function >fy(f) 
is subharmonic on C\X. 

LEMMA 10. lim sup *£(f) ^ %(?), all f° G X. 

Proof. We follow very closely the proof of a similar statement in [12]. 
Suppose the assertion of the lemma is false. Then by an argument similar 
to that in Lemma 9, there exists a point Z° e K with det(Z°) = f° e X, 
and 
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|z,| > sup |z,|. 

Let ,5 denote the maximum of tr(ZZ) on J^(f°). By Lemma 6 (c), 
tr(Z°Z°) > 5 . Let 

F = {Z: F(Z) = f, tr(ZZ) ^ 5 } . 
A rv 

Then 7 c j£, Y is polynomially convex, and Z £ Y. Choose a poly
nomial P with |P | < 1 on a neighborhood TV of y in £ and \P(Z°) | > 2. 
Then Xx = F(K\N) is a closed subset of X \{ f }. Since each point of X is a 
peak point for the algebra P(X), there exists a polynomial /z with /z(f) = 1, 
|A| < 1 on X\{Ç}. Choose p > 0 so that |/i| < 1 - p on Xv Then |/z o F\ 
< 1 — p on A^JV, and \h o F\ ^ 1 on AT. Choose « so that 

(1 - p)"max |P | < 1, 
K 

and set Q = (h o FfP. Then \Q\ < 1 on K, but 

\Q(Z°) | = |Atf°) | |P(Z°) | > 2, 

which contradicts Z° G K, and we are done. 

It follows from the preceding lemma that Hrfc belongs to the class J ^ , 
and so 

(3.6) H(0 ^ W ) for £ G B. 

Let / /* denote the harmonic conjugate of H in £2, and set 

Then <p is analytic, bounded, and non-vanishing on £2. Let D be the image 
of the map G: £2 —» C given by 

G(0 = (v(0, ?/*<?), 0). 
Note that F(G(Ç) ) = £. Also, for £ G S2, by (3.6), 

so that 

ifi/ko i ̂  ifi/M^n-
Choosing Z G ^ ( f ) with |z,| = Mfc(Ç), by the proof of Lemma 6, 

W ) 2 = M2(Z) i£ |£|, 

where 

M(Z) = {max|w,|: ^ e O z} 

which implies that 

(3.7) Ifl/lrff) | ^ A/#£). 
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If Z G 3Z>, then there exists a sequence {£„}, fw G 12, converging to 
f° e X, with 

converging to Z°. It follows that F(Z°) = f°, and so by Lemma 9, 

|z?| ^ lim sup |<p(f) | = lim sup ^ ( n â ^ % ( ^ = M^(f°) 

and also 

|z°| ^ lim sup i r | / | < P ( D I ^ lim sup M&Ç) ë M^tf0) 

by (3.7) and Lemma 10. Since z3 = 0, as in the proof of Lemma 6, 

max{ \z% \z°2\ } = M(Z°), 

and so M(Z°) ^ M^(f°). By Lemma 6 (d), <9zo c K. It follows that 
3D c K, and s o D c i Thus for f G 12, by definition of Af£, 

eH^ = |cp(n I ^ M^) = e*^\ 

so # ( f ) ^ *$?) . Combining this with (3.6) gives 

H(0 = *&0 for all f G 12. 

If F(Z) = f G 12, and Z G # , then M(Z) ^ ^ ( f ) implies by Lemma 6 (c) 
that (3.4) holds. Conversely, if det(Z) = f, and (3.4) holds, by Lemma 
6(c), 

M(Z) ^ 0(£) = e"«> = M^f) 
A A 

and so by Lemma 2.6 (d), Oz c 6% c K If F(Z) = f G Z, a similar 
argument shows that Z e ^ if and only if (3.4) holds. The proof is 
complete. 

A 

COROLLARY 1. Under the assumptions in Theorem 2, each point in K\K 
lies on an analytic disk in K. 

Proof. If Z G K\K9 and det(Z) = f, then by Theorem 2, and equation 
(2.6), one of the following holds: 

(i) tr(ZZ) = t(Q 
(ii)2|f|2_< t r ( Z Z ) < t(0 

(iii) tr(ZZ) = 2|f|2 < t(Ç). 
Let D be the disk constructed in the proof of Theorem 2, the image 

of 

S -» Wf), VviX), 0) = Ztf) c K. 

Then det(Z(f) ) = £, and if (i) holds, 

tr Z(f)Z(f) = r(£) = tr(ZZ), 
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so that Z = X0 for some g e SU'(2), so Z belongs to the disk f -> X0. If (ii) 
holds then an open neighborhood of Z in C3 belongs to K. If (iii) holds 
then Z belongs to the orbit of X0I for some X0 e C; so 

Z = g(X0, X0, 0)'g for some g e St/(2). 

Moreover by (iii) for some e > 0, the disk X —> g(X, À, 0)'g lies in AT for 
|X — X0| < e, and contains Z. 

We now apply Theorem 2 to the study of orbits under the action (2.1) 
where the group G is taken to be U(2). Such orbits are a fortiori invariant 
under the same action with G = SU(2). Since each element g of U(2) can 
be written as g = el0Cg' with g' e SU(2), we see that 

<#2) = {W e c3 : |det(»0l = = Idet(Z) |, 1 r( 

and 

<# 2 ) -
QSUQ) X sK 

In particular, if C ^ 2 ' 
Fix Z° e C3 with 

is special, Ou
z
{2) ~ s2 x sl 

is 

A = det(Z°), B = tr(Z°Z°), M = max u 
Set K = o£<2>. Then 

^ W H ^ C : l f l = ^ } , and F(K) = { |f| ^ ^ } . 

By Lemma 2.6, M depends only on B and ]̂4 |, in fact, we easily compute 
that 

(3.8) M = 
B + (£2 - 4 |^ | 2 ) 1 / 2 ' 1/2 

(3.8) M = 
2 

so that %(f ) = log(M) is constant on X. Thus H = log(M) on X, and 
we have: 

COROLLAR Y 2. / / d e t ( Z ) = ^ , t r(ZZ) = B, and K = d^2\ then 

K = {Z e C3: det(Z) = |f| ^ |>* |, tr(ZZ) ^ M2 + |f|2/M2} 

where M is given by (3.8). 

The hull of the U(2) orbit of / (for which \A | = 1, B = 2, M = 1) is 
shown (in the parameter space) in Fig. 2. 

A o 

Note in particular that K\K is an open subset of C : If f e 0, then 

^ ) = {Z:2|f|2 ^ tr(ZZ) ^ M2 + | f |2 /M2}. 

As noted in the proof of Lemma 6, M ^ \A |/M, so if |f | < \A |, 

(M - | f | /M)2 > 0 
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and thus 

M2 - |f |2/M2 > 2|f|2. 

It is likely that these methods could be used to determine the hulls of 
more general sets invariant under the SU(2) action (2.1). 

fy(2) 

ImA 

Figure 2 
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