POLYNOMIAL HULLS OF SETS INVARIANT UNDER AN ACTION OF THE SPECIAL UNITARY GROUP

JOHN T. ANDERSON

1. Introduction. If K is a compact subset of \mathbb{C}^n , \hat{K} will denote the *polynomial hull* of K:

$$\hat{K} = \{ z \in \mathbf{C}^n : |P(z)| \leq \sup_{w \in K} |P(w)| \text{ for all polynomials } P \}.$$

 \hat{K} arises in the study of uniform algebras as the maximal ideal space of the algebra P(K) of uniform limits on K of polynomials (see [3]). The condition $K = \hat{K}$ (K is polynomially convex) is a necessary one for uniform approximation on K of continuous functions by polynomials (P(K) = C(K)). If K is not polynomially convex, the question of existence of analytic structure in $\hat{K} \setminus K$ is of particular interest. For n = 1, \hat{K} is the union of K and the bounded components of $\mathbb{C} \setminus K$. The determination of \hat{K} in dimensions greater than one is a more difficult problem. Among the special classes of compact sets K whose polynomial hulls have been determined are those invariant under certain group actions on \mathbb{C}^7 . In [12] J. Wermer investigated a class of disks K in \mathbb{C}^2 invariant under the S^1 action

(1.1)
$$(z, w) \rightarrow (ze^{i\theta}, we^{-i\theta}).$$

He found that $\hat{K} \setminus K$ was foliated by a one-parameter family of analytic disks (analytic images of the unit disk in **C**) with boundaries on K. Gamelin [6] later gave a description of \hat{K} for arbitrary sets $K \subset \mathbb{C}^2$ invariant under the same action. He found that through each point of $\hat{K} \setminus K$ there exists an analytic disk in \hat{K} . Also, Björk [2] studied the general question of algebras invariant under the action of a compact group.

Recently, Debiard and Gaveau [5] investigated actions of the unitary and special unitary groups on C^3 identified with the space of 2×2 symmetric complex matrices by

$$(z_1, z_2, z_3) \to \begin{bmatrix} z_1 & z_3 \\ z_3 & z_2 \end{bmatrix} = Z.$$

The action is then

 $(1.2) \quad Z \to g Z^t g$

Received August 5, 1988.

for $g \in U(2)$ or SU(2), where ^tg denotes the transpose of g. They described the hull of the SU(2) orbit of any point $Z \in \mathbb{C}^3$, and gave a partial description of the U(2) orbit of an arbitrary point, finding a family of analytic disks with boundaries on the orbit.

In this paper we give an explicit description (Theorem 2) of \hat{K} for a class of compact sets invariant under the SU(2) action (1.2). We apply this to obtain a complete description of the hull of any U(2) orbit (Corollary 2). Even for "special" orbits, which are three (real) dimensional subsets of \mathbb{C}^3 , this hull contains an open subset of \mathbb{C}^3 . These results are presented in Section 3. In Section 2 we give a general discussion of orbits of the analogous action on \mathbb{C}^N , N = n(n + 1)/2; in particular we prove that if Z = I is the point identified with the identity matrix, and K is the orbit of Z, then P(K) = C(K). For our main results, we use ideas from the papers of Björk, Gamelin, and Wermer mentioned above. The key ingredient is a result of Wermer stating that a certain function on the fibers of a projection from the maximal ideal space of a uniform algebra into C is subharmonic.

The author wishes to thank John Wermer for pointing out his own work and that of Gamelin, and for helpful discussions on these problems.

2. Orbits. M_n will denote the ring of $n \times n$ complex matrices. det(A) and tr(A) will denote the determinant and trace of $A \in M_n$, and Gl(n), the general linear group of invertible elements of M_n . We denote by O(n), SO(n), U(n), and SU(n) the subgroups of Gl(n) consisting of the orthogonal, special orthogonal, unitary and special unitary matrices respectively. I_n will denote the $n \times n$ identity matrix. We identify the space S_n of symmetric matrices in M_n with \mathbb{C}^N , N = n(n + 1)/2, by

$$(z_1, \dots, z_N) \rightarrow \begin{bmatrix} z_1 & z_{n+1} & z_{2n} & \cdots & z_N \\ z_{n+1} & z_2 & z_{n+2} & \cdots & \ddots \\ \vdots & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ z_N & & & & z_n \end{bmatrix}$$

For G a subgroup of Gl(n) we define an action of G on S_n by (2.1) $Z \rightarrow gZ^t g$ for $g \in G, Z \in S_n$. O_Z^G will denote the G-orbit of $Z \in S_n$,

 $O_Z^G = \{ W \in S_n : W = gZ'g \text{ for some } g \in G \}.$

If G is compact, so is O_Z^G , \mathscr{I}_Z^G will denote the isotropy subgroup of Z in G, i.e.,

$$\mathscr{I}_Z^G = \{g \in G: gZ^tg = Z\}.$$

If the coset space G/\mathscr{I}_Z^G is given the quotient topology then $O_Z^G \simeq G/\mathscr{I}_Z^G$, where \simeq denotes homeomorphism (see [7]). We will be concerned first and primarily with the case G = SU(n), and we drop the superscript G for the remainder of the discussion. Note that if $Z \in S_n$, and W = $gZ^tg \in O_Z$, then det(Z) = det(W). Also, since $W\overline{W} = gZ\overline{Z}g^{-1}$, $W\overline{W}$ and $Z\overline{Z}$ have the same eigenvalues; in particular tr $(Z\overline{Z}) = tr(W\overline{W})$. Denote by $\Delta(c_1, \ldots, c_n)$ the $n \times n$ matrix with entries c_1, \ldots, c_n on the main diagonal and zeroes elsewhere. The following lemma is due to Hua [10].

LEMMA 1. Let $Z \in S_n$. Then there exists $g \in U(n)$ such that

$$gZ^{t}g = \Delta(c_{1},\ldots,c_{n})$$

with $c_1 \ge c_2 \ge \ldots \ge c_n \ge 0$.

It follows that every SU(n) orbit contains a diagonal element, for if $Z \in S_n$, and $D = \Delta(c_1, \ldots, c_n) = gZ'g$ with $g \in U(n)$ and $det(g) = e^{i\alpha}$, set

 $g' = \Delta(e^{-i\alpha}, 1, 1, ..., 1).$

Then $h = gg' \in SU(n)$ and $Z = hD'^{t}h$, where

$$D' = (g')^{-1} D(g')^{-1} = \Delta(c_1 e^{2i\alpha}, c_2, \ldots, c_n).$$

Note that if det(Z) = 0, then we can take $\alpha = 0$.

LEMMA 2. If $Z \in S_n$, then O_Z consists of all those $W \in S_n$ such that 1. det(Z) = det(W) and

2. The set of eigenvalues of $Z\overline{Z}$ and the set of eigenvalues of $W\overline{W}$ are the same.

Proof. We have seen that if $W \in O_Z$, then W satisfies (1) and (2). Conversely, suppose W satisfies (1) and (2). By the remarks following Hua's lemma we can choose

$$D_1 = \Delta(c_1 e^{i\alpha}, c_2, \dots, c_n) \in O_Z \text{ and}$$
$$D_2 = \Delta(d_1 e^{i\beta}, d_2, \dots, d_n) \in O_W$$

with $c_1 \ge c_2 \ge \ldots \ge c_n \ge 0$, $d_1 \ge d_2 \ge \ldots \ge d_n \ge 0$. The eigenvalues of $D_1\overline{D}_1$ are the same as those of $Z\overline{Z}$, and similarly for $D_2\overline{D}_2$ and $W\overline{W}$, so by (2),

$$\{c_1^2,\ldots,c_n^2\} = \{d_1^2,\ldots,d_n^2\}.$$

Since the c_i and d_i are non-negative and arranged in decreasing order, $c_i = d_i$, i = 1, ..., n. If det(Z) = 0, then det(W) = 0, so we can take $\alpha = \beta = 0$. Otherwise,

$$c_1c_2\ldots c_ne^{i\alpha}=d_1d_2\ldots d_ne^{i\beta},$$

and neither side of this equation vanishes, so that $\alpha \equiv \beta \pmod{2\pi}$. In either case, $D_1 = D_2$. Thus $O_Z = O_W$.

Now we can determine the isotropy subgroups. These are divided into types according to the multiplicities of the eigenvalues of $Z\overline{Z}$. Fix $Z \in S_n$, and choose $D \in O_Z$ of the form

$$D = \Delta(c_1 e^{i\alpha}, c_2, \ldots, c_n),$$

with $c_1 \ge c_2 \ge \ldots \ge c_n \ge 0$. Then $O_Z = O_D \simeq SU(n)/\mathcal{I}_D$. Rewrite

$$\{c_1,\ldots,c_n\} = \{\lambda_1,\ldots,\lambda_r\}$$

where the λ_i are distinct, and λ_i occurs with multiplicity l_i in the list c_1, \ldots, c_n . Let $E = D\overline{D}$. If $g \in \mathscr{I}_D$, then gD'g = D, so gE = Eg. From this we see that g must have the form:

(2.2)
$$g = \begin{bmatrix} g_1 & & \\ & g_2 & \\ & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & &$$

where g_i is a block of size l_i , i = 1, ..., r. Since $g^t \overline{g} = I_n$, $g_i^t \overline{g}_i = I_{l_i}$, and so

(2.3)
$$g_i \in U(l_i), i = 1, ..., r.$$

Moreover from $gD^{t}g = D$ we obtain $\lambda_{i}g_{i}^{t}g_{i} = \lambda_{i}I_{l}$, and so

(2.4) if
$$\lambda_i > 0, g_i \in O(l_i)$$
.

Conversely, any matrix $g \in SU(n)$ of the form (2.2) satisfying (2.3) and (2.4) is easily seen to be an element of \mathscr{I}_D , and so we obtain the following:

LEMMA 3. \mathscr{I}_D is the subgroup of SU(n) consisting of matrices of the form (2.2) with $g_i \in O(l_i)$ for i = 1, ..., r, if $\lambda_r > 0$; and $g_i \in O(l_i)$ for $i < r, g_r \in U(l_r)$ if $\lambda_r = 0$.

An interesting special case is obtained by taking $Z = I_n$. By the preceding lemma, the isotropy subgroup consists of the matrices $g \in O(n)$ which are elements of SU(n), i.e., which are elements of the special orthogonal group SO(n), and so

 $O_I \simeq SU(n)/SO(n)$

which is of real dimension $n^2 - 1 - (n(n-1)/2) = (n+2)(n-1)/2$. For the following discussion we fix n and write $O_{I_n} = O_I$.

LEMMA 4. O_I is polynomially convex.

Proof. By Lemma 2,

 $O_I \subset \{Z: \det(Z) = 1, \operatorname{tr}(Z\overline{Z}) = n\}.$

In fact, denoting the latter set by X, $O_I = X$, for if $Z \in X$, then we can choose

$$D = \Delta(c_1, \ldots, c_n) \in O_Z$$

with

$$c_1 c_2 \dots c_n = 1$$
 and $\sum_{i=1}^n c_i^2 = n$

The minimum of the function $\sum_{i=1}^{n} c_i^2 = B$ subject to the constraint $c_1c_2 \dots c_n = 1$ occurs exactly when $c_1 = c_2 = \dots = c_n = 1$, i.e., when B = n. Thus D = I, and so $X = O_I$. We can easily compute that in the coordinates of \mathbb{C}^N .

$$\operatorname{tr}(Z\overline{Z}) = \sum_{i=1}^{n} |z_i|^2 + 2\left(\sum_{i=n+1}^{N} |z_i|^2\right).$$

The ellipsoid $tr(Z\overline{Z}) \leq c$ for any c > 0 is polynomially convex. Also, \hat{O}_I must be contained in {det(Z) = 1}, so

$$\hat{O}_I \subset \{\det(Z) = 1, \operatorname{tr}(Z\overline{Z}) \leq n\}.$$

By our previous observation, the latter set is O_I .

More is true; in fact:

THEOREM 1. $P(O_I) = C(O_I)$.

Proof. For a real submanifold M of an open subset of \mathbb{C}^k , the space H_pM of complex tangents to M at p can be defined as follows: Any real tangent vector $L \in T_p\mathbb{C}^k$ can be written in the form

$$L = \sum_{j=1}^{n} a_j \partial/\partial x_j + \sum_{j=1}^{n} b_j \partial/\partial y_j$$

where $z_j = x_j + iy_j$ are the coordinates on \mathbf{C}^k . We define a map J on $T_p \mathbf{C}^k$ by setting

$$J(L) = -\sum_{j=1}^{n} b_j \partial/\partial x_j + \sum_{j=1}^{n} a_j \partial/\partial y_j.$$

Then identifying the tangent space $T_p M$ to M at p with a subspace of $T_p C^k$,

 $H_pM = T_pM \cap J(T_pM).$

In the natural complex structure on $T_p \mathbb{C}^k$, $H_p M$ is the largest real subspace of $T_p M$ which is also a complex subspace of $T_p \mathbb{C}^k$. *M* is said to be *totally real* if $H_p M = \{0\}$ for each $p \in M$. By a theorem of Hormander and Wermer [9], if M is totally real, and K is a compact polynomially convex subset of M, then P(K) = C(K). By Lemma 4, it thus suffices to show that $M = O_I$ is totally real. The map $Z \to gZ'g$ for fixed g is nonsingular and complex linear, which implies that the dimension of H_pM is constant on M. Thus it suffices to check that $H_pM = \{0\}$ for p = I. We consider SU(n) as a submanifold of Gl(n). Let T be the map T(g) = g'g of Gl(n)into itself. The image of T restricted to SU(n) is M, and the image of T_* restricted to the tangent space of SU(n) at I is T_IM . Gl(n) we identify with a subset of $\mathbb{C}^{n'}$ by using the coordinates $z_{kl} = x_{kl} + iy_{kl}$ for the (k, l)-th entry of $A \in Gl(n)$. The tangent space to Gl(n) at I can be identified with M_n by assigning to the tangent vector

$$L = \sum_{k,l=1}^{n} a_{kl} \partial/\partial x_{kl} + b_{kl} \partial/\partial y_{kl}$$

the matrix

$$\widetilde{L} = [a_{kl} + ib_{kl}].$$

Under this identification, $JL = i\tilde{L}$. The tangent space to SU(n) at I is then identified with the space su(n) of skew-Hermitian matrices of trace zero (see [1]). It is easy to compute that for $A \in M_n$, $T_*A = A + {}^tA$ and so $T_*A = A - \bar{A}$ for $A \in su(n)$. In particular, T_*A is purely imaginary. It follows that $J(T_IM) \cap T_IM = \{0\}$, and so M is totally real.

Remark. According to a theorem of A. Browder [4], for a compact manifold M, C(M) requires at least dim(M) + 1 generators. If $M = O_L$,

$$\dim(M) + 1 = n(n + 1)/2 = N,$$

and so C(M) in this case has the minimum possible number of generators (z_1, \ldots, z_N) .

We have not yet determined hulls of orbits with more complicated isotropy groups for n > 2. In what follows, we review the case n = 2 in preparation for the work of Section 3. Most of these results are contained in [5].

SU(2) can be identified with the unit sphere in \mathbb{C}^2 by associating to the point (λ_1, λ_2) with $|\lambda_1|^2 + |\lambda_2|^2 = 1$ the matrix

$$\begin{bmatrix} \lambda_1 & -\overline{\lambda}_2 \\ \lambda_2 & \overline{\lambda}_1 \end{bmatrix}.$$

For n = 2, N = 3, the eigenvalues of $Z\overline{Z}$ are uniquely determined by $tr(Z\overline{Z})$ and $det(Z\overline{Z}) = |det(Z)|^2$, so that by Lemma 2, if det(Z) = A and $tr(Z\overline{Z}) = B$,

$$O_Z = \{ W \in \mathbb{C}^3 : \det(W) = A, \operatorname{tr}(W\overline{W}) = B \}.$$

Note that since det(Z) is a polynomial and the set $tr(Z\overline{Z}) \leq c$ is polynomially convex, for any Z,

(2.5)
$$\hat{O}_Z = \{ W \in \mathbb{C}^n : \det(W) = A, \operatorname{tr}(W\overline{W}) \leq B \}.$$

Since the eigenvalues of $Z\overline{Z}$ are real, the equation

$$\det(Z\overline{Z} - \lambda I) = \lambda^2 - B\lambda + |A|^2 = 0$$

has real roots, so that $B^2 \ge 4|A|^2$, i.e.,

 $(2.6) \quad B \ge 2|A|.$

Equality holds if and only if the roots are repeated, which by Lemma 5 implies that $O_Z = O_{cI}$ for some $c \in \mathbb{C}$. If c = 0, then $O_Z = (0, 0, 0) = \hat{O}_Z$. If $c \neq 0$, then O_Z is biholomorphic by a simple dilation to O_I , and by the previous discussion, $\hat{O}_Z = O_Z$ and $P(O_Z) = C(O_Z)$. Note that $O_Z \simeq SU(2)/SO(2)$. This quotient is obtained by identifying the matrices

$$X_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

to *I*. It is essentially equivalent to that obtained from the Hopf fibration $S^3/S^1 \simeq P^1 \simeq S^2$ which identifies (z_1, z_2) with $(\lambda z_1, \lambda z_2)$ if $|\lambda| = 1$; in terms of SU(2) this amounts to identifying the matrices

$$Y_{\theta} = \begin{bmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{bmatrix}$$

to *I*. Since $gX_{\theta}g^{-1} = Y_{\theta}$, where

$$g = \frac{1}{\sqrt{2}} \begin{pmatrix} i & -1 \\ 1 & -i \end{pmatrix} \in SU(2),$$

the two quotients are homeomorphic and $O_{Z} \simeq S^{2}$.

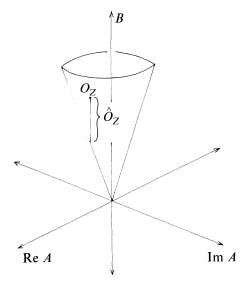
If B > 2|A|, then the eigenvalues of $Z\overline{Z}$ are distinct, which by Lemma 2.3 implies that the associated isotropy subgroup is just $\{\pm I\}$. (The same conclusion is reached whether or not $Z\overline{Z}$ has a zero eigenvalue.) In this case $O_Z \simeq SU(2)/\{\pm I\}$, which is homeomorphic to real projective three-space. Following [5] we refer to an orbit for which B = 2|A| as special, and orbits for which B > 2|A| as general.

It is helpful to visualize the parameter space (A, B) of the orbits in $\mathbf{C} \times \mathbf{R} \simeq \mathbf{R}^3$ (see Fig. 1).

The cone B = 2|A| represents the special orbits, its interior B > 2|A| the general orbits. By (2.5) the hull of a given general orbit *O* consists of a vertical segment joining *O* to the cone. Note that the hull of a given general orbit contains a special orbit. Also, to determine the hull of an

1262

1



arbitrary set \hat{K} invariant under the SU(2) action (1.2) we need only determine the following:

(i) Y = the set of all $\zeta \in \mathbf{C}$ with

$$\{Z \in \hat{K}: \det(Z) = \zeta\} = F_{\hat{K}(\zeta)}$$

nonempty, and for each $\zeta \in Y$,

(ii)
$$t(\zeta) = \sup_{Z \in F_{\mathcal{K}}^{\Lambda}(\zeta)} \{ tr(Z\overline{Z}) \}$$

Then

$$\hat{K} = \{ Z \in \mathbf{C}^3 \colon \det(Z) = \zeta \in Y, \operatorname{tr}(Z\overline{Z}) \leq t(\zeta) \}.$$

In Section 3 we first determine Y for any invariant K and then we find $t(\zeta)$ for a particular class of invariant K. As a preliminary, the following lemma describes $M = t(\zeta)$ for a single orbit $K = O_{Z^0}$.

LEMMA 6. For $Z^0 \in \mathbb{C}^3$, let

$$M = M(Z^0) = \max\{ |z_1|: Z \in O_{Z^0} \}.$$

Then

(a) $M = \max\{ |z_1|: Z \in O_{Z^0} \text{ and } z_3 = 0 \}.$ (b) M > 0 unless $Z^0 = (0, 0, 0).$ (c) $\operatorname{tr}(Z^0 \overline{Z}^0) = M^2 + |A|^2 / M^2$, where $A = \det(Z^0)$, and this function is strictly increasing in M for |A| fixed.

(d) If $W \in \mathbf{C}^3$, $\det(W) = \det(Z^0)$, and $M(W) \leq M(Z^0)$, then $W \in \hat{O}_{Z^0}$.

Proof. By the remarks following Lemma 1, there exists $D \in O_{Z^0}$ of the form

$$D = \begin{bmatrix} xe^{i\alpha} & 0\\ 0 & y \end{bmatrix}$$

with $x \ge y \ge 0$. If $g \in SU(2)$ we can write

$$g = \begin{bmatrix} \cos(\theta) \ e^{i\beta} & -\sin(\theta) \ e^{-i\gamma} \\ \sin(\theta) \ e^{i\gamma} & \cos(\theta) \ e^{-i\beta} \end{bmatrix}.$$

Set $Z = gD^tg \in O_{Z^0}$. Then

$$z_1 = x \cos^2(\theta) e^{i(\alpha + 2\beta)} + y \sin^2(\theta) e^{-2i\gamma}$$

and so

$$z_1|^2 = x^2 \cos^4(\theta) + y^2 \sin^4(\theta) + 2xy \cos^2(\theta) \sin^2(\theta) \cos(\alpha + 2\beta + 2\gamma) \leq (x \cos^2(\theta) + y \sin^2(\theta))^2 \leq x^2 \leq M^2$$

which proves the first assertion. If Z is any element of O_{Z^0} with $z_3 = 0$, then $|z_1|^2$ and $|z_2|^2$ are eigenvalues of $Z\overline{Z}$, so

 $\{ |z_1|^2, |z_2|^2 \} = \{ x^2, y^2 \},\$

and since $x \ge y$, $|z_1| \le x$. So x = M. Note that $tr(Z\overline{Z}^0) > 0$ unless $Z^0 = (0, 0, 0)$; since

$$\operatorname{tr}(Z^0\overline{Z}^0) = \operatorname{tr}(D\overline{D}) = x^2 + y^2,$$

and $x \ge y$, x = M is positive if $Z^0 \ne (0, 0, 0)$, which proves (b). Since $det(Z^0) = det(D)$, y = |A|/M. Thus

$$tr(Z^0\bar{Z}^0) = M^2 + |A|^2/M^2,$$

and (c) is proved. Note that $x \ge y$ implies that $M^2 \ge |A|$. It is easily verified that this function is strictly increasing in M for $M^2 \ge |A|$. It follows that under the conditions in part (d), $tr(W\overline{W}) \le tr(Z^0\overline{Z}^0)$, and so $W \in \hat{O}_{Z^0}$.

3. Hulls of invariant sets. Let K be a compact subset of \mathbb{C}^3 invariant under the SU(2) action (2.1) and let \hat{K} denote the polynomial hull of K. Since the map $T_g: Z \to gZ'g$ for fixed $g \in SU(2)$ is non-singular and complex linear, \hat{K} is also invariant under this action. Let i(K) denote the closed subalgebra of P(K) consisting of all $f \in P(K)$ such that $f \circ T_g = f$ for all $g \in SU(2)$, the *invariant algebra*. For $f \in P(K)$ define the projection of f onto i(K) by

$$\mathscr{P}(f)(z) = \int_{SU(2)} f(T_g(z)) d\mu(g)$$

where μ denotes normalized Haar measure on SU(2). Then $\mathscr{P}(f) \in i(K)$, $\mathscr{P}(f) = f$ if $f \in i(K)$, and

$$\left\|\mathscr{P}(f)\right\|_{K} \leq \left\|f\right\|_{K}.$$

Moreover, if Q is a polynomial, so is $\mathcal{P}(Q)$. (See [2].) Set $F(Z) = \det(Z) \in i(K)$, and let X = F(K). X is a compact subset of C. Note that if $X = \{c_1, \ldots, c_s\}$ is a finite set, then \hat{X} is easy to describe: if

$$B_i = \max\{\operatorname{tr}(Z\overline{Z}): F(Z) = c_i, Z \in K\},\$$

then

$$\hat{K} = \bigcup_{i=1}^{n} \{ Z: \operatorname{tr}(Z\overline{Z}) \leq B_i, F(Z) = c_i \}.$$

Henceforth we assume that X is infinite.

LEMMA 7. i(K) is generated by F(Z).

Proof. First we claim that if P is a polynomial in i(K), then P is a polynomial in F. The proof is by induction on the degree of P. The claim is true for polynomials of degree 0. Assume deg(P) > 0. Fix $Z^0 \in K$, $Z^0 \neq (0, 0, 0)$. Let $c = F(Z^0)$. P is constant on O_{Z^0} , say P = d. Then P is constant = d on \hat{O}_{Z^0} . Since the hull of each orbit contains a special orbit, P is constant on a special orbit Y: F(Z) = c, tr $(Z\overline{Z}) = 2|c|$. By the proof of Theorem 1 any special orbit is totally real. It is well-known (see [11]) that if M is a complex manifold of complex dimension n, Y a totally real submanifold of M of real dimension n, and f is any holomorphic function on M vanishing on Y, then $f \equiv 0$ on M. Applying this to $M = \{F(Z) = c\}$ of complex dimension 2 and the special orbit Y of real dimension 2, we find that P is constant on M. It follows from the Nullstellensatz that

$$P(Z) - d = (F(Z) - c)^m Q(Z)$$

for some polynomial Q with $\deg(Q) < \deg(P)$, and some integer m > 0. Note that Q is invariant on the set $K' = K \setminus \{F(Z) = c\}$. Since F(K') is infinite, by induction we may assume that Q is a polynomial in F, and the claim is proved. Now suppose $f \in i(K)$ and choose polynomials P_n converging uniformly on K to f. Since

$$||\mathscr{P}(P_n) - f|| = ||\mathscr{P}(P_n - f)|| \le ||P_n - f||,$$

we can assume $P_n \in i(K)$ for all *n*, and the proof of the lemma is complete.

In the following lemma we use an argument of Wermer [12].

LEMMA 8. $F(\hat{K}) = \hat{X}$.

Proof. It is immediate that $F(\hat{K}) \subset \hat{X}$. Fix $\zeta_0 \in \hat{X} \setminus X$. If $\zeta_0 \notin F(\hat{K})$, then

 $g(Z) = (F(Z) - \zeta_0)$

does not vanish on \hat{K} , so $g^{-1} \in P(K)$. Clearly then $g^{-1} \in i(K)$. By the previous lemma, there exists a sequence of polynomials in $\zeta = F(Z)$ converging to g^{-1} on K, so $P_n(\zeta)$ converges to $(\zeta - \zeta_0)^{-1}$ on X, implying that $(\zeta - \zeta_0)^{-1} \in P(X)$, which is a contradiction.

Now we turn to the problem of determining \hat{K} . We assume that:

(3.1) F(K) = X is a simple closed curve in **C**, given as the image of a one-to-one continuous map $\gamma: [0, 1] \rightarrow \mathbf{C}$ with $\gamma(0) = \gamma(1)$ and

 $(3.2) \quad 0 \notin X.$

Let Ω be the bounded component of $\mathbb{C} X$. By Lemma 8, $F(\hat{K}) = \hat{X} = \overline{\Omega}$. Let \mathscr{F}_{K} and \mathscr{F}_{K} be the K and \hat{K} fibers of the projection F, respectively:

$$\mathscr{F}_{K}(\zeta) = \{ Z \in K : F(Z) = \zeta \}, \quad \mathscr{F}_{K}(\zeta) = \{ Z \in \hat{K} : F(Z) = \zeta \}$$

and set

$$M_{K}(\zeta) = \max\{ |z_{1}|: Z \in \mathscr{F}_{K}(\zeta) \},$$

$$M_{\hat{K}}(\zeta) = \max\{ |z_{1}|: Z \in \mathscr{F}_{\hat{K}}(\zeta) \},$$

$$\Psi_{K}(\zeta) = \log(M_{K}(\zeta)), \quad \Psi_{\hat{K}}(\zeta) = \log(M_{\hat{K}}(\zeta).$$

For any function f on X denote by H_f the Perron solution to the Dirichlet problem with boundary values f, i.e.,

 $H_f = \sup\{u(\zeta): u \in \mathscr{L}_f\}$

where \mathscr{L}_{f} is the class of functions subharmonic or identically $-\infty$ in Ω , bounded above on Ω , and satisfying

$$\limsup_{\zeta \in \Omega \to \zeta^0} u(\zeta) \leq f(\zeta^0), \text{ all } \zeta^0 \in X.$$

We use the following facts from potential theory (see [8]): If f is bounded on X, then H_f is harmonic and bounded on Ω . Moreover the existence of a barrier at each point $\zeta^0 \in X$ implies that

(3.3) $\limsup_{\zeta \in \Omega \to \zeta^0} H_f(\zeta) \leq \limsup_{\zeta \in X \to \zeta^0} f(\zeta).$

Take $f = \Psi_K$ and let $H = H_{\Psi_K}$. By assumption (3.2) combined with Lemma 6 (b), Ψ_K is bounded, and so H is harmonic on Ω .

THEOREM 2. Let K be a compact set in \mathbb{C}^3 invariant under the SU(2) action (2.1), and assume that (3.1) and (3.2) hold. Then

(3.4) $\hat{K} = \{ Z \in \mathbb{C}^3 : F(Z) = \zeta \in \hat{X}, \operatorname{tr}(Z\overline{Z}) \leq t(\zeta) \}$

where

$$t(\zeta) = \beta^2 + |\zeta|^2 \beta^{-2}$$

A

and

$$\beta(\zeta) = e^{2H(\zeta)}$$
 for $\zeta \in \Omega$, $\beta(\zeta) = M_K(\zeta)$ for $\zeta \in X$.

We begin the proof with the following lemma:

LEMMA 9.
$$\limsup_{\zeta \in \Omega \to \zeta^0} H(\zeta) \leq \Psi_K(\zeta^0), \quad all \ \zeta^0 \in X.$$

Proof. By (3.3) it suffices to show that

(3.5)
$$\limsup_{\zeta \in X \to \zeta^0} \Psi_K(\zeta) \leq \Psi_K(\zeta^0), \text{ all } \zeta^0 \in X.$$

Choose a sequence $\{Z_j\}, Z_j \in K$, all j, with $\zeta_j = F(Z_j) \in X$ converging to ζ^0 . If $Z_{j'}$ is a subsequence converging to $Z^0 \in K$, then

$$F(Z^0) = \zeta^0 \text{ and } |(z_1)_{i'}| \to |z_1^0|,$$

from which (3.5) follows.

Next we make use of the following result of Wermer [12]:

Let A be a uniform algebra on a compact Hausdorff space K, and let M_A denote the maximal ideal space of A. Fix $F \in A$, and let \hat{F} denote the Gelfand transform of F. For each $\zeta \in C$, let $\mathscr{F}(\zeta)$ be the fiber of the projection \hat{F} ,

$$\mathscr{F}(\zeta) = \{ x \in M_A : \hat{F}(x) = \zeta \}.$$

Then for any $g \in A$, the function

$$\Psi(\zeta) = \log \left(\max_{x \in \mathscr{F}(\zeta)} |g(x)| \right)$$

is subharmonic on $\mathbb{C} \setminus F(K)$.

Applying this result to the algebra A = P(K), where $M_A = \hat{K}$, and taking $F(Z) = \det(Z) = \hat{F}(Z)$, $g(Z) = z_1$, we see that the function $\Psi_{\hat{K}}(\zeta)$ is subharmonic on $\mathbb{C} \setminus X$.

Lemma 10. $\limsup_{\zeta \in \Omega \to \zeta^0} \Psi_{\hat{K}}(\zeta) \leq \Psi_{K}(\zeta^0), \quad all \ \zeta^0 \in X.$

Proof. We follow very closely the proof of a similar statement in [12]. Suppose the assertion of the lemma is false. Then by an argument similar to that in Lemma 9, there exists a point $Z^0 \in \hat{K}$ with $\det(Z^0) = \zeta^0 \in X$, and

https://doi.org/10.4153/CJM-1988-054-9 Published online by Cambridge University Press

$$|z_1^0| > \sup_{Z \in \mathscr{F}_{\mathcal{K}}(\zeta^0)} |z_1|.$$

Let B denote the maximum of $tr(Z\overline{Z})$ on $\mathscr{F}_{K}(\zeta^{0})$. By Lemma 6 (c), $tr(Z^{0}\overline{Z}^{0}) > B$. Let

$$Y = \{Z: F(Z) = \zeta, \operatorname{tr}(Z\overline{Z}) \leq B\}.$$

Then $Y \subset \hat{K}$, Y is polynomially convex, and $Z^0 \notin Y$. Choose a polynomial P with |P| < 1 on a neighborhood N of Y in \hat{K} , and $|P(Z^0)| > 2$. Then $X_1 = F(K \setminus N)$ is a closed subset of $X \setminus \{\zeta\}$. Since each point of X is a peak point for the algebra P(X), there exists a polynomial h with $h(\zeta) = 1$, |h| < 1 on $X \setminus \{\zeta\}$. Choose $\rho > 0$ so that $|h| < 1 - \rho$ on X_1 . Then $|h \circ F| < 1 - \rho$ on $K \setminus N$, and $|h \circ F| \leq 1$ on K. Choose n so that

$$(1 - \rho)^n \max_K |P| < 1,$$

and set $Q = (h \circ F)^n P$. Then |Q| < 1 on K, but

$$|Q(Z^{0})| = |h(\zeta^{0})| |P(Z^{0})| > 2,$$

which contradicts $Z^0 \in K$, and we are done.

It follows from the preceding lemma that $\Psi_{\vec{k}}$ belongs to the class \mathscr{L}_{Ψ_k} , and so

(3.6) $H(\zeta) \ge \Psi_{\hat{k}}(\zeta)$ for $\zeta \in \Omega$.

Let H^* denote the harmonic conjugate of H in Ω , and set

 $\varphi = e^{H+iH^*}.$

Then φ is analytic, bounded, and non-vanishing on Ω . Let *D* be the image of the map $G: \Omega \to \mathbb{C}^3$ given by

 $G(\zeta) = (\varphi(\zeta), \, \zeta/\varphi(\zeta), \, 0).$

Note that $F(G(\zeta)) = \zeta$. Also, for $\zeta \in \Omega$, by (3.6),

$$\varphi(\zeta) \mid = e^{H(\zeta)} \geq e^{\Psi_{\hat{k}}(\zeta)} = M_{\hat{k}}(\zeta)$$

so that

$$|\zeta|/|\varphi(\zeta)| \leq |\zeta|/M_{\hat{K}}(\zeta).$$

Choosing $Z \in \mathscr{F}_{k}(\zeta)$ with $|z_{1}| = M_{k}(\zeta)$, by the proof of Lemma 6,

$$M_{\tilde{K}}(\zeta)^2 = M^2(Z) \ge |\zeta|,$$

where

 $M(Z) = \{ \max |w_1| : W \in O_Z \}$

which implies that

 $(3.7) \quad |\zeta|/|\varphi(\zeta)| \leq M_{\hat{K}}(\zeta).$

If $Z^0 \in \partial D$, then there exists a sequence $\{\zeta_n\}, \zeta_n \in \Omega$, converging to $\zeta^0 \in X$, with

$$Z_n = (\varphi(\zeta_n), \, \zeta_n / \varphi(\zeta_n), \, 0)$$

converging to Z^0 . It follows that $F(Z^0) = \zeta^0$, and so by Lemma 9,

$$|z_1^0| \leq \limsup_{\zeta \to \zeta^0} |\varphi(\zeta)| = \limsup_{\zeta \to \zeta^0} e^{H(\zeta)} \leq e^{\Psi} K^{(\zeta^0)} = M_K(\zeta^0)$$

and also

$$|z_2^0| \leq \limsup_{\zeta \in \Omega \to \zeta^0} |\zeta^n| / |\varphi(\zeta^n)| \leq \limsup_{\zeta \in \Omega \to \zeta^0} M_{\hat{K}}(\zeta) \leq M_K(\zeta^0)$$

by (3.7) and Lemma 10. Since $z_3 = 0$, as in the proof of Lemma 6,

$$\max\{ |z_1^0|, |z_2^0| \} = M(Z^0),$$

and so $M(Z^0) \leq M_K(\zeta^0)$. By Lemma 6 (d), $O_{Z^0} \subset \hat{K}$. It follows that $\partial D \subset \hat{K}$, and so $D \subset \hat{K}$. Thus for $\zeta \in \Omega$, by definition of $M_{\hat{K}}^{*}$,

$$M^{\mathcal{H}(\zeta)} = |\varphi(\zeta)| \leq M_{\hat{\mathcal{K}}}(\zeta) = e^{\Psi_{\hat{\mathcal{K}}}(\zeta)},$$

so $H(\zeta) \leq \Psi_{k}(\zeta)$. Combining this with (3.6) gives

 $H(\zeta) = \Psi_{\vec{k}}(\zeta) \text{ for all } \zeta \in \Omega.$

If $F(Z) = \zeta \in \Omega$, and $Z \in \hat{K}$, then $M(Z) \leq e^{H(\zeta)}$ implies by Lemma 6 (c) that (3.4) holds. Conversely, if det $(Z) = \zeta$, and (3.4) holds, by Lemma 6 (c),

 $M(Z) \leq \beta(\zeta) = e^{H(\zeta)} = M_{\hat{k}}(\zeta)$

and so by Lemma 2.6 (d), $O_Z \subset \hat{O}_W \subset \hat{K}$. If $F(Z) = \zeta \in X$, a similar argument shows that $Z \in \hat{K}$ if and only if (3.4) holds. The proof is complete.

COROLLARY 1. Under the assumptions in Theorem 2, each point in $\hat{K} \setminus K$ lies on an analytic disk in \hat{K} .

Proof. If $Z \in \hat{K} \setminus K$, and det $(Z) = \zeta$, then by Theorem 2, and equation (2.6), one of the following holds:

(i) $\operatorname{tr}(Z\overline{Z}) = t(\zeta)$

(ii) $2|\zeta|^2 < \operatorname{tr}(Z\overline{Z}) < t(\zeta)$

(iii) $\operatorname{tr}(Z\overline{Z}) = 2|\xi|^2 < t(\xi)$.

Let D be the disk constructed in the proof of Theorem 2, the image of

$$\zeta \to (\varphi(\zeta), \zeta/\varphi(\zeta), 0) = Z(\zeta) \subset \hat{K}.$$

Then det($Z(\zeta)$) = ζ , and if (i) holds,

tr
$$Z(\zeta)\overline{Z}(\zeta) = t(\zeta) = tr(Z\overline{Z}),$$

so that $Z = \lambda_0$ for some $g \in SU(2)$, so Z belongs to the disk $\zeta \to \lambda_0$. If (ii) holds then an open neighborhood of Z in \mathbb{C}^3 belongs to \hat{K} . If (iii) holds then Z belongs to the orbit of $\lambda_0 I$ for some $\lambda_0 \in \mathbb{C}$; so

$$Z = g(\lambda_0, \lambda_0, 0)^t g$$
 for some $g \in SU(2)$.

Moreover by (iii) for some $\epsilon > 0$, the disk $\lambda \to g(\lambda, \lambda, 0)^t g$ lies in \hat{K} for $|\lambda - \lambda_0| < \epsilon$, and contains Z.

We now apply Theorem 2 to the study of orbits under the action (2.1) where the group G is taken to be U(2). Such orbits are *a fortiori* invariant under the same action with G = SU(2). Since each element g of U(2) can be written as $g = e^{i\alpha}g'$ with $g' \in SU(2)$, we see that

$$O_Z^{U(2)} = \{ W \in \mathbb{C}^3 : |\det(W)| = |\det(Z)|, \operatorname{tr}(W\overline{W}) = \operatorname{tr}(Z\overline{Z}) \},\$$

and

 $O_Z^{U(2)} \simeq O_Z^{SU(2)} \times S^1.$

In particular, if $O_Z^{SU(2)}$ is special, $O_Z^{U(2)} \simeq S^2 \times S^1$ is three dimensional. Fix $Z^0 \in \mathbf{C}^3$ with

$$A = \det(Z^0), \quad B = \operatorname{tr}(Z^0\overline{Z}^0), \quad M = \max_{Z \in O_{Z^0}} |z_1|.$$

Set $K = O_Z^{U(2)}$. Then

 $X = F(K) = \{ \zeta \in \mathbb{C}: |\zeta| = A \}, \text{ and } F(\hat{K}) = \{ |\zeta| \le A \}.$

By Lemma 2.6, M depends only on B and |A|, in fact, we easily compute that

(3.8)
$$M = \left[\frac{B + (B^2 - 4|A|^2)^{1/2}}{2}\right]^{1/2}$$

so that $\Psi_K(\zeta) = \log(M)$ is constant on X. Thus $H \equiv \log(M)$ on \hat{X} , and we have:

COROLLARY 2. If det(Z) = A, tr(ZZ) = B, and K = $O_Z^{U(2)}$, then

$$\hat{K} = \{ Z \in \mathbf{C}^3 : \det(Z) = |\zeta| \le |A|, \operatorname{tr}(Z\overline{Z}) \le M^2 + |\zeta|^2 / M^2 \}$$

where M is given by (3.8).

The hull of the U(2) orbit of I (for which |A| = 1, B = 2, M = 1) is shown (in the parameter space) in Fig. 2.

Note in particular that $\hat{K} \setminus K$ is an open subset of \mathbb{C}^3 : If $\zeta \in \Omega$, then

$$\mathscr{F}_{\mathcal{K}}(\zeta) = \{ Z: 2|\zeta|^2 \leq \operatorname{tr}(Z\overline{Z}) \leq M^2 + |\zeta|^2 / M^2 \}$$

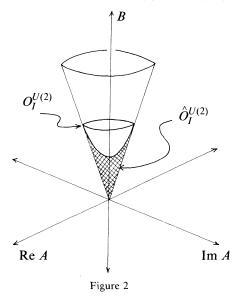
As noted in the proof of Lemma 6, $M \ge |A|/M$, so if $|\zeta| < |A|$,

$$(M - |\zeta|/M)^2 > 0$$

and thus

 $M^2 - |\zeta|^2 / M^2 > 2|\zeta|^2$.

It is likely that these methods could be used to determine the hulls of more general sets invariant under the SU(2) action (2.1).



REFERENCES

- 1. F. Adams, Lectures on Lie groups (W. A. Benjamin, N.Y., 1969).
- 2. J.-E. Bjork, Compact groups operating on Banach algebras, Math. Ann. 205 (1973), 281-297.
- 3. A. Browder, Introduction to function algebras (W. A. Benjamin, N.Y., 1969).
- 4. ——— Cohomology of maximal ideal spaces, Bull. A.M.S. 67 (1961), 515-516.
- 5. A. Debiard and B. Gaveau, Equations de Cauchy-Riemann sur SU(2) et leurs enveloppes d'holomorphie, Can. J. Math. 38 (1986), 1009-1024.
- T. Gamelin, Hartogs series, Hartogs functions, and Jensen measures, in Spaces of analytic functions, Kristiansand, Norway (1975), Lecture Notes in Mathematics 512 (Springer-Verlag, N.Y., 1976).
- 7. S. Helgason, Differential geometry and symmetric spaces (Academic Press, N.Y., 1962).
- 8. L. L. Helms, Introduction to potential theory (John Wiley & Sons, N.Y., 1969).
- 9. L. Hormander and J. Wermer, Uniform approximation on compact subsets in Cⁿ, Math. Scand. 23 (1968), 5-21.
- 10. L. K. Hua, On the theory of automorphic functions of a matrix variable I, Geometrical basis, Amer. J. Math. 66 (1944), 470-480.
- 11. W. Rudin, Function theory on the unit ball in C^n (Springer-Verlag, N.Y., 1980).
- 12. J. Wermer, Subharmonicity and hulls, Pac. J. Math. 38 (1975), 283-290.

College of the Holy Cross, Worcester, Massachusetts