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Abstract

Crittenden and Vanden Eynden conjectured that if n arithmetic progressions, each having modulus at
least k, include all the integers from 1 to k2"~k+l, then they include all the integers. They proved this for
the cases k = 1 and k = 2. We give various necessary conditions for a counterexample to the conjecture;
in particular we show that if a counterexample exists for some value of k, then one exists for that k and a
value of n less than an explicit function of k.
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1. Introduction

We will use the following notation. S(m, a) is the set of integers x satisfying x = a
(mod m). We will refer to S{m, a) as an arithmetic progression, although strictly
speaking it is the range of one, with modulus m and residue a. Script capitals
(#f, 38,...) will be used to denote collections of arithmetic progressions, and P{srf)
will denote the lowest common multiple of the moduli of the arithmetic progressions
occurring in srf. As usual Z is the set of integers, {a, b) is the greatest common divisor
of a and b, [a, b] is the closed interval from a to b, and logm x is the logarithm of x to
the base m. The floor and ceiling functions \_x\, and \x~\ have their usual meanings,
a\b means a divides b and if p is a prime then p" \\ b means pa\b but pa+1 \ b.

In 1958, Stein [12] conjectured that if srf is a collection of n pairwise disjoint
arithmetic progressions with distinct moduli which does not cover Z, then there is
at least one integer in the interval [1, 2"] which does not belong to {J&/. In 1962
Erdos [3] showed that this conjecture would hold if 2" were replaced with n2", and
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[2] Coverings by arithmetic progressions 397

made the stronger conjecture that if s/ is a collection of n arithmetic progressions, not
necessarily disjoint or with distinct moduli, such that (J s/ => [1,2"] then (J si D Z.
A proof of this conjecture was announced by Selfridge [9] at a meeting of the American
Mathematical Society, although apparently not published. A proof was published by
Crittenden and Vanden Eynden [1] in 1970 who in turn made the following conjecture
[2]:

CONJECTURE. If si is a collection ofn arithmetic progressions, each with modulus
> k, such that \J si 2 [1, fc2"-*+1], then \Jsi D 2-

The conjecture has since been published by Guy [4] and Porubsky [7]. Note that
the cases k = 1 and k = 2 of this conjecture are the same, and are equivalent to
the Erdos conjecture proven by Crittenden and Vanden Eynden. Note also that the
conjecture would not hold if [1, k2"~k+l] were replaced by any shorter interval, for
the collection

s/ = {S(k,i) :i = l , . . . , k - 1) U {S(2'k, 2 ' - ' * ) : i = 1 , . . . , n - k + 1}

covers the interval [ 1, kl"~*+l — 1 ] but does not cover Z. Also observe that the interval
[ 1, k2"~k+l ] could be replaced by any interval of the form [b + 1, b + k2"~k+t ] without
changing the truth or falsehood of the conjecture. This observation will allow us to
simplify some of the proofs.

This paper is a contribution towards a proof of the conjecture. We show that if
the conjecture fails for any k then a minimal counterexample (defined below) must
possess certain characteristics, in particular that the value ofn in the counterexample is
bounded above by an explicit function of k. This means that to establish the conjecture
for any value of k one needs only to check a finite number of cases, a process which
has been done elsewhere [10] for the case k = 3. Unfortunately the 'finite number'
increases exponentially with k.

We begin with several general results which will be applied to the conjecture in
later sections.

Let P have prime factorisation

We define a function g by g(P) = E!=i((a- - l)(Pi ~ l) + !)•

THEOREM I. Ifs4 is such that [Jsrf ^ Z and P is the least positive integer for
which there exists an arithmetic progression S(P, a) which is disjoint from (J si then
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398 R. J. Simpson [3]

PROOF. Without loss of generality we can assume a = 0. Let P have prime
factorisation as in (1). We fix some i, and for convenience write a for a,, p for /?,.
For each of the g(pa) ordered pairs (/J, k) in the set

(2) {(P, k) : p e [1, a - 1], k e [1, p - 1]} U {(a - 1, 0)}

we have, by the minimality of P,

A 0) n S ( / , A:/"1)) ? 0,

since the intersection of the two arithmetic progressions is an arithmetic progression
with modulus less than P. Thus for each ordered pair (fi, k), srf contains an arithmetic
progression, say S(py D, A) with p \ D, such that

(3) S(pYD, A) n S(P/pa, 0) n 5(// , kpP-1) ^ 0.

The Chinese Remainder Theorem implies that

(4) A = 0 (mod (D, P/pa))

and

(5) A = kpfi~l (mod (p>\ / / ) ) .

S(P, 0) is disjoint from this arithmetic progression so we have

A # 0 (mod (pYD,P)).

Now S((pYD, P), 0) is the intersection of S((py, pa), 0), and S((D, P/pa), 0), so A
cannot belong to both of these. However, we know by (4) that it does belong to the
second, so we conclude

(6) A # 0 {mod (p\pa)).

With (5) this implies that y > ft, so that S(pyD, A) has the form

(7) S(D, m(D, P/pa)) n S(pY, kpp-] + rip?)

for some m and n, and with y > /S. We get such an arithmetic progression for each pair
{P, k) allowed be (2) and since each is a subset of S{pp, kpp~l) for the corresponding
pair (fi, k) they are disjoint.

Thus we have g(p"j) arithmetic progressions in s>/ satisfying (7) for each prime in
the set [p\, p2, ..., pt). This gives a total of g(P) arithmetic progressions. Our final
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[4] Coverings by arithmetic progressions 399

step is to show that arithmetic progressions of the form in (7) but corresponding to
different values of pt are distinct.

Suppose not. Then there is an arithmetic progression in sf, S{pY
{ D, A) say, with

Pi \ D, which by (3) satisfies S(pfD, A)nS(P/p°", 0) ^ 0 for some prime pt, and for
some prime pj distinct from p, satisfies S(pJD, A) n S{P / p"', 0) ^ 0. But it is also
clear that S(P/p"', 0) D S(P/p"', 0) ^ 0, so we have three arithmetic progressions
which intersect in pairs. Under such circumstances the three will have a non-empty
intersection (see, for instance, [5, Theorem 3.16]) so that S(pJ D, A) intersects

S{P/pT, 0) n s(P/p°',0) = S(P, 0),

contrary to the assumptions of the theorem. This shows that arithmetic progressions
associated with different primes /?, are distinct. Arithmetic progressions correspond-
ing to the same p, are disjoint (and therefore distinct) by the remarks following display
(7). Thus s/ contains g(P) arithmetic progressions.

The bound in this theorem can be attained for any P, for instance by using the
collection

[S(pf, kpf~l) : 0 6 [1, a,— 1], * e [1, p, - 1] J U [S(p?,p?-\ i = 1,.. . , t}.

The next definition and theorem give a technique which is often used in work on
problems concerned with covering the integers by arithmetic progressions.

Suppose we have a collection s/ = {S(</,-, a,) : i = 1 , . . . , s,..., /} where s < t,
and an arithmetic progression S(D, A), and suppose that S(D, A) intersects S(dj, at)
for / = \,... ,s, and not for i greater than s. For i = 1, . . . , 5 we set 5, = (D, dt)
and form another collection s/* = {S{d*,a*) : i = 1 , . . . , s} where

(8) d* = di/8i

and

(9) afD/St = (a,- - A)/5, (mod d*).

We call sf* the reduction of s/ via S(D, A) and S(d*, a*) the reduction ofS(di,a{)
via S(D, A).

Note that 5, divides a, — A and that D/<5, and d* are relatively prime, so a* is
uniquely defined modulo d*.

THEOREM 2. Let S(d*, a*) be the reduction ofS(d, a) via S(D, A) and n be any
integer. Then A + nD e S(d, a) if and only ifn e S(d*, a*).
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400 R. J. Simpson [5]

PROOF. Set S = (£>, d), so that we have A = a (mod S) and

a*D/8 = (a - A)/S (mod d/S).

Now A + nD e S(d, a) if and only if

nD = a — A (mod d)

if and only if nD/8 = (a - A)/S (mod d/S)

if and only if n = a* (mod d/S)

if and only if n e S(d*,a*).

COROLLARY l.Ifs/* is the reduction of a collection srf via S(D, A), then [J
includes {A + iD : i = 0 , . . . , n — 1} if and only if\J srf* includes {0, ..., n — 1}.

PROOF. Immediate from the theorem.

A disadvantage of the reduction technique is that, in general, the modulus of
an arithmetic progression is decreased when it is reduced. This may mean that an
arithmetic progression with modulus greater than k turns into one with modulus less
than k which makes it ineligible for inclusion in a counterexample. We now introduce
another technique which has some of the properties of the reduction technique, but
which does not change the moduli of the arithmetic progressions. We call this
transformation Tp, where p is prime.

Let p be any prime and let S(pad, a) be an arithmetic progression in which p \ d.
We define Tp by Tp(S(pad, a)) = S(pad, b) where

b = a (mod pa)
(10)

pb = a (mod d).

Similarly we define a transformation on a collection si of arithmetic progressions:
Tp(*/) = {Tp(S(d, a)) : S(d, a) e s/\.

THEOREM 3. Let p be a prime and let srfbe a collection of arithmetic progressions.
Then (J sf = T if and only if\J Tp(a7) = Z.

PROOF. Let P(^) = paP where p \ P. Let m be any integer, and find another
integer n such that

n = m (mod pa)
(11)

pn = m (mod P).
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[6] Coverings by arithmetic progressions 401

We will show that m belongs to an arithmetic progression S(pad, a) if and only if n
belongs to Tp(p

ad, a), where p does not divide d.

m € S(pad,a)

if and only if m = a (mod pa) and m = a (mod d)

if and only if n = a (mod pa) and pn = a (mod </)

if and only if n e Tp(S(pad, a))

Since (11) describes a bijection from Zp(J^) to itself, it follows that each integer
belongs to an arithmetic progression in si if and only if each integer belongs to an
arithmetic progression in Tp{si).

THEOREM 4. IfS(pad, a) is an arithmetic progression, p\d and 9 > a > 0, then

mp9 € S(pad,a) ifandonlyifmp0-1 e Tp(S(pad,a)).

PROOF. Let Tp(S(pad, a)) = S(pad, b). Then by (10), mpe = a (mod d) if and
only if mpe~[ = b (mod d).

Also by (10) and the hypothesis that 9 > a, mpe = a (mod p") if and only if
mpe~' = b (mod p"). The theorem then follows.

2. Characterisation of a counterexample

For a given integer k > 3 we define a minimal counterexample for this & to be
a collection &/ of « arithmetic progressions, each with modulus at least k, and such
that U £? D [1, £2"-*+'] and (J ^ ^ Z, and further such that

(a) n is the least integer for which such an st exists, and
(b) in any other collection of n arithmetic progressions having these properties,

the sum of the moduli of the arithmetic progressions is at least equal to the sum of the
moduli of the arithmetic progressions appearing in s/.

This section will be concerned with obtaining constraints on the moduli of the
arithmetic progressions in a minimal counterexample.

In obtaining necessary conditions for si to be a minimal counterexample we will
often use proof by contradiction, showing that if si did not possess the specified
property then it would be possible to construct another counterexample with lower
cardinality, or with the same cardinality and the size of one or more of the moduli
reduced. In the proofs we sometimes assume that a minimal counterexample si does
not cover 0. This involves no loss of generality.

THEOREM 5. If si is a minimal counterexample which does not cover 0, and
S(bc, a) belongs to si with b > k, c > 1, then
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402 R. J. Simpson [7]

(a)
(b) a = 0 (mod b),
(c) S(bc, a) c S(fc, 0).

PROOF. Write si = .«/* U {S(fcc, a)}. Now 5(fe,a) D S(bc,a), so

This means that .e/* U {5(fe, a)} is a counterexample to the conjecture, contradicting
the minimality of si, unless

(12)

so we conclude that this is so. We assumed that si, and therefore si*, does not cover
0, so 0 must belong to S(b, a). That is, a = 0 (mod b). This is part (b) of the
theorem. Part (a) then follows from (12), and part (c) from part (b).

COROLLARY 2. Suppose si is a minimal counterexample that does not cover 0, and
that S(d,a) is an element of si.

(a) If 2" \\d and 2a > k then d = 2a.
(b) Ifp is an odd prime, pa+l \\d and pa >k then d = pa+l.

PROOF, (a) Suppose d = 2ad0 where d0 is odd and greater than 1. Then by part (b)
of Theorem 5 we have

(13) a = 0 (mod 2°).

Since 2a~xd0 > 2" > k, part (b) also implies that

(14) a =0 (mod 2"-'d0)•

Together (13) and (14) imply that

a = 0 (mod 2ad0)

which implies si covers 0, a contradiction.

(b) Suppose d — pa+ld0 where d0 > 1 and p is an odd prime which does not divide
d0. We again apply part (b) of Theorem 5 twice, first with pa+x in the role of b and
second with pado in that role, obtaining a contradiction as in part (a).

Note that Theorem 5 does not enable us to forbid all arithmetic progressions with
modulus p"d0 with pa > &andd0 > 1. If d0 is a prime or prime power with dop

a~l < k
we cannot obtain a contradiction as in the proof of the corollary. The next few results
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[8] Coverings by arithmetic progressions 403

do give an improvement in the case of primes which are at least k. For these we need
the following definition.

An irredundant covering system is a collection of arithmetic progressions si such
that (J si = Z and such that no proper subcollection of si has this property. Such col-
lections are also sometimes called regular covering systems or just covering systems.
We use two properties of such systems, the first of which is proved in [11].

THEOREM 6. If si = {S(dj, OJ) : i = I,..., t} is an irredundant covering system,
and p is a prime dividing P {si), then the set {a, : p \ d,} contains a complete residue
system modulo p.

THEOREM 7. If si is a minimal counterexample and p is a prime greater than or
equal to k, then for all integers b we have [J si ~£ Z \ S(p, b).

PROOF. Suppose otherwise, so that si U [S(p, b)} covers the integers and any
irredundant subcovering of it must contain S(p,b). By Theorem 6, si therefore
contains at least p — 1 arithmetic progressions whose moduli are divisible by p and
which are disjoint from S(p,b).

We now reduce the collection [S(d, a) e si : S(d, a) C\ S(p, b) ^ 0} via S(p, b),
to obtain a collection si* with

(15) \s/*\<n- p + l.

Now si being a counterexample implies

/ 2 [l,k2"-k+l]DS(p,b) = {b + ip:i = 0 , . . . , [k2"-k+l/p] - 1}.

Here we have assumed, as we may, that 1 < b < p. By Theorem 2 we then have

(16) U ^ - [0' L*2"-*+1J - 1].

Also, since \Jsi 2 l\S(p,b), \Jsi^I,we have \Jsi ^ S(p,b). Again by
Theorem 2 we therefore have (J si* ^ Z.

Using the k = 1 version of the conjecture (which is the case proven by Crittenden
and Vanden Eynden) and equation (16) we have [k2"~k+l /p] < 2"~p+1 which leads to
p — log2 p < k — log2 k. This is impossible since the function x — log2 x increases
with x for x > 2 and we have p > k > 2. This contradiction proves the theorem.

COROLLARY 3. Suppose si is a minimal counterexample, p is a prime at least k
and S(pd, a) belongs to si. Then d = 1.
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404 R. J. Simpson [9]

PROOF. Suppose that d ^ 1. We may form another minimal counterexample si*
which does not cover 0 and whose elements have the same moduli as the corresponding
elements of si. Then by part (a) of Theorem 5 we have U si* 2 2\5(p, 0) which
contradicts Theorem 7.

This corollary gives the first important constraint on the moduli appearing in a
minimal counterexample. We have shown that each such modulus is either a prime
at least k or a product of primes less than k. The corollary to the next theorem will
provide a further constraint on the arithmetic progressions with prime modulus. We
first remark that any arithmetic progression with modulus d is the union of lk/d~\
arithmetic progressions each with modulus at least k, since

S(d, a) = \J™*S(\k/d]d, a + id)

and \k/d\d > k.

THEOREM 8. If si is a minimal counterexample and S(d0, a0) is an arithmetic
progression such that (J si ^ S(d0, a0) then

(17) £r*(rf ,db)/rf l+k>g24)> \{S{d,a)€si(d,do)> 1}|.
S(d.a)emf. (d,da)>\,

a=ao (mod (d,do))

PROOF. We set

si] = {S(d, a) € si : (d, a\,) > 1, a = a0 (mod d, d0)},

si2 = {S(d, a) e si : (d,do) > I, a # a0 (mod d, d0)},

si?, = {S(d, a) esi : (d, do) = 1} and \si,\ = N, for i = 1, 2, 3.

u ^3) 2 5(do, flo) n [1, *2'-*+1]

No arithmetic progression in si2 intersects S(d0, a0) so

If we assume, as we may, that 1 < a0 < d0 then we have

L M u *^) 5 {«o + idb : i = 0 , . . . , [k2"~k+i - ao)/do\).

We now reduce six and si3 via 5(do» «o) to get si* and ^ * so that by Corollary 1,

( J « U < ) 2 [0, LJfe2"-t+I/flH,J - 1].

From this we see that

(18) \J{S(S, a + l): 5(5, a) € < U < ) } 2 [1,
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[10] Coverings by arithmetic progressions 405

By Theorem 2 and our assumption that | J si does not include S(do, a0) the collection in
(18) does not cover the integers. It thus has some of the properties of a counterexample.
However the reduction of an arithmetic progression S{d,a) via S(d^, a0) has modulus
d/(d, d0) and in the case of those arithmetic progressions in si* this may be less than k.
To overcome this difficulty we replace each arithmetic progression that appears in the
collection in (18) and that originated in s/\ with \k(d, do)/d~\ arithmetic progressions
each having modulus at least k, as described in the remark preceding Theorem 8. We
combine this collection with {S(d, a + 1) : S(d, a) e si*) to form a new collection
SS\ U SB is then identical to the left-hand side of (18), each modulus appearing in it is
at least k and

(19) \®\= J2 \k(d,do)/d]+Ni = N, say
S(d.a)ear,

By (18) and the remarks following it, we also have

(20)

Now the sum in (19) is the sum that appeared in (17). If it is at least N, + N2 we
have already established inequality (17) since the right-hand side of that inequality is
Nt+N2. We therefore assume it to be less than Nx+N2 so that \g?\ < Ni+N2+N3 = n.

Since si is a minimal counterexample, we have Ik2"~k+l/do} < klN~k+x. This
leads to N > n — log2 d0.

On substituting for N and n and recalling the definitions of si\ and sf2 we obtain
the required inequality.

COROLLARY 4. If si is a minimal counterexample and p is a prime number, p > k,
then the number of arithmetic progressions in si having modulus p is less than log2 p.

PROOF. By Corollary 3 the only arithmetic progressions in si having modulus
divisible by p have modulus equal to p. We can therefore choose a residue class
modulo p, S(p, a0) say, which intersects no arithmetic progression in si with modulus
divisible by p.

We now use S(p, a0) in the role of S(d0, a0) in Theorem 8. By the preceding
remark we see that the sum that appears in the statement of that theorem is empty. We
then have

log2/?> \{S(d,a) €s/:(d,p)> l}\

= \{S(d,a) esi : d = p}\.

The final results of this section concern those moduli which are divisible by primes
less than k.
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406 R.J.Simpson [11]

THEOREM 9. If srf is a minimal counterexample which does not cover 0, p is a
prime less than k and srf includes a subcollection {S(pa, ipa~]) : i •=• 1,..., p — 1},
then a = flog/c/log p~\.

PROOF. Notice that with ft = flog k/ log p~], the least power of p which is not less
than k is pp, so we must have

(21) a>riog*/ log/>l .

Suppose we have strict inequality in (21) and write s/ = s#\ U srf2 U ^ where

s(\ = {S(d,a) e*/ : p a + l \d],

3?2 = {S(d, a) € s4 : pa || rf),

) e ^ : p" | d\.

Now by hypothesis | J ^ | > p — 1, and by our supposition /?""' > k.
Corollary 2 and Theorem 5 then imply that any arithmetic progression in srf2 has

the form S(pa, ip"->) and that ( J - ^ 2 Z\5(/7a-1, 0).
Since ^ does not cover 0, srf-i does not contain S(pa, 0) so \J srf2 c 5(/?ff"', 0)\

Similarly we have U^i c 5(p", 0).
These last three inclusions imply (J ^ U S(pff~1, 0) = Z.
We now use the transformation Tp introduced in the first section. By Theorem 3

the above display implies

Since S(pa~\ 0) is not changed by Tp, this is equivalent to

(22) U

We now turn our attention to the collection srf\. If S(d, a) is an element of this then
by its definition and Corollary 5 both a and d are divisible by p. We form another
collection^* = [S(d/p, a/p) : S(d, a) € s/\} and note that each modulus appearing
in s/* is at least pa which is at least k.

Since we have shown that (J &/2
 IS disjoint from S(pa, 0) we have

U sii) 2 S(pa, 0) n [1, ik2"-*+1]

Now ipa belongs to an arithmetic progression in srf\ if and only if ipa~x belongs to
the corresponding arithmetic progression in #/*. Also, by Theorem 4, ipa belongs to
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[12] Coverings by arithmetic progressions 407

an arithmetic progression in s/3 if and only if ipa~x belongs to the equivalent arithmetic
progression in Tp(s/^). Thus

( J « U TPW)) 2 {!>""' : 1 = 1 , . . . , Vk2"-k+{/pa\},

U Tp(^)) $ {0}.

Since by (22) the collection srf* U Tp(£/3) covers all integers which are not divisible
by pa~\ the least positive integer not covered by the collection is at least

We therefore have

(J U Tp(s/3)) 2 [1,

W* U Tp(*/3)\ <n-p+\,

and each arithmetic progression in the collection has modulus at least k. Since sf was
assumed minimal we must have [k2"~k+]/p] < k2"-"~k+2 which leads to 2P < 2p,
which is impossible for p > 2. This contradiction proves the theorem.

COROLLARY 5. Suppose that srf is a minimal counterexample that does not cover 0.
(a) The highest power of 2 dividing P (s/) is at most 2n°82 41.
(b) If p is an odd prime less than k, the highest power of p dividing P{srf) is at most

PROOF, (a) Let 2" be the highest power of 2 dividing P{srf). Then srf contains an
arithmetic progression of the form S(2ad,a). If 2" < k we are done, and if 2" > k
we have, by Theorem 5 and Corollary 2, S(2ad, a) = 5(2", 20"1).

By Theorem 9 we then have a = flog k/ log 2] as required.
(b) We prove this part by contradiction. Suppose that pa+x is the highest power pf

p dividing P(srf) and that

(23) ct> flog*/log/>1.

Then si contains an arithmetic progression of the form S(pa+ld, a). By Theorem
5, part (a), we have \Js/ 2 l\S(pa,0). Thus \Js/ covers S{pa,ipa~x) for / =
\,..., p — 1 but does not cover S(pa, 0). For this to occur sf must contain p — 1
arithmetic progressions of the form S(padj, at) with

at = ip01'1 (mod pa) for i = 1 , . . . , p - 1.
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By Theorem 5 each dt equals 1, so these arithmetic progressions are precisely

But now Theorem 9 says that a equals [logk/ log p~\, contradicting (23).

3. A sieve for the problem

In this section we are concerned with arithmetic progressions having prime modulus
> k, and derive an upper bound on the length of an interval that can be covered by n
such arithmetic progressions. In the next section we apply this result to the conjecture.
We begin with some notation.

Throughout this section srf is a collection of arithmetic progressions, each with
prime modulus, and k a positive integer > 3. For each prime p set

The collection srf also satisfies the following conditions

(24) \srf\ = n,

(25) c(p) = 0 if p <k,

(26) c(p) < [log2 pj otherwise.

The section's first theorem gives some lower bounds on the number of positive
integers < /V which do not belong to \Js/. It is similar to Lemma 2 of [1].

THEOREM 10. With the above notation, let {/>], p2,..., pt) be the set of primes for
which c(p) ^ 0, and write c, for c(pi). Let N be any positive integer and let s be an
integer satisfying I < s < t.

If I I 11
(a) | m : 1 < m < N, m $ M s& \

I 1 \ J-l / I \ s-\

\ i=S / 1 = 1 \ i=S j i = \

(b) \\m : 1 <m < N, m

>N- cdW/p.J + 1) - J^CiilN/p,} - c, IN/pip,} + 1).
i=2

(c) |jm : 1 < m < yV,
t

N - £

?iJ - clc2(lN/plp2p,i + 1)).
1=3
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PROOF. We shall use Yl'to denote a sum in which at most one of the subscripts is
> s and all allowable subscripts are covered. Note that, with this notation, for any
X\,X2, . . . ,X,,

(27)

( £ )
For /' = 1, 2, . . . , t we let 5, denote the union of those arithmetic progressions

in si which have modulus /?,-. From the Chinese Remainder Theorem each set of
PhPh • •' Pi, consecutive integers contains exactly c^Ci, • • • cir elements of 5,, D Sh D
• • • D S,-,. and hence

(28) |S,-, n si2 n • • • n sir n [l, N]\ = \_N/Y\Plj} Y]^ +
j = \ j=\ 7 = 1

where E satisfies 0 < E < 1. It follows that

r r

(29) | sit n si2 n • • • n sir n [ l, N] \ = N Y\ ch /Pij + E'Y\ ^
7 = 1 7 = 1

where E' satisfies —1 < £" < 1.
We denote the characteristic function of a set A by XA- With this notation

I 5 - 1

- XSi) J~[(l - Xs.)
i = \

i=s I i = \

> • )

Using identity (27) with — xs, in the role of x, we obtain

XsXsj •

Using the fact that for any sets A and B we have XAHB = XAXB we obtain

\m : 1 < m < N, m
(30) ' ' ^ f • m=\

' is,- n [i, N]\ + V ' is,- n Sj n [l, N]\ -
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Using equation (29) we see that the right-hand side of (30) is greater than

f P-PJ

We now collect those terms involving N and those not involving N, apply identity
(27) to each collection of terms, and obtain part (a) of the theorem.

To obtain part (b), we set s = 1. Using (30) and (28), we obtain

'/J +c,-) -
7TT i=2

and the right-hand side simplifies to the right-hand side of part (b).
Part (c) is obtained in the same way as part (b) after setting s = 2.

Parts (b) and (c) of this theorem are used in the next section. We use part (a) to
derive a corollary, but first we need some more notation: we set

M(si) = maxlyv : I J ^ 2 [ 1 , A ^ ] | .
I ^ J

If U £/ does not include 1, we set M(&/) = 0.

COROLLARY 6. Let p0 be a modulus appearing in srf such that l—J2p>Poc(p)/p > 0.
(This will hold for sufficiently large po since the number of non-zero c(p) 's is finite.)
Then

p<pa

PROOF. By the definition of M(srf) we have

\m : 1 < m < M(&/), m V*\\=o.
Thus we may use part (a) of the theorem with 0 replacing the left-hand side of the
inequality and M(srf) replacing N on the right and p0 in the role of ps. An easy
rearrangement then gives (31).

The rest of this section is devoted to getting upper bounds for M(srf). This requires
getting an upper bound for the right-hand side of (31) which is independent of the
values of the variables c(p). To do this we need yet more notation.
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We set:

p is an odd prime,

p is the prime preceding p,

x is a positive real number,

? = p'-\\og2p'\, V(x,p) = * + * 2~\
l~ x/p

and r{k,n) is the least prime r such that

We notice that the left-hand side here increases with r and so the function is well
defined.

LEMMA 1. For p>l we have p - 4 > W(p) > 2.

PROOF. For such p, [log2 p'\ > 2 and so ff(/>) < p' — 2 < p - 4. Also, for p' > 5
we have log2 p' < p'/2 and so W(p) > p'/2 > 2.

THEOREM 11. For fixed p > 7 the function V(x, p) is strictly decreasing as a
function ofx in the interval [1, p — 2].

PROOF. We write f(x) = V(x, p). Then f(x) > 0 in the interval [I, p -2] and

by logarithmic differentiation we have

1^1 P+l
 l og2

(l+x)(px) g

< — 77 - log2 ,

since the minimum of (1 + x)(p — x) on [I, p — 2] occurs at one of the end points.
For p > 7 we have

n + 1 2
< r <log22(p - 1) - 3

and since f(x) > 0 it follows that f'(x) < 0. Thus f(x) is strictly decreasing on
[ l . p - 2 ] .

COROLLARY 7. Ifm is an integer satisfying 0 < m < [log2 pj , then

(32) V(m,
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PROOF. It is easy to check that this holds for p = 2, 3, 5 and whenever m = 0. For
p > 7 w e use Theorem 11, which says that V(m, p) attains its maximum value in the
interval [1, p — 2] when m = 1, and clearly V(l, p) — p/(p — 1).

COROLLARY 8. The function A(p) V(W(p), p) is strictly decreasing for p > 5.

PROOF. It is easily checked that

A(1)V(W(1),1) < A(5)V(W(5),5).

and

), 11) < A(7)V(W{1), 7).

We therefore assume p > 11 and let p+ be the prime immediately succeeding p.
Using Lemma 1 and the definition of W we then have

1 < W(P) + 1 < W(p+) < p+ - 2.

Applying Theorem 11 we then have

V(W(p+), p+) < V(W(p) + 1, p+) < V(W(p) + 1, p)

) (' + , - ( » ' ( , ) + • > ) V ( W U " - ">•
Using the bounds on W(p) in Lemma 1 this is at most

l-\ v(W(P), P) = lv(W(P), P)Ui +\(i + \ v(W(P), P) v(W(P), P) <

for p > 11. Since A(p+) = p/(p — l)A(p) this establishes the corollary.

LEMMA 2. Ifm is an integer, m > 2, we have A{m) < 2\ogm.

PROOF. By direct calculation we find that the inequality holds for m < 18. For
higher values we use the following known result (see [8, Theorem 8, Corollary 1]),

p
< e Y 0 +

p<

where y is Euler's constant. This holds for all real m exceeding 1. Ifm > 19 then the
right side is less than

1.79 (1 + (log 19)~2) log m <21ogm.
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LEMMA 3. With r = r(k, n) as defined above, and with r' = r'(k, n) being the
prime preceding r(k, n), we have for k > 3 andn > 10 :

(a) r(k, n) > 2n/5,
(b) r'(k, n) > n/3,
(c) r(k, n) < In.

PROOF, (a) It is sufficient to show that this holds for k = 3. To do this we show
that if r < 2n/5 the inequality defining r(3, n),

(33) r-\+Y, L!°g2 Pi ^ n

3<p<r

does not hold. We note that

P\ <
3<p<r p<r

<©(#•)/log 2 - 1 ,

where &(x) — J2p\ogp. Now [8, Theorem 9], states that for x > 1, &(x) <
1.01624.x. Applying this we find that for r < 2n/5,

r - 1 + ] P [log2p] < r + (1.017/ log 2)r <n
3<p<r

contradicting (33).
(b) This may be checked for values of 9 < n < 57. Ifn > 57 we haver (3, n) > 31.

Nagura [6] has shown that for p' > 29 we have p' > 5p/6. Applying this and part (a)
of the lemma gives the result.

(c) Let s(n) be the least prime satisfying s(n) — 1 > n. Clearly s(n) > r(Jc,n)
for all k so it is sufficient to show that s{n) < 2n, and this follows from Bertrand's
Postulate.

We can now prove the main result for this section.

THEOREM 12. If srf is a collection of arithmetic progressions satisfying the condi-
tions specified at the beginning of this section with k > 3 and n > 12 and p0 being
the least prime satisfying po > Yln>p0

 C (P)> then

(a) M(^) < — — V(W(p0), po)2", and furthermore,
A(k)

(b) ifr = r(k, n), then
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PROOF. It follows from the fact that ^ c ( p ) = n > 12 and from inequality (26)
that p0 > 7. We set

(34) X = V c(p)

which implies

(35)

From (34) we

X <

have

A)- We

1-

then have

-j2c(p)/P
P>Po

P<Po

Using this and (34) in Corollary 6 (the use of which is justified by (35)) we obtain

~c(p)/p

P<PO

We see by equation (25) that the product is not affected by factors corresponding to
primes less than k. Applying Corollary 7 to each of the other factors we obtain

(36) 2 ^
A(k)

We now obtain some bounds on X in terms of p0. The first comes from the
definitions of X and p0:

(37) po-l>X.

Next, let p'o be the prime preceding p0. By the definitions of X and p0 and by
inequality (26),

This and inequality (37) give

(38) W(po)<X<Po-l.

Since X is an integer we have, by Theorem 11,

(39) V(X, po) < max{V(W(p0), p0), V(p0 - 1, p0)}.
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Using Lemma 1, Theorem 11, and the definition of V(x, p) and the fact that Po>_l
we obtain

V(W(po),po) > V(p0 - 4, po) 2p0-3 ^ i
2

V(p0-1, p0) ~ V(p0-I, p0) p0

Thus the maximum in (39) is V(W(p0), p0) and so by (36),

(40) MOO < ^Ej^-VWipo), po)2".

This is part (a) of the theorem. We note that

Combining this with inequality (37) we obtain

Pa- 1+ X

So that p0 > r{k,n). Using this inequality, Corollary 8 and (40), we obtain part (b)
of the theorem.

For applications in the next section we use the following weaker but more conveni-
ent bound on M(g/).

COROLLARY 9. If stf is a collection of arithmetic progressions satisfying the con-
ditions specified at the beginning of this section with k > 3 and n > 12 we have

M(.aO < 161og2n322"/3M(A:).

PROOF. With r = r(k,n) and r' being the prime preceding r we have, using part
(b) of the theorem and the definitions of V and W:

2

A(k)log2r
Using the estimates of Lemmas 2 and 3 we obtain the required inequality.
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4. Bounds on the cardinality of a minimal counter-example

In this section we obtain an upper bound on the cardinality of a minimal counter-
example for arbitrary values of & > 3. This means that the conjecture could be verified
for such values of k by checking a finite number of cases. The final section of the
paper discusses this.

Let sf be a minimal counterexample that does not cover 0; then by Corollary 3
each arithmetic progression in s/ lies in one of the following collections:

s/L = [S(d, a) e s/ : d is a product of primes < k],

s/c = {S(d, a) e s/ : d is a prime > k}.

Let |s/L | =/!/, and \s/G | = nc, and let P be the least modulus such that there exists an
arithmetic progression S(P, A) satisfying S(P, A) n (L)s/L) = 0. It follows from the
Chinese Remainder Theorem that P divides P(s/L), that is, P is a product of primes
less than k.

We now obtain two inequalities involving P. With g the function defined in the
first section and using Theorem 1 we have

(41) riL > g(P),

and by Theorem 8 with S(P, A) in the role of S(<4, a0) if P > 1 and noting that
nL = 0 when P = 1, we have

(42) nL < log2 P.

THEOREM 13. With P and s/ as defined in the previous paragraphs, n(x) being
the number of primes less than x and @(x) = ^p log p, where the sum is over all
primes less than x, we have

(a) log2 P - g(P) > 0,
(b) log2 P - g(P) < @(k)/ log 2 - n(k),
(c) 31og2P-2g(P)< Tlog2A:l + (31og23-4)riog3*l+30(A:)/log2-2;r(A:)-l.

PROOF. Part (a) is an immediate consequence of inequalities (41) and (42). For
parts (b) and (c) we suppose P has prime factorisation P = J~J'=1 /?"'. Then

log2 P - g(P) = J2(<*i log2 Pi - (a, -
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The term in the inner brackets is at most 0 for any prime pt so the expression is
maximised when each a,• = 1. Thus

log2 P - g(P) < ^ ( l o g 2 Pi - 1)
P<k

= 0(*)/lOg 2 - * ( * ) ,

as required. This proves part (b). For part (c) we obtain

3 log2 P - 2g(P) = £(a,-(3 log2 Pl - 2Pi + 2) + 2Pl - 4).
i = \

This time the term in the inner pair of brackets is negative for p, > 3. If pt equals
2 or 3 we apply Corollary 5. This leads to

3\og2P-2g(P)

< riog2A:l(31og22-2) + (l + riog3fcl)(31og23-4) + 2+ £ (31og2p-2)
3<p<k

< Tlog2 Jfcl + (3 log2 3 - 4 ) riog3 t l + 30(*)/ log 2 - 2n(k) - 1,

as required.

We can now prove our main theorem.

THEOREM 14. If s/ is a minimal counterexample for some k > 3, then n is less
than

3(Q(k)/log2 + k) -2n(k) + 36\og2k + llog2k-] + (3log23 - 4)\log3k1 - 4 .

PROOF. We assume, without loss of generality, that si does not cover 0. Since
\Js/Ln S(P, i4) = 0 we must have U-^c 2 S(P, A) n [1, k2"~k+{].

Reducing &fG via S(P, A) we obtain a collection &/G* which satisfies conditions
(24) to (26) and such that U&/c* contains Ik2"~k+I/Pj consecutive integers. By
adjusting the residues of the arithmetic progressions in g/G* we can form another
collection #/G**, say, for which M((J &/G**)> [k2"~k+l/Pj. We use this to obtain
an upper bound for nc in terms of k and P. We first assume that nG > 12. From
Corollary 9 we then have

161og2n^22"c/3/A(/t) > k2n~k+[/P - 1.

Noting that

(43) n =nc +nL,
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and rearranging we obtain

(44) 161og2n^2-"c/3 > kA(k)2-k+l+r"--^-p - A(k)2~"G.

We claim this implies

(45) nc < 3(k - 1 - nL + log2 P + 12 log2 *).

To show this suppose that this inequality does not hold. Then, for k > 3 and using
inequality (42) we see that nc > 12. For such nc the left-hand side of (44) is
decreasing, so it is sufficient to consider the value of the left-hand side of (44) when

nc = 3(k - 1 - nL + log2 P + 12 log2 *).

We find, using inequality (41), part (b) of Theorem 13 and this value of nG that,

< 4321og2(£ - 1 + 0(£)/log2 - n(k) + l2\og2k)3k-n

Now

4321og2()k- l + 0(it)/log2-7r(*) + 121og2 A:)^"13

is decreasing with k, and when k = 3 it equals 0.6574..., and so

161og2n3
32-"c/3 < ic2-k+l+"L-]oe'p

and is certainly less than the right-hand side of (44). This establishes inequality (45)
in the case nG > 12.

If nc < 12 it is easy to see that inequality (42) still holds using our assumption that
k > 3 and inequality (42). We now obtain our bound on n. Using (43), (41) and (45)
we have

n < 3 ( * - 1 - « / . + log2P

< 3Jk - 3 + 36log2 k + 3 log2 P - 2g(P).

Applying part (c) of Theorem 13 gives the inequality of the theorem.

5. Discussion

We have shown that if a counterexample to the conjecture exists for a given k then
one exists for that k and n bounded by the expression in Theorem 14. For such an n
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there are a finite number of ways the interval { 1 , . . . , k2"~k+l} can be partitioned into
n sets, so we could examine each of these to see whether any corresponds to a set of
arithmetic progressions with common differences greater than or equal to k. If none
did the conjecture would hold for this value of k.

Although possible in principle, the time required for such an undertaking would
be prohibitive, even for low k. A more practical method is to run through the values
of n allowed by Theorem 14, and for each of these consider the cases ng = 0 , . . . , n.
We can get a bound on the maximum value the function M{&/) can take for these
values of k and nG using part (b) of Theorem 12. Note that this is much stronger than
Corollary 9 since the value of the bound can be calculated exactly rather than relying
on the weak bounds of Lemmas 2 and 3. As in the proof of Theorem 12 we have
MGsaO > k2"-k+]/P which becomes

log2 P > log2(kr-k+l/M(*/)),

which gives an explicit lower bound on log2 P. Using part (b) of Theorem 13 and
(41) we get a lower bound on nL. For most values of n and nc this bound will be
incompatible with nL + nc = n. This process will get rid of most [nL, nG} pairs.
Those remaining must be considered separately: in each the set of allowable arithmetic
progressions is restricted by the various conditions obtained in Section 2. In estimating
M(s/) primes which are greater than M(g/) can only cover one integer in [ 1, M(^)]
so such primes are all equivalent. The process has been performed successfully for
the* = 3 case [10].
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