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LONG-RANGE DEPENDENCE OF
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Abstract

When {Xn} is an irreducible, stationary, aperiodic Markov chain on the countable state
space X = {i, j, . . .}, the study of long-range dependence of any square integrable
functional {Yn} := {yXn } of the chain, for any real-valued function {yi : i ∈ X}, involves
in an essential manner the functions Qn

ij = ∑n
r=1(p

r
ij − πj ), where pr

ij = P{Xr =
j | X0 = i} is the r-step transition probability for the chain and {πi : i ∈ X} = P{Xn = i}
is the stationary distribution for {Xn}. The simplest functional arises when Yn is the
indicator sequence for visits to some particular state i, Ini = I{Xn=i} say, in which case
lim supn→∞ n−1 var(Y1 + · · · + Yn) = lim supn→∞ n−1 var(Ni(0, n]) = ∞ if and only
if the generic return time random variable Tii for the chain to return to state i starting
from i has infinite second moment (here, Ni(0, n] denotes the number of visits of Xr to
state i in the time epochs {1, . . . , n}). This condition is equivalent to Qn

ji → ∞ for one
(and then every) state j , or to E(T 2

jj ) = ∞ for one (and then every) state j , and when it
holds, (Qn

ij /πj )/(Q
n
kk/πk) → 1 for n → ∞ for any triplet of states i, j , k.
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1. Introduction and main results

A real-valued stationary stochastic process {Yn} with finite second moment is long-range
dependent when the asymptotic second-order behaviour of

var(Y1 + · · · + Yn) (1)

exceeds O(n) for large n; the ‘standard’ behaviour, i.e. that (1) equals at most O(n), holds
when the components are independent or, for example, satisfy

∞∑
n=1

| cov(Y0, Yn)| < ∞.

In this paper we discuss aspects of real-valued processes that are defined on discrete-time
stationary Markov processes {Xn} on the countable state space X = {i, j, . . .}, and have
stationary one-step transition probabilities

pij = P{Xn+1 = j | Xn = i} for all n ∈ N.
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1048 K. J. E. CARPIO AND D. J. DALEY

We assume that the Markov chain is irreducible and positive recurrent, and to simplify some
aspects of the discussion, without substantial loss of generality, we assume that the chain is
aperiodic. In what follows we freely refer to Chung for various results, meaning Part I of
Chung (1967) (and, it should be noted, some of the results that we use are not in the earlier
(1960) edition of the book).

The stationarity of {Xn} is described via the distribution

πi = P{Xn = i} for all n, i ∈ X;
the n-step transition probabilities are denoted by

pn
ij = P{Xn+r = j | Xr = i} for all r, all i, j ∈ X, n = 0, 1, . . . ,

so p1
ij = pij , and

p0
ij =

{
1 if j = i,

0 if j �= i.

The most general structure for Yn, consistent with the Markov setting we have described,
is that Yn = yXn for some real-valued set {yi : i ∈ X} such that

∑
i∈X πi(yi)

2 < ∞
(e.g. Chung (1967, Sections I.14–16)). For such a structure, we can then readily write down

cov(Y0, Yn) =
∑
i∈X

∑
j∈X

yiyjπi(p
n
ij − πj ), n = 0, 1, . . . . (2)

Within this form, the simplest functional {Yn} arises when yi = 1 for some specified state i and
yj = 0 for all other states j . Writing Ini = Yn for the realization at time n of this functional,
(2) reduces to

cov(I0i , Ini) = πi(p
n
ii − πi),

and the argument of the variance at (1) is just the number of visits of the Markov chain {Xn}
to state i during the time epochs 1, . . . , n, Ni(0, n] say. Then, in this case, (1) becomes
var(Ni(0, n]), and the defining condition of long-range dependence of this particular functional
{Ini}, namely that

lim sup
n→∞

var(Ni(0, n])
n

= ∞, (3)

thus coincides with the definition in Daley and Vesilo (1997) of the long-range dependence
of a stationary point process on R. Now since Ni(·) is the counting function of a stationary
renewal process (for the epochs of visits to the state of a recurrent Markov chain constitute a
discrete-time regenerative phenomenon or renewal process), the variance in (3) is expressible
as an integral of the associated renewal function or, since the process is in discrete time, as a
sum, namely

var(Ni(0, n]) = nπi(1 − πi) + 2πi

n−1∑
r=1

n−r∑
s=1

(ps
ii − πi)

= −nπi(1 − πi) + 2πi

n∑
r=1

n−r∑
s=0

(ps
ii − πi). (4)

The inner sum in (4) equals E[Ni[0, n−r] | X0 = i]−(n+1−r)πi ; this expectation is a renewal
function for which subadditivity in n ≥ 0 is a known standard property (e.g. Daley (1978,
Equation (4.1))), so it is bounded below by (n+ 1 − r)πi = (n+ 1 − r) lims→∞ E[Ni(0, s]]/s
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(e.g. Daley and Vere-Jones (2003, Lemma 3.6.I)) and, therefore, these inner sums are nonneg-
ative. Because the renewal process is aperiodic, these sums either converge to a finite limit
for large n − r , or else diverge to ∞; the latter event occurs if and only if the generic random
variable of return times from state i back to itself, Tii say, has infinite second moment. In the
former case, by a standard result due to Feller (see Theorem 6.5 of Chung (1967), or else, e.g.
Equation(12.2) of Feller (1968)),

lim
n→∞

var(Ni(0, n]) + nπi(1 − πi)

2n
= πi

∞∑
n=0

(pn
ii − πi)

= E[Tii(Tii − 1)]
2(E(Tii))2

= 1
2 (πi)

2(m
(2)
ii − mii),

using notation from Chung (1967) for the first and second moments of Tii . We summarise the
discussion thus far as below.

Lemma 1. The counting process {Ni(0, n] : n = 1, 2, . . .} of visits to state i of a stationary,
positive recurrent, irreducible, aperiodic Markov chain is long-range dependent if and only if
the return time random variable (RV)

Tii = inf{n ≥ 1 : Xn = i | X0 = i},
has infinite second moment.

By Corollary 1 of Theorem 11.1 from Chung (1967) it follows that Tii has infinite second
moment if and only if Tjj has infinite second moment for every state j , which occurs if and
only if, for one such state of the chain (and then all states),

Qn
jj =

n∑
r=1

(pr
jj − πj ) → ∞ as n → ∞. (5)

Recall that when the state space X is finite, the n-step transition probabilities pn
ij converge to

their limits πj geometrically fast, in which case sums as in (5) remain bounded as n tends to ∞.
Lemma 2, below, is now a consequence of negation.

Lemma 2. Long-range dependence behaviour in a countable state space Markov chain is
possible only when the state space X is infinite.

In the next section we study the asymptotic behaviour of the sums

Qn
ij =

n∑
r=1

(pr
ij − πj ), i, j ∈ X, n = 1, 2, . . . , (6)

as well as the sums

Qn
iA =

n∑
r=1

(pr
iA − πA) =

n∑
r=1

∑
j∈A

(pr
ij − πj ) =

∑
j∈A

Qn
ij , (7)

where, for an arbitrary subset A ⊆ X, both pr
iA = ∑

j∈A pr
ij and πA = ∑

j∈A πj are well
defined because they are absolutely convergent sums of their components.
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2. Long-range dependence as a rate of convergence

The essence of (5) is twofold. First, as stated there, because long-range dependence of visits
to any state j is a property held by either no state or every state in an irreducible Markov chain,
it is a class property as described in Section 3 of Chung (1967), so that the term long-range
dependence, when applicable, may properly be used to describe the Markov chain rather than
merely any particular state. Secondly, the long-range dependence of a state j is a consequence
of the ‘slow’ rate of convergence of the n-step transition probability pn

jj to their limit πj . As
we now show, this rate of growth of Qn

ij is the same for all states i, j , and k in the state space;
thus, Lemma 3 expresses a refinement of long-range dependence as a class property, exhibiting
it in the context of irreducible Markov chains as a rate of convergence property of the transition
probabilities. In Lemma 3, only transition probabilities and first-order ergodic quantities like
πj appear, whereas when the second moments m

(2)
ii are finite, they would be involved in the

limits in the last ratio in (8) (see the display before Lemma 1).

Lemma 3. Let E(T 2
ii ) ≡ m

(2)
ii = ∞ for some (and then every) i ∈ X. For every triple of states

i, j , k, which need not all be distinct,

lim
n→∞

(Q1
ij + · · · + Qn

ij )/πj

(Q1
kk + · · · + Qn

kk)/πk

= lim
n→∞

Qn
ij /πj

Qn
kk/πk

= lim
n→∞

(
∑n

r=1(p
r
ij − πj ))/πj

(
∑n

r=1(p
r
kk − πk))/πk

= 1. (8)

Remark. The proof of Lemma 3, below, is based on the results given in Section 11 of
Chung (1967). Alternatively, Lemma 3 can be established from first principles by exploiting
first-passage and last-exit decomposition results involving associated taboo probabilities
ip

n
jk = P{Xn = k, Xr �= i (r = 1, . . . , n − 1) | X0 = j} and their sums ip

∗
jk = ∑∞

n=1 ip
n
jk .

Proof of Lemma 3. The second equality, given the third, is simply a matter of definition, and
the first equality is a direct consequence of the second because whenever real sequences {an}
and {bn} satisfy an → ∞ and bn/an → 1 as n → ∞, then (b1 +· · ·+bn)/(a1 +· · ·+an) → 1
also.

Equation (11.19) of Chung (1967) can be restated in the form

0 ≤
n∑

r=0

(pr
kk − πk) − πk

πj

n∑
r=0

(pr
kj − πj ) ≤

n∑
r=0

jp
r
kk ≤ 1 + jp

∗
kk < ∞, (9)

where jp
∗
kk is finite by Theorem 9.3 of Chung (1967). The case i = k of (8) follows directly

from (9).
Equation (9) coupled with the fact that Qn

ii → ∞ for one state i if and only if it holds for
every state i, then shows that Qn

ij → ∞ for every pair of states i, j .
Theorem 11.4 of Chung (1967) can be restated in terms of the mean first-passage times

mij = E(Tij ), i, j ∈ X, in the form

lim
n→∞

( n∑
r=1

(pr
ik − πk) −

n∑
r=1

(pr
jk − πk)

)
= πk(mjk − mik), (10)

and we may take j = k, from which the case j = k of (8) follows.
The remaining case of (8) (i.e. all i, j , and k distinct) follows from (9) coupled with the case

of (10) in which j and k are interchanged.
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Equation (9) incorporates the dominance property,∑n
r=0(p

r
kj − πj )∑n

r=0(p
r
kk − πk)

≤ πj

πk

= limit as n → ∞ of left-hand side;

it can be rewritten in the form
Qn

kj

πj

≤ 1 + Qn
kk

πk

,

and therefore, for any nonempty subset A of states, using the absolute convergence noted below
(7), ∑n

r=1(p
r
kA − πA)

πA

= Qn
kA

πA

≤ 1 + Qn
kk

πk

.

At this point it is tempting to conclude that Qn
kA/Qn

kk → πA/πk as n → ∞, but setting A = X
shows that the result of this limit operation can be 0; inspection of the argument shows that it
is impossible for all the individual terms Qn

kj /Q
n
kk to be nonnegative simultaneously because

Qn
kX = ∑n

r=1(p
r
kX − πX) = ∑n

r=1(1 − 1) = 0, so

Qn
k,X\{k} = −Qn

kk → −∞ as n → ∞,

and the nonnegativity condition required in a standard application of the dominated convergence
theorem is violated. Nevertheless, it easily follows that (see Orey (1961) or Feller (1966))

|Qn
kA| ≤ min(πA, 1 − πA)

1 + Qn
kk

πk

for all k ∈ X, A ⊆ X.

Let κi denote the moment index of the return time RV Tii , i.e.

κi = sup{α : E(T α
ii ) < ∞},

so, for an irreducible stationary Markov chain, κi is independent of the state i by Theorem 11.1
of Chung (1967), and we can write κ = κi (all i ∈ X) for the moment index of the return times
of {Xn}. It then follows, from Daley (1999), that when {Xn} is long-range dependent, the Hurst
index of each and every process {Ini} equals 1

2 (3 − κ) ≡ H say, and

H = inf

{
h : lim sup

n→∞
var(Ni(0, n])

n2h
< ∞

}
for all i. (11)

Indeed, from Lemma 3 it follows that the rate of growth of the numerator here is a class property,
and from Sgibnev (1981) we know that

Qn
kk + 1 − πk =

n∑
r=0

(pr
kk − πk) ∼ (πk)

2
∞∑

r=1

min(r, n) P{Tkk > r}

= (πk)
2

∞∑
r=1

min(r, n)

∞∑
s=r+1

f s
kk, (12)

where f s
kk = kp

s
kk = P{Tkk = s} is the first-return distribution for the state k (Sgibnev’s result

is quoted as Exercise 4.4.5(c) of Daley and Vere-Jones (2003)).
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Sgibnev (1996) has a further result, more general than Lemma 3, that is a solidarity result for
the times between visits to a state in a Markov renewal process. First, recall that a discrete-time
Markov chain like {Xn}, as we are considering, is a special case of a Markov renewal process
in which the sojourn time in each and every state is the same, and equal to the unit of time. In a
general irreducible, positive recurrent Markov renewal process (for which each state therefore
has finite mean sojourn time), these sojourn times may vary, and the long-range dependence in
such a Markov renewal process can arise from either sojourn times in some state having infinite
second moment, or else recurrence times between visits to a given state having infinite second
moment (indeed, this latter case is necessary for long-range dependence). This implies that
in the Markov chains we are considering, long-range dependence can arise only via the latter
mechanism.

Sgibnev’s method for deducing his long-range dependent solidarity property is similar to
the manipulations that Chung described in establishing (9) and (10).

3. Long-range dependence of functionals

Returning to the general process {Yn} for which (2) holds, we can write for (1),

var(Y0 + · · · + Yn−1) − n var(Y0) = 2
n−1∑
r=1

(n − r) cov(Y0, Yr)

= 2
∑

i

∑
j

yiyjπi

n−1∑
r=1

(n − r)(pr
ij − πj )

= 2
∑

i

∑
j

yiyjπiR
n−1
ij ,

where, as for (6),
Rn

ij = Q1
ij + · · · + Qn

ij .

Formally then, because Lemma 3 gives Rn
ij ∼ (πj /πk)R

n
kk for n → ∞, we can write

var(Y0 + · · · + Yn) − (n + 1) var(Y0)

2Rn
kk/πk

=
∑

i

∑
j

yiyjπiπj

Rn
ij /πj

Rn
kk/πk

(13)

→
∑

i

∑
j

yiyjπiπj ,

where interchange of the summation operations on i and j with the limit operation on n is
justified if there are only finitely many nonzero summands in i (and j ).

Since Rn
kk/n → ∞, the term (n + 1) var(Y0) can be omitted from the left-hand side of

(13) without affecting any limit (when it exists). Observe that applying the lim sup version of
Fatou’s lemma with respect to the summation on i and j in (13), we do have

0 ≤ lim sup
n→∞

var(Y0 + · · · + Yn)

2Rn
kk/πk

≤
∑

i

∑
j

yiyjπiπj · 1 =
(∑

i∈X

yiπi

)2

.

Thus, for a square integrable functionalYn defined on a stationary, long-range dependent Markov
chain, the rate of growth of var(Y1 + · · · + Yn) is at most proportional to the rate of growth of
var(Nk(0, n]) for any state k.
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Let A be a proper subset of X, and write {InA} for the stationary indicator process for
{Xn ∈ A} and NA(0, n] = ∑n

r=1 IrA. Then when A is finite, the argument just given proves
that {InA} is long-range dependent with growth behaviour of the covariance terms proportional
to that of Rn

kk for any state k. Furthermore, since, for the set Ac, the complement in X of A,
we have

cov(I0Ac , InAc) = cov(I0Ac , 1 − InA) = − cov(I0Ac , InA) = cov(I0A, InA),

we can now conclude that var(NA(0, n]) and var(NAc(0, n]) have the asymptotic behaviour of
Rn

kk whenever A or its complement is a nonempty finite set. Specifically, with πA = ∑
i∈A πi ,

var(NA(0, n]) − nπA(1 − πA)

2Rn
kk/πk

→ (πA)2 as n → ∞.

A similar argument yields the (slight) generalisation implicit in (14) of Proposition 1, below.
The Hurst index property is a consequence of definition and the class property given below (11).

Proposition 1. When Yn = yXn is a functional of the long-range dependent Markov chain Xn

and yi �= 0 on only a finite subset A of the state space, then

var(Y1 + · · · + Yn)

2nQn
kk

→ (
∑

i : yi>0 yiπi)
2

πk

as n → ∞, (14)

and {Yn} has the same Hurst index, (11), as the chain {Xn}.

4. Some examples

Example 1. Theorem 11.2 of Chung (1967), based on ‘repetitive patterns’ in his Section 8 or
else Examples XV.2(k) and (l) of Feller (1968), exhibits an example of an irreducible Markov
chain on the nonnegative integers {0, 1, . . .} which, with a suitable choice of parameters, can
be stationary with the moment index of the return times taking any prescribed value κ ≥ 1,
and thus the chain is long-range dependent when κ < 2 (and also when κ = 2 but m

(2)
00 = ∞),

with Hurst index 1
2 (3 − κ). These examples were also presented by Meyn and Tweedie (1993,

pp. 43–44) as special cases of the forward and backward recurrence time chains, respectively.

Example 2. In a stable single-server queueing system with Poisson arrivals at rate λ and
independent, identically distributed (i.i.d.) service times {Sn} with mean E(Sn) < 1/λ and
moment index κS lying in (3, 4), Carpio (2006) showed that if the sequence of serial correlation
coefficients {rn} of the stationary process of queue sizes at departure epochs {Xn} behaves
asymptotically as cn−α for some finite positive c and α ∈ (0, 1), where α = κS − 3, then {Xn}
has Hurst index 1

2 (5 − κS), i.e.

sup

{
h : lim sup

n→∞
var(X1 + · · · + Xn)

n2h
= ∞

}
= 5 − κS

2
. (15)

When {Xn} is long-range dependent with E(Sr
n) < ∞ for a given r ∈ (3, 4), rn satisfies

lim supn→∞ nr−3rn < ∞. The finiteness of the second moment of the first return times to
the state 0 of the Markov chain {Xn} was crucial in establishing this relationship; its finiteness
is dependent on the finiteness of the second moment of Xn. The same Hurst index for the
long-range dependent properties of the Markov chain {Xn} arises as for the critical index h
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in (15). The chain {Xn} is a stochastically monotone Markov chain which means that, for a
fixed state j and every pair of states i and k, where i < k,

P(Xn+1 ≤ j | Xn = i) ≥ P(Xn+1 ≤ j | Xn = k).

Example 3. Heyde (1988) noted that the stationary process of waiting times {Wn} in a single-
server queue with arrivals at epochs of a renewal process with generic lifetime RV T with finite
mean E(T ) larger than a generic element of the sequence of independent service times {Sn} as
in Example 2, constitutes a long-range dependent process when the moment index of service
times κS lies in (3, 4), again as in Example 2. For such a chain, the sequence of indicators
{IWn=0} is a renewal process, which is shown to be long-range dependent, as in Section 2,
precisely when κS ∈ (3, 4). Similar to Example 2, Carpio (2006) showed that if the sequence
of serial correlation coefficients {ρn} of the stationary process {Wn} behaves asymptotically
as cn−α for some finite positive c and α ∈ (0, 1), where α = κS − 3, then {Wn} has Hurst
index 1

2 (5 − κS). When the tail of the service time distribution function is regularly varying,
the long-range dependent stationary process {Wn} also has Hurst index 1

2 (5 − κS).

5. A conjecture and two counter-examples

Examples 2 and 3 lend weight to the conjecture that when a stationary Markov chain {Xn}
is long-range dependent, any nontrivial functional {Yn} ≡ {yXn} of the chain (meaning, that
var(Yn) is finite and positive) is long-range dependent with the same Hurst index. This property
is borne out by a simulation study of the two components of a stationary work-load vector in a
2-server queue of type M/P/2, where P denotes i.i.d. service times having a Pareto distribution
with κS = 7

2 , irrespective of the system being stable or unstable as a single-server system. When
such a system is stable as a single-server system, so that its mean interarrival time exceeds its
mean service time, the moment index of the mean delay exceeds the moment index of the
larger component of the Kiefer–Wolfowitz work-load vector; see Scheller-Wolf (2003). Carpio
(2006, Chapter 5) applied various empirical estimators to find the Hurst index of the waiting
times and queue sizes at departure epochs of M/P/2 queues and M/P/1 queues. Under a given
empirical estimator, the Hurst parameter estimates from both queues were taken for a given
pair of the traffic intensity ρ = E(Sn)/s E(T ), where s denotes the number of servers, and κS .
The outcome shows that the resulting Hurst parameter estimates are almost identical.

However, the following two examples show that the conjecture is false, and instead point
to the problem of identifying what nontrivial functionals of what Markov chains do remain
long-range dependent and with what Hurst index.

Example 4. This example, relying on the work of Daley (2007) (with a sequel in Daley et al.
(2007)), entails a Markov chain {Xn} on the nonzero positive and negative integers as state
space. Whenever the chain visits +1 or −1 it jumps to state −n or +n, respectively, with
probability distributions {g−n} and {fn}, respectively, while, for integers n ≥ 2, from +n it
moves to +(n − 1) and from −n it moves to −(n − 1). The probability distributions {g−n}
and {fn} have finite first moments but infinite second moments. Such a chain has a simpler
interpretation as an alternating renewal process, but for the purpose of this paper it is better
formalised as an irreducible Markov chain on a countable state space. For the functional {Yn},
defined via yi = 1 if and only if i is a positive integer, Sn = ∑n

r=1 Yr is the amount of time that
Xn spends in the positive integers. Then, as shown by Daley (2007), var(Sn)/ var(N1(0, n])
can oscillate indefinitely, and more wildly, as n tends to ∞, when the ratio of the truncated
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second moments
∑∞

r=1 min(r, n)
∑

s>r fs and
∑∞

r=1 min(r, n)
∑

s>r g−s does not converge
for n tending to ∞.

Example 5. This example is due to the referee. Consider two positive recurrent, aperiodic,
irreducible Markov chains, {X′

n} and {X′′
n} say, on the nonnegative integers. Let the return

time to a fixed state have infinite second moment in {X′
n} and finite second moment in {X′′

n}.
Let {Xn} = {(X′

n, X
′′
n)} be the chain on the product space with the components evolving

independently of each other. Trivially, the chain {Xn} is long-range dependent as described in
Sections 1 and 2 above. For the functional Y ′

n, say, which is equal to the indicator of a fixed
state for {X′

n}, {Y ′
n} is long-range dependent, while for the functional Y ′′

n , say, which is equal
to the indicator of a fixed state for {X′′

n}, {Y ′′
n } is not long-range dependent.
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