In Situ Observation of Phase Separation in High-Temperature Superconductor La$_{2-x}$Sr$_x$CuO$_4$

Jong Seok Jeong1, Wangzhou Wu1, Guichuan Yu2, Martin Greven2, and K. Andre Mkhoyan1

1. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
2. School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Since the remarkable discovery of superconductivity in 1911 [1], the research of achieving high-temperature superconductivity has been of interest for over a century. Cuprate oxide superconductor only occurred since 1980’s because initial studies indicated low-temperature superconductivity, compared to intermetallic compounds [2]. However, these oxide superconductors have quickly become the most heavily studied material system because of its records of high-temperature superconductivity [2,3]. One challenge in high-temperature superconductivity is to realize the homogeneity and stability of a material [4,5].

In this work, in situ heating experiments of La$_{2-x}$Sr$_x$CuO$_4$ ($x=0.03$), as a representative high-temperature cuprate oxide superconductor, is demonstrated in a transmission electronic microscope. So far, there have been many reports about a well-known phase transition in La$_{2-x}$Sr$_x$CuO$_4$ system, which is the transition of the crystal structure from tetragonal to orthorhombic by CuO$_6$ octahedra tilts [6]. Here, on top of the phase transition, we demonstrate a unique phase separation phenomenon based on the analyses of in situ transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS).

To obtain high-resolution scanning TEM (STEM) images, an aberration-corrected FEI Titan G2 60-300 STEM, operated at 300 keV, was used. Convergence semi-angle of the STEM incident beam was 24.3 mrad and high-angle annular dark-field (HAADF) images were recorded with detector angles of 41-200 mrad. Heated-stage TEM experiments was performed using a Gatan 652 double-tilt heating holder in an FEI Tecnai G2 F30 STEM with TWIN pole piece operating at 300 keV and equipped with a Gatan 4k×4k Ultrascan CCD. Bright-field TEM (BF-TEM) images and selected-area electron diffraction (SAED) patterns were acquired using the microscope at each temperature setting. EELS spectra were recorded using a Gatan Image Filter (GIF) spectrometer attached to the microscope.

A phase separation of La$_{2-x}$Sr$_x$CuO$_4$ was monitored by in situ heating experiments in TEM (vacuum level of ~10$^{-7}$ Torr). The phase separation took place from as low as 150 °C; however, it occurred mostly in the temperature range of 350-450 °C (Figure 1). Two resultant phases were identified as metal Cu and distorted bixbyite La$_2$O$_3$ by SEAD pattern and EELS analyses. A similar phase decomposition was also reported in Nd$_2$-Ce,CuO$_{4+y}$ system [7]. The existence of the resulting phases after cooling indicates that the phase separation process is irreversible in our experiment setup. The EELS results demonstrated that bulk plasmon peak, O K and La M$_{4,5}$ edges change in the temperature range of 350-450 °C (Figure 2). The bulk plasmon peak from the distorted bixbyite La$_2$O$_3$ located at 25.2 eV and showed unique O K edge. We discuss the evolution of crystal structures and EELS peaks as function of temperature in detail [8].
References:

[8] This work was supported in part by the NSF MRSEC under award number DMR-1420013, also in part by Grant-in-Aid program of the University of Minnesota.

Figure 1. BF-TEM images (top panels) and corresponding SAED patterns (bottom panels) at selected temperatures during a heating experiment. Insets in panels at RT, 500 °C, and 700 °C are core-loss EELS spectra in the range from 910 to 970 eV of energy loss.

Figure 2. (a) Low-loss, (b) O K edge, and (c) La M_{4,5} edge EELS spectra at selected temperatures (in °C) during a heating experiment. Insets in (c) shows magnified EELS spectra in the range of 855-895 eV of energy loss. The 20c represent the 20 °C after cooling.