BULL. AUSTRAL. MATH. SOC.
VOL. 2 (1970), 138-139.

Fractional iteration of functions of two variables

Phil Diamond

Let $x \in\left\{R^{2}, C^{2}\right\}$ and

$$
T: x_{1}=\left\{a_{k} x^{k} y^{\imath}, \quad y_{1}=\left\{b_{k} x^{k} y^{z} \quad(k, \tau \geq 0, \quad k+\imath \geq 1)\right.\right.
$$

be an invertible holomorphic function from a neighbourhood of $0 \in X$ to X. Denote by $A=\left(\begin{array}{ll}a_{10} & a_{01} \\ b_{10} & b_{01}\end{array}\right)$ the linear part of T. In this thesis, the fractional iteration of T is examined when
(1) $X=C^{2}, \quad A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \quad 0<|b| \leq|a|<1$,
(2) $X=C^{2}, A=\left(\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right), 0<|a|<1$,
(3) $X=\mathrm{R}^{2}, A=\left(\begin{array}{ll}0 & 1 \\ a & b\end{array}\right), b^{2}<4 a, 0<a<1$,
(4) $X=R^{2}, \quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

In the first three cases the fractional iterates are obtained from the algorithm

$$
T(s)=\lim _{n \rightarrow \infty} T^{n} \circ B^{s} \circ T^{n}
$$

where B is the linear or almost linear part of a suitable normal form of T.

In case 4, an asymptotic expansion is obtained for the natural iterates T^{n} of higher order near the fixpoint 0 , and this leads to an algorithmic solution of the functional equations

$$
\lambda(T x)=\lambda(x)-1, \quad \mu(T x)=\mu(x), \quad x \in X .
$$

Received 25 June 1969. Thesis submitied to the University of New South Wales, August 1968. Degree approved, February 1969. Supervisor: Professor G. Szekeres.

The fractional iterates are obtained by solving for $T(s)$ the (invertible) equations

$$
\lambda(T(s) x)=\lambda(x)-s, \quad \mu(T(s) x)=\mu(x), \quad x \in X
$$

