A COMMUTATIVITY RESULT FOR RINGS A.A. KLEIN AND I. NADA

It is proved that a ring satisfying the variable identity $[[x^n,y],y] = 0, n = n(x,y) \ge 1$, has nil commutator ideal.

Herstein proved many years ago [1] that a ring satisfying $[x^n, y] = 0$. $n = n(x,y) \ge 1$, has nil commutator ideal. More recently he proved [2] that the same conclusion holds for a ring satisfying a variable identity of the form $[x^m, y^n], z^q] = 0$. Herstein has also remarked in [2] that it seems that the methods of his paper can be adapted to generalize his result to the weaker variable identity $[[x^{m}, y^{n}], y^{n}] = 0$. In [3] this has been done in the case that m = m(x,y) is bounded. The case when n(x,y) is bounded is much more difficult. In this case, one may assume that n(x,y) is fixed, for if $n(x,y) \leq k$ and r = k! then $[x^m, y^r], y^r] = 0$. We have succeeded when r = 1, so our result generalizes the above mentioned result of [1]. It is a special case of the general question but it is far from being trivial. To prove it we have applied most of the machinery developed in [2] together with an idea which worked very nicely in our situation. It seems that to get the result for a fixed r > 1, which will still be a special case of the general question, one would need other ideas.

All the results of [2] up to Lemma 5 have been obtained on the basis of the weaker hypothesis $[[x^m, y^n], y^n] = 0$, and by ([3] Theorem 3) this hypothesis implies the result of Lemma 5. In particular, those results hold for a ring R in which given $x, y \in R$ there exists a positive

Received 29 July 1985.

359

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

integer m = m(x,y) such that $[[x^m,y],y] = 0$. By proceeding as in [2], we can reduce the problem to establishing communitivity of R under the additional hypotheses that R is prime with a non-nilpotent element csuch that any non-zero ideal of R contains some power of c. Moreover, R is torsion-free, its centre is 0, every element in R is regular or nilpotent and R is the sum of its nil right ideals. Also given $x,y \in R$ there exists some $m = m(x,y) \ge 1$ such that $[[x^m,y],y] = 0$ and $[x^m,y]$ is nilpotent. We assume all these hypotheses and proceed to prove that R is commutative.

In [2], given a regular element $x \in R$, the subring $W(x) = \bigcup_{n \ge 1} C_R(x^n)$ was defined and very much effort was necessary to prove that $W(x) = C_R(x)$. In our case we can prove this immediately.

LEMMA 1. If $x \in R$ is regular then $C_{R}(x^{n}) = C_{R}(x)$ for all $n \ge 1$.

Proof. We have to prove that $[b,x^n] = 0$ implies [b,x] = 0. It suffices to prove that $[b,x^n] = 0$ implies [[b,x],x] = 0, for if [b,x]commutes with x we have $0 = [b,x^n] = nx^{n-1}(b,x]$ so [b,x] = 0 since R is torsion-free and x is regular. We first prove [[b,x],x] = 0in the case that b is nilpotent. If $b^2 = 0$ then there exists some $m \ge 1$ such that $[[(x^n + b)^m, x], x] = 0$. It follows that $mx^{n(m-1)}[[b,x],x] = 0$, so [[b,x],x] = 0. If the index of nilpotency of b is k then for 1 < i < k, b^i has index of nilpotency < k, and since $b^i \in C_R(x^n)$ we may assume by induction that $[[b^i,x],x] = 0$. Starting with $[[(x^n + b)^m, x], x] = 0$ and using the induction hypothesis we get again $mx^{n(m-1)}[[b,x],x] = 0$ and therefore [[b,x],x] = 0. If $b \in C_R(x^n)$ is arbitrary then $b' = [b,x] \in C_R(x^n)$ and it is nilpotent by Theorem 1 [2] with x replaced by x^n . Hence [[b',x],x] = 0 so [b',x] = 0 and finally we get [b,x] = 0.

Now in [2] after the proof of Theorem 7 up to the conclusion $d_y^4 = 0$ for any regular element $y \in R$, there is no use of the stronger condition $[[x^m, y^n], z^q] = 0$. The Corollary to Theorem 5 has been used, but its result holds in our case; it is the above Lemma. It follows that we also have $d_y^4 = 0$ for y regular in R. In [2] this fact implied $N(y)^m = 0$ for some m and the final result followed using Theorem 3, namely using the fact that T(y) - the left annihilator of N(y) in N(y) - is 0. This last fact was proved using the commutativity of N(y) which was proved in Theorem 2. Here we prove that N(y) is anticommutative and a careful consideration of the proof of Theorem 3 shows that anticommutativity of N(y) suffices to yield the result T(y) = 0.

LEMMA 2. If $y \in R$ is regular then N(y) is anticommutative and $N(y)^3 = 0$.

Proof. If $a \in N(y)$ and λ is an integer then $y + \lambda a$ is regular, so $d_{y+\lambda a}^{4} = 0$. Since $d_{y+\lambda a} = d_{y} + \lambda d_{a}$ we have $(d_{y} + \lambda d_{a})^{4} = 0$ and a Vandermonde argument yields $d_{a}^{4} = 0$. Now suppose $a^{k} = 0$, $a^{k-1} \neq 0$, then applying d_{a}^{4} to an element $z \in R$ and multiplying on the left by a^{k-1} we get $a^{k-1}za^{4} = 0$, so $a^{4} = 0$ since R is prime. Since $a^{4} = 0$ and $a^{2}d_{a}^{4}(z) = 0$, we get $-4a^{3}za^{3} = 0$, so $a^{3} = 0$ since R is prime and torsion-free. Finally $a^{3} = 0$ and $ad_{a}^{4}(z) = 0$ imply $a^{2} = 0$. Thus N(y) is nil of index 2, so it is anticommutative and being torsion-free it follows easily that $N(y)^{3} = 0$.

Now as in [2], T(y) = 0 and $N(y)^3 = 0$ imply N(y) = 0. Given x we already know that for some $m \ge 1$ we have $[x^m, y] \in N(y)$ so $[x^m, y] = 0$. The rest is as in [2]. We have proved

THEOREM. Let R be a ring in which, given $x,y \in R$ there exists a positive integer m = m(x,y) such that $[[x^m,y],y] = 0$. Then the commutator ideal of R is nil. Equivalently, the nilpotent elements of R form an ideal N and R/N is commutative.

References

 [1] I.N. Herstein, "Two remarks on the commutativity of rings", Canad. J. Math., 7 (1955), 411-412.

- [2] I.N. Herstein, "On rings with a particular variable identity", J. Algebra, 62 (1980), 346-357.
- [3] A.A. Klein, I. Nada and H.E. Bell, "Some commutativity results for rings", Bull. Austral. Math. Soc., 22 (1980), 285-289.

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

362