A COMMUTATIVITY RESULT FOR RINGS

A.A. Klein and I. Nada

It is proved that a ring satisfying the variable identity $\left[\left[x^{n}, y\right], y\right]=0, n=n(x, y) \geqslant 1$, has nil commutator ideal.

Herstein proved many years ago [1] that a ring satisfying $\left[x^{n}, y\right]=0$, $n=n(x, y) \geqslant 1$, has nil commutator ideal. More recently he proved [2] that the same conclusion holds for a ring satisfying a variable identity of the form $\left[\left[x^{m}, y^{n}\right], z^{q}\right]=0$. Herstein has also remarked in [2] that it seems that the methods of his paper can be adapted to generalize his result to the weaker variable identity $\left[\left[x^{m}, y^{n}\right], y^{n}\right]=0$. In [3] this has been done in the case that $m=m(x, y)$ is bounded. The case when $n(x, y)$ is bounded is much more difficult. In this case, one may assume that $n(x, y)$ is fixed, for if $n(x, y) \leqslant k$ and $r=k$! then $\left[\left[x^{m}, y^{r}\right], y^{r}\right]=0$. We have succeeded when $r=1$, so our result generalizes the above mentioned result of [1]. It is a special case of the general question but it is far from being trivial. To prove it we have applied most of the machinery developed in [2] together with an idea which worked very nicely in our situation. It seems that to get the result for a fixed $r>1$, which will still be a special case of the general question, one would need other ideas.

All the results of [2] up to Lemma 5 have been obtained on the basis of the weaker hypothesis $\left[\left[x^{m}, y^{n}\right], y^{n}\right]=0$, and by ([3] Theorem 3) this nypothesis implies the result of Lemma 5. In particular, those results nold for a ring R in which given $x, y \in R$ there exists a positive

Received 29 July 1985.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ 22.00+0.00$.
integer $m=m(x, y)$ such that $\left.\left[x^{m}, y\right], y\right]=0$. By proceeding as in [2], we can reduce the problem to establishing communitivity of R under the additional hypotheses that R is prime with a non-nilpotent element c such that any non-zero ideal of R contains some power of c. Moreover, R is torsion-free, its centre is 0 , every element in R is regular or nilpotent and R is the sum of its nil right ideals. Also given $x, y \in R$ there exists some $m=m(x, y) \geqslant 1$ such that $\left[\left[x^{m}, y\right], y\right]=0$ and $\left[x^{m}, y\right]$ is nilpotent. We assume all these hypotheses and proceed to prove that R is commutative.

In [2], given a regular element $x \in R$, the subring $W(x)={\underset{n}{n}{ }_{1}} C_{R}\left(x^{n}\right)$ was defined and very much effort was necessary to prove that $W(x)=C_{R}(x)$. In our case we can prove this immediately.

LEMMA 1. If $x \in R$ is regular then $C_{R}\left(x^{n}\right)=C_{R}(x)$ for all $n \geqslant 1$.
Proof. We have to prove that $\left[b, x^{n}\right]=0$ implies $[b, x]=0$. It suffices to prove that $\left[b, x^{n}\right]=0$ implies $[[b, x], x]=0$, for if $[b, x]$ commutes with x we have $0=\left[b, x^{n}\right]=n x^{n-1}[b, x]$ so $[b, x]=0$ since R is torsion-free and x is regular. We first prove $[[b, x], x]=0$ in the case that b is nilpotent. If $b^{2}=0$ then there exists some $m \geqslant 1$ such that $\left[\left[\left(x^{n}+b\right)^{m}, x\right], x\right]=0$. It follows that $m x^{n(m-1)}[[b, x], x]=0$, so $[[b, x], x]=0$. If the index of nilpotency of b is k then for $1<i<k, b^{i}$ has index of nilpotency $<k$, and since $b^{i} \in C_{R}\left(x^{n}\right)$ we may assume by induction that $\left[\left\{b^{i}, x\right], x\right]=0$. Starting with $\left[\left[\left(x^{n}+b\right)^{m}, x\right], x\right]=0$ and using the induction hypothesis we get again $m x^{n(m-1)}[[b, x], x]=0$ and therefore $[[b, x], x]=0$. If $b \in C_{R}\left(x^{n}\right)$ is arbitrary then $b^{\prime}=[b, x] \in C_{R}\left(x^{n}\right)$ and it is nilpotent by Theorem 1 [2] with x replaced by x^{n}. Hence $\left[\left[b^{\prime}, x\right], x\right]=0$ so $\left[b^{\prime}, x\right]=0$ and finally we get $[b, x]=0$.

Now in [2] after the proof of Theorem 7 up to the conclusion $d_{y}^{4}=0$ for any regular element $y \in R$, there is no use of the stronger condition
$\left[\left[x^{m}, y^{n}\right], z^{q}\right]=0$. The Corollary to Theorem 5 has been used, but its result holds in our case; it is the above Lemma. It follows that we also have $d_{y}^{4}=0$ for y regular in R. In [2] this fact implied $N(y)^{m}=0$ for some m and the final result followed using Theorem 3, namely using the fact that $T(y)$ - the left annihilator of $N(y)$ in $N(y)$ - is 0 . This last fact was proved using the commutativity of $N(y)$ which was proved in Theorem 2. Here we prove that $N(y)$ is anticommutative and a careful consideration of the proof of Theorem 3 shows that anticommutativity of $N(y)$ suffices to yield the result $T(y)=0$.

LEMMA 2. If $y \in R$ is regular then $N(y)$ is anticommitative and $N(y)^{3}=0$.

$$
\text { Proof. If } a \in N(y) \text { and } \lambda \text { is an integer then } y+\lambda a \text { is regular, }
$$ so $d_{y+\lambda a}^{4}=0$. since $d_{y+\lambda a}=d_{y}+\lambda d_{a}$ we have $\left(d_{y}+\lambda d_{a}\right)^{4}=0$ and a Vandermonde argument yields $d_{a}^{4}=0$. Now suppose $a^{k}=0, a^{k-1} \neq 0$, then applying d_{a}^{4} to an element $z \in R$ and multiplying on the left by a^{k-1} we get $a^{k-1} z a^{4}=0$, so $a^{4}=0$ since R is prime. Since $a^{4}=0$ and $a^{2} d_{a}^{4}(z)=0$, we get $-4 a^{3} z a^{3}=0$, so $a^{3}=0$ since R is prime and torsion-free. Finally $a^{3}=0$ and $a d_{a}^{4}(z)=0$ imply $a^{2}=0$. Thus $N(y)$ is nil of index 2 , so it is anticommutative and being torsion-free it follows easily that $N(y)^{3}=0$.

Now as in [2], $T(y)=0$ and $N(y)^{3}=0$ imply $N(y)=0$. Given x we already know that for some $m \geqslant 1$ we have $\left[x^{m}, y\right] \in N(y)$ so $\left[x^{m}, y\right]=0$. The rest is as in [2]. We have proved

THEOREM. Let R be a ring in which, given $x, y \in R$ there exists a positive integer $m=m(x, y)$ such that $\left[\left\{x^{m}, y\right], y\right]=0$. Then the commitator ideal of R is nil. Equivalently, the nilpotent elements of R form an ideal N and R / N is commutative.

References

[1] I.N. Herstein, "Two remarks on the commutativity of rings", Canad. J. Math., 7 (1955), 411-412.
[2] I.N. Herstein, "On rings with a particular variable identity". J. Algebra, 62 (1980), 346-357.
[3] A.A. Klein, I. Nada and H.E. Bell, "Some commutativity results for rings", Bull. Austral. Math. Soc., 22 (1980), 285-289.

School of Mathematical Sciences,
Tel-Aviv University,
Tel-Aviv 69978,
Israel.

