
Appendix A

A Primer on Topological Vector Spaces
and Locally Convex Spaces

This section contains some auxiliary results on topological vector spaces and
locally convex spaces in particular. Most of the results are standard and can be
found in textbooks such as Meise and Vogt (1997), as well as Jarchow (1981).
Note that for some of the results (e.g. Proposition A.4) in this appendix, it is
essential that we only consider Hausdorff topological vector spaces. Since we
are only working with real vector spaces, some of the proofs simplify substan-
tially (compare to the general proofs for R and C; see Rudin (1991, Chapter
1)).

A.1 Basic Material on Topological Vector Spaces

A vector space with a Hausdorff topology making vector addition and scalar
multiplication continuous is called a topological vector space or TVS (see Def-
inition 1.1). Note that a morphism of TVS is a continuous linear map. In partic-
ular, two TVS are isomorphic (as TVS) if they are isomorphic as vector spaces
and the isomorphism is a homeomorphism.

Conventions Let U,V be subsets of a (topological) vector space E, s ∈ R
and I ⊆ R. Then we define

U + V � {z = u + v | u ∈ U,v ∈ V }, sU � {z = su | u ∈ U }, I ·U �
⋃

s∈I
sU.

A.1 Definition Let (E,T ) be a TVS and U a subset of E. We say that U is

(a) a 0-neighbourhood if U is a neighbourhood of 0;
(b) bounded if for every 0-neighbourhood V there is s > 0 with U ⊆ sV .

In general, topological vector spaces sequences are not sufficient to test, for
example, continuity. Instead one would need nets to test for continuity and a
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A.1 Basic Material on Topological Vector Spaces 187

complete topological vector space should be defined in terms of convergence
of Cauchy nets (see Meise and Vogt, 1997, p. 258). However, for our calculus
we usually do not need complete spaces and the limits we consider can always
be described in terms of sequential limits. Thus we do not go into details here
and stay in the realm of the more familiar sequences. A sequence (xn )n∈N ⊆ E
is called

(c) a Cauchy sequence if for every 0-neighbourhood V ⊆ E there exists N ∈ N
such that

xn − xm ∈ V for all n,m ≥ N ;

(d) a Mackey–Cauchy sequence if there exists a bounded subset B ⊆ E and a
family mk,l ∈ N for k, l ∈ N such that

mk,l (xk − xl ) ∈ B, for all k, l ∈ N

and such that for every R > 0 there is N ∈ N with mk,l > R if k, l > N
(i.e. mk,l → ∞). Note that every Mackey–Cauchy sequence is a Cauchy
sequence.

Now we say that the topological vector space (E,T ) is

(e) sequentially complete if every Cauchy sequence in E converges;
(f) Mackey complete if every Mackey–Cauchy sequence in E converges.

Mackey completeness as per (f) can be shown (see Kriegl and Michor, 1997,
Theorem 2.14) to be equivalent to the notion from Definition 1.12.

A.2 Lemma Let E be a topological vector space and U ⊆ E a 0-neighbour-
hood. Then the following holds:

(a) For each x ∈ E the translation λx : E → E, y �→ x + y is a homeomor-
phism.

(b) For each r ∈ R \ {0}, scaling sr : E → E, x �→ r x is a homeomorphism.
(c) U contains a balanced 0-neighbourhood V, that is, tV ⊆V for each |t | ≤ 1.
(d) U contains a 0-neighbourhood W such that W +W ⊆ U.
(e) If B is a basis of 0-neighbourhoods, then for each x ∈ E the set {x +W |

W ∈ B} is a basis of x-neighbourhoods.
(f) Each 0-neighbourhood contains a closed 0-neighbourhood.
(g) If K ⊆ E is compact and U ⊆◦ E with K ⊆ U, then there exists 0 ∈ W ⊆◦ E

such that K +W ⊆ U.

Proof (a–b) and (e). The maps λx and sr have inverses λ−x and s1/r . Thus
the claim is clear from the definition of topological vector spaces. Since
translations are homeomorphisms (a) implies (e).
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188 A Primer on Topological Vector Spaces and Locally Convex Spaces

(c). By continuity of the scalar multiplication μ : R × E → E, the set μ−1(U)
is open. Thus we can find (−ε,ε) × W ⊆ μ−1(U) and thus V � (−ε,ε)W =
μ((−ε,ε)×W ) ⊆ U . Then [−1,1]V = V and V is a balanced 0-neighbourhood
contained in U .

(d). As addition α : E × E → E is continuous with α(0,0) = 0, the preim-
age α−1(U × U) is a (0,0)-neighbourhood. We can thus find W1,W2 ⊆ E 0-
neighbourhoods in E such that W1 ×W2 ⊆ α−1(U). Then W � W1 ∩W2 ⊆ U
satisfies W +W ⊆ U .

(f). We conclude from (c) and (d) that there is a 0-neighbourhood V with
V − V ⊆ U . For w ∈ V (closure), the set w + V is a w-neighbourhood (by
(e)). Hence we can pick v1 ∈ V such that v1 ∈ w + V , that is, v1 = w + v2 for
some v2 ∈ V . But then w = v1 − v2 ∈ U , and so V ⊆ U .

(g). For every x ∈ K we can pick by (e) a 0-neighbourhood Vx such that
x + Vx ⊆ U . By (d) there is 0 ∈ Wx ⊆◦ E with Wx + Wx ⊆ Vx . Then
(x + Wx )x∈K is an open cover of K and by compactness we can choose a
finite subset F ⊆ K with K ⊆ ⋃

x∈F (x+Wx ). Then W �
⋂

x∈F Wx is an open
0-neighbourhood. For y ∈ K , there exists x ∈ F such that y ∈ x +Wx . Then
y +W ⊆ x +Wx + w ⊆ x + Vx ⊆ U . As y was arbitrary K +W ⊆ U . �

A.3 Proposition (Rudin, 1991, I Theorem 1.22) If E is a topological vector
space which contains a compact 0-neighbourhood, then E is finite dimensional.

A.4 Proposition (Uniqueness of topology (Treves, 2006, Theorem 9.1)) If E
is a finite-dimensional topological vector space of dimension d, then E � Rd

as topological vector spaces, where Rd carries the usual norm topology.

A.5 Lemma Let f : E → F be a linear map between topological vector
spaces. Then f is continuous (open) if and only if it is continuous (open) in 0.

Proof Clearly the conditions are necessary. To prove sufficiency, we assume
that f is continuous in 0. Pick x ∈ E and observe that the translations τ−x (y) =
y− x and τf (x) (z) = z+ f (x) are continuous and even homeomorphisms. Thus
f (y) = τf (x) ◦ f ◦τ−x is continuous in x. Since x was arbitrary, f is continuous
in every point.

Now let f be open in 0 and U an open set. For x ∈ U , τ−x (U) is an open
0-neighbourhood, whence τf (x) ◦ f ◦ τ−x (U) = f (U) is open. �

En route towards locally convex spaces let us first recall some results on
convex sets.

A.6 Definition A subset S of a topological vector space E is said to be

• absorbent if E =
⋃

t>0 tS;
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A.1 Basic Material on Topological Vector Spaces 189

• convex if for all x, y ∈ S and t ∈ [0,1], the linear combination t x+ (1− t)y ∈
S;

• a disc if it is convex and balanced, that is, for all x ∈ S, |λ | ≤ 1, λ ∈ R,
λx ∈ S.

A.7 Lemma Every 0-neighbourhood of a topological vector space is
absorbent.

Proof Let U be a 0-neighbourhood of the topological vector space E, and let
x0 ∈ E. Since scalar multiplication is continuous there exists some neighbour-
hood V of x0 and δ > 0 such that for all x ∈ V , λx ∈ U when |λ | < δ , λ ∈ R.
Especially λx0 ∈ U , and thus x0 ∈ λ−1U for |λ−1 | > 1/δ. �

A.8 Example The ball Br (x) � {y ∈ E | ‖x − y‖ < r } in a normed space
(E, ‖ · ‖) is convex (and a disc if x = 0).

A.9 Lemma The interior A◦ of a convex set A is convex.

Proof Let x, y ∈ A◦. By Lemma A.2(c) there is some balanced 0-neighbour-
hood U such that x +U ⊆◦ A◦ and y +U ⊆◦ A◦ are neighbourhoods of x and y

contained in A. For any z = t x + (1 − t)y, t ∈ [0,1] and u ∈ U we have

z + u = t x + (1 − t)y + tu + (1 − t)u = t(x + u) + (1 − t)(y + u).

As A is convex, z + u ∈ A and thus z +U ⊆◦ A. Hence t x + (1 − t)y ∈ A◦, for
all t ∈ [0,1]. �

A.10 Lemma If N is a convex 0-neighbourhood in a topological vector
space, then N contains an open disc.

Proof Consider first the set M � −N ∩ N . If |λ | ≤ 1 we see that λM =

(−λ)N ∩ λN . Now, as 0 ∈ N and N is convex, we have that −λN, λN ⊆ N .
In particular, λM ⊆ M for all |λ | ≤ 1, that is, M is balanced. By Lemma
A.2(c), we can find a balanced 0-neighbourhood U ⊆ N . As U is balanced we
see that U ⊆ −N ∩ N . Hence the interior V of M = −N ∩ N is a convex 0-
neighbourhood (by Lemma A.9 as it is the interior of an intersection of convex
sets; Exercise A.1.3). Now the interior of a balanced set is again balanced
(Exercise A.1.1), whence V is a disc. �

Exercises

A.1.1 Let B be a balanced subset of a topological vector space. Show that
then also the interior of B is balanced.
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190 A Primer on Topological Vector Spaces and Locally Convex Spaces

A.1.2 Let U ⊆◦ E be a bounded 0-neighbourhood in a topological vector
space E. Show that every 0-neighbourhood contains a set of the form
{rU }r ∈]0,∞[.
Hint: Use Lemma A.7 together with the fact that U is bounded.

A.1.3 Show that the intersection C∩D of two convex sets C and D is convex.

A.2 Seminorms and Convex Sets

In the main text we have defined locally convex spaces using seminorms. In
this section we shall review seminorms and, in particular, their connection to
convex sets (thus justifying the name ‘locally convex space’).

A.11 Definition A family P of seminorms on a vector space E is said to be
separating if for each x ∈ E, p(x) � 0 for at least one p ∈ P.

A.12 Proposition Let E be a vector space and
(
pi

)
i∈I a separating family of

seminorms on E. Then a Hausdorff vector topology is generated by the subbase

Bi,ε (x0) � {x ∈ E | pi (x − x0) < ε }, i ∈ I, ε > 0, x0 ∈ E. (A.1)

Thus (E, {pi }I ) is a locally convex space and the topology contains a 0-
neighbourhood basis of convex sets. Finally, each pi is continuous with respect
to the locally convex topology.

Proof Let us first note that the subbase (A.1) generates the initial topology
induced by the family {qi : E → E/ker pi }i∈I , where the right-hand side is
endowed with the normed topology induced by pi (see Exercise A.2.1). Let
U be a 0-neighbourhood. Then U contains some finite intersection

⋂
Bi,ε (x),

which is convex since the seminorm balls are convex and intersections pre-
serve convexity; Exercise A.1.3. Thus every 0-neighbourhood contains a con-
vex 0-neighbourhood. For the Hausdorff property we choose for x1, x2 ∈ E
a seminorm pi such that 0 < pi (x1 − x2). Set δ = pi (x1 − x2)/3. Now if
z ∈ Bi,δ (x2) ∩ Bi,δ (x1) were non-empty, we must have

0 < δ = pi (x1 − x2) ≤ pi (x1 − z) + pi (z − x2) ≤ 2
3
δ,

which is absurd. Therefore the intersection must be empty and E is Hausdorff.
We have continuity of addition since for each

Ux+y = Bi1,ε1 (x0 + y0) ∩ Bi2,ε2 (x0 + y0) ∩ · · · ∩ Bin,εn (x0 + y0),

the neighbourhoods

Ux0 = Bi1,ε1/2(x0) ∩ Bi2,ε2/2(x0) ∩ · · · ∩ Bin,εn/2(x0)
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A.2 Seminorms and Convex Sets 191

and

Uy0 = Bi1,ε1/2(y0) ∩ Bi2,ε2/2(y0) ∩ · · · ∩ Bin,εn/2(y0)

satisfy Ux +Uy ⊂ Ux+y since for any x + y ∈ Bi,ε/2(x) + Bi,ε/2(y),

pi (x + y) ≤ pi (x) + pi (y) < ε/2 + ε/2 = ε .

For the continuity of scalar multiplication, consider the neighbourhood

Uλ0x0 = Bi1,ε1 (λ0x0) ∩ Bi2,ε2 (λ0x0) ∩ · · · ∩ Bin,εn (λ0x0).

Let |λ − λ0 | < δ and x ∈ Bi,δ (x0), then

pi (λx − λ0xo ) = pi ((λ − λ0)x + λ0(x − x0))

≤ |λ − λ0 |pi (x) + |λ0 |pi (x − x0)

< δ(pi (x − x0) + pi (x0)) + |λ0 |pi (x − x0)

< δ(δ + pi (x0) + |λ0 |) < ε

if δ is small enough. So we can find δ1, . . . , δn and δ = min{δ1, . . . , δn } such
that

(λ, x) ∈]λ0 − δ, λ0 + δ[ ×Ux0 =⇒ λx ∈ Uλ0x0 .

To see that pi is continuous, let ]a,b[ be an open interval in [0,∞[, then
p−1
i (]a,b[) = (E \ Bi,a (0)) ∩ Bi,b (0) is open being a finite intersection of

open sets, when Bi,a (0) � {x ∈ E | pi (x) ≤ a} . Since p−1
i ([0,b[) = Bi,b (0),

we deduce that pi is continuous. �

A.13 Definition Let
(
pi )i∈I be a family of seminorms. We say the family

• satisfies the basis condition if for each two seminorms pi and pj , there exists
a third seminorm pk and C > 0 such that

max{pi (x), pj (x)} ≤ Cpk (x), for all x ∈ E;

• is called a fundamental system of seminorms, if it generates the topology on
E and satisfies the basis condition.

Note that for a fundamental system of seminorms, the subbase (A.1) is a
basis for the topology it generates.

A.14 Example Consider again the space of smooth functions C∞([0,1],R)
with the Fréchet topology induced by the seminorms

‖ f ‖n � sup
0≤k≤n

sup
x∈[0,1]

�
�
�
�
�

dk

dxk
f (x)

�
�
�
�
�

.
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192 A Primer on Topological Vector Spaces and Locally Convex Spaces

For two of these seminorms we obviously have

max{‖ f ‖n , ‖ f ‖m } ≤ ‖ f ‖max{n,m } for all f ∈ C∞([0,1],R).

Hence these seminorms form a fundamental system of seminorms and their
r-balls form a basis of the topology called the compact open C∞-topology.

Let us associate now to every disc a seminorm. The upshot will be that one
can equivalently define a locally convex space as a topological vector space
with a 0-neighbourhood base consisting of convex sets.

A.15 Definition For a vector space E and a disc A in E, define the Minkowski
functional, pA : E → R, pA(x) � inf{t > 0. | x ∈ t A} ,where inf ∅ � ∞.

A.16 Lemma If U is a disc 0-neighbourhood in the locally convex space E,
then the Minkowski functional pU is a continuous seminorm on E.

Proof By Lemma A.7, pU (x) ∈ [0,∞[ for all x ∈ E. For the triangle inequal-
ity, let x, y ∈ E, then if x ∈ tU and y ∈ sU ,

1
t + s

(x + y) =
t

t + s
x
t
+

s
t + s

y

s
∈ U

or rather x + y ∈ (t + s)U . Therefore, pU (x + y) ≤ t + s = pU (x) + pU (y).
Scalar factors can be taken out of the seminorm due to U being balanced: If
λ ∈ R \ {0}, λx = λ

|λ | |λ |x ∈ tU if and only if |λ |x = |λ |
λ λx ∈ tU . Therefore,

pU (λx) = inf{t > 0 : λx ∈ tU } = inf{t > 0 : |λ |x ∈ tU } = |λ |pU (x).
Continuity of the seminorm follows from p−1

U (]a,b[) = (E\(aU))∩⋃
0≤t≤b tU

is open for all a,b ∈ [0,∞[. �

As Lemma A.10 shows, every convex 0-neighbourhood gives rise to a disc
and these give rise to seminorms by Lemma A.16. Thus an equivalent def-
inition of a locally convex space (fitting the name better; see Rudin, 1991,
Theorem 1.34 and Remark 1.38) is the following.

A.17 Definition A Hausdorff topological vector space is a locally convex
space if it contains a 0-neighbourhood basis of convex sets.

Finally, let us recall Kolmogorov’s normability criterion, which gives a (nec-
essary and sufficient!) condition for a topological vector space to be normable,
that is, the vector topology coincides with the topology induced by some norm.

A.18 Theorem (Kolmogorov’s normability criterion) A topological vector
space E is normable if and only if E has a bounded and convex 0-neighbour-
hood.
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Proof The criterion is necessary as in a normed space, the unit ball is a convex
bounded 0-neighbourhood.

Now let E be a topological vector space with a bounded and convex 0-
neighbourhood N . By Lemma A.10 we can pick an open disc U ⊆ N . Note
that U is also bounded and define ‖x‖ � pU (x) for x ∈ E, where pU is
the Minkowski functional associated to U . Now, thanks to Exercise A.1.2,
the sets sU , s ∈]0,∞[ form a neighbourhood base of 0 in E. If x � 0 is an
element of E, the Hausdorff property implies that there exists s > 0 with
x � sU , that is, ‖x‖ ≥ s > 0. We deduce from Lemma A.16 that ‖·‖ is a
(continuous) norm on E. Hence the norm topology induced by ‖·‖ is coarser
than the original topology. Conversely, recall that since U is open, we have
{x ∈ E | ‖x‖ < s} = sU . As the sU form a neighbourhood base, this
shows that the norm topology coincides with the original topology, whence
E is normable. �

The Kolmogorov normability criterion allows us to describe the pathology
occurring for dual space of topological vector spaces beyond Banach spaces.

A.19 Proposition Let E be a locally convex space and let

E ′ � {λ : E → R | λ is continuous and linear}

be its dual space. If E ′ is a topological vector space such that the evaluation
map ev: E × E ′ → R, (x, λ) �→ λ(x) is continuous, then E is normable.

Proof Assume that E ′ is a topological vector space such that ev is continuous.
Then there are 0-neighbourhoods U ⊆◦ E and V ⊆◦ E ′ such that ev(U × V ) ⊆
[−1,1]. Since V is absorbent by Lemma A.7 this implies that every continuous
linear functional is bounded on U . Now Theorem 3.18 of Rudin (1991) yields
that U is already bounded. Shrinking U , we may assume that U is convex and
bounded. Hence Kolmogorov’s criterion, Theorem A.18, shows that E must be
normable. �

Recall from Exercise 1.4.1 that if E is normable, the evaluation map on the
dual space is indeed continuous with respect to the operator norm on the dual
space.

Exercises

A.2.1 Let E be a vector space and p a seminorm on E.

(a) Show that ker p � {x ∈ E | p(x) = 0} is a vector subspace of
E.

https://doi.org/10.1017/9781009091251.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009091251.010


194 A Primer on Topological Vector Spaces and Locally Convex Spaces

(b) Prove that ‖q(x)‖ � infy∈ker p p(x + y) defines a norm on the
quotient, where q is the (surjective!) quotient map
q : E → E/ker p.

A.2.2 Let E be a locally convex space whose topology T is generated by a
family P of seminorms. Show that if q is a continuous seminorm on
E, then the topology generated by P ∪ {q} is equal to T .

A.2.3 Show that every locally convex space admits a fundamental system of
seminorms.
Hint: Show that max{p,q} is a continuous seminorm and use the pre-
vious exercise.

A.3 Subspaces of Locally Convex Spaces

In this section we recall some material on subspaces of locally convex spaces.

A.20 Definition A vector subspace F ⊆ E of a locally convex space is called
complemented if there exists a locally convex space X such that E � E × X
(isomorphic as locally convex spaces).

A.21 Lemma A subspace F ⊆ E is complemented if and only if there exists
a continuous linear map π : E → E with π(E) = F and π ◦ π = π. Further, a
complemented subspace is always closed. We call π a continuous projection.

Proof Let F be complemented with isomorphism ϕ : E → F × X . Then
π � ϕ−1 ◦ p1 ◦ ϕ with p1 : F × X → F × X , ( f , x) �→ ( f ,0) is a continuous
projection.

Conversely, let π : E → E be a continuous projection with π(E) = F. Then
X � ker π is a closed subspace of E and F × X → E, ( f , x) �→ f + x is a
continuous linear map with continuous inverse e �→ (π(e),e − π(e)).

If F is complemented, we have an associated continuous projection and see
that F = ker (idE −π) is closed. �

A.22 Example Finite-dimensional subspaces of locally convex spaces are
always complemented (Rudin, 1991, Lemma 4.21): Thus all subspaces of a
finite-dimensional locally convex space are complemented. More generally,
every closed subspace of a Hilbert space is complemented (Rudin, 1991, The-
orem 12.4).

Note, however, that complemented subspaces (e.g. of Banach spaces) may
be rare. Indeed one can prove that a Banach space for which every closed sub-
space is complemented must already be a Hilbert space (see Lindenstrauss and
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A.4 On Smooth Bump Functions 195

Tzafriri, 1971). Moreover, there are examples of infinite-dimensional Banach
spaces whose only complemented subspaces are finite dimensional.

A.23 Example Consider the Banach space c0 of all (real) sequences converg-
ing to 0 as a subspace of the Banach space 
∞ of all bounded real sequences,
with the norm

‖(x1, x2, . . .)‖∞ = sup
n∈N

|xn |.

Then c0 is not complemented in 
∞. The proof is, however, more involved, and
so we defer to Werner (2000, Satz IV.6.5).

Exercises

A.3.1 Let (Ei )i∈I be a family of locally convex spaces. Prove that
∏

i∈I Ei �
{(xi )I | xi ∈ Ei } with componentwise addition and scalar multiplica-
tion and endowed with the product topology is a locally convex space.

A.3.2 Show that F ⊆ E is complemented if and only if the projection
q : E → E/F has a continuous linear right inverse σ : E/F → E
(i.e. q ◦ σ = idE/F ).

A.4 On Smooth Bump Functions

In finite-dimensional differential geometry, one uses commonly local-to-global
arguments employing smooth bump functions (also sometimes called cut-off
functions) and partitions of unity. This strategy fails, in general, due to a lack of
bump functions. We briefly discuss the problem and refer to Kriegl and Michor
(1997, Chapter III) for more information.

A.24 Definition For a map f : V → F with V ⊆◦ E and E,F locally convex
spaces the carrier of f is the set carr( f ) � {x ∈ V | f (x) � 0}. As usual the
support of f is defined to be the closure of the carrier.

A.25 Definition Let E be a locally convex space, x ∈ E and U ⊆ E an
x-neighbourhood.

(a) A Ck -map f : E → [0,∞[ for k ∈ N0 ∪ {∞} is a Ck -bump function with
carrier in U if carr( f ) ⊆ U and f (x) = 1.

(b) If (Ui )i∈I is an open cover of E, we say that a family ( f i : E → [0,∞[)i∈I
is a Ck -partition of unity (subordinate to the cover) if every f i is Ck with
carrier in Ui and

∑
i f i (x) = 1, for all x ∈ E.
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A.26 Definition Let E be a locally convex space and k ∈ N0 ∪ {∞}. We say
that E is

(a) Ck -regular, if for any neighbourhood U of a point x there exists a Ck -
bump function with carrier in U and f (x) = 1.

(b) Ck -paracompact,1 if every open cover admits a Ck -partition of unity.

Obviously similar definitions make sense if we consider instead of a
locally convex space a manifold modelled on locally convex spaces. While the
existence of partitions of unity hinges on topological properties of the mani-
fold (paracompactness!), the smoothness of these partitions depends only on
the availability of bump functions on the model space.

A.27 (Typical local-to-global argument) Let M be a manifold which admits
smooth partitions of unity subordinate to open covers. Assume we have an
object defined for every chart (U, ϕ) in an atlas A, and to illustrate this we
choose smooth Riemannian metrics on TU � U×H , that is, gU : U×H×H →
R, (u,h, k) �→ 〈h, k〉u . Using the chart we transport it back to the manifold, that
is, gϕ : TU ⊕TU → R, (v,w) �→ 〈Tϕ(v),Tϕ(w)〉ϕ (π(v)) . Now choose a smooth
partition of unity pϕ subordinate to the open covering (U, ϕ)ϕ∈A . Then

g : T M ⊕ T M → R, (v,w) �→
∑

ϕ∈A
pϕ (πM (v))gϕ (v,w)

is a Riemannian metric on M . Note that if gϕ (v,w) is not defined, pϕ (πM (v))
is zero so the definition makes sense.

Recall (e.g. from Hirsch, 1994, Section 2.2) that every finite-dimensional
space is C∞-regular. It is also C∞-paracompact, as a result by Toruńczyk (see
Kriegl and Michor, 1997, Corollary 16.16) shows that every Hilbert space is
C∞-paracompact. We shall now recall some results about Ck -regularity of lo-
cally convex (and, in particular, Banach) spaces.

A.28 Proposition (Bonic and Frampton, 1966) A locally convex space is
Ck -regular if and only if the topology is initial with respect to the functions
Ck (E,R).

Proof The initial topology with respect to the Ck -functions is generated by
the subbase

f −1(]a,b[), f ∈ Ck (E,R),a,b ∈ R ∪ {±∞}.

1 C0-paracompact is equivalent to the usual notion of paracompactness due to Engelking (1989,
Theorem 5.1.9).
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Hence it is clear that if E is Ck -regular the topology is initial with respect to
the Ck functions. For the converse, consider x ∈ U , where U is open in the
initial topology. Then we find a1, . . . ,an ,b1, . . . ,bn and f1, . . . , fn ∈ Ck (E,R)
for n ∈ N such that x ∈ ⋂

1≤i≤n f −1
i (]ai ,bi[) ⊆ U . Adjusting choices of the

f i , we may assume without loss of generality that ai = −εi and bi = εi for
some εi > 0. Since R is C∞-regular, we pick h ∈ C∞(R,R) with h(0) = 1 and
h(t) = 0, for all |t | ≥ 1. Then f : E → R, y �→ ∏

1≤i≤n h( f i (x)/εi ) is a bump
function with carrier in U . �

For a Banach space the existence of Ck -bump functions is tied to differen-
tiability of the norm.

A.29 Definition Let (E, ‖·‖) be a normed space. The norm ‖·‖ : E → R is
rough if there exists an ε > 0 such that for every x ∈ E with ‖x‖ = 1, there
exists v ∈ E with ‖v‖ = 1 and

lim sup
t↘0

‖x + tv‖ + ‖x − tv‖ − 2
t

≥ ε.

If a Banach space is C1-regular then it does not admit a rough norm (see Kriegl
and Michor, 1997, 14.11).

One can prove that the Banach spaces (C([0,1],R), ‖·‖∞) (i.e. the continu-
ous functions with the compact open topology) and (
1, ‖·‖1) (see Kriegl and
Michor, 1997, 13.11 and 13.12) have rough norms, whence they are not even
C1-regular. On the other hand, since nuclear Fréchet spaces are C∞-regular,
the space C∞([0,1],R) is C∞-regular. Similar statements then hold for spaces
of smooth sections into bundles. Again we refer to Kriegl and Michor (1997).

A.5 Inverse Function Theorem beyond Banach Spaces

Before we conclude this appendix on locally convex spaces, let us briefly
discuss (the lack of) an important tool from calculus which is driving many
basic results in (finite-dimensional) differential geometry. Many basic exis-
tence results and constructions in finite-dimensional differential geometry are
more or less direct consequences of the inverse function theorem, the constant
rank theorem and its cousin the implicit function theorem. Note that the in-
verse function and the implicit function theorems still hold in Banach spaces
(Lang, 1999, I, §5), but the constant rank theorem is already more delicate;
see Margalef-Roig and Domínguez (1992). Beyond Banach spaces, the situa-
tion breaks down as the following example, due to Hamilton (1982, I. 5.5.1),
shows (see also 1.55).
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A.30 Example Consider the Fréchet space C∞([−1,1],R) of all smooth func-
tions from [−1,1] to R,2 together with the differential operator

P : C∞([−1,1],R) → C∞([−1,1],R), P(c)(x) � c(x) − xc(x)c′(x).

A computation shows that P is C∞ with derivative dP(c,g)(x) = g(x) −
xg(x)c′(x) − xc(x)g′(x), that is, for c ≡ 0 the derivative is the identity. How-
ever, the image of P is no 0-neighbourhood in C∞([−1,1],R) as it does not
contain any of the functions gn (x) � 1

n +
xn

n! for n ∈ N (but limn→∞ gn = 0 in
C∞([−1,1],R)). In conclusion, the inverse function theorem does not hold for P.

To give a more geometric example, the exponential map of a Lie group
(modelled e.g. on a Fréchet space) might fail to even be a local diffeomorphism
around the identity. For example, this happens for diffeomorphism groups; see
Example 3.42.

A.31 (How to recover an inverse function theorem) The calculi discussed so
far are too weak to provide an inverse function theorem on their own. If one
has more information (such as metric estimates in the Fréchet setting) there are
inverse function theorems that can apply in more general situations. The most
famous one is certainly the Nash–Moser inverse function theorem (Hamilton,
1982) which works with so-called tame maps on tame spaces. Further gen-
eralised theorems are available in the framework of Müller’s bounded geom-
etry (Müller, 2008) and Glöckner’s inverse function theorems; see Glöckner
(2006b, 2007) and the references therein. To keep the exposition short we do
not provide details here. Note, though, that the generalisations mentioned re-
quire specific settings or certain estimates which are often hard to check in
applications.

A consequence of the lack of an inverse function theorem is that in infinite-
dimensional differential geometry one needs to be careful when considering
the notions of immersion and submersion (see §1.7). Further, there is no gen-
eral solution theory for ordinary differential equations beyond Banach spaces
(even for linear differential equations!).

Exercises

A.5.1 Fill in the missing details for Example A.30: Show that the differential
operator P is differentiable and compute its derivative. For gn (x) =

2 The Fréchet space structure is given pointwise operations with the compact open
C∞-topology. It is defined via the metric d( f , g) �

∑∞
i=0

‖ f −g‖i
2i

, where ‖ f ‖i is the
supremum norm of the ith derivative.
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1
n +

xn

n! show that gn → 0 in the compact open C∞-topology. Let f be
a smooth map on [−1,1]. Develop f and P( f ) into their Taylor series
at 0. Then show that P( f ) = gn is impossible.

A.6 Differential Equations beyond Banach Spaces

Here we exhibit several examples of ill-posed differential and integral equation
on locally convex spaces.

A.32 Example (No solutions in incomplete spaces (Dahmen)) Consider the
mapping

h : [0,1] → C∞([1,2],R), t �→ (x �→ xt ).

We apply the exponential law to h. Note, however, that Theorem 2.12 is not
quite sufficient as [0,1] and [1,2] are manifolds with boundary, whence we
refer to the more general exponential law (Alzaareer and Schmeding, 2015,
Theorem A). Now h is smooth if and only if h∧ : [0,1] × [1,2] → R, (t, x) �→
xt = exp(ln(x)t) is smooth, that is, h∧ is smooth on the interior of the square
[0,1] × [1,2] such that the derivatives extend continuously onto the bound-
ary. This is a trivial calculation. Since the derivative of h corresponds via the
exponential law to the partial derivative of h∧ (see Lemma 2.10), we see that
dh(t; y)(x) = (d1h∧(t, ·; y))∨(x) = y ln(x)xt . Let us define now two sub-
spaces of C∞([1,2],R) as the locally convex spaces generated by the image of
h and h′ = dh(·; 1):

E � span{h(t) | t ∈ [0,1]}, F � span{h′(t) | t ∈ [0,1]}.

By construction h(t) � F and h′(t) � E. This entails that h|E : [0,1] →
E ⊆ C∞([1,2],R) is not differentiable and shows that sequential closedness
is indispensable in Lemma 1.25. As a consequence, both subspaces are not
closed and, in particular, not (Mackey) complete. We see that the (trivial) dif-
ferential equation γ′(t) = h′(t) or equivalently the (weak) integral equation

γ(t) =
∫ 1

0
h′(t)dt does not admit a solution in F.

It should not come as a surprise that in the absence of suitable completeness
properties differential and integral equations may be ill posed. However, even
in complete spaces relative benign (e.g. linear), differential equations do not
admit solutions.

A.33 Example (Hamilton, 1982, I.5.6.1) Consider the Fréchet space
C∞([0,1],R) of smooth functions endowed with the compact open C∞-topology.
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Recall that the differential operator D : C∞([0,1],R) → C∞([0,1],R), f �→
f ′ = df (·; 1) is continuous and linear. Consider a solution f : ] − ε,ε[→
C∞([0,1],R) of the linear differential equation

⎧⎪
⎨

⎪

⎩

d
dt f (t) = D( f ) = f ′,

f (0) = f0.
(A.2)

Apply the exponential law (Alzaareer and Schmeding, 2015, Theorem A) to
the smooth map f . We obtain a smooth map f ∧ : ]ε,ε[×[0,1] → R, (t, x) �→
f (t)(x) such that (A.2) is equivalent to the partial differential equation

∂t f ∧(t, x) = ∂x f ∧(t, x), f (0, x) = f0(x). (A.3)

By the Whitney extension theorem (Whitney, 1934) there is a (non-unique)
extension F0 ∈ C∞([0,2],R) of f0 and it is easy to see that the function
f (t, x) � F0(x + t), t, x ∈ [0,1] solves (A.3). Since the extension F0 is non-
unique, the solution to (A.2) is non-unique (albeit we study a linear ordinary
differential equation with smooth right-hand side!).

A related example is given by the heat equation on the circle.

A.34 Example (Heat equation on S1 (Milnor, 1982, Example 6.3)) The heat
equation on the circle S1 is given by

∂t f (t, θ) = ∂2
θ f (t, θ),

where ∂θ is the derivative on S1. Again the derivative induces a continuous
linear derivative operator D : C∞(S1,R) → C∞(S1,R), f �→ d

dθ f , whence
the heat equation can be understood as an ordinary differential equation on
C∞(S1,R). We do not go into the details concerning solutions of this equation.
However, the reader may want to refer to Chapter 7 for examples of partial
differential equations which are treated using similar techniques for ordinary
differential equations on infinite-dimensional manifolds.

The following examples are due to Milnor (see Milnor, 1982, Examples 6.1
and 6.2).

A.35 Example (Too many solutions) Let RN be the Fréchet space of real-
valued sequences (with the topology induced by identifying RN �

∏
n∈N R)

and define the left shift

Λ : RN → RN, (x1, x2, x3, . . .) �→ (x2, x3, . . .).

Then Λ is continuous and linear and the differential equation y′(t) = Λ(y)(t)
reduces to the system of equations y′i (t) = yi+1(t), i ∈ N. For every initial
value this system has infinitely many solutions.
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To see this consider the initial condition y(0) = 0 ∈ RN. If ϕ ∈ C∞(R,R)
vanishes in a neighbourhood of 0, then we set y1(t) = ϕ(t) and yn (t) =
dn−1

dtn−1 ϕ(t) for n ≥ 2 to obtain a solution y(t) = (y1(t), y2(t), . . .) of the equation
with y(0) = 0.

A.36 Example (No solutions) The space E � {(xn )n∈N ∈ RN | almost all
xn = 0} is locally convex with respect to the box topology (i.e. the topology
whose basis is given by the sets

∏
n∈NUn ,Un ⊆◦ R; see Exercise A.6.2). Define

the right shift

R : E → E, (x1, x2, x3, . . .) �→ (0, x1, x2, x3, . . .).

Then it is not hard to see that R is continuous linear and we consider the initial
value problem

⎧⎪
⎨

⎪

⎩

y′ = R(y)(t),

y(0) = (1,0,0 . . .).

Note that for a prospective solution y(t) = (y1(t), y2(t), . . .), the differential
equation yields y′1(t) = 0, whence y1(t) ≡ 1 by the initial condition. Then
y′2(t) = y1(t) = 1. Integrating, we see that inductively y is a solution if yi (t) =
t i−1

(i−1)! . However, for t � 0 this sequence has infinitely many terms not equal
to 0 and thus does not exist in E, that is, the initial value problem (given by
a linear differential equation with smooth right-hand side!) does not have any
solution in E.

Exercises

A.6.1 Review §2.2 and Theorem 2.12 to work out the details of the iden-
tification of the Partial Differential Equations heat equation with the
Ordinary Differential Equations on C∞(S1,R) in Example A.34.

A.6.2 Consider the space E � {(xn )n∈N ∈ RN | almost all xn = 0} with
the box topology (i.e. the topology induced by E ∩∏

n∈NUi , where
Ui ⊆◦ R). Show that:

(a) E is a locally convex space and the box topology is properly
finer than the subspace topology induced by E ⊆ RN. Then show
that R is continuous.

(b) Every base of 0-neighbourhoods in E is necessarily uncount-
able, so E cannot be a metrisable space.
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A.7 Another Approach to Calculus: Convenient Calculus

Convenient calculus was introduced by Frölicher and Kriegl (1988) (see Kriegl
and Michor (1997) for an introduction). To understand the basic idea, we recall
a theorem by Boman.

A.37 Theorem (Boman’s theorem (Boman, 1967)) A map f : Rd → R, d ∈
N is smooth if and only if for each smooth curve c : R→ Rd the curve f ◦ c is
smooth.3

Now smoothness of curves c : R→ E with values in a locally convex space
E is canonically defined (e.g. via Definition 1.3). Hence smooth curves can be
used to define (conveniently) smooth maps on locally convex spaces which are
Mackey complete.4 Following the usual lingo of convenient calculus, a locally
convex space which is Mackey complete is called convenient vector space.

A.38 Definition Let E,F be convenient vector spaces.

(a) Write c∞E for E endowed with the final topology with respect to all
smooth curves R→ E. We call this topology the c∞-topology and its open
sets c∞-open.

(b) Let U ⊆ E be c∞-open, f : U → F a map. Then f is convenient smooth or
C∞

conv if f ◦c : R→ F is a smooth curve for every smooth curve c : R→ U .

Obviously, the chain rule holds for conveniently smooth mappings and one
can define and study derivatives. Once again manifolds, tangent spaces and so
on make sense. Further, Boman’s theorem asserts that between finite-
dimensional spaces convenient smooth coincides with Fréchet smooth (more
on this in A.41).

A.39 Remark (Bornology vs. topology) By now, the reader will have won-
dered why one defines C∞

conv-maps on c∞-open subsets instead of using the
native topology on E. The reason for this is that differentiability of curves into
a locally convex space does not depend on the topology of E, but rather on the
bounded sets, the bornology of E. One can show that smoothness of curves is
a bornological concept, and this is captured by the c∞-topology (which is finer
than the native topology but induces the same bornology).

The c∞-topology is somewhat delicate to handle. For example, c∞(E×F) �
c∞E × c∞F (in general) and c∞E will not be a topological vector space. How-
ever, it can be shown that for a Fréchet space the c∞-topology coincides with
the Fréchet space topology; see Kriegl and Michor (1997, Section I.4).
3 We emphasise here that smoothness can be tested against smooth curves, while this becomes

false for finite orders of differentiability.
4 See Definition 1.12. Mackey completeness is weaker than sequential completeness.
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By definition, a conveniently smooth map is continuous with respect to the
c∞-topology on E. However, as the c∞-topology is finer than the native locally
convex topology, conveniently smooth maps may fail to be continuous with
respect to the native topologies. To stress it once more: Differentiability in
the convenient calculus is not built on top of continuity. Having now defined
two notions of calculus we will clarify their relation in the next section and
discuss some of their properties.

Bastiani versus Convenient Calculus

We have already seen in the last sections that both the convenient and the Bas-
tiani calculus yield the well-known concept of (Fréchet ) smooth maps between
finite-dimensional vector spaces. To clarify the relation between Bastiani and
convenient calculus, observe that the definition of smooth curves into a locally
convex space coincides in both calculi. The Bastiani chain rule, Proposition
1.23, yields the following.

A.40 Lemma Let E,F be convenient vector spaces, U ⊆◦ E and f : E ⊇
U → F a C∞-map. Then f is C∞

conv.

Thus (completeness properties aside) Bastiani smoothness is the stronger
and more restrictive concept, which enforces continuity with respect to the
native topologies. However, on Fréchet spaces both calculi coincide (Bertram
et al., 2004, Theorem 12.4).

A.41 Let E, F be convenient spaces, U ⊆◦ E. Then the differentiability classes
of a map f : U → F are related as follows:

C∞
conv C∞ FC∞.

EFréchet

E,Fnormed
(A.4)

The dividing line between convenient calculus and Bastiani calculus is conti-
nuity; see Glöckner (2006a) for examples of discontinuous conveniently smooth
maps. Also see Kriegl and Michor (1997, Theorem 4.11) for more information
on spaces on which the concepts coincide.

One may ask oneself now if there is one calculus which is preferable over
the other.

A.42 (Bastiani calculus is more convenient than convenient calculus) A ma-
jor difference between Bastiani and convenient calculus is continuity. Arguably
continuity with respect to the native topologies, as in the Bastiani calculus, is
desirable for smooth maps. In particular, the infinite-dimensional spaces and
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manifolds often have an intrinsic topology one would rather like to preserve
instead of having to deal with the somewhat delicate c∞-topology. This is one
reason why in infinite-dimensional Lie theory, Bastiani calculus is prevalent
(continuity allows one to use techniques from topological group theory, such
as the local-to-global result for Lie groups: Proposition 3.45).

In addition, one can often conveniently establish Bastiani smoothness using
induction arguments over the order of differentiability5 and one can interpret
this (together with the continuity) as an argument for the naturality of Bastiani
calculus.

A.43 (Convenient calculus is more convenient than Bastiani calculus) Dis-
carding continuity for smooth maps might not be as exotic after all since
smoothness of curves is a bornological and not a topological property. Further,
it leads to a convenient category of spaces with smooth maps.

To explain this, consider sets X,Y, Z and denote by ZX the set of all maps
from X to Z . Then f ∈ ZX×Y induces a map f ∨ ∈ (ZY )X via f ∨(x)(y) =
f (x, y). The resulting bijection ZX×Y � (ZY )X is known as the exponential
law.

Exponential Law for Convenient Smooth Maps Let E,F,G be locally con-
vex vector spaces, U ⊆ E,V ⊆ F c∞-open. Then the spaces of convenient
smooth maps admit a locally convex topology such that there is a linear con-
venient smooth diffeomorphism

C∞
conv(U × V,G) � C∞

conv(U,C∞
conv(V,G)), f �→ f ∨.

In particular, f ∨ : U → C∞
conv(V,G) is C∞

conv if and only if f : U × V → G is
C∞

conv.

The exponential law is an immensely important tool, simplifying many
proofs (e.g. that the diffeomorphism group is a Lie group). It also establishes
cartesian closedness of the category of convenient vector spaces with conve-
nient smooth maps.6 Note that the exponential law and cartesian closedness do
not hold in the Bastiani setting.7 We remark, though, that cartesian closedness
in the convenient setting is a statement about the category of convenient vector
spaces. The result does not carry over to the category of manifolds modelled
on convenient vector spaces which turns out to be not cartesian closed. To

5 Here one should mention that a similar but somewhat more involved notion of k-times
Lipschitz differentiable mappings exists in the convenient setting.

6 The ‘convenient’ in convenient calculus references Steenrod’s ‘A convenient category of
topological spaces’ Steenrod (1967) in which a cartesian closed category of topological spaces
is built.

7 Albeit rudiments of an exponential law exist in the Bastiani setting as §2.2 shows. See also
Alzaareer and Schmeding (2015) for a stronger version.
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obtain a cartesian closed category of manifolds it seems to be unavoidable to
pass to even more general concepts such as diffeological spaces (see Iglesias-
Zemmour, 2013).

Summing up, there is no clear-cut answer to the question of which calculus
is preferable. It will depend on the application or use one has in mind whether
one goes with the stronger notion of Bastiani calculus or the weaker convenient
calculus (which often has more convenient tools).
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