A family of non-invertible prime links: Corrigendum

James M. McPherson

Wilbur Whitten has pointed out to me that there exist invertible links amongst my family of allegedly non-invertible links [3], and a letter from Neville Smythe has confirmed that the error lies in the third paragraph from the bottom of page 106. Professor Smythe also suggested that the use of *F*-isotopy was possibly a red herring and, accordingly, I have devised a simpler proof of the existence of infinitely many non-invertible prime links in S^3 (although Wilbur Whitten's paper [4] makes such a proof redundant).

Let k_1 be a non-invertible pretzel knot, and let V be a tame closed regular neighbourhood of k_1 . There exists a simple closed curve k_2 on BdV such that k_1 and k_2 together bound a nonsingular annulus in V ([2], p. 26). The link $k_1 \cup k_2$ is therefore of genus zero, and so is prime if it is not geometrically splittable ([1], Theorem 3). $k_1 \cup k_2$ is certainly non-invertible.

Suppose that $k_1 \cup k_2$ was splittable, and let C be the class of all 3-cells in $S^3 - k_1$ which contain k_2 in their interiors. There exists a 3-cell $C \in C$ such that

- (i) $BdC \cap BdV$ consists of finitely many simple closed curves which are not tangent curves, and
- (ii) the number of curves of $\operatorname{Bd} \mathcal{C} \, \cap \, \operatorname{Bd} V$ is minimal for all 3-cells in $\mathcal C$.

Suppose some intersection curve bounds a disc D^* on BdV. Then D^* contains a subdisc D which is bounded by an intersection curve α , and

Received 10 March 1971. The author would like to thank Professors Whitten and Smythe for their correspondence.

which contains no intersection curves in its interior. Because k_2 lies in Int*C*, $k_2 \cap BdD = \emptyset$; because k_2 lies on BdV but is not contained in any disc on BdV ($H_1(V)$ is generated by k_2), it follows that $k_2 \subset BdV - D$. Then if $D \subset C$, one component, *C*' say, of

 $C = \{an open regular neighbourhood of D\}$

contains k_2 in its interior and lies in $S^3 - k_1$; $C' \in C$. If $D \subset Cl(S^3-C)$, let $S \subset S^3 - k_2$ be the component of the 3-cell

 $Cl(S^3-C) - \{an open regular neighbourhood of D\}$

which contains k_1 in its interior; S is a 3-cell, so $C' = Cl(S^3-S)$ is also a 3-cell, and $C' \in C$. For both choices of C', we have

 $BdC' \cap BdV \subset BdC \cap BdV = \{\alpha\}$.

But this contradicts the minimality assumption involved in our choice of the 3-cell C in C, so no such curve α can exist; that is, no curve of $BdC \cap BdV$ can be nullhomologous on BdV.

If $BdC \cap BdV$ is not empty, therefore, there exists an intersection curve α' which is not nullhomologous on BdV, yet bounds a disc D' on BdC which lies in $Cl(S^3-V)$ and contains no intersection curves in its interior. This is impossible because BdV is incompressible in $S^3 - k_1$, and no such α' can exist; we conclude that $BdC \cap BdV = \emptyset$.

Then either $\operatorname{Bd} C \subset \operatorname{Int} V$, or $\operatorname{Bd} C \subset (S^3-V)$. In the first case, $\operatorname{Cl}(S^3-C)$ is a 3-cell (by Alexander's Theorem) which contains k_1 in its interior and itself lies in the interior of V - this is impossible because k_1 has order one in V. In the second case, both k_1 and k_2 lie in the component of S^3 - BdC which contains V, so BdC cannot split k_2 from k_1 , as assumed.

It follows that $k_1 \cup k_2$ is not geometrically splittable, and so is a prime link. Since there are infinitely many non-invertible pretzel knots, we may obtain infinitely many non-invertible prime links in this way.

References

[1] Yoko Hashizume, "On the uniqueness of the decomposition of a link", Osaka Math. J. 10 (1958), 283-300.

- [2] L.P. Neuwirth, Knot groups (Annals of Mathematics Studies, Number 56; Princeton University Press, Princeton, New Jersey, 1965).
- [3] James M. McPherson, "A family of non-invertible prime links", Bull. Austral. Math. Soc. 4 (1971), 105-108.
- [4] Wilbur Whitten, "On prime noninvertible links", Bull. Austral. Math. Soc. 5 (1971), 127-130.

School of General Studies, Australian National University, Canberra, ACT.