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Abstract
Regression discontinuity (RD) designs are increasingly common in political science. They have many advan-

tages, including a known and observable treatment assignment mechanism. The literature has emphasized

the need for “falsification tests” and ways to assess the validity of the design. When implementing RD

designs, researchers typically rely on two falsification tests, based on empirically testable implications of

the identifying assumptions, to argue the design is credible. These tests, one for continuity in the regression

function for a pretreatment covariate, and one for continuity in the density of the forcing variable, use a

null of no difference in the parameter of interest at the discontinuity. Common practice can, incorrectly,

conflate a failure to reject evidence of a flawed design with evidence that the design is credible. The well-

known equivalence testing approach addresses these problems, but how to implement equivalence tests in

the RD framework is not straightforward. This paper develops two equivalence tests tailored for RD designs

that allow researchers to provide statistical evidence that the design is credible. Simulation studies show the

superior performance of equivalence-based tests over tests-of-difference, as used in current practice. The

tests are applied to the close elections RD data presented in Eggers et al. (2015b).

Keywords: regression discontinuity design, falsification tests, equivalence tests

1 Introduction

The regression discontinuity (RD) design is an observational causal identification strategy used to

study the impact of a deterministic treatment assignment mechanism, such as the incumbency

effect for a party that wins a close election. Treatment is assigned based on the value of a score,

referred to as the forcing variable, such that all units with a score below a cutoff do not receive

treatment, and all the units with a score above the cutoff do. The method was first described by

Thistlethwaite and Campbell (1960) with statistical properties derived in Hahn, Todd, and van der

Klaauw (2001) and Lee (2008); they havemany advantages and have become increasingly popular

in political science (Skovron and Titiunik 2015), in part because they have known, observable

treatment assignmentmechanisms (Cattaneo, Idrobo, and Titiunik 2020). RDdesigns are typically

thought to require relatively weak assumptions compared to other common analysis techniques

for observational studies, such as regression or instrumental variables (De la Cuesta and Imai

2016).

While the assumptions may be weaker than some observational methods, RD designs still rely

on strong causal identification assumptions. As Eggers et al. (2015b, p. 270) state, “the burden

of proof is on the researcher to justify her assumptions and subject them to rigorous testing.”

While thenecessary assumptions cannotbedirectly empirically tested, the literature suggests that

researchers should (1) consider theoretical mechanisms under which RD designs could be invali-

dated and (2) use falsification tests, that is, statistical hypothesis tests of observable implications

of the necessary assumptions, to bolster their claims that the RD design is credible (Eggers et al.

2015b). Based on the suggestion of Hartman and Hidalgo (2018), I argue that in order to place the

burden of proof on the researcher, and allow the data to support the design, falsification tests
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should be structured such that:

H0 : The data are inconsistentwith observable implications

of a valid regression discontinuity design

HA : The data are consistentwith observable implications

of a valid regression discontinuity design.

(1)

Based on the assumptions outlined in Lee (2008), there are two common statistical tests,

derived from observable implications of the identifying assumptions, used in evaluating RD

designs—(1) that the limits for the regression function of any pretreatment covariate is continuous

at the cutoff (o�en referred to as a “balance” or “placebo” test) and (2) that the density of the

forcing variable is continuous at the cutoff. In current practice, these tests are usually structured

using a test-of-difference in which H0 is that the difference in the limits is zero.1 This formulation,

which is a common practice across many observational causal designs, is reversed from the

structure I suggest above in Equation (1).

By focusing on failure to reject the null in a test-of-difference, researchers reverse the appro-

priate type I error necessary to support a credible design; they should use a test that controls

the probability of falsely rejecting evidence of a flawed design. While merely flipping the null and

alternative hypothesis might seem like a small matter, the conflation of statistical insignificance

with evidence in favor of a credible design is problematic in many ways. RD designs o�en have

relatively little data near the cutoff, leading to little power to reject a null of no difference at the

cutoff. This lack of power can lead a researcher to erroneously disregard a large point estimate

that is statistically insignificant, even if there is, in truth, not enough power to detect such a

discontinuity at the cutoff.2 For example, Eggers et al. (2015b) conduct placebo tests for whether

a party won the previous election and previous vote margin. The researchers present p-values for

different close-election settings, but do not present point estimates. In the reanalysis presented

in Figure 1, I find that 8 of the 24 point estimates are larger than 2.5 percentage points. These

substantively large estimates are masked by relying solely on the p-value of the test.

Conversely, more data, which leads to increased power, can lead researchers to conclude that

a small point estimate, which is trivially close to, but not exactly, zero is indicative of a flawed

design, even if such a difference is substantively inconsequential. Researchers acknowledge this

point, and will focus on the substantive size of point estimates if they are statistically significant,

however they do not necessarily discuss the substantive size of the estimate if they fail to reject

a null of equality. Using a standard null hypothesis test for falsification testing is not problematic,

per se, since a large p-value does not imply that imbalance is inconsequential. As is clear, though,

if these tests are used to evaluate the credibility of the design, avoiding conflation of statistical

power and substantive equivalence can require ad hoc justification of results by researchers. A key

advantage of the equivalence approach is that judgments about what counts as a substantively

large or small imbalance is mademore explicit and the resulting analysis is more transparent.

1 Cattaneoetal. (2020)discuss threeadditional tests: treatmenteffects at artificial cutoffs, exclusionofobservationsnear the
cutoffs, and sensitivity to the selection of bandwidth. These tests all implement variants of the statistical tests described
in this manuscript.

2 Researchers acknowledge that failure to reject the null in a test-of-difference is not evidence of equivalence, and some
researchers therefore recommend conducting the test at a larger α level of 0.15 or 0.2. For example, Cattaneo et al. (2015,
p. 9) say “As our focus is on type II error, [the α ] value should be chosen to be higher than conventional levels for a
conservative choice forW0 [the window size]. Based on the power calculations discussed above, a reasonable choice is
to adopt α = 0.15; higher values will lead to a more conservative choice ofW0 if a feasible window satisfies the stricter
requirement.” While this purpose-specific approach can address the power concerns, the advantage of the equivalence-
based approach is that the test will control the type I error rate as defined by α without the need for the researcher to do
adjustment to address power. Construction of 100(1- α )% equivalence confidence intervals is also straightforward.
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By restructuring the hypotheses as in Equation (1), researchers can provide statistical evidence

that supports the credibility of the design, rather than merely failing to detect evidence of a

flawed design. I provide a set of equivalence tests—statistical tests with a null hypothesis that

the parameter of interest is outside of a “substantively inconsequential” range, defined by the

researcher, versus an alternative that it is within this range—for use in evaluating RD designs. A

skeptical researcher will only reject the null of an important difference in favor of a substantively

inconsequential difference with sufficient support from the data. How to apply these equivalence

tests in the RD setting is not straightforward, given the unique estimators required in RD to

estimate the effect at the cutoff, aswell as the need todefine “equivalence” for a density function. I

address the unique needs of equivalence testing in the RD framework by providing an asymptotic

test for the continuity of the regression function of pretreatment covariates at the cutoff. I also

develop a test of continuity in the density of the forcing variable, using a scale-free asymptotic

test that addresses the need for a way to define an equivalence range for the density test that can

be easily interpreted by researchers.

A knowndrawbackof equivalence tests is that theyare very sensitive to the researcher specified

equivalence range, unlike the standard null hypothesis test, a major advantage of which is a

universally agreed upon null. To address this concern, I recommend use of an equivalence con-

fidence interval, which is invariant to the equivalence range defined by the researcher, rather than

reliance on p-values. The size of the equivalence confidence interval, rather than the statistical

significanceof thehypothesis test, canbeusedby researchers and readers toevaluate the strength

of the design—a narrow range indicates limited evidence that the data are inconsistent with a

valid design. In order to address bandwidth selection, the most consequential decision for any

RDanalysis, I rely on local linear estimatorswith optimal bandwidth selection (Calonico, Cattaneo,

and Titiunik 2014; De la Cuesta and Imai 2016; Cattaneo, Jansson, andMa 2019). These data-driven

methods minimize discretion on the part of the researcher in determining an appropriate band-

width.Cattaneoetal. (2020)note that “all predeterminedcovariatesandplacebooutcomesshould

be analyzed in the same way as the outcome of interest.” They also discuss additional tests for

sensitivity to bandwidth selection that apply to the statistical tests described in this manuscript.

The importance of statistical tests as evidence of a credible design is evident in the recent

debate over the validity of the RD design for evaluating party incumbency advantage. Originally

discussed in Lee, Moretti, and Butler (2004) and Lee (2008) in the context of US House Elections,

recent scholars have called in to question the validity of the RD design for close elections (Sny-

der 2005; Caughey and Sekhon 2011; Grimmer et al. 2011) based on theoretical and statistical

arguments. Follow-up studies by Eggers et al. (2015b) and De la Cuesta and Imai (2016) evaluate

both USHouse elections and elections across the globe using novel data and analysis techniques,

concluding that the statistical evidence generally favors close elections as a valid RD design. I

return to this debate and reanalyze the statistical evidence in favor of the close elections RD

design, ultimately finding more mixed evidence, particularly for certain geographies, than the

recent studies would suggest.

2 Notation

Following the notation in Calonico et al. (2014), define the triple (Yi (1),Yi (0),Xi ) as the potential

outcome under treatment, potential outcome under control, and the “forcing” variable, respec-

tively, for individual i, where we observe a random sample of units i = 1,2, . . . ,n . Assume that Xi

has density f (x ). Define a treatment variableTi , for whichTi = 1(Xi ≥ c) where 1(·) is an indicator

function for whether a unit is treated.3 Since individual i can only be assigned to one treatment

3 This is commonly referred to as a sharp RD design. In a fuzzy RD, there is a discontinuity in Pr(Ti = 1 | Xi ) at the cutoff,
but treatment assignment is not a deterministic function of the forcing variable. I focus on the sharp RD in this paper, but
similar logic can be applied to the falsification tests for fuzzy RD.
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condition, we only observe one of the potential outcomes, specifically the potential outcome for

control for all units below the cutoff and the potential outcome for treatment for units above.

Define the observed outcomeYi =Yi (1) ∗Ti +Yi (0) ∗ (1−Ti ) where we observe the random vector

(Yi ,Xi ) for each unit.

The identifying assumption necessary for RDdesign is continuity in the conditional expectation

function of the potential outcomes at the cutoff, that is, Å[Yi (0) | Xi ] and Å[Yi (1) | Xi ] are

continuous at the cutoff Xi = c. Formally, define the regression function ofYi as µY (x ) = Å[Yi |

Xi = x ], with µY+ = limx→c+ µY (x ) defined as the limit of µY (x ) from the right side of the cutoff,

andµY− = limx→c− µY (x ) as the limit ofµY (x ) from the le� sideof the cutoff,whereµY+ andµY− are

both observable. Under continuity, the average treatment effect at the cutoff τ = Å[Yi (1)−Yi (0) |

Xi = c] = µY+ − µY− is identified as the difference in the limits of the regression functions of the

potential outcomes at the cutoff c (Hahn et al. 2001).

While continuity in the regression function for thepotential outcomes isminimally sufficient for

identification of τ at the cutoff, it is inherently untestable because we can never simultaneously

observe both the potential outcomes above and below the cutoff. Lee (2008) employs a slightly

different set of assumptions in which the density of the forcing variable is continuous at the cutoff

for every individual i.4 The assumption rules out “sorting” of individuals around the cutoff. Sorting

is a concern if individuals can exert influence over which side of the cutoff they fall, and thus

their treatment status. If sorting exists, we would observe a discontinuity in the density of the

forcing variable. This sorting can be based on observable or unobservable characteristics, and

leads to selection bias. Sorting can also lead to a discontinuity in the regression function for the

potential outcomes, the minimal identifying assumption, if individuals sort on factors related to

those potential outcomes, and therefore sorting can bias the estimation of τ .

The advantage of the Lee (2008) formulation is that the identifying assumption has to two

testable implications in the data: (1) that the limits for the regression function of any pretreatment

covariate Zi , µZ = Å[Zi | Xi ], is continuous at the cutoff and (2) that the density of the forcing

variable Xi , f (x ), is continuous at the cutoff. It is these two observable implications that are

the focus of this paper. For the test of continuity in a pretreatment covariate, I will focus on the

estimated difference in the regression function estimates for a pretreatment covariate Z on either

side of the cutoff. Define µZ+ = limx→c+ µZ (x ) and µZ− = limx→c− µZ (x ), with τZ = µZ+ − µZ−.

The method will test if τZ is sufficiently close to zero. For continuity in the density of the forcing

variable I will consider the relationship of f − = limx→c− f (x ) and f
+ = limx→c+ f (x ), and test if the

ratio of these two quantities is sufficiently close to 1. Details of these tests are provided in Sections

3.2 and 3.3, respectively.

3 Equivalence Testing in the RDD Setting

I now turn to the general form that a falsification test for a causal design should take, followed by

a discussion of how to structure falsification tests for RD designs in the equivalence framework.

There are key decisions a researcher must make when setting up an equivalence test, such as the

definition of a “substantively inconsequential” equivalence range. I pay particular attention to the

impact of this decision and how researchers should define this range. Importantly, I discuss the

equivalence confidence interval, which is invariant to the researcher specified equivalence range,

and serves as a transparent measure by which researchers and readers can evaluate evidence of

equivalence.

4 Formally, defineWi to be a characteristic of unit i. Define (Xi ,Wi ) drawn jointly, withXi observed andWi unobserved, and
define F (x | w ), the cdf of X conditional onW, such that 0 < F (x = c |Wi ) < 1 and F (x | w ) is continuously differentiable
in X at the cutoff for anyw in the support ofW, with f (x = c) > 0. In this formulation, both the potential outcomes and the
forcing variable can be a function ofW, thus makingW a potential confounder.
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A statistical test should be structured such that the data has an opportunity to reject the null.

The implication of Equation (1), for RD designs is that we should conduct falsification tests by

starting with a null that there exists a discontinuity in the regression function for a pretreatment

covariate, or the density of the forcing variable, at the cutoff and only reject this null if the data

allow. This can be accomplished using equivalence tests, a type of statistical test in which the null

hypothesis is that a parameter is of interest is proximally distant from zero against the alternative

that it is within a small range around zero. Equivalence tests have a long history in biostatistics

(Berger andHsu 1996; Wellek 2010), and have been extended to balance and placebo tests used to

justify “as-if” random causal designs (Rosenbaum et al. 2010; Hartman and Hidalgo 2018).5

While Equation (1) provides a theoretical structure for falsification tests for RDdesigns, wemust

construct a statistical test as a statement about a population parameter. For example, to test

continuity in a pretreatment variable, Z, we want to test if the limits of the regression function

are similar, or “equivalent,” from above ( µZ+) and below ( µZ−) the cutoff. A researcher would set

up a hypothesis test such that:

H0 : τZ ≥ ǫU or τZ ≤ ǫL

H1 : ǫL < τZ < ǫU ,
(2)

where [ǫL,ǫU ] encodes the range in which τZ is sufficiently small, or the estimates of µZ+ and

µZ− are “substantively equivalent.” When the hypothesis test is structured this way, a skeptical

researcher will only reject a null of an important difference in favor of substantively inconsequen-

tial differencewith sufficient evidence fromthedata. This is consistentwith thegoals of hypothesis

testing, and prevents researchers from the temptation to incorrectly conflate lack of statistical

power with a lack of substantive difference.

For example, in the close elections literature, it is common to test for continuity in the lagged

vote margin. A researcher might argue that an equivalence range of ±2.5 percentage points is

unlikely to significantly bias an observed effect of +5 percentage points in the election at time

t + 1. The equivalence test would then be structured with an equivalence range of [−2.5,2.5].

If she observed a difference of +1 percentage point, the test in Equation (2) asks “can the data

reject the null that the true difference in lagged votemargin is outside±2.5 percentage points?” In

practice, given the sensitivity of the test to the specified equivalence range, I argue researchers

should instead focus on the size of the equivalence confidence interval, described in the next

section, rather thandirectly specify theequivalence range.Details for the testsabovearedescribed

in Section 3.2, wherewewill return to this example. An analogous test for continuity of the density

of the forcing variable is described in Section 3.3.

3.1 The Equivalence Confidence Interval and the Equivalence Range
The most important decision a researcher must make when conducting an equivalence test is

defining the equivalence range [ǫL,ǫU ]. This is the range within which differences between

two population parameters are considered substantively inconsequential, or equivalent.

The p-value associated with the equivalence test is very sensitive to the researcher defined

equivalence range. If a researcher specifies a large range, then she, all else equal, is more

likely to reject the null in favor of equivalence. Conversely, a very small range is less likely

to result in rejection of the null of a consequential difference. Small p-values resulting from

large equivalence ranges carry less information about the credibility of the design than small

p-values from a test with a narrow equivalence range. Given the considerable researcher degree

5 Equivalence testing is also appropriate when studying outcomes, particularly when studying “negligible,” or substantively
insignificant, effects (Wellek 2010; Gross 2014; Rainey 2014).
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of freedom in defining the equivalence range, disagreement among researchers about an

appropriate range is likely to arise.

Toaddress the importanceofdefining theequivalence range, I argue researchers should instead

focus on the equivalence confidence interval. This interval is akin to a confidence interval in the

traditional test of difference—it determines the smallest equivalence range, supported by the

data, that would reject a null of difference at the prespecified α -level.6 Importantly, this interval

is invariant to the prespecified equivalence range. Therefore, the equivalence confidence interval

provides a transparent measure that researchers can substantively defend as inconsequential for

possible bias. An advantage of the equivalence confidence interval is that, once the researcher

has chosen theα -level atwhich shewishes to control the type I error, she does not need to directly

specify the equivalence range in order to evaluate the hypothesis. The confidence interval can also

help researchers avoid some common misunderstandings and misinterpretations of hypothesis

tests and p-values (Gill 1999).

If the researcher does desire a decision rule forwhen she can reject a null of difference, then she

must specify an equivalence range. When using equivalence tests for the purpose of falsification

testing, the equivalence range should be constructed such that differences within the range are

unlikely to cause substantial bias. By forcing researchers to consider, ex-ante, what differences are

inconsequential enough so as allay concerns about bias, researchers must take time to carefully

consider, and defend,what they consider substantively inconsequential. While implications of the

identifying assumption are that τZ = 0 and f − = f +, it is impossible to prove continuity with finite

data, so researchers should pick a sufficiently small range that parsimoniously considers bias and

power.While it is not possible to boundpotential biaswithout additional assumptions, theory and

substantive knowledge should be used to convincingly argue what levels of observed difference

are tolerable. For example, a researcher could argue that a trivial discontinuity of one quarter of

a percentage point in previous vote share is unlikely to indicate significant bias when estimating

the impact of party incumbency, especially if estimated effects are sizeable.

An alternative approach for defining the equivalence range is the sensitivity approach. For

example, similar to the assumption o�en used in sensitivity analyses, if there is a perfect linear

relationship between imbalance in the election outcome at t − 1 and bias at t + 1, then an

equivalence range can be defined based on the size of the observed effect. If the researcher

observes an effect at t + 1 of 5pp, any difference in the equivalence range of ±2.5pp would be

insufficient to reduce theeffect to zero.HartmanandHidalgo (2018)providean indepthdiscussion

of alternative approaches to defining the equivalence range, including the sensitivity approach as

well as default values suggested in the literature.

As an example of the advantage of the equivalence confidence interval, when considering

the placebo test for lagged vote share using the US House of Representatives data from 1880 to

2010, the point estimate is 0.16 percentage points, indicating that the incumbent party was 0.16

percentage points more likely to have won the election in time t − 1. Using an equivalence range

of ±2.5 percentage points, the test can reject the null of a substantively large difference in favor

of equivalence with a p-value of 0.04. The equivalence confidence interval is ±1.35 percentage

points, indicating the data would reject the null with an equivalence range as small as ±1.35

percentage points at the α = 0.05 level. Rather than argue that the data supports the claim of

a valid design using a p-value of 0.04, which is sensitive to the choice of equivalence range, the

researcher shouldargue that observabledifferencesof less than±1.35percentagepoints are likely

inconsequential for bias when estimating party incumbency advantage. The researcher should

convincingly argue that the size of the equivalence confidence interval is negligible, rather than

focusing on the p-value of the associated test.

6 A similar procedure is described in Section 19.3 of Rosenbaum et al. (2010).
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3.2 A Statistical Test for the Continuity of the Regression Function for Pretreatment
Covariates
Arguably the most important falsification test for RD designs is evidence of continuity of the

regression function for highly predictive pretreatment covariates such as the lagged outcome. The

test for continuity in the regression function of a pretreatment covariate uses the hypothesis test

outlined in Equation (2). Recall that the equivalence range, [ǫL,ǫU ], is the range within which a

researcher believes imbalances are substantively inconsequential. Obviously, any value of τZ > 0

could be indicative of the failure of the identifying assumption, but finite samples require that we

test a small range for the null hypothesis. The smaller the interval that the researcher specifies,

the stronger her claim. Since the identifying assumption implies a difference of zero it is logical

that the hypotheses are structured with symmetric bounds such that ǫ = ǫU = −ǫL for ǫ > 0.7

Wellek (2010) outlines the general form for an asymptotic test for hypotheses of this type,which

require a consistent estimator for τZ and SE (τZ ). In this equivalence t-test, the null hypothesis in

Equation (2) rejected using the following decision rule:

Reject H0 i f f |τ̂Z /ŜE (τZ )| < Cα
(
ǫ/ŜE (τZ )

)
, (3)

where Cα (ψ) is the square root of the α -quantile of a χ
2-distribution with a single degree of

freedom and noncentrality parameter ψ2 (Wellek 2010).8 One argument the researcher must

specify isα inorder to construct anequivalenceconfidence interval or conduct thehypothesis test.

Aswhen conducting anyhypothesis test, the researcher should chooseα to control the type I error

at an acceptable level. I focus on the conventional, if arbitrary, level of α=0.05 in this manuscript,

but the recent literature has proposed alternative values given the common misinterpretation of

p-values (e.g., Benjamin et al. 2018).

To estimate τ̂Z and ŜE (τZ ), I suggest the consistent estimators provided by Calonico et al.

(2014).9 As suggested by the RD literature, these estimators use optimal, data-driven methods for

bandwidth selection. Bandwidth selection is one of themost important decisions for RD analyses,

and thesemean-squared error optimal estimators provide a principled, objectiveway of selecting

the bandwidth. The same criterion for determining the bandwidth, such as mean-squared error

optimal, should be used for falsification testing and outcome estimation, however the resulting

bandwidth need not be the same (Cattaneo and Vazquez-Bare 2016).

Returning to the lagged vote margin example from Section 3, the researcher observes a

difference of +1 percentage point with an estimated standard error of 0.5. The equivalence

confidence interval is estimated as±1.82 percentage points, and the researcher can transparently

defend this interval as substantively inconsequential. If, instead, a researcher defines an

equivalence rangeof±2.5 percentagepoints, she can test thenull hypothesis, at theα = 0.05 level,

that the lagged vote margin is outside this range. She finds that 1/0.5 = 2 < 3.35 = C0.05(2.5/0.5),

so she can reject the null of a large substantive difference in favor of the alternative of equivalence.

The advantage of the equivalence confidence interval is that she can transparently defend this

interval as substantively inconsequential rather than defending the choice of ±2.5 percentage

points for the equivalence range.

Asymptotically, the equivalence t-test converges on the interval inclusion test, in which the

researcher tests if a 100(1−2α )% confidence interval is entirely contained within the equivalence

7 Theoretical arguments about how direction of imbalance drives bias may allow a researcher to define a nonsymmetrical
range.

8 Another way to construct this equivalence test is to used standardized units for ǫ, rather than on the raw scale of the
covariate, with critical values adjusted appropriately.

9 Note that the Calonico et al. (2014) estimators impose additional estimation assumptions on the higher moments of the

outcome and finite variance. τ̂Z is estimated using the bias-corrected estimators in Calonico et al. (2014), and ŜE (τZ ) is
estimated using the authors’ robust variance estimator. Theorem 1 of the originalmanuscript shows these estimatorsmeet
the conditions of Wellek (2010).
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range. Berger and Hsu (1996) show that the interval inclusion method corresponds to the Two-

One-Sided Test (TOST) approach for equivalence, in which the two component null hypotheses

outlined in Equation (2) are tested individually using one-sided t-tests, and the null is rejected if

each of the composite nulls is rejected. While the interval inclusion method is the uniformly most

powerful test (Romano 2005), the test outlined in Equation (3) is more powerful in finite samples

than the interval inclusionmethod; the two tests converge quickly as sample size increases. Local

polynomial estimators put very little weight on observations far from the cutoff, so the effective

sample sizes near the cutoff are sometimes very small in RD estimation, making the additional

power for the test described in Equation (3) particularly important in the RD context.

For simplicity, I focus on continuity in a single pretreatment outcome. However, the more

variables for which a researcher can show continuity in the regression function, and the more

predictive these variables are of the potential outcomes, themore credible the argument that the

design is not affected by unobservable confounders.10 Eggers et al. (2015b) and De la Cuesta and

Imai (2016) discuss theuseofmultiple testing correctionswhenconductingmultiple balance tests,

and the p-values from equivalence tests can be directly input into these procedures.11

3.3 A Statistical Test for the Continuity in the Density of the Forcing Variable
Asdiscussed inSection2, under theassumptionsdescribed inLee (2008),most researchers test for

evidence of sorting by looking for a discontinuity in the density estimates of the forcing variable to

the right and le� of the cutoff. While the forcing variable can be related to the potential outcomes,

the concern is that if units can exert control over which side of the cutoff they fall, then the

potential outcomesmay be discontinuous at the cutpoint. For example, as discussed by Caughey

and Sekhon (2011), in competitive post-WWII house races, the incumbent party’s candidate tends

to havemore political experience and resources. While thismay not be enough towin an election,

the concern is that, when the race is close, these individuals have a greater ability to exert control

over the outcome by making maximal use of their resources, and they note that three-quarters

of close races are won by the incumbent party. If these increased resources allow candidates

to increase their probability of winning, and thus receiving treatment, it is possible that there is

also a discontinuous jump in the future probability of a party winning. A valid design, which does

not suffer from sorting, will exhibit continuity in the density of the forcing variable at the cutoff

because units cannot exert control over the value of treatment.

McCrary (2008) was the first to propose a formal test for continuity in the density of the forcing

variable. TheMcCrary test is conductedby first creating anunder-smoothedhistogramof points to

the le� and right of the cutoff, followed by local-linear estimation to smooth the histogram, once

again conducted separately to the le�and the right of the cutoff. TheMcCrary test, and subsequent

related tests, require the researcher to set many nuisance parameters. To address this concern,

Cattaneo et al. (2019) (CJM) have developed a nonparametric density estimator with boundary

adaptive properties that can be used for consistently estimating the density at the cutoff. This

method requires selection of only one parameter, the bandwidth. As with the continuity test, the

CJM estimators select the bandwidth using a data-driven mean-squared error optimal method.

Both the McCrary and CJM tests structure the null hypothesis such that the density is equal at the

cutoff and use a traditional test-of-difference.

10 There is no strict guidance on howmany variables researchers should test. The strength of the argument depends on the
covariance structure of the variables and the potential outcomes. Even if strongly predictive variables show only slight
discontinuities, the resulting bias could be of arbitrary magnitude or size.

11 Under current practice, there are problematic incentives for researchers to test numerous covariates, which would inflate
multiple-testing p-values, and leads to ad-hoc problems such as “[A]dding irrelevant, and hence noisy, covariates can
increase the number of hypotheses tested, thus reducing the probability of rejecting the null hypotheses.” (De la Cuesta
and Imai 2016, p. 389). Equivalence tests control the correct type I error, and therefore multiple testing methods can be
applied without these concerns.
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To formalize an equivalence test based on the density of the forcing variable, first note that

equality of thedensity f (x ) at the cutoff implies that the ratio of the estimates shouldbeequal (i.e.,

f + = f − ⇐⇒ f +/f − = 1). Unlike in the continuity test, where equivalence bounds can be defined

on the scale of the pretreatment variable of interest (or in standardized units), constructing equiv-

alence bounds on the scale of the probability density function is difficult, and highly dependent

on the observed data. A formulation based on the ratio does not require knowledge of the range

of the probability density function and still tests if there is a discontinuous jump in the relative

likelihood of observing observations just above or just below the cutoff point.

The equivalence test for continuity in density is structured as:

H0 :
f +

f −
> ǫ or

f +

f −
<

1

ǫ

HA :
1

ǫ
<
f +

f −
< ǫ.

(4)

When testing a ratio, the equivalence range is symmetric on the ratio scale.12 Rearranging each of

the statements in the null as a one-sided test against zero, we can test the composite null using

the intersection-union principle (Berger and Hsu 1996). The statistical test is then structured such

that:

Reject H0 i f f T1 ≥ zα and T2 ≤ −zα , (5)

where

T1 =
f +− 1

ǫ
f −

√
Var(f +)+ 1

ǫ2
Var(f −)

andT2 =
f +−ǫf −√

Var(f +)+ǫ2Var(f −)

and zα is a standard normal critical value. Cattaneo et al. (2019) provide consistent estimators for
ˆf ∗ and ŜE (f ∗) that use mean-squared error optimal bandwidth selection.

To eliminate the need to prespecify the equivalence range, particularly given the lack of

existing guidance on how to specify an appropriate equivalence range for the density function,

I suggest the researcher focus on the equivalence confidence interval when providing evidence of

credibility of the design, rather than the p-value associatedwith a prespecified equivalence range.

The researcher should convincingly argue that the resulting range is narrow enough to assuage

concerns about sorting.

Evidence against sorting strengthens the argument that there are no unmeasured confounders

that could invalidate the design. Even if the data does not allow for rejection of the null in

the equivalence density test, the researcher may still be able to argue the design is credible,

particularly if there is strong evidence of continuity for covariates that are highly predictive of

the potential outcomes. Ultimately, it is incumbent on the researcher to convincingly argue why

remaining confounding is unlikely.

4 Simulations

Before turning to an application, I present simulations of the tests described in Sections 3.2 and

3.3. The simulations are intended to capture both discontinuous jumps in the regression function

for a pretreatment covariate anddiscontinuous jumps in thedensity of the forcing variable around

12 Note that if we observe a 20% decrease from f + = 0.1 to f − = 0.08, then if we define our test statistic as f +/f − we get
0.1/0.08 = 1.25, however if we define the test statistic as f −/f +, then 0.08/0.1 = 0.8. Another way to consider this is that
the log of the test would give us a symmetric test of the difference in the density estimates.
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Equivalence Continuity Tests vs Tests of  Difference

Figure 1. Equivalence Tests vs. Tests of Difference for tests in continuity. Solid lines present the rejection rate
for the equivalence test, which showsmaximal powerwhen continuity holds, andmaintains at least nominal
level when the true difference is outside the prespecified equivalence range.

the cutoff. The data-generating process is similar to the simulations found in Calonico et al. (2014),

which mimics the Lee (2008) data. I induce jumps in the density following the simulations in

Cattaneo et al. (2019). The simulations resemble close elections, where the forcing variable is two-

party vote share (in percentage points), and in this case Z, the pretreatment covariate, is two-party

vote share in thepreviouselection. I conduct 1,000 simulations for eachparameter valuedescribed

below. Details about the data generating process can be found in the supplementary materials.13

I first consider the test for continuity in the regression function for Z. Results are presented for

discontinuous jumps in Z of τZ ∈ {0,1.25,2.5,3.75} (presented on the x-axis in Figure 1, with an

equivalence rangeof±2.5).14 In the context of closeelections the simulationsaremodeleda�er, for

example, thiswould correspond to an equivalence range of±2.5percentage points in the previous

election vote share. Using the equivalence t-test for continuity described in Equation (3), I plot

the proportion of simulations that reject at the α = 0.05 level and compare the performance with

two methods—the interval inclusion method for equivalence, and the traditional null hypothesis

test-of-difference. The interval inclusion and traditional test-of-difference are conductedusing the

estimators discussed in Calonico et al. (2014). While it is a misinterpretation of the test, consistent

with common practice when using tests-of-difference as a falsification test, I consider a p-value of

greater than 0.05 as evidence of equivalence.15 There is no sorting in any of these simulations.

There are three important results in Figure 1. First, the equivalence t-test for continuity (solid

line) performs as expected, reaching power of near one when continuity holds, and rejecting

no more than 100( α )% of the time, with α = 0.05 represented by the horizontal line, when

equivalence does not hold (the gray region). Second, the interval inclusion method (short dash)

13 Replication files for this manuscript are available at https://doi.org/10.7910/DVN/IVRHIR (Hartman 2020).
14 The range of Z is about 41–53, which is similar to previous vote share seen in close election RD designs.
15 Results are substantively similar if researchers adjust for their criterion for equivalence and use a p-value of 0.15, such as

suggested by Cattaneo, Frandsen, and Titiunik (2015) on p. 9.
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Figure 2. Equivalence tests versus tests of difference for tests of continuity in density. Solid lines present the
equivalence test which shows maximal power when continuity holds, and maintains at least nominal level
when the true imbalance is outside the prespecified equivalence range.

performs similarly to the equivalence t-testwith larger sample sizes, but is less powerful in smaller

sample sizes.

Finally, the poor performance of a test-for-difference (long dash) is clear. Power is limited

when the design is valid and continuity exists (i.e., there is no discontinuous jump) because the

traditional null hypothesis test will still reject 5% of the time. This problem will be exacerbated

if researchers consider larger p-value cutoffs. With small sample sizes, the test frequently erro-

neously indicates that there is evidence of equivalence (i.e., large p-values). In the gray shaded

region, where equivalence does not hold, there is a high fraction considered equivalent by the

traditional null hypothesis test when the sample size is small, but not by the equivalence tests.

Next I turn to the test for evidence of sorting. I show theperformance of the equivalence density

test (solid line) described in Equation (5) using an equivalence range of [2/3,1.5]16; results show

the proportion of simulations that reject at the α = 0.05 level. I compare this to two tests of

difference—theMcCrary density test (McCrary 2008) (small dash) and the density test discussed in

Cattaneo et al. (2019) (referred to as the CJM test). For both of these tests, I consider a p-value of

greater than 0.05 as evidence of equivalence. No discontinuous jump in the regression function of

Z is considered in these simulations.

Figure 2 presents results from the simulations for continuity in the density of the forcing

variable. Along the x-axis is the true density ratio at the cutoff, which ranges from 1, indicating

no sorting, to 1.75, indicating a jump of 75% in the probability of receiving treatment right at the

cutoff. True jumps in density of between [2/3,1.5] are considered “equivalent,” as defined by the

equivalence range, although I only plot values of one or larger.

16 There is no existing guidance on an appropriate range for a density function. The literature on bioequivalence for
effectiveness of generic versus name-brand drugs uses a fairly strict range of [4/5, 5/4] (Berger and Hsu 1996). Given
the power concerns with density estimation, and I use a wider interval of [2/3, 3/2]. Further practical guidance on how
influential a discontinuity in the density function can is for bias in the RD setting, such as through sensitivity analyses for
this parameter, is le� as an area of future research.
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Two important things are evident in Figure 2. First, the equivalence density test performs as

expected, with power approaching 1 when the density is continuous, but maintaining nominal

levels when the true jump is larger than the equivalence range. However, the density test has

much lower power than the tests for continuity. This problem is not unique to the equivalence

approach, as the difference-based approaches are also under-powered, as evidenced by the fact

that the McCrary and CJM tests rarely detect sorting—whether or not equivalence holds—when

sample sizes are small. This lack of power exhibited by the difference-based approaches should

be particularly concerning given the widespread use tests-of-difference for evidence of sorting.

Future work should focus on designing a more sensitive density test.

5 Application: Close Elections

First discussed by Lee (2008), one of the most widely used applications of the RD design is in

the study of close elections. The design requires that, in a close election, candidates cannot

precisely control whether they barely win or barely lose. The validity of this assumption came

under question with the findings of Snyder (2005), Caughey and Sekhon (2011), and Grimmer

et al. (2011), who provide theoretical and statistical evidence of candidate sorting, especially in

post-WWII congressional races. Recently, De la Cuesta and Imai (2016) and Eggers et al. (2015b)

find evidence suggesting that the close-election RD design appears, generally, credible.

While theoretical arguments against possible mechanisms for sorting are an important part

for arguing the close election RD design is credible, most of the statistical evidence relies on

traditional null hypothesis tests. To exhibit how to use equivalence-based falsification tests for RD

designs, I reanalyze the global close electionsdataof Eggers et al. (2015a), focusingon lagged vote-

share as the pretreatment outcome for testing for continuity.17 Ultimately, I find that the statistical

evidence in favor of the close-elections design is much more mixed than the recent literature

would suggest. This evidence should be combined with theoretical arguments to carefully con-

sider the validity of close-elections in any given geographic context.

I begin by replicating the falsification tests conducted in Eggers et al. (2015b), focusing on

lagged vote share at t − 1 as the primary covariate of interest for testing for continuity. The

authors’ argument that the RD design does not seem sensitive to manipulation in most electoral

settings, despite findings to the contrary in the US House of Representatives, hinges on a series

of statistically insignificant tests-of-difference for lagged vote share at time t −1.18 I begin by con-

ducting equivalence-based continuity tests on the lagged vote share for thewinning party with an

equivalence range of ±2.5 percentage points. In the original analysis, the authors present a series

ofp-valuesusingdifference-in-means, local linear, andpolynomial regressions in variouswindows

around the cutoff. They indicate that “results [are] not shown if there are insufficient data points

within a given bandwidth, to avoid biased or uninformative inferences,” acknowledging that small

sample sizes may lead to conflation of insignificant difference with evidence of a valid design.

Figure 3 presents the results of the equivalence continuity tests.19 The first thing to note is that

there is no need to eliminate tests that are under-powered—the equivalence test will convey the

additional uncertainty with wider equivalence confidence intervals, as is evident in the French

17 I also reanalyze the US Congressional data of Caughey and Sekhon (2011) in the supplementary materials using an
equivalence-based continuity test, and show how to appropriately apply a multiple testing correction, as recommended
by De la Cuesta and Imai (2016).

18 Table 4 in the original manuscript.
19 No equivalence confidence interval is presented for the US Mayors dataset. There are some scenarios in which the

equivalence confidence interval is undefined, inparticularwhen the test rejects at theα -level for anoncentrality parameter

of zero (corresponding to an empty equivalence range). This occurs when |t | <

√
(χ2)

−1
(α ,1), which implies that the test

would reject for any level of ǫ, which defines the noncentrality parameter. For example, qchisq(0.05, 1) = 0.0039
=⇒ |t | = 0.06, or that the standard error is 15.9 times larger than the point estimate. In the US Mayors rate, the t stat
is −0.35/6.78 = −0.053, driven primarily by a very large standard error. In these cases, which may occur with a small point
estimate and large standard error estimate, I do not report an equivalence confidence interval. If the researcher wanted to
report a conservative interval, they could report the equivalence confidence interval from the two-one-sided test.
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All Races Pooled (n_eff  = 73673)

Mexico, Mayors, 1970−2009 (n_eff  = 5905)

Brazil, Mayors, 2000−2008 (n_eff  = 1733)

India, Lower House, 1977−2004 (n_eff  = 1054)

New Zealand, Parliament, 1949−1987 (n_eff  = 365)

Australia, House of  Reps, 1987−2007 (n_eff  = 419)

France, Municipalities, 2008 (n_eff  = 840)

France, National Assembly, 1958−2007 (n_eff  = 1115)

Bavaria, Mayors, 1948−2009 (n_eff  = 2243)

Germany, Bundestag, 1953−2009 (n_eff  = 1293)

U.K., Local Councils, 1946−2010 (n_eff  = 21055)

U.K., Commons, 1918−2010 (n_eff  = 6041)

Canada, Commons, 1921−2011 (n_eff  = 3100)

Canada, Commons, 1867−1911 (n_eff  = 787)

Canada, Commons, 1867−2011 (n_eff  = 4034)

U.S., Mayors, 1947−2007 (n_eff  = 693)

U.S., State Legislature, 1990−2010 (n_eff  = 9511)

U.S., Statewide, 1946−2010 (n_eff  = 4140)

U.S., House of  Reps, 1946−2010 (n_eff  = 4173)

U.S., House of  Reps, 1880−1944 (n_eff  = 5488)

U.S., House of  Reps, 1880−2010 (n_eff  = 9967)
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0.17
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0.03

FDR
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Figure3.Equivalence test for continuity in the laggedvote share for thewinningpartyasapplied to theEggers
et al. (2015b) data. The vertical dashed line corresponds to the tested equivalence range of ±2.5 percentage
points. Black diamonds correspond to the point estimate. Gray bars indicate the equivalence confidence
interval. The p-value includes a false discovery rate correction. Continuity would imply the point estimate
should be near 0.

Municipal, Australian House, and New Zealand Parliament elections, which were not presented

in the original manuscript. Second, some analyses exhibit large point-estimates for difference,

indicating the importance of focusing not only on the p-value of a test, but the estimate. For

example, the India lower house races, which have a point estimate of 4.19, had p-values ranging

from 0.2 to 0.89 in the original analysis, but fails to reject using the equivalence-based test.

Finally, results indicate that the evidence of the continuity of the regression function of the

lagged outcome is mixed. Rather than focusing on p-values, which require agreement that an

equivalence range of±2.5 percentage points is substantively inconsequential, researchers should

focus on thewidth of the equivalence confidence interval, which conveys theminimal equivalence

rangesupportedby thedata. Someraceshavevery small equivalenceconfidence intervals, suchas

the early US House of Representatives (1880–1944) which can support a minimum range of ±1.68

percentage points. However many races also have very wide equivalence confidence intervals,

such as the French Municipal elections, which supports a minimum range of ±11.51 percentage

points. Some of these wide intervals may be due to small sample size, but depending on which

context a researcher is working in, they should carefully consider the evidence at hand. When

combined, the overall equivalence confidence interval for all pooled races is ±1.16 percentage

points, with a very small point-estimate of 0.38, which supports the Eggers et al. (2015b) argument

that the RD design is “broadly applicable.”

Next I reanalyze the tests for sorting around the cutoff across geographies using the

equivalence-based test.20 Results, presented in Figure 4, show that many, but not all, of the

elections show little evidence of sorting, as defined by a 50% jump in the density estimate. I

present the equivalence confidence interval for each race, showing the smallest range supported

by the data at the α = 0.05 level. The pooled election evidence indicates that close-election RD

designs do not exhibit strong evidence of sorting, however some individual geographies cannot

reject a null consistent with sorting indicating causal effect estimates in those contexts may not

be credible. Using an equivalence range of [2/3,3/2], there is stronger evidence of a valid RD

design across geographies than the continuity results using a ±2.5 percentage point range. In the

20 Table 5 of the original manuscript.
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All Races Pooled (n_eff  = 132270)

Mexico, Mayors, 1970−2009 (n_eff  = 4904)

Brazil, Mayors, 2000−2008 (n_eff  = 4388)

India, Lower House, 1977−2004 (n_eff  = 2130)

New Zealand, Parliament, 1949−1987 (n_eff  = 564)

Australia, House of  Reps, 1987−2007 (n_eff  = 650)

France, Municipalities, 2008 (n_eff  = 562)

France, National Assembly, 1958−2007 (n_eff  = 2408)

Bavaria, Mayors, 1948−2009 (n_eff  = 3008)

Germany, Bundestag, 1953−2009 (n_eff  = 1582)

U.K., Local Councils, 1946−2010 (n_eff  = 12602)

U.K., Commons, 1918−2010 (n_eff  = 6020)

Canada, Commons, 1921−2011 (n_eff  = 4436)

Canada, Commons, 1867−1911 (n_eff  = 856)

Canada, Commons, 1867−2011 (n_eff  = 3874)

U.S., Mayors, 1947−2007 (n_eff  = 1262)

U.S., State Legislature, 1990−2010 (n_eff  = 7940)

U.S., Statewide, 1946−2010 (n_eff  = 3962)

U.S., House of  Reps, 1946−2010 (n_eff  = 3572)

U.S., House of  Reps, 1880−1944 (n_eff  = 5828)

U.S., House of  Reps, 1880−2010 (n_eff  = 9770)
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[0.54, 1.87]

[0.65, 1.55]

[0.54, 1.85]
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0

0
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0

0
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Figure 4. Equivalence test for no sorting as applied to the Eggers et al. (2015b) data. The vertical dashed line
corresponds to the tested equivalence range of [2/3, 1.5]. Black diamonds correspond to the point estimate.
Gray bars indicate the equivalence confidence interval, which are nonsymmetric in this case to account for
the asymmetry of a ratio. The p-value includes a false discovery rate correction. No sorting would imply that
the ratio of the density estimates should be near 1.

original analysis, all geographies for which results were presented had statistically insignificant

results. In the reanalysis, whilemost geographies show evidence of no-sorting, the evidence is not

consistent across all geographies.

Combining the results of the equivalence based continuity tests for pretreatment covariates

and the density of the forcing variable provides a more mixed set of findings regarding statistical

evidence in favor of the validity of individual electoral contexts for the RD design than in Eggers

et al. (2015b) and De la Cuesta and Imai (2016). While the literature lays out compelling structural

theories for why sorting is unlikely in electoral settings, statistical evidence from the equivalence

tests, in which we aim to reject a null hypothesis that the data are inconsistent with a valid RD

design, has mixed evidence supporting the design across geographies. While they do not lessen

the need for strong theory of themechanisms by which sorting can occur, themethods discussed

here can help researchers provide statistical evidence that their RD design is credible. The results

here suggest that a researcher should carefully evaluate the evidence of a valid RD for her specific

geographic and temporal context. This can be done by providing evidence of numerous pretreat-

ment covariates and testing for sorting. I provide an example in the supplementary materials of a

specific context by reevaluating the results in Caughey and Sekhon (2011), inwhich I find statistical

evidence supporting the authors’ concern about RD analysis of the post-WWII US Congress.

6 Discussion and Conclusion

Falsification tests are an important tool for researchers when arguing for a valid, identified causal

design. When a researcher cannot control the assignment mechanism in her study, causal identi-

fication will always rely on a set causal identification assumptions that cannot be tested directly

with observed data. Theoretical arguments are important for justifying the validity of a design,

but a researcher should also leverage the data, where possible, to bolster her claims about the

credibility of thedesign.Oneway she cando this is by constructing statistical tests that only rejects

the null the data is inconsistent with a flawed design when the data allow.

I have presented two such statistical tests here that are tailored for RD designs. Using the

equivalence testing framework, I construct a test for continuity of the regression function of a
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pretreatment covariate as well as a test for continuity in the density of the forcing variable at

the cutoff. These tests require the researcher to specify, ex-ante, an equivalence range within

which observed differences are substantively inconsequential, and the results provide evidence

against a flawed design, as defined by this equivalence range. These tests are highly sensitive to

the range that the researcher specifies, so I have also discussed the importance of the equivalence

confidence interval, the minimum equivalence range supported by the data at the α -level, which

serves as a transparent statistic a researcher shouldargue is sufficiently small to alleviate concerns

about bias. Simulations compare the performance of these tests to the current practice tests-of-

difference, showing the value of equivalence based tests in both small and large samples. I have

focused on sharp RD designs in this manuscript, but similar tests are easily extended to fuzzy and

kink designs. Publicly available code implementing these tests is available.21

These falsification tests will better allow researchers achieve their goals: rejecting the null in

these tests provides statistical evidence that the data are consistent with a valid RD design. There

is no concern about conflating lack of powerwith equivalence, and increasing the sample size will

increase the power of the test without any ad-hoc justification of the interpretation of the p-value.

This increases the likelihood that researchers pursue designs when they are valid, and that they

put in the shoe-leather when the evidence is more mixed. As discussed in De la Cuesta and Imai

(2016), multiple testing considerations are important. With equivalence-based tests, researchers

can combine their analyses with standard multiple testing corrections or combined tests without

increasing the likelihood of falsely considering a design valid, a concern with current practice.

When applied to the recent debate on the validity of the close election RDs, equivalence tests

provide a murkier set of findings than recent studies. On average, when pooling close-elections

across the globe, there is strong evidence of the validity of the close election RD design. However,

in some specific geographic areas and time periods, where data are more limited, there may not

be enough data to rule out sorting in a specific electoral context. For example, a reanalysis of

the postwar data in US Congressional races finds evidence more consistent with the results of

Caughey and Sekhon (2011), where many pretreatment covariates appear imbalanced, including

incumbency at t −1. While these tests do not directly invalidate the RDdesigns in these contexts, it

places increased burden on the researcher to rule out sorting using strong theory and alternative

evidence in any given context. As discussed in Eggers et al. (2015b, p. 272), “extraordinary care is

required in order to generate inferences given the presence of imbalances” but the data need not

be dismissed completely in the face of failed falsification tests.

In this manuscript, I have focused on the traditional RD design framework. Recent literature

has clarified the conditions under which the RD can be treated like a local experiment, where

treatment is “as-if” randomly assigned in a narrowwindow around the cutoff. Themain necessary

identifyingassumptions are continuity in thepotential outcomes, and that thepotential outcomes

are constant (and therefore the regression function is flat) within a narrow bandwidth around the

cutoff (De la Cuesta and Imai 2016; Sekhon and Titiunik 2017). The equivalence tests described

in Hartman and Hidalgo (2018) directly apply to the difference-in-means estimator employed in

falsification tests for this design.

A special consideration in the local randomization framework, though, is for bandwidth selec-

tion, an important decision for any RD design. Current best practice for window selection is

discussed in Cattaneo et al. (2015), where they describe a procedure that finds the widest window

where scores are unrelated to covariates within the window, but are associated outside of it; this

is done using an exact test with a null of equality. They acknowledge that “our ultimate goal is to

learn whether the data support the existence of a neighborhood around the cutoff where our null

hypothesis fails to be rejected. In this sense, the roles of Type I and Type II error are interchanged

21 https://github.com/ekhartman/rdd_equivalence
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in our context” (p. 9) and that this could be addressed using an equivalence test. Given the lack of

power in small windows, equivalence-based falsification tests are most appropriate for window

selection. Because the identifying assumption for the local experiment framework requires an

association between the covariate and the forcing variable outside the window, researchers may

wish to combine an equivalence test within and a test-of-difference outside to optimize selection

of the window.

Falsification tests are an essential part of the toolkit for justifying causal identifying assump-

tions. Here I provide two such tests for RD designs that allow researchers to provide statistical

evidence that their designs are consistent with empirically testable implications of the identifying

assumptions. While the role of theory is notminimizedwhen arguing for the validity of the design,

these tests allow the data to strengthen the credibility of causal findings.
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