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Abstract

An asymptotic estimate is derived for the expected number of extrema of a polynomial q; + a, ('l‘) 1/ 2x +

1/2 1/2 . .
a(y) P24 ta, W) ¢ whose independent normal coefficients possess non-equal non-zero mean
values. A result is presented that generalizes in terms of normal processes the analytical device used for
construction of similar asymptotic estimates for random polynomials with normal coefficients.
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1. Introduction

Let £(¢) be a real normal (Gaussian) stochastic process and N (0, 1) the number of the
real zeros of £(¢) in the interval 0 < ¢ < 1. Denote m(¢) = E[£(¢)] its mean function,
r(t, s) = cov{&(t), £(s)] its covariance function, and

%r(t, s)

\S
m(t,s) = 3795

its mixed second order derivative.

There are many known results concerning the expected value EN (0, 1). These
works are mainly aimed at relaxing the assumptions set on £(¢) in Theorem 1 below
and obtaining the result for a more wide class of stochastic processes, see for example
[10, 11]. In particular, Theorem 1 remains true if the condition of continuity of
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the sample functions of £(¢) is replaced by the condition that £(t) is separable [9].
However, Cramér and Leadbetter, reviewing this one and other earlier results in the
fundamental book [3], used the argument due to Belyaev [1] to demonstrate that the
continuity conditions are not very restrictive. Here we restate Theorem 1 as it was in
[3, page 285]:

THEOREM 1. Ifthe process &(t) possesses continuous sample functions with proba-
bility one; its covariance function r(t, s), mean function m(t) and its derivative m’'(t)
are continuous; the function ry(t, t) is continuous at all diagonal points (1, t); the
Jjoint distribution for £(t) and the quadratic mean derivative &'(t) is nonsingular for
each t such that r(t,t) > Oand r(t, )ry (¢, t) > rg, (N 1), then the expected number
of real zeros of §(¢t) within [0, 1] is

V(1= 2)r11(tt ( )

2e(m) + 1 2P(n) — 1)} dt

(1.1) EN@©,1)= f

where

(1.2) ol =r(,0),

(1 3) — COV[S(’),&I(I)] — rOl(ty t) — 1 [ar(ts S)]
‘ o var[£'(1)] oty ool ds ]
_m'(t) — pm(t)/ri (t, D)]o
(1.4) n= ,

(1 = p?)r(, 1)

and ¢(t) and P (t) denote the standard normal density and the standard normal
distribution function.

Formula (1.1) is used in a number of other works including random polynomials to
derive asymptotic estimates for the expected number of their real zeros, extrema, or
level crossings, as the degree of the polynomial increases without bound (for example,
see [4, 8, 7], [2, pages 87 and 108], and [6, parts 3-6]). These works, differing in
detail, generally employ the following method in order to simplify the calculations.
First, EN (0, 1) is represented by a sum of two terms,

EN@O,1)=10,1)+ L©O,1),

where

J———
15 LO.1)=— / (L= pDrii(s, (

n
— ) dt,
2)

m
20
\/f—*
w6 12(0,1)—f/ (= pDr(t, t < ) (2)[,,,
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and
(1.7) erf(¢) =/ exp(—x?) dx.
0

Hence the original double integral in formula (1.1) (the internal integration implicated
by ®(¢)) is decomposed into a sum of a single integral (1.5) and a double integral
(1.6). Now if the value of (1.5) becomes large with the increase of n, then the next step
of the method is an attempt to prove that the value of (1.6) is bounded by a relatively
small value. In this case I, does not affect the final asymptotic relation, and thus the
original double integration is reduced to a single integration.

Traditionally, in order to prove the boundedness of (1.6), specific features of a
particular problem setup were utilized, which led to rather lengthy estimations [12, 6].
However, two recent works [8] and [7] introduced an analytical device allowing a
uniformly simple proof of the boundedness of (1.6) for many cases. The following
theorem generalizes this technique for a class of random processes which is indeed of
more general nature than random polynomials.

THEOREM 2. If the process £(t) satisfies the conditions of Theorem 1, and the
function \m /o | has finite limits or increases indefinitely as t tends to 0 and as t tends
to 1, then

EN@©,1) = I1,(0, 1) + O(),
where 1,(0, 1) is defined by (1.5).

NOTE. Both theorems were formulated for the interval [0, 1]. However the proof
of (1.1) in [3], as well as the proof of Theorem 2 in Section 2 make it obvious that
the corresponding formulae for the mean number of zeros of £(¢) in a wider interval
[0, T] are obtained simply by altering the upper integration limit to 7. The formula
for the expected number E N of times when the process £(f) crosses a continuously
differentiable curve K (¢) alsdesults from (1.1) where it is sufficient to replace m(t)
by m(t) — K(t) and m'(¢) by m’(¢) — K'(¢). Again, the same applies to the statement
of Theorem 2.

As mentioned above, Theorem 2, of interest in its own right, can be fruitfully used
in the theory of random polynomials. To this end we consider the random algebraic
polynomial

n 172
(1.8) P(x)EP,,(x,w)=Zaj(w)(;l) X,
j=0
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defined on a real axis x € R, with random coefficients {a; (w)}]_, defined in a fixed
probability space (2, &, Pr). Motivated by its physical applications, see [5], in
recent years several papers studied behaviour of this type of random polynomials in
cases when the coefficients are standard normal variables. Edelman and Kostlan [5]
obtained a formula for the expected number of real zeros, Farahmand [6, page 51]
derived asymptotic estimates for the expected number of level crossings and extrema.
There are other types of random algebraic polynomials which are intensively studied,
for example see [13], and are reviewed in [6].

We assume that P(x) has independent normal random coefficients with non-zero
mean values. Within this range of the coefficients of P(x) in (1.8) the asymptotic
estimate of the expected number of level crossings wad obtained in [7]. In Section 3
of the present paper we prove the following statement.

THEOREM 3. If the coefficients a; (w) of P(x) in (1.8) are independent normally
distributed random variables with variance var{a;(w)] = 02 and expected value
Elaj(w)] = p,(;')l/z, i # 0O, then for all sufficiently large n the expected number of
extrema of this polynomial satisfies

EM(—00,0) ~+/n—1/2, EM(0, o0) ~ O(1).
2. Proof of Theorem 2

With notation established in Section 1 the proof of Theorem 2 is reduced to proving
that 1,(0, 1) = O(l), where I, is defined by (1.6).
Let u. = m/o, where o is defined by (1.2). Then

m mdo
2.1 du={|————)dt
1) ! (a o? dt)
By theorem’s conditions, m(r) is differentiable, hence the following equations hold:
ar(t, s) ,
ot =COV[E (t)vg(s)] = rlO(t’ S),
ar(t, s) ,
= cov[§(2), £'(s)] = rai(t, 5).
By covariance properties, rio(t, t) = ro(t, t)
do? ar(t, s) ar(t, s)
22 —_— = = 2rp:(2, 1).
I i W S R T
Since
do 1 do?
dt 20 dt’
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(2.1) and (2.2) after expansion of p and 5 by definitions (1.3) and (1.4) produce

(I =p)ru(t, 1) _ ili

o dt’

Then the integration variable in (1.6) can be changed from ¢ to u, such that

) ut 2
L, 1) = _H*C/ exp (—%) erf (n(1 () du,

where

.om _ . m
ut=lim— and u =lim—.
—1 o -0 O

The limits of the integration exist as finite numbers or infinite values by conditions of
the theorem. From (1.7), erf(¢) < /7 /2. Therefore

1 ut w\ om o om
hO.1 = = f exp (—7) du = & (lim :;) ~ & (lim ;)
< P(+o0) — P(—o0) = 1.

Thus 1,(0, 1) = O(1) with implied constant 1. The theorem is proved. ]

3. Random algebraic polynomials

In this section we prove Theorem 3. From [3] and [6] it follows that the probability
that P (x) defined in (1.8) has a point of horizontal inflexion is zero. Then the expected
number E M («, B) of extrema of P(x) in an interval [«, 8] is the expected number of
real zeros in [, 8] of its derivative

n 1/2
(3.1 P(x)=P,x,0)=) ja (w)C) X/t
j=l

Denote N
m, = E[P,(x,w)] = E[P'(x)] = pn(l +x)""",

my = E[P"(x)] = un(n — 1)(1 +x)"?,

A? = var[P'(x)] = on(1 4+ nx?) (1 + x?)"2,

B? =var[P"(x)] = o’n(n — D2 + (n — Dx*(@ + nx?)(A +xH" 4,
C =cov[P'(x), P"(x)] = o’n(n — Dx (2 + nx?)(1 + x3)"3,

A= A’B? — C* =o'*n*(n — D1 + x> %2 4 2nx* + n(n — Dx*).

(3.2)

Obviously, (3.1) satisfies the conditions of Theorem 1. Note that formula (1.1) holds
in this case not only for a finite interval [0, T'] but also for the whole axis (—o0, 00).
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The existence of the improper integral in the latter case is secured by the fact that the
continuous integrand in (1.1) is bounded, since the number of zeros of polynomial
(3.1) is finite.
The value m(z) /o (t) from Theorem 2 formulation is denoted in notation (3.2) by
my(x)/A(x). Both limits
mix) u . omy(x) et M
m = 1 1 —

= =L = (-

e Akx) o’ x>0 A(x)

exist, so Theorem 2 is applicable and yields

0 2 A _ 2
A . (_ﬂ _ (A%, — Cm))? )dx + o).
oo TTA?

33) EM(— -
(3-3) (=00, 00) /_ 2A? 2AIA2

Thus the task of asymptotic estimation of EM (—o00, 00) is reduced to the evaluation
of the integral in (3.3). Denote

m? A’m, — Cmy \’
CA T =724 V244

_ u*n(l + x)*=2
T 20%(1 + nx?)(1 + x2)n2
12n(n—1D(1+x)22 [ 4+nx2) (1 +x) —x(1+x)Q2+nx)]’
202(14+nx?) (1 +x)"2Q2+2nx2 +n(n—Dx*)

Then

EM(—00, 00) = I;(—00, 00) + O(1),
where

I (—o0, 00) = /_oo e exp (J (x))dx.

The estimation of I,(—o0, 00) is carried out for two groups of intervals: (i) [—1, 1]
and (ii) (—o0, 1) U (1, 00). ‘

) x e[-1,1].
Consider first —1 < x < 0. Denote y = —x, then
2n(1 — 2n-2
T = u y)

202(1 4+ ny?)(1 4 y?)n—2
un(n — (1 — )22 [142y + (n — Dy + ny?|’
2021 + ny?)(1 + y2)"2(2 + 2ny? + (n? — n)y*)

Choose a small constant

(3.5) e = tan(n™**)

https://doi.org/10.1017/51446788700002627 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002627

7 Extrema of random algebraic polynomials 231

and split the interval [—1, 0) in two, such that I,(—1,0) = I,(—1, —¢&) + I,(—¢,0).
Obviously, the interval x € [—1, —¢) corresponds to y € (g, 1]; the interval x €
[—¢,0) corresponds to y € (0, ¢]. Withine <y <1(-1<x <¢)

u? n(l —g)4 ((1 e (n — D[2n —2}? )
202 (1 4+ ne?)(1 4 )2 2+ 2ne2 4+ (n? — n)e*

(3.6) T <

MZ l'l(l _ 8)2n—4 3
—_— (142
<207 (e LT
and
_ ~)2n-4 2 n—2 ) n-2
G.7) A—g™* (2 :(1__)
(1 +82)n—2 1 +82 n3/4

2(n—2
~ exp (——(’;37—)) =0 (exp(—n’“)) .

Clearly, the right-hand side in inequality (3.6) is O(n*e™""") = O(e™""*+"") — O as
n — 00. Therefore 7 (y) — 0asn — 00, and

(3.8) Li(-1,—¢) = — /——dx

Note that
i A 1
im = .
nso0 A2 /n—1 x2+1

Then the dominated convergence theorem for Lebesgue integrals shows that

il —3/4

=——n

LA Yo
——dx —d
/gAZ./—n—l ¥ [x2+1 Ty
From (3.8) and (3.9) with n — 0o we obtain I,(—1, —¢) >~ /n — 1/4 + O(n~"/%).
Within 0 < y < ¢, thatis, —& < x < 0, we note that for sufficiently large n,

(3.9)

(3.10) 0<I(— 30)<—/ —dx~”"_ /
l-i-x2
Jn—1
=——3———>0 as n — 00.
i
Thus,
Jn=1
G.11) 1,(~1,0) ~ ”4 + 0" as n— oo

Now consider 0 < x < 1. From (3.4), ignoring the second term produces an inequality

uwn(l 4 x?) <<1 +x)2)"“

(312 Tz 2020 +nx2) \ 1 + 22
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Within the subinterval ¢ < x < 1, this inequality can be strengthened as

wn(l +¢?) i
(3.13) T (x) > ——802(1 ) (1+¢&)""'=L(n), say.
Hence
o 1
Lee 1< Yn—! exp(—L(n))/ dx
e 1+ x2

By the choice of ¢ in (3.5) it is easy to verify that L(n) increases without bound as
n — 00. This makes the right-hand side of the last inequality tend to zero. Recalling
that I, by its definition is nonnegative, we conclude tha\t

lim I,(g,1) = 0.

n—»o0
Within0 <x < ¢

2
uin
.14 _—
(3.14) T > g
and ’
Jn—1 uin ¢ dx
0 < — 0 .
ho.0 == exP( 802(1+n))_/0 T4x2 0 B "7
Thus
(3.15) lim [;(0,1) =0.

n—=>o0

(i) x € (—o0, 1) U (1, o).
The substitution of z = 1/x implies z € (—1,0) U (0,1). Within0 < z < 1
utilising inequalities similar to (3.12), (3.13), and (3.14) leads to the conclusion that

(3.16) 5L(,00) >0 as n— o0.

Consider —1 < z < 0. After another change of variable y = —z, establishment of
relations analogous to (3.6), (3.7), (3.8), and (3.9) yields

L(-1/e,~1) ~+/n—=1/4+ O (n"'*)

for the interval ¢ < y < 1 (equivalent to —1 < z < —¢g,to —1/e < x < —1).
Treatment of the interval 0 < y < & (—¢ < z < 0) leads to an outcome analogous

to (3.10):

(-0, —1/e) > 0 as n — oo.
Therefore,
(3.17) Li(=00,=1) =~ +/n—1/44+ O(n™"").

Putting together (3.11), (3.15), (3.16), and (3.17) produces the desired result. O
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