An Ordering for Groups of Pure Braids and Fibre-Type Hyperplane Arrangements

Djun Maximilian Kim and Dale Rolfsen

Abstract

We define a total ordering of the pure braid groups which is invariant under multiplication on both sides. This ordering is natural in several respects. Moreover, it well-orders the pure braids which are positive in the sense of Garside. The ordering is defined using a combination of Artin's combing technique and the Magnus expansion of free groups, and is explicit and algorithmic.

By contrast, the full braid groups (on 3 or more strings) can be ordered in such a way as to be invariant on one side or the other, but not both simultaneously. Finally, we remark that the same type of ordering can be applied to the fundamental groups of certain complex hyperplane arrangements, a direct generalization of the pure braid groups.

1 Introduction and Statement of Results

This paper concerns the Artin braid groups B_{n} and especially the subgroups P_{n} of pure braids. Our main result is the explicit construction of a strict total ordering, $<$, of pure braids which is invariant under multiplication on both sides (for $\alpha, \beta, \gamma \in P_{n}$, $\alpha<\beta$ implies $\alpha \gamma<\beta \gamma$ and $\gamma \alpha<\gamma \beta$) and has the following properties:

1. There is a straightforward algorithm to decide which of two given pure braids is the greater. It is, in a sense, an extension of Artin's solution of the word problem for P_{n}.
2. The ordering respects the standard inclusions $P_{n} \subset P_{n+1}$, and so defines an ordering on the direct limit P_{∞}. It is also compatible with the homomorphism $f: P_{n+1} \rightarrow P_{n}$ which "forgets the last string", meaning that $\alpha<\beta$ implies $f(\alpha) \leq$ $f(\beta)$.
3. The pure braids $\beta \in P_{n}$ which are positive in the sense of Garside [14] are also positive in our ordering. That is, if β is a nontrivial pure braid expressible in the standard braid generators σ_{i} with no negative exponents $\left(\beta \in P_{n}^{+}=P_{n} \cap B_{n}^{+}\right)$ then $1<\beta$, where 1 denotes the identity n-string braid. (See Section 8.)
4. P_{n}^{+}is well-ordered under our ordering.
5. Our ordering of P_{n} extends Garside's partial ordering of P_{n}^{+}. (See Section 9.)

The ordering is defined by a combination of the "combing" technique of Artin and the Magnus expansion of free groups in rings of formal power series. The existence of an ordering of P_{n}, invariant under multiplication on both sides, implies

[^0]that the group ring $\mathbf{Z} P_{n}$ embeds in a division ring, using a result proved independently by Malćev [19] and Neumann [22]. ${ }^{1}$ An important result of Dehornoy [8] (see also [13] and [29]) is that the full braid groups B_{n} can be given a strict total ordering which is invariant under multiplication on one side (but not both). We will see that Dehornoy's ordering of B_{n} and our ordering of P_{n} are fundamentally incompatible; indeed any right- or left-ordering of B_{n} is necessarily incompatible with any bi-ordering of P_{n}, according to [27].

In the following sections, we describe a few basics of the braid groups, orderable groups, Artin's combing, Magnus expansions, and Dehornoy's ordering, and we establish our particular conventions. We also discuss the connection with partial orderings which have been defined by Garside and Elrifai-Morton.

We are grateful to L. Paris for pointing out that our methods also apply to a large class of complex hyperplane arrangements, those of fibre type, as defined in [12]. Thus we can define explicit orderings to show the following:
Theorem The fundamental group of the complement of a complex hyperplane arrangement of fibre type can be given a strict total ordering which is invariant under multiplication on both sides.

As pointed out in [28], the existence of a bi-ordering of P_{n} (as well as the fibretype hyperplane arrangement groups) follows directly from the observation of [12] that these groups are residually nilpotent, torsion-free (using the main result of [23]). The contribution of the present paper is the explicit construction with the properties cited above, perhaps most notably the well-ordering of Garside-positive pure braids.

2 Braid Groups

Emil Artin [1] defined the braid groups B_{n} as isotopy classes of n disjoint strings embedded in 3-space, monotone in a given direction, and beginning and ending at certain specified points. The product of two braids is given by concatenation. These groups have played an extremely important rôle in topology, analysis, algebra and theoretical physics. Artin showed that B_{n} admits a presentation with generators $\sigma_{1}, \ldots, \sigma_{n-1}$, and relations

$$
\begin{gather*}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad \text { if }|i-j|>1,1 \leq i, j \leq n-1 \tag{1}\\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad i=1, \ldots, n-2 \tag{2}
\end{gather*}
$$

where the generators σ_{i} can be interpreted geometrically as the so-called elementary braids (shown in Figure 1) whose only crossing takes the $(i+1)$-st strand over the i-th; this corresponds to a right-hand screw twist.

Corresponding to any braid is a permutation of the set $\{1, \ldots, n\}$ recording how the strings connect the endpoints. In particular, a braid whose permutation is the identity is called a pure braid. These form a normal subgroup P_{n} of index $n!$ in B_{n}, and fit into an exact sequence

$$
1 \rightarrow P_{n} \rightarrow B_{n} \rightarrow S_{n} \rightarrow 1
$$

[^1]

Figure 1: The elementary braid σ_{i}.

3 Automorphisms of Free Groups

Let F_{n} be a free group of rank n, with generators x_{1}, \ldots, x_{n}. Artin showed that B_{n} embeds in $\operatorname{Aut}\left(F_{n}\right)$, the automorphism group of the free group, in the following way. Let $\mathbf{D}_{n}:=D^{2}-Q_{n}$ denote the disk with n punctures $Q_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$ arranged in order along a straight line in $D^{2} . F_{n}$ can be identified with $\pi_{1}\left(\mathbf{D}_{n}\right)$. A braid can be regarded as the graph of a motion of n distinct points in the disk, beginning and ending in Q_{n}; this motion extends to the whole disk, so that a braid gives rise to a selfhomeomorphism of \mathbf{D}_{n}, unique up to isotopy, fixing the punctures and boundary of D^{2}. Passing to the fundamental group, this induces an automorphism of F_{n}.

To be precise, let x_{1}, \ldots, x_{n} be loops in \mathbf{D}_{n} representing generators of $\pi_{1}\left(\mathbf{D}_{n}\right)$, oriented in the clockwise sense, as shown in Figure 2. The arcs stand for loops which are small regular neighbourhoods of the arcs.

The braid σ_{i} corresponds to the (say right-hand) screw motion interchanging p_{i} and p_{i+1} and fixed off a small neighborhood of the interval between these points. The automorphism corresponding to σ_{i} is given by

$$
\begin{gathered}
x_{i} \mapsto x_{i} x_{i+1} x_{i}^{-1}, \\
x_{i+1} \mapsto x_{i}, \\
x_{j} \mapsto x_{j} \quad(j \neq i, i+1) .
\end{gathered}
$$

This action is illustrated in Figure 2. Thus a braid β will take x_{i} to $w_{i} x_{\pi(i)} w_{i}^{-1}$, where π is the permutation corresponding to β, and w_{i} also depends on β. It is well known that this determines an embedding of B_{n} into $\operatorname{Aut}\left(F_{n}\right)$. We point out for later reference that a pure braid corresponds to an automorphism which is a "local conjugation", i.e., one in which each generator is sent to some conjugate of itself.

Further details may be found, for example, in [5], or in [7].

4 Ordered Groups

If G is a group whose elements can be given a strict total ordering $<$ which is rightinvariant,

$$
g<h \Rightarrow g k<h k
$$

Figure 2: The action of σ_{1} on $\pi_{1}\left(\mathbf{D}_{n}\right)$.
for all $g, h, k \in G$, then $(G,<)$ is said to be a right-ordered group. If the ordering is also left-invariant, we say $(G,<)$ is a bi-ordered group (also called fully-ordered, or simply "ordered" in the literature.)

A right-orderable group G can be recognized by the existence of a "positive cone" $\mathcal{P} \subset G$. A group G is right-orderable if and only if there exists $\mathcal{P} \subset G$ such that:
(1) \mathcal{P} is multiplicatively closed: $\mathcal{P} \cdot \mathcal{P} \subset \mathcal{P}$, and
(2) $G \backslash\{1\}=\mathcal{P} \coprod \mathcal{P}^{-1}$ where $\mathcal{P}^{-1}=\left\{p^{-1} \mid p \in \mathcal{P}\right\}$, i.e., \mathcal{P} partitions G.

For if G is a right orderable group, take $\mathcal{P}=\{g \mid 1<g\}$. Conversely, if such a subset \mathcal{P} exists, we may define a right order on G by $g<h \Leftrightarrow h g^{-1} \in \mathcal{P}$. (Note: the criterion $g^{-1} h \in \mathcal{P}$ would give a left-invariant ordering; a group is right-orderable if and only if it is left-orderable, but the orderings may differ.)
G is bi-orderable if and only if properties (1) and (2) above hold, for some subset \mathcal{P} and in addition,
(3) for all $g \in G, g \mathcal{P} g^{-1} \subset \mathcal{P}$ (normality).

It is clear that subgroups of right-orderable (resp. bi-orderable) groups are rightorderable (resp. bi-orderable) groups. The theory of orderable groups is over a century old. A classical theorem of Hölder [15] asserts that if an orderable group is Archimedean, then it is isomorphic (algebraically and in the ordering sense) with a subgroup of the additive reals, and therefore abelian. An ordering on a group is said to be Archimedean if whenever $1<x<y$ in the group, there exists an integer p such that $y<x^{p}$.

Orderability is a strong property. For example, if G is right-orderable, then G is torsion-free. Furthermore, if R is a ring with no zero-divisors, and G is rightorderable, then the group ring $R G$ has no zero-divisors and no units, other than the "trivial units" of the form $r g$ where r is a unit in R and $g \in G$. Bi-orderable groups have unique roots, that is $g^{n}=h^{n}$ only when $g=h$. It is nontrivial, but well known (see [23], [4], [9], [16]) that free groups are bi-orderable (we will present a proof shortly). More generally, Vinogradov [30] proved that bi-orderability is preserved under free products. Good references on ordered groups are [26], [21], or [17].

Right orderability is easily seen to be preserved under extensions, that is, if $1 \rightarrow G \rightarrow K \rightarrow H \rightarrow 1$ is an exact sequence of groups and G and H are right orderable, so is K, by taking $k \in K$ to be positive iff its image in H is positive, or the image is the identity and k is positive in G. However, bi-orderability is not quite so well-behaved, being preserved under direct products, but not necessarily even semidirect products. If G and H are bi-orderable, then $G \times H$ is also bi-orderable: simply take the lexicographic ordering: $(g, h)<\left(g^{\prime}, h^{\prime}\right) \Longleftrightarrow g<_{G} g^{\prime}$ or $g=g^{\prime}$ and $h<_{H} h^{\prime}$.

Now suppose G acts on H, the action being denoted by $h \mapsto h^{g}$. In this situation, we can define the semi-direct product $G \ltimes H$ to have underlying set $G \times H$, but taking as the product $(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h^{g^{\prime}} h^{\prime}\right)$. The Klein bottle group

$$
\left\langle x, y \mid y x y^{-1}=x^{-1}\right\rangle
$$

is not bi-orderable, although it is a semi-direct product of two infinite cyclic groups (which are, of course, bi-orderable). The reason this group cannot be bi-orderable is that x and x^{-1} are conjugate, and so one is positive if and only if the other one is positive, which leads to a contradiction. A similar argument can be made in the braid group B_{3}, taking $x=\sigma_{1} \sigma_{2}^{-1}$ and $y=\sigma_{1} \sigma_{2} \sigma_{1}$. It follows that none of the braid groups $B_{n}, n \geq 3$ are bi-orderable, as observed in [24].

We shall need the following lemma, whose proof is routine.
Lemma 1 Let G and H be bi-ordered groups. Then the lexicographical order on $G \ltimes H$ is a bi-ordering if and only if the action of G on H preserves the order on H (equivalently, $\left(\mathcal{P}_{H}\right)^{g} \subset \mathcal{P}_{H}$ for all $g \in G$.)

5 The Magnus Ordering of the Free Group F_{n}

Let F_{n} denote the free group of rank n, generated by x_{1}, \ldots, x_{n}. By using a representation of F_{n} into a sufficiently large ring, due to Magnus [20], we can produce a bi-ordering with special invariance properties.

Define $\mathbf{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$ to be the ring of formal power series in the noncommuting variables X_{1}, \ldots, X_{n}, and let $\mu: F_{n} \rightarrow \mathbf{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$ be the Magnus map, defined on generators by

$$
\mu:\left\{\begin{array}{l}
x_{i} \mapsto 1+X_{i} \\
x_{i}^{-1} \mapsto 1-X_{i}+X_{i}^{2}-X_{i}^{3}+\cdots
\end{array}\right.
$$

Each term of a formal series has a degree, simply the sum of the exponents, and we use the usual notation $\mathcal{O}(d)$ to denote the sum of all terms of degree at least d. As noted in [20], the subset $\mathcal{G}=\{1+\mathcal{O}(1)\}$ of $\mathbf{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$ is a subgroup. The inverse of an element $1+W$ is simply $1-W+W^{2}-\cdots$, even when $W \in \mathcal{O}(1)$ is itself an infinite series. Also shown in [20] is the following.

Theorem 2 (Magnus) The map $\mu: F_{n} \rightarrow \mathcal{G}$ is injective.

Because of this, we may omit mention of the map μ and identify F_{n} with its image, writing $x_{1}=1+X_{1}$, etc.

Definition 3 We now define an ordering on $\mathbf{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$. See [20, chapter 5, exercise 5.6.10] and also [3]. First declare $X_{1} \prec X_{2} \prec \cdots \prec X_{n}$. If V, W are two distinct series, consider the smallest degree at which they differ, and sort the monomial terms of that degree with variables in lexicographic order, using \prec. Compare the coefficients of the first term, when written in the order described, at which V and W differ. Declare $V<W$ precisely when the coefficient of that term in V is smaller than the corresponding coefficient in W. We call this the Magnus ordering on $\mathbf{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$.

Example 1 Under the Magnus map, we have $x_{1}=1+X_{1}$ and $x_{2}=1+X_{2}$. The images differ in that x_{1} has coefficient 1 at term X_{1} while x_{2} has coefficient 0 in this term. Hence $x_{1}>x_{2}$. Similarly, we have $x_{1}>x_{2}>\cdots>x_{n}>1$.

Theorem 4 The Magnus order on $\mathbf{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$ induces a bi-ordering on \mathcal{G} and hence on F_{n}. Moreover, this ordering of F_{n} is preserved under any $\varphi \in \operatorname{Aut}\left(F_{n}\right)$ which induces the identity on $H_{1}\left(F_{n}\right)=F_{n} /\left[F_{n}, F_{n}\right]$.

Proof The ordering is clearly invariant under addition, but not necessarily under multiplication in general (for example multiplication by -1 reverses order.) However, we shall establish right-invariance under multiplication in \mathcal{G} by verifying that if $u, v \in \mathcal{G}$ then we have

$$
u<v \Leftrightarrow v u^{-1}>1
$$

Write $u=1+U$ and $v=1+V$ where $U, V \in \mathcal{O}(1)$. It is clear from the definition that $u<v$ if and only if $V-U>0$. In the calculation

$$
v u^{-1}=(1+V)\left(1-U+U^{2}-\cdots\right)=1+V-U+R
$$

every term of the remainder $R=(V-U)\left(-U+U^{2}-U^{3}+\cdots\right)$ has degree exceeding that of the lowest degree term of $V-U$, and so $V-U$ is positive if and only if $v u^{-1}>1$. A similar calculation shows that $u<v \Leftrightarrow u^{-1} v>1$, and therefore the ordering is also left-invariant.

To prove the second statement, consider an automorphism $\varphi: F_{n} \rightarrow F_{n}$ which induces the identity on first homology. This means that $\varphi\left(x_{i}\right) x_{i}^{-1}$ is in the commutator subgroup $\left[F_{n}, F_{n}\right]$. As observed in [20], the image of $\left[F_{n}, F_{n}\right]$ lies in the subgroup $\{1+\mathcal{O}(2)\}$ of \mathcal{G}. For convenience, write $x_{i}^{\prime}=\varphi\left(x_{i}\right)$. The corresponding Magnus expansion is

$$
x_{i}^{\prime}=1+X_{i}^{\prime}=(1+\mathcal{O}(2))\left(1+X_{i}\right)=1+X_{i}+\mathcal{O}(2)
$$

and therefore

$$
X_{i}^{\prime}=X_{i}+\mathcal{O}(2)
$$

Now if w is a word in the free group F_{n}, its image under φ has Magnus expansion obtained from that of w by replacing each occurence of X_{i} by $X_{i}+\mathcal{O}(2)$. It follows
that the first non-zero non-constant terms of w and its image under φ are identical, and therefore φ preserves the positive cone of F_{n}, which is equivalent to being orderpreserving.

6 Artin Combing and the Structure of P_{n}

There is a "natural" inclusion of $P_{n-1} \hookrightarrow P_{n}$, which adds an n-th strand to an $(n-1)$ strand pure braid β, as illustrated in Figure 3.

Figure 3: The natural inclusion of $P_{n-1} \hookrightarrow P_{n}$.

There is also a retraction $f: P_{n} \rightarrow P_{n-1}$ defined by "deleting the n-th strand". Define F_{n-1} to be the kernel of f; then F_{n-1} consists of all braids with representatives for which strands $1,2, \ldots, n-1$ pass straight through and the n-th strand weaves among the remaining ones. This presents $F_{n-1} \cong \pi_{1}\left(\mathbf{R}^{2} \backslash(n-1)\right.$ points $)$, a free group of rank $n-1$, as a normal subgroup of P_{n}. We may write $\beta \in P_{n}$ as $\beta=$ $f(\beta) f(\beta)^{-1} \beta$. Note that $f(\beta) \in P_{n-1}$ while $f(\beta)^{-1} \beta \in F_{n-1}$.

Figure 4: The generator $x_{j, i}$ of $F_{i}=\left\langle x_{1, i}, \ldots, x_{i, i}\right\rangle \subset P_{n}$.

For any $i \in\{1, \ldots, n-1\}$, we may thus consider the subgroup $F_{i} \subset P_{i} \subset P_{n}$ as consisting of all braids having all strands going straight across, except the one of index $i+1$, which may have crossings only with strings of lower index. Free generators $x_{1, i}, \ldots, x_{i, i}$ of F_{i} are illustrated in Figure 4. In terms of the Artin generators,

$$
x_{j, i}=\sigma_{i} \sigma_{i-1} \cdots \sigma_{j+1} \sigma_{j}^{2} \sigma_{j+1}^{-1} \cdots \sigma_{i-1}^{-1} \sigma_{i}^{-1}
$$

When the context of F_{i} is understood, we will drop the second subscript and write simply $F_{i}=\left\langle x_{1}, \ldots, x_{i}\right\rangle$.

Theorem 5 (Artin [2]) The map $\beta \mapsto\left(f(\beta), f(\beta)^{-1} \beta\right)$ is an isomorphism $P_{n} \cong$ $P_{n-1} \ltimes F_{n-1}$. The action of P_{n-1} on $F_{n-1}=\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$ induces the identity on the abelianization $H_{1}\left(F_{n-1}\right)=F_{n-1} /\left[F_{n-1}, F_{n-1}\right]$.

Proof The semi-direct product decomposition is well known and immediate from the observation that F_{n-1} is normal and intersects P_{n-1} in precisely the identity element. For a good explanation, see [7], which also explains that the action of P_{n-1} on F_{n-1} turns out to be the Artin action of B_{n-1} as described in Section 3, restricted to the pure braids. As remarked earlier, each such automorphism is a local conjugation, and therefore the identity upon abelianization.

The full "Artin combing" of P_{n} is the iterated semi-direct product decomposition $\left.P_{n} \cong\left(\cdots\left(F_{1} \ltimes F_{2}\right) \ltimes F_{3}\right) \ltimes \cdots \ltimes F_{n-1}\right)$. This provides a unique factorization of a pure braid β as a product $\beta=\beta_{1} \beta_{2} \cdots \beta_{n-1}$ in which the pure braid β_{i} belongs to F_{i}. Thus we introduce coordinates in the semi-direct product:

$$
\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}\right),
$$

in which β_{i} may be expressed in terms of the generators x_{1}, \ldots, x_{i} of F_{i}.

Theorem 6 The lexicographic order on $P_{n} \cong F_{1} \ltimes F_{2} \ltimes F_{3} \ltimes \cdots \ltimes F_{n-1}$, with terms in the free factors compared using the Magnus order, is a bi-ordering.

Proof This is just a recursive application of Theorem 5, Theorem 4 and Lemma 1.

We will refer to this order on P_{n} as the Artin-Magnus order.

7 Examples and Properties of the Ordering

We will begin with some examples in $P_{4}=\left(F_{1} \ltimes F_{2}\right) \ltimes F_{3}$. An element $\beta \in P_{4}$ will be written $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$, where each $\beta_{i} \in F_{i}$. The convention for labeling generators of the F_{i} is explained in Figure 4.

Example 2 First consider the simplest nontrivial pure braids.

$$
\sigma_{1}^{2}=\left(x_{1}, 1,1\right)=\left(1+X_{1}, 1,1\right) .
$$

$$
\sigma_{2}^{2}=\left(1, x_{2}, 1\right)=\left(1,1+X_{2}, 1\right) .
$$

$$
\sigma_{3}^{2}=\left(1,1, x_{3}\right)=\left(1,1,1+X_{3}\right)
$$

This shows that $\sigma_{1}^{2}>\sigma_{2}^{2}>\sigma_{3}^{2}>1$. In general, $\sigma_{i}^{2}>\sigma_{i+1}^{2 N}$ for every power N, illustrating that for $n>2$, the Artin-Magnus ordering on P_{n} is non-Archimedean (as it must be, by Hölder's theorem).

Example 3 The generator of the center of P_{4} :

Example 4 The common braid used for hair, on the first three strings.

$$
\left(\sigma_{1} \sigma_{2}^{-1}\right)^{3}
$$

$$
\left(1, x_{2}^{-1} x_{1}^{-1} x_{2} x_{1}, 1\right)
$$

Applying the Magnus expansion to the second coordinate,

$$
\begin{aligned}
& x_{2}^{-1} x_{1}^{-1} x_{2} x_{1} \\
& \mapsto \\
& \quad \mapsto\left(1-X_{2}+X_{2}{ }^{2}-X_{2}{ }^{3}+\cdots\right)\left(1-X_{1}+X_{1}{ }^{2}-X_{1}{ }^{3}+\cdots\right)\left(1+X_{2}\right)\left(1+X_{1}\right) \\
& \quad=1-X_{1} X_{2}+X_{2} X_{1}+\mathcal{O}(3) .
\end{aligned}
$$

Since the first non-constant term is negative, we conclude $\left(\sigma_{1} \sigma_{2}^{-1}\right)^{3}<1$.
The Artin-Magnus ordering is natural in several senses. Consider the increasing sequence

$$
P_{1} \subset P_{2} \subset \cdots \subset P_{n} \subset \cdots \subset P_{\infty}
$$

where the group P_{∞} is the direct limit.
Proposition 7 If $m<n$, the Artin-Magnus ordering of P_{n}, restricted to P_{m}, is the Artin-Magnus ordering of P_{m}. Therefore, this defines an ordering of P_{∞}. Moreover, the retraction map $f: P_{n} \rightarrow P_{n-1}$ is as order-preserving as possible: $\beta<\gamma \Longrightarrow f(\beta) \leq$ $f(\gamma)$.

Proof The statement is obvious when considering coordinates: P_{m} extends to P_{n} by adding an appropriate number of "identity" coordinates. The retraction simply deletes the last coordinate.

It will be useful to consider the linking numbers associated with a pure braid β. Define the linking number of the i-th strand with the j-th strand, $i \neq j$ (indices refer to the left-endpoints), by

$$
\mathrm{lk}_{i, j}(\beta)=\frac{1}{2} \sum_{c} \operatorname{sign}(c)
$$

where the sum is over all crossings c involving the two strings of index i and j, and $\operatorname{sign}(c)$ is the power, ± 1, of the corresponding braid generator $\sigma_{k}{ }^{ \pm 1}$. Each $\mathrm{lk}_{i, j}: P_{n} \rightarrow$ $\mathbf{Z}, 1 \leq i \neq j \leq n$ is additive: $\mathrm{lk}_{i, j}(\alpha \beta)=\mathrm{lk}_{i, j}(\alpha)+\mathrm{lk}_{i, j}(\beta)$.

Proposition 8 Let β be a pure braid with n strands, expressed in Artin coordinates: $\beta=\left(\beta_{1}, \ldots, \beta_{n-1}\right)$. Then the Magnus expansion

$$
\beta_{i}=1+q_{1} X_{1}+\cdots+q_{i} X_{i}+\mathcal{O}(2)
$$

in $F_{i} \subset \mathbf{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{i}\right]\right]$ has coefficients of its linear terms:

$$
q_{j}=\mathrm{lk}_{j, i+1}(\beta)
$$

Proof The formula is a straightforward calculation, using two observations. First, the exponent sum of $x_{j}=x_{j, i}$ in a word $w=w\left(x_{1}, \ldots, x_{i}\right)$ equals the coefficient of X_{j} in the Magnus expansion of w. Second, if $j \leq i$, then $x_{j, i}$ contributes +1 to $\mathrm{lk}_{j, i+1}(\beta)=\mathrm{lk}_{i+1, j}(\beta)$ and zero to all other linking numbers.

The abelianization functor takes all the braid groups P_{n} and $B_{n}, n \geq 2$, to infinite cyclic groups. The abelianization map $B_{n} \rightarrow \mathbf{Z}$ can be taken to be the total exponent count of a braid when expressed in the generators σ_{i}. This map sends P_{n} to $2 \mathbf{Z}$; in this setting it can also be interpreted as twice the total linking number

$$
\beta \rightarrow 2 \sum_{1 \leq i<j \leq n} \mathrm{lk}_{i, j}(\beta) .
$$

The abelianization map on P_{n} is clearly not order-preserving. However, it does respect the orderings if one confines attention to the free subgroups $F_{i} \subset P$ in the Artin decomposition

$$
P_{n}=F_{1} \ltimes F_{2} \ltimes F_{3} \ltimes \cdots \ltimes F_{n-1}
$$

The abelianization of F_{i} is the free abelian group of rank i, which we may identify with i-tuples of integers, \mathbf{Z}^{i}, and order lexicographically. In this setting the abelianization may be realized as the map $\mathrm{ab}_{i}(w)=\left(q_{1}, \ldots, q_{i}\right)$ where q_{j} is the exponent sum of x_{j} in w. We shall say that a mapping $x \rightarrow x^{\prime}$ of ordered sets is order-respecting if $x<y$ implies $x^{\prime} \leq y^{\prime}$. Then we see, from the definition of the Magnus ordering of F_{i} that ab_{i} is order respecting. The next proposition follows directly from the above discussion.

Proposition 9 With the Artin-Magnus ordering on P_{n} and lexicographic ordering on the product of infinite cyclic groups, the product of abelianization maps $\mathrm{ab}_{1} \times \mathrm{ab}_{2} \times$ $\cdots \times \mathrm{ab}_{n-1}$, as a mapping

$$
P_{n}=F_{1} \ltimes F_{2} \ltimes \cdots \ltimes F_{n-1} \rightarrow \mathbf{Z} \times \mathbf{Z}^{2} \times \cdots \times \mathbf{Z}^{n-1}
$$

is order-respecting. Moreover, it is compatible with the retraction $f: P_{n} \rightarrow P_{n-1}$ in that the following diagram commutes:

8 Garside Positive Braids

In his celebrated solution of the conjugacy problem in B_{n}, Garside [14] introduced the so-called "positive" braids, i.e., nontrivial braids which have an expression in the generators σ_{i} without any negative exponents. We will call such braids "Garside positive". Let B_{n}^{+}denote the semigroup of Garside positive braids together with the identity.

Theorem 10 If a braid in P_{n} is Garside positive, then it is also positive in the ArtinMagnus ordering.

Proof The statement is clear for elements of P_{2}. Inductively, suppose that it is true for P_{n-1}. Let $\beta \in P_{n}$ be Garside positive, and consider the braid $f(\beta) \in P_{n-1}$. Note that $f(\beta)$ is either Garside positive (case (1)) or has no crossings (case (2)). In case (1), applying induction, $f(\beta)$ is Artin-Magnus positive, hence β is positive, by definition of the lexicographic order of $P_{n-1} \ltimes F_{n-1}$. In case (2), β is an element of
F_{n-1}. We may assume the first $n-1$ strings are straight and read the expression for β in terms of the free generators of F_{n-1} from the places where the n-th string passes under the first $n-1$ strings. By our convention (choice of $x_{j, i}$), and Garside positivity, β is therefore a strictly positive word in x_{1}, \ldots, x_{n}. It follows from Proposition 8 that its Magnus expansion has positive leading coefficient (occurring at a linear term). Therefore $\beta>1$.

Recall that an ordered set is said to be well-ordered if every non-empty subset has a least element.

Theorem 11 The set of Garside positive pure n-braids is well-ordered by the ArtinMagnus ordering.

Proof The statement is clear for $n=2$. Now suppose that $n>2$ and the theorem holds for $n-1$. Consider a non-empty set $S \subset P_{n}$ of Garside positive braids. We need to show S has a least element. The set $f(S)=\left\{f(\beta) \in P_{n-1} \mid \beta \in S\right\}$, being a subset of $P_{n-1} \cap B_{n-1}^{+}$, has a least element; call it α_{0}. Let

$$
S_{0}=\left\{\gamma \in S \mid f(\gamma)=\alpha_{0}\right\}
$$

clearly if there is a least element of S_{0} it is also the least element of S. Note that the coordinates of $\gamma \in S_{0}$ in $P_{n-1} \ltimes F_{n-1}$ are $\gamma=\left(\alpha_{0}, \alpha_{0}{ }^{-1} \gamma\right)$. We now appeal to Lemma 12 to find a $\gamma_{0} \in S_{0}$ whose last coordinate $\alpha_{0}{ }^{-1} \gamma_{0}$ is minimal. Then γ_{0} is the least element of S.

Lemma 12 Consider a subset $T \subset F_{n-1} \subset P_{n}$ of the form

$$
T=\left\{\alpha_{0}^{-1} \gamma \mid \gamma \in S_{0}\right\}
$$

where S_{0} is some set of Garside-positive pure n-braids and α_{0} is a fixed pure braid in $P_{n-1} \subset P_{n}$. Then T has a least element in the Magnus ordering of F_{n-1}.

Proof The condition $\alpha_{0}^{-1} \gamma \in F_{n-1}$ is equivalent to the equation $f(\gamma)=\alpha_{0}$. Since α_{0} is in P_{n-1}, and γ is Garside positive, we have $\mathrm{lk}_{j, n}\left(\alpha_{0}^{-1} \gamma\right)=\mathrm{lk}_{j, n}(\gamma) \geq 0$. This implies that the coefficients $\left(q_{1}, \ldots, q_{n-1}\right)$ of the linear terms in the Magnus expansion of all elements of T are positive, hence there is a lexicographically minimal one, $\operatorname{say}\left(\hat{q}_{1}, \ldots, \hat{q}_{n-1}\right)$. Let

$$
T^{\prime}=\left\{\tau \in T \mid \tau=1+\hat{q}_{1} X_{1}+\cdots+\hat{q}_{n-1} X_{n-1}+\mathcal{O}(2)\right\} .
$$

Then T^{\prime} is nonempty, and its elements are $<$ other elements of T. We now claim that T^{\prime} is finite. It follows that T^{\prime} has a least element, which is also the least element of T. To verify the claim, observe that the exponent sum (as a word in x_{1}, \ldots, x_{n-1}) of every element of T^{\prime} is $\hat{q}_{1}+\cdots+\hat{q}_{n-1}$. Each x_{i} has exponent sum +2 when expanded in the braid generators σ_{j}. The σ-exponent sum is an invariant of braids, and we use it to conclude that for every $\alpha_{0}{ }^{-1} \gamma \in T^{\prime}$, the length of γ is exactly $2 \sum_{i} \hat{q}_{i}$ minus the exponent sum of α_{0}. There are only finitely many distinct γ satisfying this.

We note that the analogue of Theorem 11 was proved in [6], [18] for the Dehornoy ordering of the full braid groups.

We next compare the Artin-Magnus ordering $<_{\mathrm{AM}}$ on P_{n} with Dehornoy's and several other orderings on the braid groups appearing in the literature.

9 The Garside Partial Order

Garside [14] defined a partial order \prec on the semigroup B_{n}^{+}by $\alpha \prec \beta$ for $\alpha, \beta \in B_{n}^{+}$, if there exists a $\gamma \in B_{n}^{+}$such that $\alpha \gamma=\beta$. Thurston [11] showed that this in fact defines a lattice order on the set of non-repeating braids $D=\left\{\alpha \in B_{n}^{+} \mid \alpha \prec \Delta\right\}$.

Proposition 13 The Artin-Magnus order on P_{n} extends the Garside order on $P_{n}^{+}=$ $P_{n} \cap B_{n}^{+}$.

Proof This follows immediately from Theorem 10.

10 The Partial Order of Elrifai and Morton

In [10], Elrifai and Morton define a partial order on B_{n}, as follows: for $\alpha, \beta \in B_{n}$, write $\alpha \leq_{\text {EM }} \beta$ when $\beta=\gamma_{1} \alpha \gamma_{2}$, for some $\gamma_{1}, \gamma_{2} \in B_{n}^{+}$. Then $1 \leq_{\text {EM }} \alpha$ if and only if $\alpha \in B_{n}^{+}$. Furthermore, taking $\Delta=\Delta_{n} \in B_{n}$ to be the "half-twist" braid, defined inductively by $\Delta_{2}=\sigma_{1}, \Delta_{n}=\Delta_{n-1} \sigma_{n-1} \cdots \sigma_{1}$, they show that in their partial order each generator σ_{i} satisfies

$$
\begin{equation*}
1 \leq_{\mathrm{EM}} \sigma_{i} \leq_{\mathrm{EM}} \Delta \tag{3}
\end{equation*}
$$

We remark that $1 \leq_{\text {EM }} \sigma_{i}{ }^{2} \leq_{\text {EM }} \Delta^{2}$ holds also for each generator σ_{i}, since $\Delta=$ $\gamma_{1} \sigma_{i}=\sigma_{i} \gamma_{2}$, for some $\gamma_{1}, \gamma_{2} \in B_{n}^{+}$. Hence $\Delta^{2}=\gamma_{1} \sigma_{i}{ }^{2} \gamma_{2}$. This is consistent with the Artin-Magnus order on P_{n} :

Proposition 14 For each generator $\sigma_{i} \in B_{n}$,

$$
1<_{\mathrm{AM}} \sigma_{i}^{2} \leq_{\mathrm{AM}} \Delta^{2}
$$

We have equality in the second inequality only when $i=1, n=2$.

Proof The inequalities follow immediately from Example 3.

However, the following example shows that the Artin-Magnus order on P_{n} does not extend the partial order defined by Elrifai and Morton. Let $\alpha=\sigma_{1}^{2} \sigma_{2}^{-2}$. This has Artin-combing $\left(x_{1}, x_{2}^{-1}\right)$, hence is positive in the Artin-Magnus ordering. Taking $\gamma_{1}=\sigma_{1} \sigma_{2}$ and $\gamma_{2}=\sigma_{2} \sigma_{1}$, and defining $\beta=\gamma_{1} \alpha \gamma_{2}$, we have $\beta<_{\text {AM }} 1$, so in particular, $\beta<\alpha$ in the Artin-Magnus order. We note that $\gamma_{1} \alpha \gamma_{1}^{-1}$ is also negative in the Artin-Magnus ordering-conjugation by non-pure braids is not order-preserving.

11 The Dehornoy Ordering

The Dehornoy ordering [8] on B_{n} may be defined in terms of the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ as follows: A braid β is in the positive cone if and only if there is, for some $i \in\{1, \ldots, n-1\}$, an expression

$$
\begin{equation*}
\beta=w_{1} \sigma_{i} w_{2} \sigma_{i} \cdots w_{k-1} \sigma_{i} w_{k} \tag{4}
\end{equation*}
$$

in which each w_{j} is a word in $\sigma_{i+1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}$. In other words, the generator with the lowest subscript appears with only positive exponent. A more geometric view of the same ordering appears in [13]. Then we define a right-ordering by $\alpha<\gamma$ iff $\gamma \alpha^{-1}$ is in the positive cone. (Actually Dehornoy chose his ordering to be left-invariant by using the criterion $\alpha^{-1} \gamma$ positive, but the choice is arbitrary and right-invariance seems to dominate the literature on ordered groups.)

As noted already, no ordering of B_{n} can be a bi-ordering, for $n \geq 3$. Even when restricted to P_{n}, as noted in [13], the Dehornoy ordering is not bi-invariant. However, there are some similarities between the Dehornoy and Artin-Magnus orderings. In both orderings we have

$$
\sigma_{1}^{2} \gg \sigma_{2}^{2} \gg \sigma_{3}^{2} \gg \cdots>1
$$

where the notation $\alpha \gg \beta$ means that α is greater than all powers of β. Another similarity is that the Dehornoy ordering is also a well-ordering when applied to Garside positive braids (see [18] and [6]).

On the other hand, the pure braid $\left(\sigma_{1} \sigma_{2}^{-1}\right)^{3}$ is clearly Dehornoy positive, whereas we saw that it is negative in the Artin-Magnus ordering. Of course, its inverse is Dehornoy negative and Artin-Magnus positive.

We wish to thank R. Fenn for pointing out the following proposition. It shows that the Dehornoy ordering is fundamentally different from our ordering of P_{n}.

Theorem $15 \quad B_{n}$ has a least positive element in the Dehornoy ordering, namely σ_{n-1}. Similarly, σ_{n-1}^{-1} is the greatest element which is <1 in B_{n}. In P_{n}, σ_{n-1}^{2} is the least Dehornoy-positive, and σ_{n-1}^{-2} is the greatest element which is <1 in the Dehornoy ordering.

Proof If a braid has the form of equation (4), call it i-positive, so that $\beta \in B_{n}$ is Dehornoy-positive if and only if it is i-positive for some $i=1, \ldots, n-1$. To prove the first statement, note that σ_{n-1} is $(n-1)$-positive. Suppose that there is a $\beta \in B_{n}$ with $1<\beta<\sigma_{n-1}$. Then $\beta \sigma_{n-1}^{-1}<1$ by right-invariance. Now β is i-positive for some i. If $i<n-1$ we conclude $\beta \sigma_{n-1}^{-1}$ is also i-positive, contradicting $\beta \sigma_{n-1}^{-1}<1$. On the other hand, if $i=n-1, \beta$ must be a positive power of σ_{n-1}, contradicting $\beta<\sigma_{n-1}$. This establishes the first statement. The other parts follow similarly.

Corollary 16 The Dehornoy ordering of B_{n} is discrete: every element β has a unique successor, $\sigma_{n-1} \beta$, and predecessor, $\sigma_{n-1}^{-1} \beta$. Similarly, in the Dehornoy ordering restricted to P_{n}, a pure braid β is the only element of P_{n} strictly between $\sigma_{n-1}^{-2} \beta$ and $\sigma_{n-1}^{2} \beta$.

Theorem 17 For $n \geq 3$, the Artin-Magnus ordering of P_{n} is order-dense: given any two pure n-braids $\alpha<\gamma$, there exist (infinitely many) pure braids β with $\alpha<\beta<\gamma$.

Proof By invariance, we may assume $\alpha=1$. In the free group F_{n-1} with generators x_{1}, \ldots, x_{n-1}, consider the sequence of commutators $\left\{c_{i}\right\}$ defined recursively by

$$
c_{1}=x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}, \quad c_{k}=x_{1} c_{k-1} x_{1}^{-1} c_{k-1}^{-1}
$$

A simple calculation shows that their Magnus expansions are, in ascending order:

$$
c_{k}=1+X_{1}^{k} X_{2}-k X_{1}^{k-1} X_{2} X_{1}+\cdots
$$

It follows that each $c_{k}>1$ in the Magnus order of F_{n-1}, but that $c_{k} \rightarrow 1$ in the sense that if $1<w \in F_{n-1}$, then $1<c_{k}<w$ for sufficiently large k; just take k bigger than the degree of the first nonzero non-constant term of the Magnus expansion of w. Now, in P_{n}, consider the sequence of braids $\{\beta(k)\}$ with Artin coordinates

$$
\beta(k)=\left(1, \ldots, 1, c_{k}\right)
$$

It is clear that given any $\gamma>1$ in P_{n}, we have $1<\beta(k)<\gamma$ for all sufficiently large k.

Since for $n \geq 3, P_{n}$ with the Artin-Magnus ordering is a countable totally ordered set, dense and with no greatest or least element, it is order-isomorphic with the rational numbers, by a classical result. Of course this order-isomorphism cannot be an algebraic isomorphism, as P_{n} is non-abelian.

We note that for B_{∞} or P_{∞} the Dehornoy ordering is no longer discrete, but is (like the Artin-Magnus ordering) order-dense.

Theorem 18 For $n \geq 3$, the Artin-Magnus ordering on P_{n} does not extend to any right-ordering on B_{n}. It also does not extend to a left-invariant ordering on B_{n}.

Proof We may assume that $n=3$. It has already been shown that $\left(\sigma_{1} \sigma_{2}^{-1}\right)^{3}<1$. A similar calculation shows that $\left(\sigma_{1}^{-1} \sigma_{2}\right)^{3}<1$. If the ordering extends to a right- (or left-) invariant ordering of B_{3}, we must have $\sigma_{1} \sigma_{2}^{-1}<1$ and $\sigma_{1}^{-1} \sigma_{2}<1$.

Assuming right invariance we conclude

$$
\sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}<\sigma_{1}^{-1} \sigma_{2}<1
$$

which would imply $\left(\sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}\right)^{3}<1$. But a direct calculation shows

$$
\left(\sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}\right)^{3}=\left(1, x_{2}^{-1} x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}^{2}\right)=\left(1,1+X_{1} X_{2}+\cdots\right)>1
$$

a contradiction showing no right-invariant extension to B_{3} exists.
If instead we assume left-invariance, we argue that

$$
\sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}<\sigma_{1} \sigma_{2}^{-1}<1
$$

and reach the same contradiction.
Recently, Rhemtulla and Rolfsen [27] have shown that no right- or left-invariant ordering of B_{n} whatsoever can be bi-invariant when restricted to P_{n}, or any other finite index subgroup.

12 Fibre-Type Hyperplane Arrangements

A hyperplane arrangement is a collection of complex ($n-1$)-dimensional hyperplanes in complex n-space. The theory of hyperplane arrangements is a deep subject with many unsolved problems. The fundamental group of the complement of the union of the hyperplanes is an important invariant of an arrangement (see the recent survey paper by Paris [25]). It is conjectured, but not known in general, that all such groups are torsion-free.

The pure braid group P_{n} can be viewed as the fundamental group of the complement of the hyperplanes $z_{i}=z_{j}, 1 \leq i<j \leq n$ in \mathbf{C}^{n}. Fibre-type hyperplane arrangements are defined in [12], and are in a sense a generalization of this example.

Theorem 19 Let G be the fundamental group of (the complement of) a fibre-type hyperplane arrangement. Then G is bi-orderable.

Proof By definition of a fibre-type arrangement, its complement M_{r} is the top of a tower of fibrations $M_{i} \rightarrow M_{i-1}$, with fibre the complex plane minus d_{i} points. The space M_{1} at the bottom of the tower is likewise a punctured complex plane. Therefore $\pi_{1}\left(M_{i}\right) \cong \pi_{1}\left(M_{i-1}\right) \ltimes F_{d_{i}}$. Moreover, according to [12, Proposition 2.5], the action of $\pi_{1}\left(M_{i-1}\right)$ upon $F_{d_{i}}$ is trivial on $H_{1}\left(F_{d_{i}}\right)$. It follows, in the same way as Theorem 6, that if each free group $F_{d_{i}}$ is given the Magnus ordering, then the lexicographic ordering on

$$
\left.G \cong\left(\cdots\left(F_{d_{1}} \ltimes F_{d_{2}}\right) \ltimes F_{d_{3}}\right) \ltimes \cdots \ltimes F_{d_{r}}\right)
$$

is bi-invariant.

References

[1] Emil Artin, Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4(1925), 47-72.
[2] \longrightarrow Theory of Braids. Ann. of Math. 48(1947), 101-126.
[3] George Bergman, Ordering co-products of groups. J. Algebra 133(1990), 313-339.
[4] G. Birkhoff, Review of Everett and Ulam, "On ordered groups". Mathematical Reviews MR 7,4g.
[5] Joan S. Birman, Braids, Links and Mapping Class Groups. Ann. of Math. Stud. 82, Princeton University Press, Princeton, 1975.
[6] Serge Burckel, The well-ordering on positive braids. J. Pure Appl. Algebra (1) 120(1997), 1-17.
[7] Gerhard Burde and Heiner Zieschang, Knots. de Gruyter, Inc., New York, 1989.
[8] Patrick Dehornoy, From large cardinals to braids via distributive algebra. J. Knot Theory Ramifications (1) 4(1995), 33-79.
[9] C. J. Everett and S. Ulam, On ordered groups. Trans. Amer. Math. Soc. 57(1945), 208-216.
[10] Elsayed A. Elrifai and H. R. Morton, Algorithms for positive braids. Quart. J. Math. Oxford Ser. (2) 45(1994), 479-497.
[11] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson and William P. Thurston, Word processing in groups. Jones \& Bartlett Publishers, Boston, MA, 1992.
[12] Michael Falk and Richard Randell, The lower central series of a fiber-type arrangement. Invent. Math. (1) 82(1985), 77-88.
[13] Roger Fenn, Michael Greene, Dale Rolfsen, Colin Rourke and Bert Wiest, Ordering the braid groups. Pacific J. Math, to appear, 1998.
[14] F. A. Garside, The braid group and other groups. Quart. J. Math. 20(1969), 235-254.
[15] O. Hölder, Die axiome der Quantität und die Lehre von Mass. Math.-Phys. Kl. 53(1901), 1-64.
[16] Kenkichi Iwasawa, On linearly ordered groups. J. Math. Soc. Japan (1) 1(1948), 1-9.
[17] A. I. Kokorin and V. M. Kopytov, Fully ordered groups. Halsted Press, Wiley \& Sons, New York, 1974.
[18] Richard Laver, Braid group actions on left distributive structures, and well orderings in the braid groups. J. Pure Appl. Algebra (1) 108(1996), 81-98.
[19] A. I. Mal'cev, On the embedding of group algebras in division algebras. Dokl. Akad. Nauk SSSR 60(1948), 1499-1501.
[20] Wilhelm Magnus, Abraham Karrass and Donald Solitar, Combinatorial group theory. Presentation of groups in terms of generators and relations. 2nd revised edition, Dover Publications, New York, 1976.
[21] Roberta Mura and Akbar Rhemtulla, Orderable Groups. Lecture Notes in Pure and Appl. Math. 27, Marcel Dekker, New York, 1977.
[22] B. H. Neumann, On ordered division rings. Trans. Amer. Math. Soc. 66(1949), 202-252.
$[23] \longrightarrow$ On ordered groups. Amer. J. Math. 71(1949), 1-18.
[24] L. P. Neuwirth, The status of some problems related to knot groups. In: Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, VA, 1973), Lecture Notes in Math. 375, Springer, Berlin, 1974, 203-230.
[25] Luis Paris, On the fundamental group of the complement of a complex hyperplane arrangement. To appear, 1998.
[26] Donald S. Passman, The algebraic structure of group rings. Wiley-Interscience Press, New York, 1977.
[27] Akbar Rhemtulla and Dale Rolfsen, Local indicability in ordered groups: braids and elementary amenable groups. Proc. Amer. Math. Soc., to appear.
[28] Dale Rolfsen and Jun Zhu, Braids, orderings and zero divisors. J. Knot Theory Ramifications 7(1998), 837-841.
[29] Hamish Short and Bert Wiest, Orderings of mapping class groups after Thurston. Enseign. Math. 46(2000), 279-312.
[30] A. A. Vinogradov, On the free product of ordered groups. Mat. Sb. 25(1949), 163-168.

Mathematics Department
University of British Columbia
Vancouver, BC
V6T 1Z2

[^0]: Received by the editors January 23, 2001; revised February 7, 2002.
 This research has been partially supported by a grant from the Canadian Natural Sciences and Engineering Research Council. The second author wishes to acknowledge the hospitality of the University of Bourgogne and the Mathematics Institute of the University of Geneva during part of this work.

 AMS subject classification: 20F36.
 (C)Canadian Mathematical Society 2003.

[^1]: ${ }^{1}$ Added in proof: P. Linnell has announced that $\mathbf{Z} B_{n}$ also embeds in a division ring.

