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Abstract. In this paper we give explicit equations for determinantal rational surface singularities and
prove dimension formulas for theT 1 andT 2 for those singularities.
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1. Introduction

Let (X;x) be a germ of a normal surface singularity of embedding dimensione:
Then the local ringOX of X can be given asOX = P=I, whereP is a power
series ring ine indeterminates. One says thatX is determinantalif the idealI
can be generated by thet � t minors of anr � s matrix with entries inP; with
the condition that the codimensione � 2 is equal to the ‘expected’ codimension
(r � t+ 1)(s� t+ 1).

We considerrational surface singularities.For those we know that the multi-
plicity m is equal toe� 1 [1]. Wahl proved [13] that arational surface singularity
of embedding dimensione can be given bym(m � 1)=2 equations withlinear
independent quadratic terms. Using this, it is not hard to show

PROPOSITION [13] (3.2).LetX be a rational determinantal surface singularity
of multiplicitym > 3. Then equations forX can be given by the2� 2 minors of a
2�m matrix.

Wahl also remarked that few rational surface singularities are determinantal.

THEOREM [13] (3.4).Let(X;x) be a determinantal rational surface of multiplic-
ity m > 3, and( eX;E) ! (X;x) be the minimal resolution. ThenE consists of
one(�m) curve and (possibly) some(�2) curves.

The(�m) curve we call thecentral curvefrom now on. The proof Wahl gives is
not difficult. Let (X;x) be a determinantal rational surface singularity, given by
the 2� 2 minors of a matrix�

f1 : : : fm
g1 : : : gm

�
:
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One has a rational map(gi: fi):X ! P
1. (This is independent ofi.) One can define

a modification(X;E0) ! (X;x) (called theTjurina modificationby Van Straten
[11]) by takingX the closure of the graph of this rational map. ThisX is then
given by the following equations: ((s: t) are homogeneous coordinates)

sf1 = tg1; : : : ; sfm = tgm:

There is an exceptionalP1 in X; given by the ideal generated by thef ’s and
theg’s. Wahl shows thatX can only have rational double point singularities, and
that the central curve has coefficient one in the fundamental cycle, from which he
is able to deduce the Theorem.

Wahl also expected that the converse of this Theorem is true, and wrote down
determinantal equations for some determinantal rational surface singularities with
reduced fundamental cycle. (The proof of [13] 3.6 is incomplete, however.) Also
Van Straten [11] wrote down equations for some so-calledAk

q singularities, which
are almost the same as ours. The converse of Wahl’s Theorem was shown by Röhr
[10], as a special case of a much more general Theorem onformats. The purpose
of this paper is to give eplicit equations for determinantal rational surface singu-
larities, thereby also showing the converse of Wahl’s Theorem. Wahl’s Theorem
restricts very much the shape of the resolution graph of a determinantal rational
surface singularity: One has one(�m) curve, with rational double point configu-
rations (RDP-configurations) attached to it. Applying a rationality criterium (using
a computation sequence for the fundamental cycle) one gets a list of how which
RDP-configurations can be attached to the central curve. This is all well-known
(and easy) and the list is written down in the first section.

Given a resolution graph of a rational determinantal singularity� one can try to
write down (determinantal) equations, which define a singularity with resolution
graph�: If one has those equations, it is relatively easy to check that the resolution
graph is indeed�; using the Tjurina modification (remember the easy equations
above for the Tjurina modification). This is done in section two.

The problem is that surface singularities in general arenot determined by the
analytic type of the resolution graph. (Laufer [8] wrote down all for which they
do determine the singularity.) So, we do not know whetherall rational surface
singularities of multiplicitym and with one(�m) curve in the minimal resolution
have equations as given in section two (although this turns out to be the case).
In section three we will resolve this problem. We will construct divisors on the
minimal resolution of our singularity. Then we invoke Artin’s Theorem, saying
that if one has a divisor on the minimal resolution of a rational surface singularity,
which intersects every exceptional curve trivial, then this divisor is principal, so
of the form (f). (Given a divisor, the choice off is determined up to a unit.)
By constructing enough divisors, we get plenty of functions onX: Using then
additiverelations between the divisors, one getsmultiplicativerelations between
the corresponding functions by choosing the functions, given their divisors, smart
enough. So, then one has still to check whether there are additive relations between
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the functions. We will show that the relations between those functions generate the
equations for the singularities. This will all be done in the third section.

Certainly our result is not the best possible, in the sense that some terms in the
equations can be disposed of after coordinate transformations. To have this sorted
out however, seems to require much more work.

Using the equations of determinantal rational surface singularities we are able
to get dimension formulae for theT 1 andT 2 of a rational surface singularity, which
are similar to the formulae for these modules for rational surface singularities with
reduced fundamental cycle [6].

This will be done in the fourth section. The formula forT 2 says

dim(T 2
X) = (m� 1)(m� 3) +

X
p2X̂

dim(T 2
X̂;p

);

whereX̂ ! X is the blow-up ofX in its singular point. There is a similar formula
for T 1. So, the dimensions of those vector spaces are more or less calculable from
the resolution. Hopefully this result will be a beginning of an understanding of the
deformation theory of determinantal rational surface singularities.

It is possible to write down equations for the more general class of so-called
quasi-determinantalrational surface singularities. These singularities were also
characterized (in terms of their resolutions graph) by Röhr. We will report on that
in a future paper. At the moment we are not able to get a similar result for theT 1

andT 2 of a quasi-determinantal rational surface singularity. This problem seems
to be much harder than the corresponding question for the determinantal ones.

1. Rational double point configurations

Let (X;x) be a normal surface singularity with minimal resolution( ~X;E) !
(X;x): Let E = [Ei be the irreducible decomposition ofE: The fundamental
cycleZ by definition is theminimalpositive cycle with support onE subject to the
condition thatZ � Ei 6 0 for all exceptional divisorsEi: The fundamental cycle
can be computed by means of a computation sequence [7] 4.1, as follows.

LetZ0 := E. GivenZk, if there is an exceptional curveF with Zk �F > 0 then
defineZk+1 := Zk+F: If on the other handZk �F 6 0 for all exceptional divisors
F then putZ = Zk.

This process stops. Computation sequences are useful not only for computing
Z, but also because of the following

RATIONALITY CRITERIUM (1.1). (X;x) is rational if and only if the following
two conditions hold

� Every exceptional curve is aP1.
� If Zk appears in a computation sequence forZ and if Zk � F > 0 then
Zk � F = 1.
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For a rational surface singularity the fundamental cycle also gives information
about the multiplicitym and embedding dimensione: one has�Z2 = m = e� 1,
see [1].

From now on we will assume that(X;x) is rational of multiplicitym and
that there is one exceptional curve, sayE0; on the minimal resolution which has
self-intersection(�m). For convenience, we call such a singularity determinantal
rational (although we have not proved yet that such a singularity is determinantal).
The curveE0 we call thecentral curve. Although the following proposition is
well-known, we include a proof.

PROPOSITION (1.2).Let (X;x) be a rational surface singularity of multiplicity
m with one(�m) curveE0 on the minimal resolution. Then

� All other exceptional curves have self-intersection�2.
� The coefficient of the fundamental cycleZ at the central curveE0 is one.

Proof.LetK be the canonical divisor on the minimal resolution. Then one has
the adjunction formulas

� Ei�K = �2�E2
i for all i:Note that this number is always nonnegative, because

we work on the minimal resolution. In particular we haveE0 �K = m� 2.
� Z �K = �2� Z2 =m� 2.

Now writeZ =
P
aiEi with ai > 0 and compute

(m� 2) = ZK = a0E0K +
X
i6=0

aiEiK = a0(m� 2) +
X
i6=0

ai(�2�E2
i ):

Becauseai > 0 for all i it follows thata0 = 1 andE2
i = �2 for all i 6= 0: 2

As any sub-configuration of the minimal resolution of a rational surface singu-
larity contracts itself to a rational surface singularity, the structure of the resolution
graph of a determinantal rational surface singularity is quite simple: one has a
central(�m) curve and rational double point configurations (RDP-configurations)
intersecting this central curve in different points. The list of rational double points
of course is very well known, the famousA;D;E list
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Of course, a dot denotes a(�2) curve.
Because of the rationality condition however, the central curve cannot inter-

sect an arbitrary curve of a RDP-configuration. Below we list the possibilities of
intersections of the central curves with the different RDP-configurations.

PROPOSITION/DEFINITION (1.3).Rational double point configurations can
intersect the central curve only as in one of the following cases

The box denotes the central curve. All other curves are(�2) curves. The number
of them isk + q � 1 in caseAq

k, otherwise it is the suffix. The number written at
each vertex is the coefficient of the corresponding curve in the fundamental cycle.
For each rational double point configurationRa we define themultiplicitym(a) as
the coefficient of the fundamental cycle at the unique curve of the rational double
point configuration intersecting the central curve. So, we assumed implicitly that
the self-intersection of the central curve is at most minus the coefficient of the
fundamental cycle of the curve adjacent to it. In caseZ � E0 < 0 we will say that
there are�Z �E0 A

1
0 rational double point configurations. The multiplicity of such

anA1
0 configuration we define to beone. This done formally, the number of rational

double point configurations is exactly the number of irreducible components of a
generic hyperplane section of the surface singularity. In fact, sometimes we will
identify anA1

0 with a smooth non-compact curve, which intersects the central curve
transversally on the minimal resolution.

Sketch of proof.We try to attach the central curve to one of the rational double
point configurations. From the rationality criterium it follows that there cannot be
two vertices of valence three in the resolution graph. So except for the caseA

q
k one

has to attach the central curve to an endpoint of theD;E configuration. Using the
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rationality criterium it is tedious to check that one is left with the possibilities as
written down in the list. 2

2. Equations for determinantal rational surface singularities

We consider arbitrary rational double point configurations which we denote by
Ra;0 6 a 6 t. (Recall our convention onA1

0 rational double point configurations.)
The multiplicity ofRa we denote bym(a).

We will write down equations for all determinantal rational surface singularities
with these given rational double point configurations. This will be done in the
following two definitions.

DEFINITION (2.1).Letx be an independent variable, and for each rational double
point configuration consider variablesyia;0 6 i 6 m(a)� 1.

For each rational double point configurationRa consider matricesMa (For
simplicity we will not write the suffixa in the variablesyia)

� A1
0:

Ma =

 
y0

x

!
:

� Aq
k : Define numbersr andp by

k = qr � p; 0 6 p 6 q � 1;

Ma =

 
y0 : : : yp�1 w yp+1 : : : yq�2 yq�1

y1 : : : yp yp+1 yp+2 : : : yq�1 xy0

!
:

w = yp + xr + Rest;

Rest2 (xy0; : : : ; xyp�1; yp+1; : : : ; yq�1):

� DI
k:

Ma =

 
y0 y1

y1 w

!
:

w = x2 + yk�1
0 + �xy

q
0 for some function�

andq is the integral part of(k + 1)=2.
� DII

2k :

Ma =

 
y0 y1 : : : yk�2 w

y1 y2 : : : yk�1 x2

!
;

w = yk�1 + y2
0 +Rest;
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Rest2 (y0y1; : : : ; y0yk�2; xy0; : : : ; xyk�2):

� DII
2k+1:

Ma =

 
y0 y1 : : : yk�2 w

y1 y2 : : : yk�1 y2
0

!
;

w = yk�1 + x2 + Rest;

Rest2 (xy0; : : : ; xyk�2; y
2
0; : : : ; y0yk�2):

� E6:

Ma =

 
y0 y1

y1 w

!
;

w = y2
0 + x3 + �x2y0 for some function�:

� E7:

Ma =

 
y0 y1 y2

y1 y2 w

!
;

w = y3
0 + x2 +Rest;

Rest2 (xy1; y
2
1; xy

2
0; y

2
0y1; xy2):

DEFINITION (2.2).Fix a double point configuration, sayR0. For all other rational
double point configurationRa, 1 6 a 6 t consider unitsua andva in C fx; yiag.
Suppose that fora 6= b the constantsua(0) andub(0) are not equal. Consider the
matrix

Na =

 
1 0

ua va

!
Ma:

So to getNa fromMa we multiply the second row ofMa by the unitva, and then
we addua times the first row to the second row. Moreover we putN0 = M0. We
then put

N = (N0N1 : : : Nt)

THEOREM (2.3).Fix rational double point configurations,R0 : : : Rt, and letN be
a matrix defined as above. For every choice forwa; ua andva (with the restrictions
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as above) the 2� 2 minors of the matrixN define a rational surface singularity
X of multiplicity m =

Pt
a=0m(a), having rational double point configurations

R0; : : : ; Rt. Moreover on the minimal resolution ofX there is a(�m) curve.
Conversely any rational surface singularityXwith a(�m) curve on the minimal

resolution, and rational double point configurationsR0 : : : Rt can be defined by
the2� 2 of a matrixN as defined above, for suitable choices ofwa; ua andva.

Proof. Here we only prove the first statement. The proof of the converse will
take the whole of the next section. We write

N =

 
f1 : : : fm

g1 : : : gm

!

and we consider the Tjurina modification

p : (X;E0)! (X;x)

defined by the equations

sf1 = tg1; : : : ; sfm = tgm:

This map is well-defined, precisely becauseX is defined by the 2� 2 minors of
N . The(s: t) are homogeneous coordinates onE0, which is aP1. The curveE0 is
mapped byp to the singular point ofX. Let ca be the constant term ofua for all
rational double point configurations. Then

CLAIM. In the equations given above of the Tjurina modificationX one can, away
from the point(ca: 1), eliminate the variablesyib; b 6= a. (i.e. locally they occur
with independent linear terms.)

We will look away from the point(1: 0): The investigation locally at the point
(1 : 0) is left to the reader. In the first row ofMa there is always a linear part of
type

(y0a : : : ym(a)a):

We denote the second row ofMa by

(h0a : : : hm(a)a):

Then one notes (case by case check) thathia does not contain the termsyja for
j 6 i, and also not linear terms of typeyib for b 6= a. Also the termx never occurs
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in the second row. We have the following equation forX in the chartt = 1

syia � (uayia + vahia) = 0:

Becauseva is a unit andhia does not contain the linear terms mentioned above, we
can successively eliminatey0a : : : ym(a)a away froms = ua(0) = ca. This proves
the claim, and more. It also shows that away from the points

(0 : 1); (c1 : 1); : : : ; (ct : 1)

onE0 the Tjurina modification is smooth. In fact, away from those points one can
eliminate allyia, leaving us with the variabless; x. The Tjurina modification is
given bym equations, and we havem+2 variables locally. We conclude thatX is
smooth with parameterss; x away from the points(0 : 1); (c1 : 1); : : : ; (ct : 1) on
E0. Moreover it follows that the (lift of the) functionx vanishes with order one on
the curveE0.

We now investigate the singularities at the points(cia : 1) for all rational double
point configurationsRa. As mentioned above, all otheryib for b 6= a can be
eliminated. So we are left then with the equations for the Tjurina modification
coming from the partNa. But by doing the coordinate transformation:s 7! s+ua,
and after that, multiplyings by the unitva, we just might consider the matrixMa.
Therefore, we have to investigate the Tjurina modification for every matrixMa at
the point(0: 1) 2 E0. We claim that for eachMa we have the rational double point
configurationRa. This is routine case by case check which we will do in two cases.
The other cases are left to the reader. We omit the suffixa in doing this check.

(1) DI
k: We writey0 = y andy1 = z: The equations for the Tjurina modification

aresy = z; sz = w. We eliminatez and get

s2y = x2 + yk�1 + �xyq:

This indeed is aDk singularity. To see where the central curveE0; which
is given byx = y = 0, intersects theDk configuration, we blow-up. We
look at thes-chart. So replace(x; y; s) by (sx; sy; s): The strict transform has
equation

sy + x2 + sk�3yk�1 + �sq�1xyq

and the exceptional locus is given bys = x2 = 0. So the strict transform has
anA1 singularity at(0;0;0); and the strict transform ofE0;which still is given
by x = y = 0 goes through it. Now it is well known, and easy to check that
the utmost left curve in theDk configuration
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is obtained by resolving theA1 singularity of the strict transform, and indeed
the central curve intersects it.

(2) E7: In the Tjurina modification we eliminate the variablesy1 andy2. After
writing y0 = y the singularity on the Tjurina modification has the equation

s3y = y3 + x2 + Rest; Rest2 (sxy; s2y2; sy3):

This indeed is anE7 singularity. The central curve is given byx = y = 0: We
blow up and look in thes-chart. The strict transform is given by:

s2y = sy3 + x2 + Rest; Rest2 (sxy; s2y2; sy3)

and the exceptional locus is theP1given bys = x2 = 0. In theE7 configuration

it is the utmost right curve. The strict transform has a singularity of typeD6 in
(0;0;0) and the strict transform ofE0 goes through it. Now the proof goes on
as in theDI

k case, and we conclude that the curveE0 goes through the utmost
left curve of theD6 configuration, which together with the curvex2 = 0 gives
theE7 configuration.

Let us recapitulate what we proved by now. On the minimal resolution of our
singularity we have the central curveE0 and rational double point configurations
R0; : : : ; Rt. All exceptional curves areP1’s, and only the central curve might not be
a(�2) curve. What we are left to show is that the central curve has self-intersection
�m = �

P
m(a). This can be done directly, by calculating the vanishing order

of the functionx on every exceptional curve. But we can also argue as follows.
The vanishing order ofx along the exceptional curve ofRa intersecting the central
curve must be at leastm(a). This is because the maximal ideal cycle is at least the
fundamental cycleZ. As the vanishing order ofx along the central curve is one, we
deduce thatE2

0 6 �m. Using the rationality criterium, one sees thatX is rational
of multiplicity �E2

0. But our singularity is given bym(m � 1)=2 equations with
linear independent quadratic part (a tedious check). Therefore, by Wahl’s structure
Theorem for equations of rational surface singularities, we deducem = �E2

0. 2

3. Divisors on the minimal resolution

We consider a rational surface singularity(X;x) of multiplicity m, with a (�m)
curve on the minimal resolution( ~X;E). Rather we consider good representatives
for those. We will embedX in complex space. For this, we need functions onX,
which generate the maximal ideal of the local ringOX . To obtain equations, one
has to determine the relations between these functions. The fundamental tool in
constructing functions on rational surface singularities is given in the following
Theorem of Artin.
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THEOREM (3.1) [1] (proof of Theorem 4).Let �: ( ~X;E) ! (X;x) be the
(minimal) resolution of a rational surface singularityX. LetY be a Weil-divisor
on ~X with the condition thatY � Ei = 0 for all irreducible componentsEi of E.
ThenY is aprincipaldivisor, i.e.Y = (y�) for somey 2 OX .

Of course, a functiony as in the Theorem is determined up to a unit inOX by
the divisorY .

Moreover we will need the following Theorem of Artin, which he did not
formulate either. A proof is contained in loc. cit.

THEOREM (3.2) [1] (proof of Theorem 4).LetX be a rational surface singularity,
�: ( ~X;E) ! (X;x) be the minimal resolution. Write the fundamental cycleZ as
Z =

P
riEi. Let H be a divisor on ~X with di := H � Ei 6 0 for all i. Let

O(�H) = ff 2 OX : (f�) > Hg. Then the number of generators of the ideal
O(�H) is equal to1+

P
i diri.

Our first job in this section is to write down divisors on the minimal resolution
of a determinantal surface singularity. Such a divisorY on ~X can be decomposed
asY = C + N . HereC is a compact divisor, and therefore has support on the
exceptional divisorE, andN is a non-compact divisor, i.e. a divisor whose support
has a finite number of intersection points with the exceptional divisor.In this
paper we only consider divisors on~X , for which each irreducible component of
the support of the non-compact partN intersects exactly one exceptional divisor
transversally.So such a divisor therefore does not pass through an intersection
point of two exceptional divisors.

For the compact partC ofY we use the dual graph notation; writingC =
P
aiEi

we put the numberai at the vertex in the dual graph which corresponds to the
exceptional curveEi. For the non-compact partN , write N =

P
bjNj . Then

for all j we draw an arrow through the unique vertex on the dual graph, which
corresponds to the curve theNj intersects. Moreover we will write the numberbj
near this arrow. In the example

the non-compact part consist of a smooth branch oneX with multiplicity one.
(Of course, its image onX is not smooth.) This divisor satisfies the condition of
Artin’s Theorem, i.e. intersects every exceptional divisor trivially. As it is usually
a very easy exercise to check that the conditions of Artin’s Theorem are satis-
fied, we immediately will writeY = (y), indicating that the divisor is principal.
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We begin with writing down the divisor(x) of a functionx. We write down
the restrictions to each RDP-configuration and the central curve. The divisor(x)
contains allA1

0 singularities (which by our convention are non-compact branch-
es intersecting the central curveE0) with multiplicity one. For the other RDP-
configurations we define

So Artin’s Theorem gives us a functionx. This functionx is fixedonce and for all.
Remark thatx is in the maximal ideal, but not in the square of the maximal ideal,
because the divisor(x) is strictly less than 2Z. For every rational double point
configurationRa we will now define certain divisors(yia) and(wa) of functions
on the minimal resolution. We will only write down therestriction to the rational
double point configurationRa, and the coefficient at the central curveE0. Those
restrictions are extended to divisors on the whole minimal resolution by putting
on thecomplementof Ra: (yia) = ca � (x) whereca is the coefficient of(yia) at
the central curveE0. The non-compact divisor which is drawn through the central
curve we callP (P for pole divisor). The divisorP is supposed not to intersect any
RDP -configuration. For the moment we will suppress the suffixa for the divisors
(yia) and(wa). For completeness we rewrite the divisor(x). A remark in advance:
If the number ofy’s is small, we will usually writey0 = y andy1 = z.

CaseA1
0. LetC be the non-compact branch of theA1

0 configuration. Then we define
(y) = (x) + P � C.
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CaseAq
k.

We moreover define divisors(yi) for 1 6 i 6 p� 1 by (yi) = (y0) + i � (�).

We define the divisors(yi) for p+ 1 6 i 6 q � 1 by (yi) = (w) + i � (�).
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CaseDI
2q.

CaseDI
2q+1.

CaseDII
2k .

We moreover define divisors(yi) by setting(yi) = (y0) + i(�) for 06 i 6 k� 1.
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CaseDII
2k+1:

We moreover define divisors(yi) by setting(yi) = (y0) + i(�) for 0 6 i 6 k � 2.

CaseE6.

CaseE7.
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PROPOSITION (3.3).The functionsx and yia whereRa run over all rational
double configurations generate the maximal ideal ofOX .

Proof.The number ofyia is exactly the multiplicitymof the singularity. Suppose
that

cx+
X

ciayia 2 m2
X

for somec; cia 2 C . We will show that the coefficientsc; cia are zero. As by
Artin one knows that the number of generators of the maximal ideal ism + 1,
this suffices to prove the Proposition. Of course it suffices to prove that thecia are
zero, as assuming this,c = 0 follows immediately from the fact thatx is not in the
square of the maximal ideal. We first consider the idealJ := (x; yia:Ra isnotanA1

0
configuration). The strict transform of the zero set ofJ on the minimal resolution
consist exactly of the non-compact partC of (x) passing through the central
curve. The number of irreducible components of those is exactly the number ofA1

0
singularities. For everyRa, which is anA1

0 singularity, the functiony0a vanishes
identically on all but one of the irreducible components ofC, and is a parameter
on the irreducible component belonging toRa. Now it follows immediately that
cia = 0 for allA1

0 configurationsRa.
So we may suppose that the above sum is only over all non-A1

0 configurations.
We now look at a fixed rational double point configurationRa which is not an
A1

0 configuration. There is exactly one irreducible componentCa of (x) passing
through an exceptional curve ofRa. (This is by construction of the divisor(x).)
We putx0 = x + " � y0a, which is a small perturbation of our functionx. For "
general enough, a case by case check shows that the unique irreducible component
C 0
a of (x0�) passing through an exceptional curveEa ofRa is smooth andreduced.

The minimal vanishing order of a function inm alongEa ism(a), the coefficient
of the fundamental cycle at the curveEa. From the definition of the functionsyib,
for b 6= a, it follows that they vanish with order at least 2m(a) alongEa. Here
we use thatRb is not anA1

0 configuration. Also all functions in the square of the
maximal ideal vanish with order at least 2m(a) alongEa. As by construction the
function yia vanishes with orderm(a) + i alongEa, it follows that the classes
of yia (i 6 m(a) � 1) in the local ring ofC 0

a generate its maximal ideal. Thus,
we conclude thatc0a � c � "; c1a; : : : are zero. As this is true for all small", also
c0a = 0. 2

Note that in all cases, (except in caseA1
0) we also wrote down the divisor of a

functionw. From the proposition it follows thatw must be expressible in theyia
and the functionx. We will make this somewhat more explicit in the following
proposition.

PROPOSITION (3.4).One can choosew and theyia such that inOX the 2� 2
minors of the matrixMa of Definition(2:1) are identically zero. In particular, one
can express the functionwa 2 OX as done in Definition(2:1).
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Proof. We suppress the suffixa in this proof. For eachRDP -configuration
(exceptA1

0) we consider an idealI in the local ring of the singularity.

� A
q
k: (yp; xr; xy0; : : : xyp�1; yp+1; : : : ; yq�1),

� DI
k: (x2; yk�1; xyq; zx; zyq�1),

� DII
2k : (yk�1; y

2
0; y0y1; : : : ; y0yk�2; xy0; : : : ; xyk�2),

� DII
2k+1: (yk�1; x

2; xy0; : : : ; xyk�2; y
2
0; : : : ; y0yk�2),

� E6: (y2
0; x

3; x2y0),

� E7: (y3
0; x

2; xy1; y
2
1; xy

2
0; y

2
0y1; xy2).

In each case we define the divisorH as the infimum of the divisors of functions
appearing in the definition of the above idealI. A case by case check shows that
w 2 O(�H). We now claim thatI = O(�H). First of all, a case by case check,
using Artin’s Theorem (3.2), shows that the number of generators ofO(�H) is
exactly the number of generators we used to defineI. To prove the claim, one
therefore has to show that the functions used to defineI are linearly independent
modulomO(�H). This is done by looking at vanishing orders of the functions
along certain exceptional divisors.

To give an example, look at the caseDII
2k . Here the divisorH is given by the

left-hand side of the following picture. On the right-hand side, we rewrite the
coefficient of the fundamental cycle on this rational double point configuration
(which is also the maximal ideal cycle, as we have a rational surface singularity).

We give some of the exceptional curves names, as indicated by the above picture.
Now suppose

ayk�1 +
X

aiy0yi +
X

bixyi 2 mO(�H)

for constantsa; ai; bi: We have to show that they are all zero. The vanishing order
of yk�1 alongA is 2k � 1. All other functions in our list have higher vanishing
order along this curve. As an element inmO(�H) has vanishing order at least
3k � 1 alongA it follows thata = 0. Elements inmO(�H) have vanishing order
at least 6k � 4 along the curveF . The vanishing orders of

y2
0; : : : ; y0yk�2; xy1; : : : ; xyk�2

alongF are respectively

4k � 2;4k; : : : ;6k � 6;4k � 1; : : : ;6k � 5:
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Every ordero with 4k � 2 6 o 6 6k � 5 occur exactly once. It follows thatai and
bi are all zero. This shows indeed that in this caseI = O(�H).

All other cases are treated in a similar way, by looking at vanishing order at
certain exceptional divisors. We therefore leave the other cases to the reader.

Because, as already remarked,w 2 O(�H), it follows thatw can be written
as a combination of the generators of the idealI: writing I = (g1; : : : ; gs) in the
order as written above, we havew =

Ps
i=1 aigi for someai. We now claim that

a1 anda2 are units. This again is done by looking at the vanishing order along
certain exceptional divisors. We again take the above example. Fora1 we look at
the vanishing order alongA: the functionw vanishes with order 2k � 1 there. But
yk�1 is the only generator vanishing with order 2k� 1 there; the other vanish with
higher order. Thereforea1 must be a unit. Fora2, look at the non-compact curve
intersecting the utmost right exceptional curve. The functiony2

0 is the only one
generator not vanishing there. Asw by construction does not vanish there either,
a2 must be a unit. Again all other cases are treated in a similar way.

After redefining some functions (if necessary), we may suppose thata1 = a2 =
1. We now define rational functions� = �a in each case. We moreover redefine
some generators of the local ring in such a way, that the 2�2 minors of the matrix
Ma vanish identically onOX . We treat some cases in more detail, leaving the
remaining cases to the reader.

� Aq
k:

� =
yp+1

w
;

yi = yp�
i�p; i 6 p� 1;

yi = yp+1�
i�p�1; i > p+ 1:

� DI
k: Choose a neww, such thatz2 = yw. By a coordinate change we can

dispose of the termszyq�1 andyk�1 in the expression forw. Now define
� := w=z.

� DII
2k : We deduce thatx2k�2y0=w

k�1yk�1 = v is a unit, because its divisor is
empty. Let� be a unit with�2k�1 = 1=v. We know replacey0 with �y0; yk�1

with �2yk�1 andw with �2w. With these new choices we define the rational
function� = �a by� = x2=w. Finally defineyi = �iy0 for 1 6 i 6 k� 1.2

PROPOSITION (3.5).LetRa andRb be two rational double point configurations,
and �a and �b the corresponding rational functions as defined in the previous
proof. Then there exist unitsu; v 2 OX such that

�a � v�b = u:

Proof. The pole divisor of both�a and�b on the minimal resolution consist
of thesamebranchP intersecting the central curve transversally. The image ofP
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onX is smooth, as the generic hyperplane section vanishes with multiplicity one
on the central curve, hence has vanishing order one onP . The image ofP onX
we also denote byP . Consider a function� in OX whose non-compact divisor
on the minimal resolution is equal toP+ REST, where REST has no points in
common withP , and is reduced. Using Artin’s Theorem, such functions are easy
to construct. Consider the functions�; �a�; �b�. Because the pole divisor of�a is
justP , and the rational function�a has degree one (hence does not vanish) on the
central curve, the vanishing order onP of the function�a� is exactly the vanishing
order of� along the central curve. Moreover the function�a� vanishes on REST.
As the same statements hold for�b�, it follows that modulo� one has an equality

�a� = v�b� for some unitv 2 OX :

We therefore have an equality

�a�� v�b� = u�

for someu 2 OX . We divide by�

�a � v�b = u:

Because the zero divisors of�a and�b are completely different, even if restricted
to the central curve, if follows thatu is a unit. 2

Proof of the second statement of Theorem(2.3). We fix a rational double point
configurationR0. For every other rational double point configurationRa we have,
by Proposition (3.5) unitsua andva in OX such that

�0 = ua + va�a:

Therefore, the 2�2 minors of the matrixN of Definition (2.2) are identically zero
as elements ofOX .

By abuse of notation we consider thex; yia as variables, so are parameters for
the embedding space ofX. Take liftsua; va in C fx; yiagwhich are also units. Then
the 2� 2 minors ofN are in the ideal defining our singularityX: We claim that
they generate the ideal definingX: Suppose the contrary, i.e. there is a functionf
which vanishes identically onX but which is not in the ideal generated by the 2�2
minors ofN . But in the previous section we saw that the spaceX 0 defined by the
2� 2 minors ofN define a rational surface singularity, in particular it is a normal
surface singularity. ButX is contained in the zero locus off onX 0, which then is
a (maybe non-reduced) curve singularity. But this is a contradiction, because we
assumed thatX is a rationalsurfacesingularity. 2
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4. TheT1 and T2 of a determinantal rational surface singularity

Let X be a determinantal rational surface singularity. In this section we give
formulas forT 1

X andT 2
X . In obtaining the results of this section, experiments with

the computer algebra system Singular [5] were helpful. Basic for us is the following
result.

THEOREM (4.1) [2] (5.1.1).LetX be a rational surface singularity of multiplicity
m. Then the number of generators ofT 2

X is (m� 1)(m� 3).

Behnke and Christophersen in their paper gave examples of rational surface
singularities where the dimension ofT 2 is exactly(m� 1)(m� 3). Further inves-
tigations on the dimension ofT 2 for rational surface singularities were carried out
in [6]. Although formulated differently in loc.cit., their result can be stated as

THEOREM (4.2) [6] (3.16 B) and (1.10).LetX be a rational surface singularity
with reduced fundamental cycle, of multiplicitym > 3. LetX̂ be obtained fromX
by blowing-up the singular point. Then

dim(T 2
X) = (m� 1)(m� 3) +

X
p2X̂

dim(T 2
X̂;p

):

The usefulness of this Theorem lies in the fact that the right-hand side can be
computed by a inductive procedure. Indeed, one has the following result of Tjurina.

THEOREM (4.3) [12].Let X̂ ! X be the blow-up ofX at the singular point of a
rational surface singularity. LetX 0 be the space obtained from the minimal reso-
lution ofX by contracting all exceptional curves which intersects the fundamental
cycle trivially. ThenX 0 is isomorphic toX̂ .

For a general rational surface singularity, the inequality

dim(T 2
X) > (m� 1)(m� 3) +

X
p2X̂

dim(T 2
X̂;p

)

has been proved recently by Christophersen and Gustavsen [3]. One cannot expect
equality in general however, a counterexample is given in [2].

In order to investigateT 2 for rational determinantal singularities we recall the
following result of Behnke and Christophersen.

PROPOSITION (4.4) [2] (2.1.1).Let f1; : : : ; fn; g1; : : : ; gn be elements of the
maximal ideal ofC fx1; : : : ; xeg. LetX be aCohen–Macaulaysingularity defined
by the2� 2-minors of 

f1 f2 : : : fn

g1 g2 : : : gn

!
:
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Then theOX-moduleT 2
X is annihilated by the ideal(f1; : : : ; fn; g1; : : : ; gn).

Before applying this proposition, we do one small coordinate change in the equa-
tions for rational determinantal singularities; In case we have anA

q
k singularity for

whichp = 0 (i.e. anAq
rq singularity), we do the coordinate change

y0 7! y0 � xr:

Apart from this coordinate change, we assume that rational determinantal singu-
larities are given by the equations of Section 2. We immediately deduce from
these equations of determinantal rational surface singularities and the proposition
of Behnke and Christophersen the following

PROPOSITION/DEFINITION (4.5).Let X be a rational determinantal surface
singularity, given by the equations described above. Then the moduleT 2

X is anni-
hilated by allyia. MoreoverT 2

X is annihilated byx�, where� = �(X) is given by
the minimum over�a for all rational double point configurationsRa. These�a are
given by the following

A0
1 �a = 1;

Aq
rq �a = r + 1;

A
q
k �a = r; k = qr � p; 0 < p 6 q � 1:

For all other rational double point configurations, one has�a = 2.

PROPOSITION (4.6).Let X be a rational determinantal surface singularity of
multiplicitym. Then there exists a one parameter deformationXT ! T ofX with
on thegeneralfiber� = �(X) rational surface singularities of multiplicitym. This
deformation occurs on the Artin component. By openness of versality, one might
even assume that these singularities are all cones over rational normal curves of
degreem.

Proof. Look at the equations of a determinantal rational surface singularity.
(Note the coordinate change in caseAq

rq we did above). We are going to perturb the
matrix which give the equations for the determinantal rational surface singularities.
Then deform the singularity by taking the 2� 2 minors of the perturbed matrix.
This deformation occurs on the Artin component, by a result of Wahl [14], (3.2).
In the sub-matrix belonging to a rational double point configurationRa, there is
a termx�a occuring (with coefficient 1). We are going to perturb the matrix by
just perturbing these terms. Fix pairwise different numbersc1; : : : c�, which are all
different from 0. Then perturb the termx�a by (x� tc1) � � � (x� tc�)(x

�a��). For
t 6= 0 we are getting singularities atyia = 0 andx = cit, for i = 1; : : : ; �. A
tedious check shows that at these points the singularity has multiplicitym.
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THEOREM (4.7).LetX be a determinantal rational surface singularity of multi-
plicity m > 3. Then

dim(T 2
X) = (m� 1)(m� 3) +

X
p2X̂

dim(T 2
X̂;p

):

Proof.We first claim that

(m� 1)(m� 3)� = (m� 1)(m� 3) +
X
p2X̂

dim(T 2
X̂;p

):

This is just an investigation of the blow-up of a rational determinantal surface
singularity, using the result of Tjurina. From Wahl’s result on the structure of the
resolution of a rational determinantal surface singularities, and Tjurina’s result on
the blow-up of we deduce that we have the following two possibilities.

(1) The fundamental cycleZ intersects the central curve strictly negative, i.e. we
have anA0

1 singularity. Then� = 1, and on the first blow up̂X we just have
rational double points. So

P
p2X̂ dim(T 2

X̂;p
) = 0, which proves the theorem

in this case.
(2) Z intersects the central curve trivially. Then on̂X we have, apart from rational

double points, just one rational determinantal surface singularity, sayX 0. We
claim that�(X 0) = �(X)� 1. This just a case by case check, using Tjurina’s
description and the computation sequence for the fundamental cycleZ. For
instance suppose that one has aE6; E7;D

I
k orDII

k configuration forX, then
X 0 has anA0

1 singularity, as the fundamental cycle forX 0 now will intersect
the central curve negatively. So we just have to investigate theA

q
k case, which

is easy, either using the resolution and Tjurina’s result, or using the equations
and the definition of� immediately.

This proves the claim. As remarked before, the inequality> in the statement of the
Theorem is a general result by Christophersen and Gustavsen. But in our case it can
also be deduced quite elementary: It is well-known that the dimension ofT 2

X for a
rational surface singularity of multiplicitym (m > 3) is at least(m� 1)(m� 3).
Use the above deformation into� rational surface singularities of multiplicitym
(the multiplicity of X) and semi-continuity of the dimension ofT 2 to get the
inequality>. For the other inequality we use again that the number of generators
of T 2

X is (m � 1)(m � 3). Furthermore we know thatT 2
X is annihilated by the

functionsyia andx�, see (4.5). So we deduce that dim(T 2
X) 6 (m�1)(m�3)�.2

As a corollary of the result ofT 2
X , and the existence of the special one parameter

deformation, one also gets a result on the dimension ofT 1
X , and on the surjectivity

of the obstruction map.
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COROLLARY (4.8). Let X be a determinantal rational surface singularity, of
multiplicitym and let� = �(X). Let( ~X;E)! (X;x) be the minimal resolution.
Let� ~X be the tangent sheaf of~X. Then

dim(T 1
X) = (m� 3)�+ dim(H1(� ~X)):

Proof.We look at the one parameter deformationXT of X which has� cones
over the rational normal curve of degreem on the general fiber. Look at the
associated long exact sequence of cotangent modules

� � � ! T 1
XT =T

�t
�! T 1

XT =T
�
�! T 1

X ! T 2
XT =T

�t
�! T 2

XT =T

�
�! T 2

X : : :

The dimension ofT 2 for a cone over the rational normal curve of degreem is
(m� 1)(m� 3), so theC ftg-moduleT 2

XT =T
has rank at least�(m� 1)(m� 3).

Hence the image of� has at least dimension�(m � 1)(m � 3), which we just
proved to be the dimension ofT 2

X . Therefore� issurjective, and it follows that there
are no other singularities on a general fiber, apart maybe from rational double and
triple points. As a finitely generatedC ftg-module, the rank ofT 2

XT =T
is dim(coker

(�t))� dim(ker(�t)). Therefore multiplication byt is injective onT 2
XT =T

. From the
exact sequence it follows that� is surjectivetoo. The proof now literally goes as in
[6], proof of (3.16A), which we repeat here. One knows that dim(H1(� ~X)) is the
dimension of the Artin component, which is well-known to be smooth. We denote
by cod(X) the codimension of the Artin component inT 1

X . The statement of the
Theorem simply is

cod(X) = (m� 3)�:

By Greuel and Looijenga [4] the dimension of the image of� (so in our case
dim(T 1

X)) is the dimension of the Zariski-tangent space at a general point ofj(T ),
wherej(T ) ! the base space of a semi-universal deformation ofX, is a map,
inducing by base change the given one parameter deformationXT ! T . Now
j(T ) lies on the Artin component, which is smooth. Openness of versality gives
that the codimension of the Artin component is additive. The codimension of the
Artin component of the cone of the rational normal curve of degreem is m � 3
[9], and as one has� of those on the general fiber, the result follows. 2

COROLLARY (4.9).The ‘obstruction map’ for a determinantal rational surface
singularity is surjective, i.e. the minimal number of equations to describe the
base space of a semi-universal deformation of a determinantal rational surface
singularityX is the dimension ofT 2

X .
Proof.Just repeat the argument of [6] (4.2).
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