Determinantal rational surface singularities

THEO DE JONG
Universitaet Saarbruecken, Fachbereich Mathematik, Saarbruecken, Germany;
e-mail: dejong@math.uni-sb.de

Received 14 March 1996; accepted in final form 23 May 1997
Abstract. In this paper we give explicit equations for determinantal rational surface singularities and prove dimension formulas for the T^{1} and T^{2} for those singularities.

Key words: rational singularity, determinantal variety.

1. Introduction

Let (X, x) be a germ of a normal surface singularity of embedding dimension e. Then the local ring \mathcal{O}_{X} of X can be given as $\mathcal{O}_{X}=P / I$, where P is a power series ring in e indeterminates. One says that X is determinantal if the ideal I can be generated by the $t \times t$ minors of an $r \times s$ matrix with entries in P, with the condition that the codimension $e-2$ is equal to the 'expected' codimension $(r-t+1)(s-t+1)$.

We consider rational surface singularities. For those we know that the multiplicity m is equal to $e-1$ [1]. Wahl proved [13] that a rational surface singularity of embedding dimension e can be given by $m(m-1) / 2$ equations with linear independent quadratic terms. Using this, it is not hard to show

PROPOSITION [13] (3.2). Let X be a rational determinantal surface singularity of multiplicity $m \geqslant 3$. Then equations for X can be given by the 2×2 minors of a $2 \times m$ matrix.
Wahl also remarked that few rational surface singularities are determinantal.
THEOREM [13] (3.4). Let (X, x) be a determinantal rational surface of multiplicity $m \geqslant 3$, and $(\tilde{X}, E) \rightarrow(X, x)$ be the minimal resolution. Then E consists of one $(-m)$ curve and (possibly) some (-2) curves.
The $(-m)$ curve we call the central curve from now on. The proof Wahl gives is not difficult. Let (X, x) be a determinantal rational surface singularity, given by the 2×2 minors of a matrix

$$
\left(\begin{array}{ccc}
f_{1} & \ldots & f_{m} \\
g_{1} & \ldots & g_{m}
\end{array}\right) .
$$

One has a rational map $\left(g_{i}: f_{i}\right): X \rightarrow \mathbb{P}^{1}$. (This is independent of i.) One can define a modification $\left(\bar{X}, E_{0}\right) \rightarrow(X, x)$ (called the Tjurina modification by Van Straten [11]) by taking \bar{X} the closure of the graph of this rational map. This \bar{X} is then given by the following equations: ($(s: t)$ are homogeneous coordinates)

$$
s f_{1}=t g_{1}, \ldots, s f_{m}=t g_{m}
$$

There is an exceptional \mathbb{P}^{1} in \bar{X}, given by the ideal generated by the f 's and the g 's. Wahl shows that \bar{X} can only have rational double point singularities, and that the central curve has coefficient one in the fundamental cycle, from which he is able to deduce the Theorem.

Wahl also expected that the converse of this Theorem is true, and wrote down determinantal equations for some determinantal rational surface singularities with reduced fundamental cycle. (The proof of [13] 3.6 is incomplete, however.) Also Van Straten [11] wrote down equations for some so-called A_{q}^{k} singularities, which are almost the same as ours. The converse of Wahl's Theorem was shown by Röhr [10], as a special case of a much more general Theorem on formats. The purpose of this paper is to give eplicit equations for determinantal rational surface singularities, thereby also showing the converse of Wahl's Theorem. Wahl's Theorem restricts very much the shape of the resolution graph of a determinantal rational surface singularity: One has one $(-m)$ curve, with rational double point configurations (RDP-configurations) attached to it. Applying a rationality criterium (using a computation sequence for the fundamental cycle) one gets a list of how which RDP-configurations can be attached to the central curve. This is all well-known (and easy) and the list is written down in the first section.

Given a resolution graph of a rational determinantal singularity Γ one can try to write down (determinantal) equations, which define a singularity with resolution graph Γ. If one has those equations, it is relatively easy to check that the resolution graph is indeed Γ, using the Tjurina modification (remember the easy equations above for the Tjurina modification). This is done in section two.

The problem is that surface singularities in general are not determined by the analytic type of the resolution graph. (Laufer [8] wrote down all for which they do determine the singularity.) So, we do not know whether all rational surface singularities of multiplicity m and with one $(-m)$ curve in the minimal resolution have equations as given in section two (although this turns out to be the case). In section three we will resolve this problem. We will construct divisors on the minimal resolution of our singularity. Then we invoke Artin's Theorem, saying that if one has a divisor on the minimal resolution of a rational surface singularity, which intersects every exceptional curve trivial, then this divisor is principal, so of the form (f). (Given a divisor, the choice of f is determined up to a unit.) By constructing enough divisors, we get plenty of functions on X. Using then additive relations between the divisors, one gets multiplicative relations between the corresponding functions by choosing the functions, given their divisors, smart enough. So, then one has still to check whether there are additive relations between
the functions. We will show that the relations between those functions generate the equations for the singularities. This will all be done in the third section.

Certainly our result is not the best possible, in the sense that some terms in the equations can be disposed of after coordinate transformations. To have this sorted out however, seems to require much more work.

Using the equations of determinantal rational surface singularities we are able to get dimension formulae for the T^{1} and T^{2} of a rational surface singularity, which are similar to the formulae for these modules for rational surface singularities with reduced fundamental cycle [6].

This will be done in the fourth section. The formula for T^{2} says

$$
\operatorname{dim}\left(T_{X}^{2}\right)=(m-1)(m-3)+\sum_{p \in \hat{X}} \operatorname{dim}\left(T_{\hat{X}, p}^{2}\right)
$$

where $\hat{X} \rightarrow X$ is the blow-up of X in its singular point. There is a similar formula for T^{1}. So, the dimensions of those vector spaces are more or less calculable from the resolution. Hopefully this result will be a beginning of an understanding of the deformation theory of determinantal rational surface singularities.

It is possible to write down equations for the more general class of so-called quasi-determinantal rational surface singularities. These singularities were also characterized (in terms of their resolutions graph) by Röhr. We will report on that in a future paper. At the moment we are not able to get a similar result for the T^{1} and T^{2} of a quasi-determinantal rational surface singularity. This problem seems to be much harder than the corresponding question for the determinantal ones.

1. Rational double point configurations

Let (X, x) be a normal surface singularity with minimal resolution $(\tilde{X}, E) \rightarrow$ (X, x). Let $E=\cup E_{i}$ be the irreducible decomposition of E. The fundamental cycle Z by definition is the minimal positive cycle with support on E subject to the condition that $Z \cdot E_{i} \leqslant 0$ for all exceptional divisors E_{i}. The fundamental cycle can be computed by means of a computation sequence [7] 4.1, as follows.

Let $Z_{0}:=E$. Given Z_{k}, if there is an exceptional curve F with $Z_{k} \cdot F>0$ then define $Z_{k+1}:=Z_{k}+F$. If on the other hand $Z_{k} \cdot F \leqslant 0$ for all exceptional divisors F then put $Z=Z_{k}$.

This process stops. Computation sequences are useful not only for computing Z, but also because of the following

RATIONALITY CRITERIUM (1.1). (X, x) is rational if and only if the following two conditions hold

- Every exceptional curve is a \mathbb{P}^{1}.
- If Z_{k} appears in a computation sequence for Z and if $Z_{k} \cdot F>0$ then $Z_{k} \cdot F=1$.

For a rational surface singularity the fundamental cycle also gives information about the multiplicity m and embedding dimension e : one has $-Z^{2}=m=e-1$, see [1].

From now on we will assume that (X, x) is rational of multiplicity m and that there is one exceptional curve, say E_{0}, on the minimal resolution which has self-intersection $(-m)$. For convenience, we call such a singularity determinantal rational (although we have not proved yet that such a singularity is determinantal). The curve E_{0} we call the central curve. Although the following proposition is well-known, we include a proof.

PROPOSITION (1.2). Let (X, x) be a rational surface singularity of multiplicity m with one $(-m)$ curve E_{0} on the minimal resolution. Then

- All other exceptional curves have self-intersection -2.
- The coefficient of the fundamental cycle Z at the central curve E_{0} is one.

Proof. Let K be the canonical divisor on the minimal resolution. Then one has the adjunction formulas

- $E_{i} \cdot K=-2-E_{i}^{2}$ for all i. Note that this number is always nonnegative, because we work on the minimal resolution. In particular we have $E_{0} \cdot K=m-2$.
- $Z \cdot K=-2-Z^{2}=m-2$.

Now write $Z=\sum a_{i} E_{i}$ with $a_{i}>0$ and compute

$$
(m-2)=Z K=a_{0} E_{0} K+\sum_{i \neq 0} a_{i} E_{i} K=a_{0}(m-2)+\sum_{i \neq 0} a_{i}\left(-2-E_{i}^{2}\right)
$$

Because $a_{i}>0$ for all i it follows that $a_{0}=1$ and $E_{i}^{2}=-2$ for all $i \neq 0$.
As any sub-configuration of the minimal resolution of a rational surface singularity contracts itself to a rational surface singularity, the structure of the resolution graph of a determinantal rational surface singularity is quite simple: one has a central ($-m$) curve and rational double point configurations (RDP-configurations) intersecting this central curve in different points. The list of rational double points of course is very well known, the famous A, D, E list

Of course, a dot denotes a (-2) curve.
Because of the rationality condition however, the central curve cannot intersect an arbitrary curve of a RDP-configuration. Below we list the possibilities of intersections of the central curves with the different RDP-configurations.

PROPOSITION/DEFINITION (1.3). Rational double point configurations can intersect the central curve only as in one of the following cases

The box denotes the central curve. All other curves are (-2) curves. The number of them is $k+q-1$ in case A_{k}^{q}, otherwise it is the suffix. The number written at each vertex is the coefficient of the corresponding curve in the fundamental cycle. For each rational double point configuration R_{a} we define the multiplicity $m(a)$ as the coefficient of the fundamental cycle at the unique curve of the rational double point configuration intersecting the central curve. So, we assumed implicitly that the self-intersection of the central curve is at most minus the coefficient of the fundamental cycle of the curve adjacent to it. In case $Z \cdot E_{0}<0$ we will say that there are $-Z \cdot E_{0} A_{0}^{1}$ rational double point configurations. The multiplicity of such an A_{0}^{1} configuration we define to be one. This done formally, the number of rational double point configurations is exactly the number of irreducible components of a generic hyperplane section of the surface singularity. In fact, sometimes we will identify an A_{0}^{1} with a smooth non-compact curve, which intersects the central curve transversally on the minimal resolution.

Sketch of proof. We try to attach the central curve to one of the rational double point configurations. From the rationality criterium it follows that there cannot be two vertices of valence three in the resolution graph. So except for the case A_{k}^{q} one has to attach the central curve to an endpoint of the D, E configuration. Using the
rationality criterium it is tedious to check that one is left with the possibilities as written down in the list.

2. Equations for determinantal rational surface singularities

We consider arbitrary rational double point configurations which we denote by $R_{a}, 0 \leqslant a \leqslant t$. (Recall our convention on A_{0}^{1} rational double point configurations.) The multiplicity of R_{a} we denote by $m(a)$.

We will write down equations for all determinantal rational surface singularities with these given rational double point configurations. This will be done in the following two definitions.

DEFINITION (2.1). Let x be an independent variable, and for each rational double point configuration consider variables $y_{i a}, 0 \leqslant i \leqslant m(a)-1$.

For each rational double point configuration R_{a} consider matrices M_{a} (For simplicity we will not write the suffix a in the variables $y_{i a}$)

- A_{0}^{1} :

$$
M_{a}=\binom{y_{0}}{x}
$$

- $A_{k}^{q}:$ Define numbers r and p by

$$
k=q r-p ; 0 \leqslant p \leqslant q-1
$$

$$
M_{a}=\left(\begin{array}{cccccccc}
y_{0} & \ldots & y_{p-1} & w & y_{p+1} & \ldots & y_{q-2} & y_{q-1} \\
y_{1} & \ldots & y_{p} & y_{p+1} & y_{p+2} & \ldots & y_{q-1} & x y_{0}
\end{array}\right)
$$

$$
w=y_{p}+x^{r}+\text { Rest }
$$

$$
\text { Rest } \in\left(x y_{0}, \ldots, x y_{p-1}, y_{p+1}, \ldots, y_{q-1}\right)
$$

- D_{k}^{I} :

$$
\begin{aligned}
& M_{a}=\left(\begin{array}{ll}
y_{0} & y_{1} \\
y_{1} & w
\end{array}\right) \\
& w=x^{2}+y_{0}^{k-1}+\lambda x y_{0}^{q} \quad \text { for some function } \lambda
\end{aligned}
$$

and q is the integral part of $(k+1) / 2$.

- $D_{2 k}^{I I}$:

$$
\begin{aligned}
& M_{a}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & \ldots & y_{k-2} & w \\
y_{1} & y_{2} & \ldots & y_{k-1} & x^{2}
\end{array}\right) \\
& w=y_{k-1}+y_{0}^{2}+\text { Rest }
\end{aligned}
$$

$$
\text { Rest } \in\left(y_{0} y_{1}, \ldots, y_{0} y_{k-2}, x y_{0}, \ldots, x y_{k-2}\right)
$$

- $D_{2 k+1}^{I I}$:

$$
M_{a}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & \ldots & y_{k-2} & w \\
y_{1} & y_{2} & \ldots & y_{k-1} & y_{0}^{2}
\end{array}\right)
$$

$$
w=y_{k-1}+x^{2}+\text { Rest }
$$

Rest $\in\left(x y_{0}, \ldots, x y_{k-2}, y_{0}^{2}, \ldots, y_{0} y_{k-2}\right)$.

- E_{6} :

$$
\begin{aligned}
& M_{a}=\left(\begin{array}{ll}
y_{0} & y_{1} \\
y_{1} & w
\end{array}\right) \\
& w=y_{0}^{2}+x^{3}+\lambda x^{2} y_{0} \quad \text { for some function } \lambda .
\end{aligned}
$$

- E_{7} :

$$
\begin{aligned}
& M_{a}=\left(\begin{array}{lll}
y_{0} & y_{1} & y_{2} \\
y_{1} & y_{2} & w
\end{array}\right), \\
& w=y_{0}^{3}+x^{2}+\text { Rest }
\end{aligned}
$$

$$
\text { Rest } \in\left(x y_{1}, y_{1}^{2}, x y_{0}^{2}, y_{0}^{2} y_{1}, x y_{2}\right)
$$

DEFINITION (2.2). Fix a double point configuration, say R_{0}. For all other rational double point configuration $R_{a}, 1 \leqslant a \leqslant t$ consider units u_{a} and v_{a} in $\mathbb{C}\left\{x, y_{i a}\right\}$. Suppose that for $a \neq b$ the constants $u_{a}(0)$ and $u_{b}(0)$ are not equal. Consider the matrix

$$
N_{a}=\left(\begin{array}{cc}
1 & 0 \\
u_{a} & v_{a}
\end{array}\right) M_{a}
$$

So to get N_{a} from M_{a} we multiply the second row of M_{a} by the unit v_{a}, and then we add u_{a} times the first row to the second row. Moreover we put $N_{0}=M_{0}$. We then put

$$
N=\left(N_{0} N_{1} \ldots N_{t}\right)
$$

THEOREM (2.3). Fix rational double point configurations, $R_{0} \ldots R_{t}$, and let N be a matrix defined as above. For every choice for w_{a}, u_{a} and v_{a} (with the restrictions

```
comp4040.tex; 15/07/1998; 10:15; v.7; p.7
```

as above) the 2×2 minors of the matrix N define a rational surface singularity X of multiplicity $m=\sum_{a=0}^{t} m(a)$, having rational double point configurations R_{0}, \ldots, R_{t}. Moreover on the minimal resolution of X there is a $(-m)$ curve.

Conversely any rational surface singularity X with $a(-m)$ curve on the minimal resolution, and rational double point configurations $R_{0} \ldots R_{t}$ can be defined by the 2×2 of a matrix N as defined above, for suitable choices of w_{a}, u_{a} and v_{a}.

Proof. Here we only prove the first statement. The proof of the converse will take the whole of the next section. We write

$$
N=\left(\begin{array}{lll}
f_{1} & \cdots & f_{m} \\
g_{1} & \ldots & g_{m}
\end{array}\right)
$$

and we consider the Tjurina modification

$$
p:\left(\bar{X}, E_{0}\right) \rightarrow(X, x)
$$

defined by the equations

$$
s f_{1}=t g_{1} ; \ldots ; s f_{m}=t g_{m}
$$

This map is well-defined, precisely because X is defined by the 2×2 minors of N. The $(s: t)$ are homogeneous coordinates on E_{0}, which is a \mathbb{P}^{1}. The curve E_{0} is mapped by p to the singular point of X. Let c_{a} be the constant term of u_{a} for all rational double point configurations. Then

CLAIM. In the equations given above of the Tjurina modification \bar{X} one can, away from the point $\left(c_{a}: 1\right)$, eliminate the variables $y_{i b} ; b \neq a$. (i.e. locally they occur with independent linear terms.)

We will look away from the point (1:0). The investigation locally at the point $(1: 0)$ is left to the reader. In the first row of M_{a} there is always a linear part of type

$$
\left(y_{0 a} \ldots y_{m(a) a}\right)
$$

We denote the second row of M_{a} by

$$
\left(h_{0 a} \ldots h_{m(a) a}\right)
$$

Then one notes (case by case check) that $h_{i a}$ does not contain the terms $y_{j a}$ for $j \leqslant i$, and also not linear terms of type $y_{i b}$ for $b \neq a$. Also the term x never occurs
in the second row. We have the following equation for \bar{X} in the chart $t=1$

$$
s y_{i a}-\left(u_{a} y_{i a}+v_{a} h_{i a}\right)=0
$$

Because v_{a} is a unit and $h_{i a}$ does not contain the linear terms mentioned above, we can successively eliminate $y_{0 a} \ldots y_{m(a) a}$ away from $s=u_{a}(0)=c_{a}$. This proves the claim, and more. It also shows that away from the points

$$
(0: 1),\left(c_{1}: 1\right), \ldots,\left(c_{t}: 1\right)
$$

on E_{0} the Tjurina modification is smooth. In fact, away from those points one can eliminate all $y_{i a}$, leaving us with the variables s, x. The Tjurina modification is given by m equations, and we have $m+2$ variables locally. We conclude that \bar{X} is smooth with parameters s, x away from the points $(0: 1),\left(c_{1}: 1\right), \ldots,\left(c_{t}: 1\right)$ on E_{0}. Moreover it follows that the (lift of the) function x vanishes with order one on the curve E_{0}.

We now investigate the singularities at the points $\left(c_{i a}: 1\right)$ for all rational double point configurations R_{a}. As mentioned above, all other $y_{i b}$ for $b \neq a$ can be eliminated. So we are left then with the equations for the Tjurina modification coming from the part N_{a}. But by doing the coordinate transformation: $s \mapsto s+u_{a}$, and after that, multiplying s by the unit v_{a}, we just might consider the matrix M_{a}. Therefore, we have to investigate the Tjurina modification for every matrix M_{a} at the point $(0: 1) \in E_{0}$. We claim that for each M_{a} we have the rational double point configuration R_{a}. This is routine case by case check which we will do in two cases. The other cases are left to the reader. We omit the suffix a in doing this check.
(1) D_{k}^{I} : We write $y_{0}=y$ and $y_{1}=z$. The equations for the Tjurina modification are $s y=z ; s z=w$. We eliminate z and get

$$
s^{2} y=x^{2}+y^{k-1}+\lambda x y^{q}
$$

This indeed is a D_{k} singularity. To see where the central curve E_{0}, which is given by $x=y=0$, intersects the D_{k} configuration, we blow-up. We look at the s-chart. So replace (x, y, s) by $(s x, s y, s)$. The strict transform has equation

$$
s y+x^{2}+s^{k-3} y^{k-1}+\lambda s^{q-1} x y^{q}
$$

and the exceptional locus is given by $s=x^{2}=0$. So the strict transform has an A_{1} singularity at $(0,0,0)$, and the strict transform of E_{0}, which still is given by $x=y=0$ goes through it. Now it is well known, and easy to check that the utmost left curve in the D_{k} configuration

is obtained by resolving the A_{1} singularity of the strict transform, and indeed the central curve intersects it.
(2) E_{7} : In the Tjurina modification we eliminate the variables y_{1} and y_{2}. After writing $y_{0}=y$ the singularity on the Tjurina modification has the equation

$$
s^{3} y=y^{3}+x^{2}+\text { Rest } ; \text { Rest } \in\left(s x y, s^{2} y^{2}, s y^{3}\right) .
$$

This indeed is an E_{7} singularity. The central curve is given by $x=y=0$. We blow up and look in the s-chart. The strict transform is given by:

$$
s^{2} y=s y^{3}+x^{2}+\text { Rest } ; \text { Rest } \in\left(s x y, s^{2} y^{2}, s y^{3}\right)
$$

and the exceptional locus is the \mathbb{P}^{1} given by $s=x^{2}=0$. In the E_{7} configuration

it is the utmost right curve. The strict transform has a singularity of type D_{6} in $(0,0,0)$ and the strict transform of E_{0} goes through it. Now the proof goes on as in the D_{k}^{I} case, and we conclude that the curve E_{0} goes through the utmost left curve of the D_{6} configuration, which together with the curve $x^{2}=0$ gives the E_{7} configuration.
Let us recapitulate what we proved by now. On the minimal resolution of our singularity we have the central curve E_{0} and rational double point configurations R_{0}, \ldots, R_{t}. All exceptional curves are \mathbb{P}^{1} 's, and only the central curve might not be a (-2) curve. What we are left to show is that the central curve has self-intersection $-m=-\sum m(a)$. This can be done directly, by calculating the vanishing order of the function x on every exceptional curve. But we can also argue as follows. The vanishing order of x along the exceptional curve of R_{a} intersecting the central curve must be at least $m(a)$. This is because the maximal ideal cycle is at least the fundamental cycle Z. As the vanishing order of x along the central curve is one, we deduce that $E_{0}^{2} \leqslant-m$. Using the rationality criterium, one sees that X is rational of multiplicity $-E_{0}^{2}$. But our singularity is given by $m(m-1) / 2$ equations with linear independent quadratic part (a tedious check). Therefore, by Wahl's structure Theorem for equations of rational surface singularities, we deduce $m=-E_{0}^{2}$.

3. Divisors on the minimal resolution

We consider a rational surface singularity (X, x) of multiplicity m, with a $(-m)$ curve on the minimal resolution (\tilde{X}, E). Rather we consider good representatives for those. We will embed X in complex space. For this, we need functions on X, which generate the maximal ideal of the local ring \mathcal{O}_{X}. To obtain equations, one has to determine the relations between these functions. The fundamental tool in constructing functions on rational surface singularities is given in the following Theorem of Artin.

THEOREM (3.1) [1] (proof of Theorem 4). Let $\pi:(\tilde{X}, E) \rightarrow(X, x)$ be the (minimal) resolution of a rational surface singularity X. Let Y be a Weil-divisor on \tilde{X} with the condition that $Y \cdot E_{i}=0$ for all irreducible components E_{i} of E. Then Y is a principal divisor, i.e. $Y=(y \pi)$ for some $y \in \mathcal{O}_{X}$.

Of course, a function y as in the Theorem is determined up to a unit in \mathcal{O}_{X} by the divisor Y.

Moreover we will need the following Theorem of Artin, which he did not formulate either. A proof is contained in loc. cit.

THEOREM (3.2) [1] (proof of Theorem 4). Let X be a rational surface singularity, $\pi:(\tilde{X}, E) \rightarrow(X, x)$ be the minimal resolution. Write the fundamental cycle Z as $Z=\sum r_{i} E_{i}$. Let H be a divisor on \tilde{X} with $d_{i}:=H \cdot E_{i} \leqslant 0$ for all i. Let $\mathcal{O}(-H)=\left\{f \in \mathcal{O}_{X}:(f \pi) \geqslant H\right\}$. Then the number of generators of the ideal $\mathcal{O}(-H)$ is equal to $1+\sum_{i} d_{i} r_{i}$.

Our first job in this section is to write down divisors on the minimal resolution of a determinantal surface singularity. Such a divisor Y on \tilde{X} can be decomposed as $Y=C+N$. Here C is a compact divisor, and therefore has support on the exceptional divisor E, and N is a non-compact divisor, i.e. a divisor whose support has a finite number of intersection points with the exceptional divisor. In this paper we only consider divisors on \tilde{X}, for which each irreducible component of the support of the non-compact part N intersects exactly one exceptional divisor transversally. So such a divisor therefore does not pass through an intersection point of two exceptional divisors.

For the compact part C of Y we use the dual graph notation; writing $C=\sum a_{i} E_{i}$ we put the number a_{i} at the vertex in the dual graph which corresponds to the exceptional curve E_{i}. For the non-compact part N, write $N=\sum b_{j} N_{j}$. Then for all j we draw an arrow through the unique vertex on the dual graph, which corresponds to the curve the N_{j} intersects. Moreover we will write the number b_{j} near this arrow. In the example

the non-compact part consist of a smooth branch on \tilde{X} with multiplicity one. (Of course, its image on X is not smooth.) This divisor satisfies the condition of Artin's Theorem, i.e. intersects every exceptional divisor trivially. As it is usually a very easy exercise to check that the conditions of Artin's Theorem are satisfied, we immediately will write $Y=(y)$, indicating that the divisor is principal.

We begin with writing down the divisor (x) of a function x. We write down the restrictions to each RDP-configuration and the central curve. The divisor (x) contains all A_{0}^{1} singularities (which by our convention are non-compact branches intersecting the central curve E_{0}) with multiplicity one. For the other RDPconfigurations we define

So Artin's Theorem gives us a function x. This function x is fixed once and for all. Remark that x is in the maximal ideal, but not in the square of the maximal ideal, because the divisor (x) is strictly less than $2 Z$. For every rational double point configuration R_{a} we will now define certain divisors $\left(y_{i a}\right)$ and $\left(w_{a}\right)$ of functions on the minimal resolution. We will only write down the restriction to the rational double point configuration R_{a}, and the coefficient at the central curve E_{0}. Those restrictions are extended to divisors on the whole minimal resolution by putting on the complement of $R_{a}:\left(y_{i a}\right)=c_{a} \cdot(x)$ where c_{a} is the coefficient of $\left(y_{i a}\right)$ at the central curve E_{0}. The non-compact divisor which is drawn through the central curve we call P (P for pole divisor). The divisor P is supposed not to intersect any $R D P$-configuration. For the moment we will suppress the suffix a for the divisors $\left(y_{i a}\right)$ and $\left(w_{a}\right)$. For completeness we rewrite the divisor (x). A remark in advance: If the number of y 's is small, we will usually write $y_{0}=y$ and $y_{1}=z$.
Case A_{0}^{1}. Let C be the non-compact branch of the A_{0}^{1} configuration. Then we define $(y)=(x)+P-C$.

Case A_{k}^{q}.
(x)

(α

We moreover define divisors $\left(y_{i}\right)$ for $1 \leqslant i \leqslant p-1$ by $\left(y_{i}\right)=\left(y_{0}\right)+i \cdot(\alpha)$.
(w)

We define the divisors $\left(y_{i}\right)$ for $p+1 \leqslant i \leqslant q-1$ by $\left(y_{i}\right)=(w)+i \cdot(\alpha)$.

Case $D_{2 q}^{I}$.
(x)

(y)

(z)

(w)

Case $D_{2 q+1}^{I}$.
(x)

(y)

(z)

(w)

Case $D_{2 k}^{I I}$.
(x)

(w)

We moreover define divisors $\left(y_{i}\right)$ by setting $\left(y_{i}\right)=\left(y_{0}\right)+i(\alpha)$ for $0 \leqslant i \leqslant k-1$.

Case $D_{2 k+1}^{I I}$.
(x)

(α)

(w)

We moreover define divisors $\left(y_{i}\right)$ by setting $\left(y_{i}\right)=\left(y_{0}\right)+i(\alpha)$ for $0 \leqslant i \leqslant k-2$.
Case E_{6}.
(x)

(z)

(y)

(w)

Case E_{7}.
(x)

PROPOSITION (3.3). The functions x and $y_{i a}$ where R_{a} run over all rational double configurations generate the maximal ideal of \mathcal{O}_{X}.

Proof. The number of $y_{i a}$ is exactly the multiplicity m of the singularity. Suppose that

$$
c x+\sum c_{i a} y_{i a} \in \mathbf{m}_{X}^{2}
$$

for some $c, c_{i a} \in \mathbb{C}$. We will show that the coefficients $c, c_{i a}$ are zero. As by Artin one knows that the number of generators of the maximal ideal is $m+1$, this suffices to prove the Proposition. Of course it suffices to prove that the $c_{i a}$ are zero, as assuming this, $c=0$ follows immediately from the fact that x is not in the square of the maximal ideal. We first consider the ideal $J:=\left(x, y_{i a}: R_{a}\right.$ is not an A_{0}^{1} configuration). The strict transform of the zero set of J on the minimal resolution consist exactly of the non-compact part C of (x) passing through the central curve. The number of irreducible components of those is exactly the number of A_{0}^{1} singularities. For every R_{a}, which is an A_{0}^{1} singularity, the function $y_{0 a}$ vanishes identically on all but one of the irreducible components of C, and is a parameter on the irreducible component belonging to R_{a}. Now it follows immediately that $c_{i a}=0$ for all A_{0}^{1} configurations R_{a}.

So we may suppose that the above sum is only over all non- A_{0}^{1} configurations. We now look at a fixed rational double point configuration R_{a} which is not an A_{0}^{1} configuration. There is exactly one irreducible component C_{a} of (x) passing through an exceptional curve of R_{a}. (This is by construction of the divisor (x).) We put $x^{\prime}=x+\varepsilon \cdot y_{0 a}$, which is a small perturbation of our function x. For ε general enough, a case by case check shows that the unique irreducible component C_{a}^{\prime} of $\left(x^{\prime} \pi\right)$ passing through an exceptional curve E_{a} of R_{a} is smooth and reduced. The minimal vanishing order of a function in \mathbf{m} along E_{a} is $m(a)$, the coefficient of the fundamental cycle at the curve E_{a}. From the definition of the functions $y_{i b}$, for $b \neq a$, it follows that they vanish with order at least $2 m(a)$ along E_{a}. Here we use that R_{b} is not an A_{0}^{1} configuration. Also all functions in the square of the maximal ideal vanish with order at least $2 m(a)$ along E_{a}. As by construction the function $y_{i a}$ vanishes with order $m(a)+i$ along E_{a}, it follows that the classes of $y_{i a}(i \leqslant m(a)-1)$ in the local ring of C_{a}^{\prime} generate its maximal ideal. Thus, we conclude that $c_{0 a}-c \cdot \varepsilon, c_{1 a}, \ldots$ are zero. As this is true for all small ε, also $c_{0 a}=0$.

Note that in all cases, (except in case A_{0}^{1}) we also wrote down the divisor of a function w. From the proposition it follows that w must be expressible in the $y_{i a}$ and the function x. We will make this somewhat more explicit in the following proposition.

PROPOSITION (3.4). One can choose w and the $y_{i a}$ such that in \mathcal{O}_{X} the 2×2 minors of the matrix M_{a} of Definition (2.1) are identically zero. In particular, one can express the function $w_{a} \in \mathcal{O}_{X}$ as done in Definition (2.1).

Proof. We suppress the suffix a in this proof. For each $R D P$-configuration (except A_{0}^{1}) we consider an ideal I in the local ring of the singularity.

- $A_{k}^{q}:\left(y_{p}, x^{r}, x y_{0}, \ldots x y_{p-1}, y_{p+1}, \ldots, y_{q-1}\right)$,
- $D_{k}^{I}:\left(x^{2}, y^{k-1}, x y^{q}, z x, z y^{q-1}\right)$,
- $D_{2 k}^{I I}:\left(y_{k-1}, y_{0}^{2}, y_{0} y_{1}, \ldots, y_{0} y_{k-2}, x y_{0}, \ldots, x y_{k-2}\right)$,
- $D_{2 k+1}^{I I}:\left(y_{k-1}, x^{2}, x y_{0}, \ldots, x y_{k-2}, y_{0}^{2}, \ldots, y_{0} y_{k-2}\right)$,
- $E_{6}:\left(y_{0}^{2}, x^{3}, x^{2} y_{0}\right)$,
- $E_{7}:\left(y_{0}^{3}, x^{2}, x y_{1}, y_{1}^{2}, x y_{0}^{2}, y_{0}^{2} y_{1}, x y_{2}\right)$.

In each case we define the divisor H as the infimum of the divisors of functions appearing in the definition of the above ideal I. A case by case check shows that $w \in \mathcal{O}(-H)$. We now claim that $I=\mathcal{O}(-H)$. First of all, a case by case check, using Artin's Theorem (3.2), shows that the number of generators of $\mathcal{O}(-H)$ is exactly the number of generators we used to define I. To prove the claim, one therefore has to show that the functions used to define I are linearly independent modulo $\mathbf{m} \mathcal{O}(-H)$. This is done by looking at vanishing orders of the functions along certain exceptional divisors.

To give an example, look at the case $D_{2 k}^{I I}$. Here the divisor H is given by the left-hand side of the following picture. On the right-hand side, we rewrite the coefficient of the fundamental cycle on this rational double point configuration (which is also the maximal ideal cycle, as we have a rational surface singularity).

We give some of the exceptional curves names, as indicated by the above picture. Now suppose

$$
a y_{k-1}+\sum a_{i} y_{0} y_{i}+\sum b_{i} x y_{i} \in \mathbf{m} \mathcal{O}(-H)
$$

for constants a, a_{i}, b_{i}. We have to show that they are all zero. The vanishing order of y_{k-1} along A is $2 k-1$. All other functions in our list have higher vanishing order along this curve. As an element in $\mathbf{m} \mathcal{O}(-H)$ has vanishing order at least $3 k-1$ along A it follows that $a=0$. Elements in $\mathbf{m} \mathcal{O}(-H)$ have vanishing order at least $6 k-4$ along the curve F. The vanishing orders of

$$
y_{0}^{2}, \ldots, y_{0} y_{k-2}, x y_{1}, \ldots, x y_{k-2}
$$

along F are respectively

$$
4 k-2,4 k, \ldots, 6 k-6,4 k-1, \ldots, 6 k-5
$$

Every order o with $4 k-2 \leqslant o \leqslant 6 k-5$ occur exactly once. It follows that a_{i} and b_{i} are all zero. This shows indeed that in this case $I=\mathcal{O}(-H)$.

All other cases are treated in a similar way, by looking at vanishing order at certain exceptional divisors. We therefore leave the other cases to the reader.

Because, as already remarked, $w \in \mathcal{O}(-H)$, it follows that w can be written as a combination of the generators of the ideal I : writing $I=\left(g_{1}, \ldots, g_{s}\right)$ in the order as written above, we have $w=\sum_{i=1}^{s} a_{i} g_{i}$ for some a_{i}. We now claim that a_{1} and a_{2} are units. This again is done by looking at the vanishing order along certain exceptional divisors. We again take the above example. For a_{1} we look at the vanishing order along A : the function w vanishes with order $2 k-1$ there. But y_{k-1} is the only generator vanishing with order $2 k-1$ there; the other vanish with higher order. Therefore a_{1} must be a unit. For a_{2}, look at the non-compact curve intersecting the utmost right exceptional curve. The function y_{0}^{2} is the only one generator not vanishing there. As w by construction does not vanish there either, a_{2} must be a unit. Again all other cases are treated in a similar way.

After redefining some functions (if necessary), we may suppose that $a_{1}=a_{2}=$ 1. We now define rational functions $\alpha=\alpha_{a}$ in each case. We moreover redefine some generators of the local ring in such a way, that the 2×2 minors of the matrix M_{a} vanish identically on \mathcal{O}_{X}. We treat some cases in more detail, leaving the remaining cases to the reader.

- A_{k}^{q} :

$$
\begin{aligned}
& \alpha=\frac{y_{p+1}}{w} \\
& y_{i}=y_{p} \alpha^{i-p} ; i \leqslant p-1 \\
& y_{i}=y_{p+1} \alpha^{i-p-1} ; i \geqslant p+1
\end{aligned}
$$

- D_{k}^{I} : Choose a new w, such that $z^{2}=y w$. By a coordinate change we can dispose of the terms $z y^{q-1}$ and y^{k-1} in the expression for w. Now define $\alpha:=w / z$.
- $D_{2 k}^{I I}$: We deduce that $x^{2 k-2} y_{0} / w^{k-1} y_{k-1}=v$ is a unit, because its divisor is empty. Let β be a unit with $\beta^{2 k-1}=1 / v$. We know replace y_{0} with $\beta y_{0}, y_{k-1}$ with $\beta^{2} y_{k-1}$ and w with $\beta^{2} w$. With these new choices we define the rational function $\alpha=\alpha_{a}$ by $\alpha=x^{2} / w$. Finally define $y_{i}=\alpha^{i} y_{0}$ for $1 \leqslant i \leqslant k-1$.

PROPOSITION (3.5). Let R_{a} and R_{b} be two rational double point configurations, and α_{a} and α_{b} the corresponding rational functions as defined in the previous proof. Then there exist units $u, v \in \mathcal{O}_{X}$ such that

$$
\alpha_{a}-v \alpha_{b}=u
$$

Proof. The pole divisor of both α_{a} and α_{b} on the minimal resolution consist of the same branch P intersecting the central curve transversally. The image of P
on X is smooth, as the generic hyperplane section vanishes with multiplicity one on the central curve, hence has vanishing order one on P. The image of P on X we also denote by P. Consider a function ϕ in \mathcal{O}_{X} whose non-compact divisor on the minimal resolution is equal to $P+$ REST, where REST has no points in common with P, and is reduced. Using Artin's Theorem, such functions are easy to construct. Consider the functions $\phi, \alpha_{a} \phi, \alpha_{b} \phi$. Because the pole divisor of α_{a} is just P, and the rational function α_{a} has degree one (hence does not vanish) on the central curve, the vanishing order on P of the function $\alpha_{a} \phi$ is exactly the vanishing order of ϕ along the central curve. Moreover the function $\alpha_{a} \phi$ vanishes on REST. As the same statements hold for $\alpha_{b} \phi$, it follows that modulo ϕ one has an equality

$$
\alpha_{a} \phi=v \alpha_{b} \phi \quad \text { for some unit } v \in \mathcal{O}_{X}
$$

We therefore have an equality

$$
\alpha_{a} \phi-v \alpha_{b} \phi=u \phi
$$

for some $u \in \mathcal{O}_{X}$. We divide by ϕ

$$
\alpha_{a}-v \alpha_{b}=u
$$

Because the zero divisors of α_{a} and α_{b} are completely different, even if restricted to the central curve, if follows that u is a unit.

Proof of the second statement of Theorem (2.3). We fix a rational double point configuration R_{0}. For every other rational double point configuration R_{a} we have, by Proposition (3.5) units u_{a} and v_{a} in \mathcal{O}_{X} such that

$$
\alpha_{0}=u_{a}+v_{a} \alpha_{a}
$$

Therefore, the 2×2 minors of the matrix N of Definition (2.2) are identically zero as elements of \mathcal{O}_{X}.

By abuse of notation we consider the $x, y_{i a}$ as variables, so are parameters for the embedding space of X. Take lifts u_{a}, v_{a} in $\mathbb{C}\left\{x, y_{i a}\right\}$ which are also units. Then the 2×2 minors of N are in the ideal defining our singularity X. We claim that they generate the ideal defining X. Suppose the contrary, i.e. there is a function f which vanishes identically on X but which is not in the ideal generated by the 2×2 minors of N. But in the previous section we saw that the space X^{\prime} defined by the 2×2 minors of N define a rational surface singularity, in particular it is a normal surface singularity. But X is contained in the zero locus of f on X^{\prime}, which then is a (maybe non-reduced) curve singularity. But this is a contradiction, because we assumed that X is a rational surface singularity.

4. The \boldsymbol{T}^{1} and \boldsymbol{T}^{2} of a determinantal rational surface singularity

Let X be a determinantal rational surface singularity. In this section we give formulas for T_{X}^{1} and T_{X}^{2}. In obtaining the results of this section, experiments with the computer algebra system Singular [5] were helpful. Basic for us is the following result.

THEOREM (4.1) [2] (5.1.1). Let X be a rational surface singularity of multiplicity m. Then the number of generators of T_{X}^{2} is $(m-1)(m-3)$.

Behnke and Christophersen in their paper gave examples of rational surface singularities where the dimension of T^{2} is exactly $(m-1)(m-3)$. Further investigations on the dimension of T^{2} for rational surface singularities were carried out in [6]. Although formulated differently in loc.cit., their result can be stated as

THEOREM (4.2) [6] (3.16 B) and (1.10). Let X be a rational surface singularity with reduced fundamental cycle, of multiplicity $m \geqslant 3$. Let \hat{X} be obtained from X by blowing-up the singular point. Then

$$
\operatorname{dim}\left(T_{X}^{2}\right)=(m-1)(m-3)+\sum_{p \in \hat{X}} \operatorname{dim}\left(T_{\hat{X}, p}^{2}\right)
$$

The usefulness of this Theorem lies in the fact that the right-hand side can be computed by a inductive procedure. Indeed, one has the following result of Tjurina.

THEOREM (4.3) [12]. Let $\hat{X} \rightarrow X$ be the blow-up of X at the singular point of a rational surface singularity. Let X^{\prime} be the space obtained from the minimal resolution of X by contracting all exceptional curves which intersects the fundamental cycle trivially. Then X^{\prime} is isomorphic to \hat{X}.

For a general rational surface singularity, the inequality

$$
\operatorname{dim}\left(T_{X}^{2}\right) \geqslant(m-1)(m-3)+\sum_{p \in \hat{X}} \operatorname{dim}\left(T_{\hat{X}, p}^{2}\right)
$$

has been proved recently by Christophersen and Gustavsen [3]. One cannot expect equality in general however, a counterexample is given in [2].

In order to investigate T^{2} for rational determinantal singularities we recall the following result of Behnke and Christophersen.

PROPOSITION (4.4) [2] (2.1.1). Let $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ be elements of the maximal ideal of $\mathbb{C}\left\{x_{1}, \ldots, x_{e}\right\}$. Let X be a Cohen-Macaulay singularity defined by the 2×2-minors of

$$
\left(\begin{array}{llll}
f_{1} & f_{2} & \ldots & f_{n} \\
g_{1} & g_{2} & \ldots & g_{n}
\end{array}\right)
$$

Then the \mathcal{O}_{X}-module T_{X}^{2} is annihilated by the ideal $\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}\right)$.
Before applying this proposition, we do one small coordinate change in the equations for rational determinantal singularities; In case we have an A_{k}^{q} singularity for which $p=0$ (i.e. an $A_{r q}^{q}$ singularity), we do the coordinate change

$$
y_{0} \mapsto y_{0}-x^{r}
$$

Apart from this coordinate change, we assume that rational determinantal singularities are given by the equations of Section 2. We immediately deduce from these equations of determinantal rational surface singularities and the proposition of Behnke and Christophersen the following

PROPOSITION/DEFINITION (4.5). Let X be a rational determinantal surface singularity, given by the equations described above. Then the module T_{X}^{2} is annihilated by all $y_{i a}$. Moreover T_{X}^{2} is annihilated by x^{ϕ}, where $\phi=\phi(X)$ is given by the minimum over ϕ_{a} for all rational double point configurations R_{a}. These ϕ_{a} are given by the following

$$
\begin{aligned}
& A_{1}^{0} \quad \phi_{a}=1 \\
& A_{r q}^{q} \quad \phi_{a}=r+1, \\
& A_{k}^{q} \quad \phi_{a}=r, \quad k=q r-p, \quad 0<p \leqslant q-1 .
\end{aligned}
$$

For all other rational double point configurations, one has $\phi_{a}=2$.

PROPOSITION (4.6). Let X be a rational determinantal surface singularity of multiplicity m. Then there exists a one parameter deformation $X_{T} \rightarrow T$ of X with on the general fiber $\phi=\phi(X)$ rational surface singularities of multiplicity m. This deformation occurs on the Artin component. By openness of versality, one might even assume that these singularities are all cones over rational normal curves of degree m.

Proof. Look at the equations of a determinantal rational surface singularity. (Note the coordinate change in case $A_{r q}^{q}$ we did above). We are going to perturb the matrix which give the equations for the determinantal rational surface singularities. Then deform the singularity by taking the 2×2 minors of the perturbed matrix. This deformation occurs on the Artin component, by a result of Wahl [14], (3.2). In the sub-matrix belonging to a rational double point configuration R_{a}, there is a term $x^{\phi_{a}}$ occuring (with coefficient 1). We are going to perturb the matrix by just perturbing these terms. Fix pairwise different numbers $c_{1}, \ldots c_{\phi}$, which are all different from 0 . Then perturb the term $x^{\phi_{a}}$ by $\left(x-t c_{1}\right) \cdots\left(x-t c_{\phi}\right)\left(x^{\phi_{a}-\phi}\right)$. For $t \neq 0$ we are getting singularities at $y_{i a}=0$ and $x=c_{i} t$, for $i=1, \ldots, \phi$. A tedious check shows that at these points the singularity has multiplicity m.

THEOREM (4.7). Let X be a determinantal rational surface singularity of multiplicity $m \geqslant 3$. Then

$$
\operatorname{dim}\left(T_{X}^{2}\right)=(m-1)(m-3)+\sum_{p \in \hat{X}} \operatorname{dim}\left(T_{\hat{X}, p}^{2}\right)
$$

Proof. We first claim that

$$
(m-1)(m-3) \phi=(m-1)(m-3)+\sum_{p \in \hat{X}} \operatorname{dim}\left(T_{\hat{X}, p}^{2}\right)
$$

This is just an investigation of the blow-up of a rational determinantal surface singularity, using the result of Tjurina. From Wahl's result on the structure of the resolution of a rational determinantal surface singularities, and Tjurina's result on the blow-up of we deduce that we have the following two possibilities.
(1) The fundamental cycle Z intersects the central curve strictly negative, i.e. we have an A_{1}^{0} singularity. Then $\phi=1$, and on the first blow up \hat{X} we just have rational double points. So $\sum_{p \in \hat{X}} \operatorname{dim}\left(T_{\hat{X}, p}^{2}\right)=0$, which proves the theorem in this case.
(2) Z intersects the central curve trivially. Then on \hat{X} we have, apart from rational double points, just one rational determinantal surface singularity, say X^{\prime}. We claim that $\phi\left(X^{\prime}\right)=\phi(X)-1$. This just a case by case check, using Tjurina's description and the computation sequence for the fundamental cycle Z. For instance suppose that one has a E_{6}, E_{7}, D_{k}^{I} or $D_{k}^{I I}$ configuration for X, then X^{\prime} has an A_{1}^{0} singularity, as the fundamental cycle for X^{\prime} now will intersect the central curve negatively. So we just have to investigate the A_{k}^{q} case, which is easy, either using the resolution and Tjurina's result, or using the equations and the definition of ϕ immediately.

This proves the claim. As remarked before, the inequality \geqslant in the statement of the Theorem is a general result by Christophersen and Gustavsen. But in our case it can also be deduced quite elementary: It is well-known that the dimension of T_{X}^{2} for a rational surface singularity of multiplicity $m(m \geqslant 3)$ is at least $(m-1)(m-3)$. Use the above deformation into ϕ rational surface singularities of multiplicity m (the multiplicity of X) and semi-continuity of the dimension of T^{2} to get the inequality \geqslant. For the other inequality we use again that the number of generators of T_{X}^{2} is $(m-1)(m-3)$. Furthermore we know that T_{X}^{2} is annihilated by the functions $y_{i a}$ and x^{ϕ}, see (4.5). So we deduce that $\operatorname{dim}\left(T_{X}^{2}\right) \leqslant(m-1)(m-3) \phi$.

As a corollary of the result of T_{X}^{2}, and the existence of the special one parameter deformation, one also gets a result on the dimension of T_{X}^{1}, and on the surjectivity of the obstruction map.

COROLLARY (4.8). Let X be a determinantal rational surface singularity, of multiplicity m and let $\phi=\phi(X)$. Let $(\tilde{X}, E) \rightarrow(X, x)$ be the minimal resolution. Let $\Theta_{\tilde{X}}$ be the tangent sheaf of \tilde{X}. Then

$$
\operatorname{dim}\left(T_{X}^{1}\right)=(m-3) \phi+\operatorname{dim}\left(H^{1}\left(\Theta_{\tilde{X}}\right)\right)
$$

Proof. We look at the one parameter deformation X_{T} of X which has ϕ cones over the rational normal curve of degree m on the general fiber. Look at the associated long exact sequence of cotangent modules

$$
\begin{aligned}
\cdots & \rightarrow T_{X_{T} / T}^{1} \xrightarrow{\cdot t} T_{X_{T} / T}^{1} \xrightarrow{\alpha} T_{X}^{1} \rightarrow T_{X_{T} / T}^{2} \\
& \xrightarrow{\cdot t} T_{X_{T} / T}^{2} \xrightarrow{\beta} T_{X}^{2} \cdots
\end{aligned}
$$

The dimension of T^{2} for a cone over the rational normal curve of degree m is $(m-1)(m-3)$, so the $\mathbb{C}\{t\}$-module $T_{X_{T} / T}^{2}$ has rank at least $\phi(m-1)(m-3)$. Hence the image of β has at least dimension $\phi(m-1)(m-3)$, which we just proved to be the dimension of T_{X}^{2}. Therefore β is surjective, and it follows that there are no other singularities on a general fiber, apart maybe from rational double and triple points. As a finitely generated $\mathbb{C}\{t\}$-module, the rank of $T_{X_{T} / T}^{2}$ is dim (coker $(\cdot t))-\operatorname{dim}(\operatorname{ker}(\cdot t))$. Therefore multiplication by t is injective on $T_{X_{T} / T}^{2}$. From the exact sequence it follows that α is surjective too. The proof now literally goes as in [6], proof of (3.16A), which we repeat here. One knows that $\operatorname{dim}\left(H^{1}\left(\Theta_{\tilde{X}}\right)\right)$ is the dimension of the Artin component, which is well-known to be smooth. We denote by $\operatorname{cod}(X)$ the codimension of the Artin component in T_{X}^{1}. The statement of the Theorem simply is

$$
\operatorname{cod}(X)=(m-3) \phi .
$$

By Greuel and Looijenga [4] the dimension of the image of α (so in our case $\left.\operatorname{dim}\left(T_{X}^{1}\right)\right)$ is the dimension of the Zariski-tangent space at a general point of $j(T)$, where $j(T) \rightarrow$ the base space of a semi-universal deformation of X, is a map, inducing by base change the given one parameter deformation $X_{T} \rightarrow T$. Now $j(T)$ lies on the Artin component, which is smooth. Openness of versality gives that the codimension of the Artin component is additive. The codimension of the Artin component of the cone of the rational normal curve of degree m is $m-3$ [9], and as one has ϕ of those on the general fiber, the result follows.

COROLLARY (4.9). The 'obstruction map' for a determinantal rational surface singularity is surjective, i.e. the minimal number of equations to describe the base space of a semi-universal deformation of a determinantal rational surface singularity X is the dimension of T_{X}^{2}.

Proof. Just repeat the argument of [6] (4.2).

References

1. Artin, M.: On isolated rational singularities of surfaces, Am. J. Math. 88 (1966), 129-136.
2. Behnke, K. and Christophersen, J. A.: Hypersurface sections and obstructions (rational surface singularities), Comp. Math. 77 (1991), 233-268.
3. Christophersen, Jan and Gustavsen, Trond Stølen: Dimension formulas for T^{1} and T^{2} of rational singularities, in preparation.
4. Greuel, G.-M. and Looijenga, E.: The dimension of smoothing components, Duke Math. J. 52 (1985), 263-272.
5. Greuel, G.-M., Pfister, G. and Schönemann, H.: Singular, ftp: helios@mathematik.uni-kl.de
6. de Jong, T. and van Straten, D.: On the deformation theory of rational surface singularities with reduced fundamental cycle, J. Alg. Geom. 3 (1994), 117-172.
7. Laufer, H.: On rational singularities, Am. J. Math. 94 (1972), 597-608.
8. Laufer, H.: Taut two-dimensional singularities, Math. An. 205 (1973), 131-164.
9. Pinkham, H.: Deformations of singularities with \mathbb{G}_{m}-action, Astérisque 20, Paris 1974.
10. Röhr, A.: Formate rationaler Flächensingularitäten, Thesis Hamburg, 1992.
11. van Straten, D.: Weakly normal surface singularities and their improvements, Thesis Leiden, 1987.
12. Tjurina, G.-N.: Absolute isolatedness of rational singularities and triple rational points, Func. Anal. Appl. 2 (1968), 324-332.
13. Wahl, J. M.: Equations defining rational singularities, Ann. Sci. É cole Norm. Sup (4) 10 (1977), 231-264.
14. Wahl, J. M.: Simultaneous resolution of rational singularities, Comp. Math. 38 (1979), 43-54.
