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Abstract

In this article we investigate the minimal entropy martingale measure for continuous-time
Markov chains. The conditions for absence of arbitrage and existence of the minimal
entropy martingale measure are discussed. Under this measure, expressions for the
transition intensities are obtained. Differential equations for the arbitrage-free price
are derived.
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1. Introduction

The main contribution of this paper is the calculation of the minimal entropy martingale
measure for continuous-time Markov chains as explicitly as possible in terms of the transition
intensities.

Many different types of model have been proposed to describe financial asset prices. In
particular, the dynamics of stock prices have been modelled as exponential Lévy processes,
such as in [4] and [15], while another popular model class consists of diffusions with stochastic
volatility; see, e.g. [10]. More complex models for the price process comprise the general
Barndorff-Nielsen and Shephard model where both the price and volatility processes contain
jump terms which are allowed to correlate with one another; see [20]. On another spectrum,
the modelling of asset returns by means of pure jump processes have been studied by [1], [3],
and [17], to mention a few.

In this study we employ the continuous-time Markov chain model proposed in [17] while
making the minor modification of relaxing the assumption of constant ‘drift’ and ‘volatility’
parameters by allowing for time dependency. Markov chains are relatively easy to implement
numerically while giving a reasonable fit to empirically observed asset prices; see [17] and [18].

Such models typically generate incomplete markets, which means that there exist infinitely
many martingale measures which are equivalent to the physical measure describing the
trajectories of the underlying price process. Each equivalent martingale measure corresponds to
a set of derivative prices attuned with the no-arbitrage constraint. Many different techniques to
the problem of identifying an appropriate equivalent martingale measure for derivative pricing
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have been proposed in the literature, but there is not yet an ultimate and definitive way of
selecting any one of them.

One methodology to find an adequate equivalent martingale measure consists in employing
a dual approach to associate it with a utility function describing the investors’ preferences. It
is well known that maximizing expected utility admits a dual formulation in the sense that
finding an equivalent martingale measure corresponds to minimizing some sort of distance to
the physical probability measure. For investors having an exponential utility function, the dual
problem is the minimization of relative entropy [5].

The minimal entropy martingale measure for Lévy processes is well studied. Hubalek and
Sgarra [9] give an excellent review. The minimal entropy martingale measure for Barndorff-
Nielsen and Shephard models have also been investigated in [2] and [20]. More recently, Lee
and Rheinländer [13] discussed the entropic measure for a defaultable asset driven by both
a Brownian motion and the counting process martingale associated to the one-jump process.
However, the minimal entropy martingale measure for continuous-time Markov chains has not
been studied so far. Miyahara [16] examined the minimal entropy martingale measure for a
birth-and-death process by means of the Hamilton–Jacobi–Bellman equation. In this paper
we extend to the case where the asset price process is modelled by a semimartingale with the
dynamics of the risky asset following a continuous-time Markov chain.

Our method of computing the minimal entropy martingale measure for continuous-time
Markov chains follows the approaches and procedures outlined in [5] and [8].

In Section 2 we summarize the basic definitions and main results concerning continuous-
time Markov chains. In Section 3 we present our asset model as well as the basic properties of
relative entropy. In Sections 4 and 5 we explain our martingale approach setup to finding the
minimal entropy martingale measure. We then fix an asset price process for which we further
our analysis to finding a candidate for the minimal entropy martingale measure by means of the
work in earlier sections. The conditions for absence of arbitrage and existence of solutions are
discussed. In Sections 6 and 7 we present our main idea. In Section 9 we discuss the pricing
of derivatives under the minimal entropy martingale measure. This section follows the spirit
of [17] and our aim is to derive the integrodifferential equations when the derivative prices are
evaluated under the minimal entropy martingale measure.

2. Continuous-time Markov chains

The mathematical framework is given by a filtered probability space (�,F ,F,P) and a
finite time horizon T < ∞. We assume that F0 is trivial and that F = F T . Let {Ct }0≤t≤T be
a continuous-time (F,P)-Markov chain in the finite state space Y = {1, . . . , m}. Furthermore,
let F be the completion of the filtration FC = (F C

t )0≤t≤T = σ(Cs; 0 ≤ s ≤ t), 0 ≤ t ≤ T ,
generated by this Markov chain such that (�,F ,F,P) becomes a complete filtered probability
space. The paths of C are taken to be right continuous and C0 is taken to be deterministic.
Assume further that C is time homogeneous so that we have

P(Ct+s = j | Cs = i) = pij (t) for all i, j ∈ Y, s, t ∈ R+, 0 ≤ s ≤ t ≤ T .

The following limit exists for i, j ∈ Y (see Theorem 8.1.2 of [23]):

µij := lim
t↘0

pij (t)− pij (0)

t
.

We note that, for every i �= j, we have µij ≥ 0 and µii = − ∑m
j=1,j �=i µij . Hence, µij

represents the intensity of transition from state i to state j and is a constant. The matrix
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� := [µij ]i,j∈{1,...,m} is called the infinitesimal generator matrix for a Markov chain. It is
also commonly known as the intensity matrix. We say that a state i ∈ Y is absorbing for a
time-homogeneous (F,P)-Markov chain Ct , where t ∈ R+, if the following holds:

P(Ct = i | Cs = i) = 1 for all s, t ∈ R+, s ≤ t ≤ T .

It is clear that if a state i ∈ Y is absorbing then we have µij = 0 for every j = 1, . . . , m.We
assume throughout that there are no absorbing states. Furthermore, we assume that there are
at least three distinct states, i.e. m ≥ 3, so the market under consideration is incomplete. We
introduce, for i �= j and all s, t ∈ R+, t ≤ T ,

Hi
t := 1{Ct = i},

H
ij
t := �{s : 0 < s ≤ t;Cs− = i, Cs = j} =

∑
0<s≤t

1{Cs− = i} 1{Cs = j}.

Thus, Hi
t is the indicator of the event that C is in state i at time t . On the other hand, Hij

t is
the number of jumps from i to j during (0, t]. We state some results from [12] and [22].

Lemma 1. For every i, j ∈ Y, i �= j, the processes

U
ij
t = H

ij
t −

∫ t

0
µijH i

u du

are (P,F)-martingales.

Proof. See Theorem 7.5.5 of [12].

Theorem 1. Any arbitrary (P,F)-local martingale M can be written as

Mt =
∫ t

0

∑
i

∑
j

gs(i, j) dUijs ,

where g is locally bounded and predictable for all i, j ∈ Y and g(i, i) = 0 for all i ∈ Y,
0 ≤ t ≤ T .

Proof. See Lemma 21.13 and Theorem 21.15 of [22].

3. Asset model and general results

Our choice of asset price processX under P is inspired by the asset price process introduced
in [17], i.e.

dXt
Xt−

=
∑
i

ηitH
i
t dt +

∑
i

∑
j

θ
ij
t dUijt , (1)

where ηit and θijt > −1 are deterministic and bounded functions for a fixed i ∈ Y. It follows
that X has the decomposition X = X0 +M + A, where M is a local martingale null at zero
and A is a process with finite variation. By Theorem 1, we may write M as

M =
∫ ∑

i

∑
j

Mϕ̃ij dUij ,

where the Mϕ̃ij , i, j ∈ Y, i �= j , are bounded F-predictable with Mϕ̃ii = 0 for i = 1, . . . , m.
Moreover, we assume that the asset price process X satisfies the structure condition (see
Definition 2.39 of [21]): there exists a predictable process λ satisfying A = ∫

λ d〈M,M〉,
with KT := ∫ T

0 λ2
s d〈M,M〉s < ∞, P-almost surely (P-a.s.).
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Definition 1. Let V be the linear subspace of L∞(�,F ,P) spanned by the elementary
stochastic integrals of the form f = h(XT2 − XT1), where 0 ≤ T1 ≤ T2 ≤ T ,
are stopping times such that the stopped process XT2 is bounded and h is a bounded
FT1 -measurable random variable. A martingale measure is a probability measure Q 
 P with
EP[(dQ/dP)f ] = 0 for all f ∈ V.

The sets of absolutely continuous martingale measures and equivalent martingale measures
for X with respect to F are defined as

M := {Q 
 P | X is a local (Q,F)-martingale},
Me := {Q ∼ P | X is a local (Q,F)-martingale}.

Note that, asX is locally bounded, a probability measure Q absolutely continuous to P is in M
if and only if X is a local Q-martingale.

Definition 2. The relative entropy H(Q,P) of a probability measure Q with respect to a
probability measure P is given as

H(Q,P) =
⎧⎨
⎩EP

[
dQ

dP
log

dQ

dP

]
if Q 
 P,

+∞ otherwise.

It is well known that H(Q,P) ≥ 0, H(Q,P) = 0 if and only if Q = P, and Q →H(Q,P) is
strictly convex.

Definition 3. The minimal entropy martingale measure QE is the solution of

H(QE,P) = min
Q∈M

H(Q,P).

Theorems 1 and 2 and Remark 1 of [7] as well as the fact that V ⊂L∞(P) yield the following
result from [7].

Theorem 2. If there exists Q ∈Me such that H(Q,P) < ∞, then the minimal entropy
martingale measure exists, is unique, and, moreover, equivalent to P.

We now state a theorem from [8] which provides a criterion for a martingale measure to
coincide with the minimal entropy martingale measure.

Theorem 3. Assume that there exists a Q ∈Me with H(Q,P) < ∞. Then Q̄ is the minimal
entropy martingale measure if and only if there exists a constant cE and an X-integrable
predictable process φE ,

dQ̄

dP
= exp

(
cE +

∫ T

0
φEt dXt

)
, (2)

such that EQ[∫ T0 φEt dXt ] = 0 for all Q ∈Me with finite relative entropy.

Our strategy would then be to pursue finding some potential candidate measure Q̄ which
can be represented as in (2). We would then verify that this potential measure Q̄ is indeed
the entropy minimizer. To carry out this last step, we appeal to the verification procedures of
Theorem 2.1.5 of [8].
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3.1. Verification procedures

Let us now describe the procedures in full, consisting of four steps, for verifying that a given
probability measure is indeed the minimal entropy martingale measure QE.

Step 1: Q̄ is an equivalent probability measure. To demonstrate this, we have to show that
exp{cE + ∫ T

0 φEt dXt } is integrable with

EP

[
exp

{
cE +

∫ T

0
φEt dXt

}]
= 1.

Step 2: Q̄ is a martingale measure, i.e. X is a local Q̄-martingale.

Step 3: The probability measure Q̄ has finite relative entropy with respect to P, i.e.

H(Q̄,P) = EP

[
dQ̄

dP
log

dQ̄

dP

]
= EQ̄

[
log

dQ̄

dP

]
< ∞.

Step 4:
∫
φE dX is a true Q-martingale for all Q ∈Me with H(Q,P) < ∞.

If all of these conditions are satisfied then Q̄ is the minimal entropy martingale measure QE.

4. Equivalent martingale measures for continuous-time Markov chains

A probability measure Q 
 P on the filtered probability space (�,F ,F,P) is a martingale
measure forX ifX is a local Q-martingale. From Theorem 2.42 of [21], we state a result which
ensures that Q is a martingale measure.

Corollary 1. (Equivalent martingale measure.) Let Q be a probability measure whose density
process Z := dQ/dP is given by the Doléans Dade exponential process

Z = E

(
−

∫
λ dM + L

)
,

where L and [M,L] are locally bounded local P-martingales. Then the probability measure
Q is a martingale measure.

Since L is a local martingale we may write

L =
∫ ∑

i

∑
j

Lϕ̃ij dUij ,

owing to Theorem 1. Furthermore, we have the following result from [24].

Proposition 1. Let Q ∈Me. Let 1 − λMt ϕ̃
ij
t +L ϕ̃

ij
t > 0. Then the density processZ := dQ/dP

is given by the Doléans-Dade exponential process

Z = E

(
−

∫
λ dM + L

)
,

where L and [M,L] are local P-martingales.

We now state some initial results.
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Proposition 2. Let Q ∈Me. Then ZT = E(− ∫
λ dM + L)T is given explicitly as

ZT = exp

{∫ T

0

∑
i

∑
j

(λMt ϕ̃
ij
t −L ϕ̃

ij
t )µ

ijH i
t dt

}

×
∏
i

∏
j

i �=j

∏
0<t≤T

(1 + (−λMt ϕ̃ijt +L ϕ̃
ij
t )
H

ij
t ). (3)

Proof. Apply Itô’s formula to logZ:

logZT =
∫ T

0

1

Zt−
dZt − 1

2

∫ T

0

1

Z2
t−

d〈Z,Z〉ct +
∑

0<t≤T

{
log

Zt

Zt−
− 1

Zt−

Zt

}

=
∫ T

0

∑
i

∑
j

(λMt ϕ̃
ij
t −L ϕ̃

ij
t )µ

ijH i
t dt

+
∑

0<t≤T

{
log

(
1 +

∑
i

∑
j

(−λMt ϕ̃ijt +L ϕ̃
ij
t )
H

ij
t

)}
.

Also, Zt = E(N)t and, thus, dZt = Zt− dNt , so 
Zt = Zt−
Nt . Also, note that Zt/Zt− =
1 +
Nt . Taking the exponential of both sides yields

ZT = exp

{∫ T

0

∑
i

∑
j

(λMt ϕ̃
ij
t −L ϕ̃

ij
t )µ

ijH i
t dt

}

×
∏

0<t≤T

(
1 +

∑
i

∑
j

(−λMt ϕ̃ijt +L ϕ̃
ij
t )
H

ij
t

)

= exp

{∫ T

0

∑
i

∑
j

(λMt ϕ̃
ij
t −L ϕ̃

ij
t )µ

ijH i
t dt

}

×
∏
i

∏
j

i �=j

∏
0<t≤T

(1 + (−λMt ϕ̃ijt +L ϕ̃
ij
t )
H

ij
t ),

where the last line follows from the fact that, for a fixed t , and every i �= j and k �= l, (i, j) �=
(k, l), the processes Hij

t and Hkl
t have no common jumps; see [22, Proof of Theorem 22.9].

Our approach now would be to find L via Lϕ̃ij for i �= j such that the corresponding
martingale measure Q̄ has the form of (2) and then perform the verifications as outlined in
Section 3.1.

5. The entropy equation

Theorem 4. The strategy φE and the constant cE in (2) satisfy the equation

cE +
∫ T

0

∑
i

∑
j

φEt λt (
Mϕ̃

ij
t )

2µijH i
t dt −

∫ T

0

∑
i

∑
j

φEt
Mϕ̃

ij
t µ

ijH i
t dt

−
∫ T

0

∑
i

∑
j

λt
Mϕ̃

ij
t µ

ijH i
t dt +

∫ T

0

∑
i

∑
j

Lϕ̃
ij
t µ

ijH i
t dt

= −
∫ T

0

∑
i

∑
j

φEt
Mϕ̃

ij
t dHij

t +
∫ T

0

∑
i

∑
j

log(1 −M ϕ̃
ij
t λt +L ϕ̃

ij
t ) dHij

t , (4)
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where, for every i �= j, Lϕ̃
ij
t has to be chosen such that∑

i

∑
j

Mϕ̃
ijL
t ϕ̃

ij
t µ

ijH i
t dt = 0 for all t ∈ [0, T ]. (5)

Proof. From Proposition 1, we see that [M,L] is a local P-martingale. Observe that

[M,L]t =
∫ t

0

∑
i

∑
j

Mϕ̃
ijL
s ϕ̃

ij
s dHij

s .

We further know from [6, Section VII.39] that the predictable bracket process

〈M,L〉t =
∫ t

0

∑
i

∑
j

Mϕ̃
ijL
s ϕ̃

ij
s µ

ijH i
s ds

exists, since M and L are locally bounded. However, 〈M,L〉 = 0 because [M,L] is a local
martingale. We therefore get (5). Recall that

dXt =
∑
i

∑
j

Mϕ̃
ij
t dUijt +

∑
i

∑
j

λt (
Mϕ̃

ij
t )

2µijH i
t dt.

By (2) and (3) we have

logZT = cE +
∫ T

0
φEt dXt

= cE +
∫ T

0

∑
i

∑
j

φEt
Mϕ̃

ij
t dUijt +

∫ T

0

∑
i

∑
j

λtφ
E
t (
Mϕ̃

ij
t )

2µijH i
t dt

and

logZT =
∫ T

0

∑
i

∑
j

(λMt ϕ̃
ij
t −L ϕ̃

ij
t )µ

ijH i
t dt

+
∫ T

0

∑
i

∑
j

log(1 − λMt ϕ̃
ij
t +L ϕ̃

ij
t ) dHij

t ,

respectively. Equating the above equations while using the fact that Uijt = H
ij
t − ∫ t

0 µ
ijH i

s ds
and simplifying the terms results in (4).

6. Finding a candidate for entropy minimization

Given our price process in (1), we see that, for every i ∈ Y and i �= j,

Mϕ̃
ij
t = θ

ij
t Xt− and λt =

∑
i η
i
tH

i
t

Xt−
∑
i

∑
j (θ

ij
t )

2µijH i
t

⇐⇒ λtXt− =
∑
i

H i
t

(
ηit∑

j (θ
ij
t )

2µij

)
=:

∑
i

H i
t λ̂t (i, j),

https://doi.org/10.1239/jap/1371648945 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648945


Entropy for chains 351

where

λ̂t (i, j) := ηit∑
j (θ

ij
t )

2µij
.

Here the equations are meant to be in the sense of indistinguishability of the respective processes.
Note that

∑
i

∑
j (θ

ij
t )

2µijH i
t < ∞ due to the boundedness of θij and the fact that C has a

finite state space. Also, note from above that θii = 0. Equation (4) then reduces to

cE = −
∫ T

0

∑
i

∑
j

λtφ
E
t X

2
t−(θ

ij
t )

2µijH i
t dt +

∫ T

0

∑
i

∑
j

φEt Xt−θ
ij
t µ

ijH i
t dt

−
∫ T

0

∑
i

∑
j

Lϕ̃
ij
t µ

ijH i
t dt +

∫ T

0

∑
i

∑
j

λtXt−θijt µijH i
t dt

+
∫ T

0

∑
i

∑
j

{log(1 − λtθ
ij
t Xt− +L ϕ̃

ij
t )− θ

ij
t Xt−φEt } dHij

t .

Define Cb := Cb([0, T ] × {1, . . . , m}), the space of continuous and bounded functions of
u : [0, T ] × {1, . . . , m} → R, ut := u(t, ·) : Y → R, and 
ut := u(t, Ct ) − u(t, Ct−). We
proceed with the ansatz that there exists a sufficiently smooth function u ∈ Cb such that, upon
transition from i to j at time t ,

log(1 − λtθ
ij
t Xt− + Lϕ̃

ij
t )− θ

ij
t Xt−φEt = u(t, j)− u(t, i).

With this ansatz, observe that we can write∑
0<t≤T

∑
i

∑
j

{log(1 − λtθ
ij
t Xt− + Lϕ̃

ij
t )− θ

ij
t Xt−φEt }
Hij

t

=
∑

0<t≤T
{u(t, Ct )− u(t, Ct−)}.

Furthermore, we set
u(T , ·) = 0 on Y. (6)

We postulate that φEt Xt− takes the form
∑
i H

i
t φ̂t (i, j) := φEt Xt−, so that (4) can be recast as

cE + u(0, C0) = −
∫ T

0

∑
i

φ̂t (i, j)η
i
tH

i
t dt +

∫ T

0

∑
i

∑
j

φ̂t (i, j)θ
ij
t µ

ijH i
t dt

−
∫ T

0

∑
i

∑
j

Lϕ̃
ij
t µ

ijH i
t dt +

∫ T

0

∑
i

∑
j

λ̂t (i, j)θ
ij
t µ

ijH i
t dt

−
∫ T

0

∑
i

H i
t

∂

∂t
u(t, i) dt. (7)

Observe that, for the right-hand side of (7) to be constant, a possible solution might be to require
that

∂

∂t
u(t, i)+ φ̂t (i, j)η

i
t −

∑
j

{λ̂t (i, j)θ ijt + φ̂t θ
ij
t − Lϕ̃

ij
t }µij = 0,
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together with (6) and the fact that

cE = −u(0, C0).

We further introduce

gi(t, ut ) := φ̂t (i, j)η
i
t −

∑
j

{λ̂t (i, j)θ ijt + φ̂t (i, j)θ
ij
t − Lϕ̃

ij
t }µij ,

and arrive at a system of coupled ordinary differential equations for u of the form

∂

∂t
u(t, i)+ gi(t, ut ) = 0, u(T , i) = 0 for every i ∈ Y. (8)

We further find using our ansatz that, for i �= j,

Lϕ̃ij = exp{u(·, j)− u(·, i)+ φ̂(i, j)θ ij } + λ̂(i, j)θ ij − 1.

Replacing Lϕ̃
ij
t in (5) culminates in the following condition for φ̂:

Xt−
∑
i

H i
t

{
ηit +

∑
j

θ
ij
t (exp{u(t, j)− u(t, i)+ φ̂t (i, j)θ

ij
t } − 1)µij

}
dt = 0

for all t ∈ [0, T ]. We see that the above is true if the following holds:

ηi +
∑
j

θ ij (exp{u(·, j)− u(·, i)+ φ̂(i, j)θ ij } − 1)µij = 0 for every i ∈ Y. (9)

We shall call (9) the Q̄-martingale equation. Hence, any strategy φE that fulfills the
Q̄-martingale equation is a potential candidate for the minimal entropy martingale measure.

6.1. Existence of solutions

Let us discuss the existence of φ̂ in (9). We present the following result.

Lemma 2. Let u ∈ Cb. Then there is a bounded function φ̂ : [0, T ] × Y × Y → R with
φ̂t (i, j) := φ̂(t, i, j) which solves the martingale equation (9). Note also that θii = 0.

Proof. Let
f1(φ) := ηit for a fixed i ∈ Y,

f2(φ) := −
∑
j

θ
ij
t (exp{u(t, j)− u(t, i)+ φθ

ij
t } − 1)µij .

Note that f ′
2(φ) = −∑

j (θ
ij
t )

2(exp{u(t, j)− u(t, i)+ φθ
ij
t } − 1)µij < 0, that is, f2 is

decreasing in φ. For any t ∈ [0, T ], we consider the following three cases.

Case 1: all θijt > 0 for every i ∈ Y. Note that f2(0) = − ∑
j θ

ij
t (e

u(t,j)−u(t,i) − 1)µij ,
which can be either less than 0 or greater than 0, f2(∞) = −∞, and f2(−∞) =
+ ∑

j θ
ij
t µ

ij > 0.

Case 2: at least one θijt for i ∈ Y, i �= j , is greater than 0 with the others satisfying −1 <
θ
ij
t < 0. Note that f2(0) = − ∑

j θ
ij
t (e

u(t,j)−u(t,i) − 1)µij , which can be either less
than 0 or greater than 0, f2(∞) = −∞, and f2(−∞) = +∞.
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Case 3: −1 < θ
ij
t < 0 for every i ∈ Y. Note that f2(0) = − ∑

j θ
ij
t (e

u(t,j)−u(t,i) − 1)µij ,
which can be either less than 0 or greater than 0, f2(∞) = + ∑

j θ
ij
t µ

ij < 0, and
f2(−∞) = +∞.

Hence, we see that, for any t ∈ [0, T ], there exists φ =: φ̂ijt ∈ R such that f1(φ̂) = f2(φ̂) for
all three cases if

ηit ∈ [ φ, φ ], (10)

where

−
∑
j

|θijt |µij < φ ≤ φ < +
∑
j

|θijt |µij .

In other words, existence is guaranteed if we choose ηit to be bounded away from − ∑
j |θijt |µij

and + ∑
j |θijt |µij for any t ∈ [0, T ]. Furthermore, if (10) is respected, it is clear that the

function φ̂t (i, j) is bounded. Also, from (9) we see that φ̂t (i, j) depends on i and j , and, for a
fixed i, φ̂t (i, j)will remain the same for every j . We now define φ̂t (i, j) as the unique function
that solves the Q̄-martingale equation (9).

The proof of the next proposition follows very similar lines as in the proofs of Lemma 3.5
and Theorem 3.8 of [20] or as in the appendix of [13], and so we omit it.

Proposition 3. There exists a unique solution û ∈ Cb which solves (8).

7. Entropy minimizer for chains

Prior to stating the main theorem, we have the following result.

Proposition 4. Let ãij , i, j ∈ Y, i �= j , be a family of real-valued, bounded F-predictable
processes such that ãij > −1 with ãii = ãm = 0 for i = 1, . . . , m. Then

EP

[
exp

{∫ t

0

∑
i

∑
j

log(1 + ã
ij
s ) dHij

s

}]
≤ exp

{
sup

s≤t, i,j∈Y
‖̃aijs ‖L∞ t

∑
i

∑
j

µij
}

< ∞.

Proof. Let M ′ = ∫ ∑
i

∑
j ã

ij dUij . Then M ′ is a local martingale. Let us now consider
the stochastic differential equation

dZ′
t = Z′

t− dM ′
t , Z′

0 = 1.

Its solution is given by

Z′
t = exp

{
−

∫ t

0

∑
i

∑
j

ã
ij
s µ

ijH i
s ds

}
exp

{∫ t

0

∑
i

∑
j

log(1 + ã
ij
s ) dHij

s

}
. (11)

Note that Z′− is an adapted process which is left continuous with right limits, so Z′− is locally
bounded (see [19, p. 166]). Since Z′− is locally bounded, Z′ is a local martingale since it is, by
(11), the stochastic integral with respect to M ′ which is a local martingale (see Theorem 29 of
[19, Chapter IV]). Observe that Z′ is nonnegative, and by Fatou’s lemma we can conclude that
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Z′ is a supermartingale. Hence,

1 = EP[Z′
0]

≥ EP[Z′
t ]

= EP

[
exp

{
−

∫ t

0

∑
i

∑
j

ã
ij
s µ

ijH i
s ds +

∫ t

0

∑
i

∑
j

log(1 + ã
ij
s ) dHij

s

}]

≥ exp

{
−

(
sup

s≤t, i,j∈Y
‖̃aijs ‖L∞ t

∑
i

∑
j

µij
)}

× EP

[
exp

{∫ t

0

∑
i

∑
j

log(1 + ã
ij
s ) dHij

s

}]
.

Rearranging yields the result.

We now state the main theorem.

Theorem 5. (QE for chains.) Let ηit ∈ [φ, φ]. Then the process Z = (Zt ) defined by

Zt = E

(∫ t

0

∑
i

∑
j

[exp{
ûs + φ̂s(i, j)θ
ij
s } − 1] dUijs

)

is the density process of the entropy minimizing martingale measure.

Proof. Let us now carry out the verifications as outlined in Section 3.1.
Step 1: Q̄ is an equivalent probability measure. We will use the criterion of Theorem III.1.

of [14]. Let the local martingale N be defined as

N := −
∫
λ dM + L =

∫ ∑
i

∑
j

(Lϕ̃ij − λMϕ̃ij ) dUij

with

Nt =
∫ t

0

∑
i

∑
j

(exp{
ûs + φ̂s(i, j)θ
ij
s } − 1) dUijs ;

since φ̂ and θ are bounded, N is locally bounded. Also, observe that


Nt =
∑
i

∑
j

(exp{
ût + φ̂t (i, j)θ
ij
t } − 1)
Hij

t ,

so that 
N > −1 since ex > 0 for all x.We now seek to find the P-compensator of U which
we shall denote by B. Note that

Ut =
∫ t

0

∑
i

∑
j

(φ̂s(i, j)θ
ij
s exp{
ûs + φ̂s(i, j)θ

ij
s } − exp{
ûs + φ̂s(i, j)θ

ij
s } + 1) dHij

s .

To show that U admits a predictable compensator, note that∫ t

0

∑
i

∑
j

|(φ̂s(i, j)θ ijs exp{
ûs + φ̂s(i, j)θ
ij
s }−exp{
ûs + φ̂s(i, j)θ

ij
s }+1)|µijH i

s ds < ∞,

due to the boundedness of θij , φ̂(i, j), and û. From Theorem II.1.28 of [11], this implies the
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integrability of

φ̂s(i, j)θ
ij
s exp{
ûs + φ̂s(i, j)θ

ij
s } − exp{
ûs + φ̂s(i, j)θ

ij
s } + 1 =: f ijs

with respect to Uij and∫ t

0

∑
i

∑
j

f
ij
s dUijs =

∫ t

0

∑
i

∑
j

f
ij
s dHij

s −
∫ t

0

∑
i

∑
j

f
ij
s µ

ijH i
s ds.

Hence, the P-compensator A of U is given by

At :=
∫ t

0

∑
i

∑
j

f
ij
s µ

ijH i
s ds.

It is easily seen that EP[exp{AT }] < ∞ due to the boundedness of the functions 
û, φ̂, and θ
and the fact that there are a finite number of states for the chain.

Step 2: Q̄ is a martingale measure. Note that Mϕ̃ij is bounded. Also, L and [M,L] are
locally bounded. Hence, due to Corollary 1, Q̄ is a martingale measure.

Step 3: H(Q̄,P) < ∞. Recall that the density Z = dQ̄/dP may be expressed as

ZT = dQ̄

dP
= exp

{
cE +

∫ T

0

∑
i H

i
t φ̂t (i, j)

Xt−
dXt

}
.

Let us evaluate

EQ̄

[∫ T

0

∑
i

∑
j

φ̂t (i)θ
ij
t dUijt

]
= EQ̄

[∫ T

0

∑
i

φ̂t (i)

(
−ηit +

∑
j

θ
ij
t µ

ij

)
Hi
t dt

]

− EQ̄

[∫ T

0

∑
i

∑
j

φ̂t (i)θ
ij
t µ

ijH i
t dt

]
(12)

= −EQ̄

[∫ T

0

∑
i

φ̂t (i)η
i
tH

i
t dt

]
,

where (12) is obtained by substituting the Q̄-martingale condition of (9). Finally, we obtain

H(Q̄,P) = EQ̄[cE] < ∞.

Step 4:
∫
φE dS is a true Q-martingale for all Q ∈Me withH(Q,P) < ∞. We require that

EP[exp{β ∫ T
0 ψ2 d[S, S]t }] < ∞ for some β > 0.We have ψt = ∑

i H
t
i φ̂t (i, j)/Xt−, so that

ψ2
t = ∑

i H
i
t φ̂

2
t (i, j)/X

2
t−. We also have, for i �= j, d[S, S]t = X2

t−
∑
i

∑
j (θ

ij
t )

2 dHij
t . We

now have

EP

[
exp

{
β

∫ T

0
ψ2 d[S, S]t

}]

≤ EP

[
exp

{∫ T

0

∑
i

∑
j

(θ
ij
t )

2 dHij
t

}]
1{β:=(supt∈[0,T ], i∈Y 2‖φ̂2

t (i,j)‖∞)−1>0}

≤ exp

{
sup

t∈[0,T ], i,j∈Y
‖e(θ

ij
t )

2‖∞T
∑
i

∑
j

µij
}

< ∞,

due to the boundedness of θijt and µij and by setting ãijt := e(θ
ij
t )

2 − 1 in Proposition 4.
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8. Comments on the QQQE-Markov chain

8.1. Connection to the general results of Girsanov’s theorem for Markov chains

Now that the minimal entropy martingale measure for continuous-time Markov chains has
been found, we would like to see how it can be connected to the general result of measure
change for chains. The following result is from [22].

Theorem 6. Let the probability measure P̃ be defined by

dP̃

dP
= ρT P-a.s.

with Radon–Nikodym density

ρT = 1 +
∫ T

0

∑
i

∑
j

ρt−ϕ̃ijt dUijt ,

where ϕ̃ is locally bounded and predictable for all i, j ∈ Y and ϕ̃(i, i) = 0. Then the following
statements hold.

(i) The process C is an F-Markov chain under P̃.

(ii) The transition rates �̃(t) := [µ̃ij (t)]i,j∈{1,...,m} for C under P̃ for i �= j have the form

µ̃
ij
t := µ̃ij (t) = (1 + ϕ̃

ij
t )µ

ij for all t ∈ [0, T ].
Proof. See Theorem 22.4 (Girsanov’s formula for chains) of [22].

From Theorem 5, the transition rates under the minimal entropy martingale measure µQE

ij

take the form

µ
QE

ij (t) = exp{φ̂t (i, j)θ ijt + û(t, j)− û(t, i)}µij for all t ∈ [0, T ].

9. Pricing under the minimal entropy martingale measure, QQQE

In this section we investigate the pricing of derivatives when the market follows a continuous-
time Markov chain under the minimal entropy martingale measure. To illustrate how we can
utilize the minimal entropy martingale measure for pricing issues, we follow the steps outlined
in Section 3.A of [17]. In this section let the stock price process X and the money market
account B be given by

Xt = X0 exp

{∫ t

0

∑
i

(
ηi −

∑
j

θ ijµij
)
Hi
s ds +

∫ t

0

∑
i

∑
j

log(θ ij + 1) dHij
s

}
,

Bt = exp

{∫ t

0

∑
i

H i
s r
i ds

}
,

where ηi and θij > −1 are constants for a fixed i ∈ Y, and the ri are constants that denote
the statewise interest rates for i = 1, . . . , m. For t ∈ [0, T ], let Vt denote the QE-risk neutral
price of a claim paying G at time T , where G is of the form G = gCT (XT ) = ∑

i H
i
T g

i(XT ).
Hence,

Vt = EQE

[
exp

{
−

∫ T

t

∑
i

H i
s r
i ds

}
G

∣∣∣∣ Ft

]
. (13)
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We have

XT = Xt exp

{∫ T

t

∑
i

(
ηi −

∑
j

θ ijµij
)
Hi
s ds +

∫ T

t

∑
i

∑
j

log(θ ij + 1) dHij
s

}
. (14)

Due to (14), we can rewrite (13) as

Vt = EQE

[
exp

{
−

∫ T

t

∑
i

H i
s r
i ds

}
gCT (XtXT−t )

∣∣∣∣ Ft

]
. (15)

Note that the relevant state variables involved in the conditional value (13) are (t, Xt , Ct ). This
is due to (14) and the Markov property which states that, given the present value Ct , the future
and the past are independent. Hence, we can rewrite (15) as

Vt =
∑
i

H i
t EQE

[
exp

{
−

∫ T

t

∑
i

H i
s r
i ds

}
gCT (XtXT−t )

∣∣∣∣ Ct = i, Xt = x

]
.

Define the statewise prices wi as

wi(t, x) := EQE

[
exp

{
−

∫ T

t

∑
i

H i
s r
i ds

}
gCT (XtXT−t )

∣∣∣∣ Ct = i, Xt = x

]
.

Finally, we see that the price at time t of the claim can be written as

Vt =
∑
i

H i
t w

i(t, Xt ).

The discounted price process Ṽt = (exp{− ∫ t
0

∑
i H

i
s r
i ds}Vt )t∈[0,T ] is a QE-martingale. We

assume that the functions wi(t, x) are continuously differentiable so that Itô’s formula can be
applied. By the martingale property, the dt terms must vanish, giving us the partial differential
equations

0 = −riwi(t, x)+ ∂

∂t
wi(t, x)+ ∂

∂x
wi(t, x)x

(
ηi −

∑
j

θ ijµij
)

+
∑
j

(wj (t, x(1 + θij ))− wi(t, x))µ
QE

ij ,

with boundary conditions

wi(x, T ) = gi(x), i = 1, . . . , m.

9.1. On the applicability of Itô’s lemma

As indicated by Norberg [17], the assumption that the functions wi(t, x) are continuously
differentiable does not typically hold true and the functions may even be discontinuous. This
particular problem was then investigated by the same author and led to [18], in which he explored
those points on the functions that are nonsmooth and constructed a numerical method with a
controlled global error to solve the differential equations. In this paper we do not embark on
this journey.
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10. Conclusion

We derived the minimal entropy martingale measure for continuous-time Markov chains
where conditions for absence of arbitrage are spelled out. Nonarbitrage valuation of derivatives
was discussed, where we demonstrated how the transition intensities under the minimal entropy
martingale measure would appear within the integrodifferential equations for the arbitrage free
price. An extension towards allowing absorbing states in the concrete market model could be
a topic of further research.
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