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The motion of a long gas bubble in a confined capillary tube is ubiquitous in a wide range
of engineering and biological applications. While the understanding of the deposited thin
viscous film near the tube wall in Newtonian fluids is well developed, the deposition
dynamics in commonly encountered non-Newtonian fluids remains much less studied.
Here, we investigate the dynamics of a confined bubble moving in shear-thinning fluids
with systematic experiments, varying the zero-shear-rate capillary number Ca0 in the
range of O(10−3–102) considering the zero-shear-rate viscosity. The thickness of the
deposited liquid film, the bubble speed and the bubble front/rear menisci are measured,
which are further rationalized with the recent theoretical studies based on appropriate
rheological models. Compared with Newtonian fluids, the film thickness decreases for
both the carboxymethyl cellulose and Carbopol solutions when the shear-thinning effect
dominates. We show that the film thickness follows the scaling law from Aussillous &
Quéré (Phys. Fluids, vol. 12, no. 10, 2000, pp. 2367–2371) with an effective capillary
number Cae, considering the characteristic shear rate in the film as proposed by Picchi
et al. (J. Fluid Mech., vol. 918, no. A7, 2021, pp. 1–30). Cae is calculated by the
Carreau number and the power-law index from the Carreau–Yasuda rheological model.
The shear-thinning effect also influences the bubble speed and delays the transition to
the parabolic region in the bubble front and rear menisci. In particular, a high degree of
undulations on the bubble surface results in an intricate rear viscosity distribution for the
rear meniscus and the deviation between the experiments and theory may require a further
investigation to resolve the axial velocity field. Our study may advance the fundamental
understandings and engineering guidelines for coating processes involving thin-film flows
and non-Newtonian fluids.
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1. Introduction

The transport of long gas bubbles or liquid drops in confined geometries plays an important
role in many engineering and biological settings, such as enhanced oil recovery (Tran et al.
2016; Grassia 2019; Majeed et al. 2021), coating processes (Yu, Khodaparast & Stone 2017;
Jeong et al. 2020), drug delivery (Hernot & Klibanov 2008; Gao et al. 2016), biomechanics
and biomedical devices (Clanet, Héraud & Searby 2004; Chao, Jin & Fan 2020; Ma et al.
2020; Li et al. 2021). When such a long bubble of length L � R translates at a constant
speed U in a circular capillary of radius R, the bubble forms a symmetrical bullet shape,
commonly called a Taylor bubble, and a thin film of liquid is generated between the bubble
and capillary. Quantifying the deposition of this liquid film and its relationship with the
bubble speed, fluid properties and channel geometries provides crucial information for
determining the mass, momentum and heat transport in a wide range of multi-phase flow
scenarios, and thus has remained as a research focus for decades.

The deposition of Newtonian fluids has been extensively studied regarding various
geometries and fluid properties. Pioneering investigations on this topic were conducted by
Bretherton (1961) and Taylor (1961). For a long bubble translating in confined geometries
with small dimensions where gravity plays a negligible role, the dynamics is characterized
by the interplay between the viscosity and surface tension, as captured by the definition
of the capillary number, Ca = μU/σ , where μ is the fluid viscosity and σ is the surface
tension (Aussillous & Quéré 2000; Jeong et al. 2020). For Ca � 1, Bretherton (1961)
found that the thickness of the thin liquid film h scales as h/R ∼ Ca2/3 in regimes where
inertia effects are negligible compared to surface tension and viscous effects. This relation
was later extended to cover the range of Ca < 2 in the scaling analysis of Aussillous &
Quéré (2000), where the radius of curvature of the static meniscus was accounted as R − h
rather than R, yielding a semi-empirical equation as

h
R

= 1.34Ca2/3

1 + 2.5 × 1.34Ca2/3 . (1.1)

So far, the fluid deposition by a confined bubble in non-Newtonian fluids has been much
less understood, although a lot of working fluids, such as polymer solutions, colloidal
suspensions and biologically relevant fluids, show non-Newtonian behaviours in many
practical applications (Abishek, King & Narayanaswamy 2015; Moreira et al. 2020; Li
et al. 2021; Zhao et al. 2021). Resolving the hydrodynamics of a confined bubble in
non-Newtonian fluids presents more complexities than in Newtonian cases because of
the spatial and temporal changes of shear stress and the corresponding variations of
the rheological properties. Table 1 lists a summary of the experimental, numerical and
theoretical studies about the liquid film deposition dynamics in non-Newtonian fluids. In
particular, many prior studies assumed a simple power-law model with a stress/shear rate
relationship as τ = κγ̇ np (where np is the power-law index, γ̇ the shear rate and κ the
consistency factor in Pa snp) to represent the shear-thinning/thickening fluids (Kamişli &
Ryan 2001; de Sousa et al. 2007), and suggested that the liquid film thickness scales as
(Gutfinger & Tallmadge 1965; Hewson, Kapur & Gaskell 2009)

h
R

∼ Ĉa2/(2np+1) with Ĉa = κ(U/R)np/(σ/R), (1.2)
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where Ĉa is a modified capillary number. A numerical prefactor on the right-hand side
of (1.2) is suppressed here, but its value would depend on np (Gutfinger & Tallmadge
1965; Hewson et al. 2009). Nevertheless, the power-law model fails to reproduce the
low-shear-rate viscosity plateau and has a well-known singularity at zero-shear-rate,
leading to an inaccurate velocity profile in multiple free-surface flow scenarios (Bird,
Armstrong & Hassager 1987; Myers 2005; Hewson et al. 2009; Picchi et al. 2017).

Therefore, recent studies have focused on developing more generalized scaling laws to
overcome the limitation of the power-law model. Using the Carbopol solution (1.1 wt%)
which shows a strong yield-stress effect, Laborie et al. (2017) experimentally investigated
the deposition of the yield-stress fluid in circular channels and developed a semi-empirical
scaling law for the film thickness, considering the competition of the yield stress, the
capillary pressure and the viscous stress (see table 1). Additionally, a recent study by
Picchi et al. (2021) investigated the motion of a Taylor bubble through an Ellis fluid
and identified a scaling law of the film thickness with the generalized effective viscosity
defined by the characteristic shear rate in the liquid film. Several recent studies also showed
that the predictions using the power-law model can be erroneous at flow settings with
a low-shear-rate region and have a small range of applicability compared to the more
accurate Ellis and Carreau–Yasuda (C-Y) models (Moukhtari & Lecampion 2018; Boyko
& Stone 2021; Picchi et al. 2021). However, aforementioned studies are still limited to
mostly numerical or theoretical perspectives, and a systematic experimental verification
of the theoretical predictions is still lacking.

In this work, we report an experimental investigation for the effect of shear-thinning
rheology on the film deposition dynamics, bubble speed and bubble shape variations
when a bubble is moving in a circular capillary tube filled with non-Newtonian fluids.
We consider the range of the zero-shear-rate capillary number, Ca0 = μ0U/σ where μ0
is the zero-shear-rate viscosity for non-Newtonian fluids, over six orders of magnitude
(7 × 10−3 < Ca0 < 830). In § 2, we provide the experimental framework to measure the
film thickness and bubble shape. The generalized C-Y model is used to describe the full
range of rheological properties for carboxymethyl cellulose and Carbopol solutions (§ 3.1).
Scaling laws for the film thickness based on different rheological models are compared
(§§ 3.2 and 3.3), showing the film thickness and the bubble speed (§ 3.4) scale with an
effective capillary number, Cae, containing two dimensionless numbers that describe the
fluid rheology. Finally, the bubble front and rear menisci are experimentally characterized
and further compared with the lubrication theory considered by Picchi et al. (2021) (§ 3.5).

2. Material and experimental set-up

We use carboxymethyl cellulose (CMCell, Sigma Aldrich) and Carbopol (981, Lubrizol)
solutions with different mass fractions as non-Newtonian fluids, and pure glycerin (μ =
0.87 Pa s, σ = 63.4 mN m−1, Fisher Scientific) as a Newtonian fluid for a baseline
comparison. CMCell consists of bentonite as a major component (Benchabane & Bekkour
2008), while Carbopol is composed of polyacrylic acid resins (Laborie et al. 2017). We
prepare the CMCell solutions with four different mass fractions (0.5, 1.0, 1.5 and 2.0
wt%), and the Carbopol solutions with three different mass fractions (0.1, 0.2 and 0.5
wt%, neutralized using 1 M sodium hydroxide). No elastic behaviours are expected in
such a low CMCell mass fraction range given the shear rates in the current experiments
(Ghannam & Esmail 1997; Benchabane & Bekkour 2008). All aqueous solutions were
prepared by gradually dissolving a known weight of powders into deionized water in a
cylindrical beaker with continuous stirring. The mixing was maintained for 24 h until

953 A12-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.926


S. Chun, B. Ji, Z. Yang, V.K. Malik and J. Feng

R
ef

er
en

ce
R

an
ge

of
C

a 0
Fo

cu
s

Fl
ui

d/
R

he
ol

og
ic

al
m

od
el

/C
ha

nn
el

ge
om

et
ry

Sc
al

in
g

la
w

fo
rfi

lm
th

ic
kn

es
s

R
o

&
H

om
sy

(1
99

5)
C

a 0
≤

1
T

he
or

.
V

is
co

el
as

tic
/O

ld
ro

yd
-B

/H
el

e–
Sh

aw
ce

ll
h H

=
(1

.3
37

−
0.

08
34

6m
2
+

O
(m

4 )
)C

a2/
3

0
−

(0
.1

2
−

0.
02

7k
2
+

O
(k

4 )
)(

1
−

S)
W

iC
a1/

3
0

+
O

(δ
2 C

a2/
3

0
)

G
au

ri
&

K
oe

lli
ng

(1
99

9)
10

−2
≤

C
a 0

≤
10

2
E

xp
tl.

B
og

er
/4

-m
od

e
G

ie
se

ku
s/

C
irc

ul
ar

(N
/A

)
K

am
iş
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clear and homogeneous solutions were produced. The surface tension of the working fluid
is determined by the pendant drop method (Rotenberg, Boruvka & Neumann 1983; Song
& Springer 1996).

2.1. Experimental
Bubble motion experiments were performed in a circular glass capillary tube with a length
of 500 mm and an internal radius R = 0.47 mm. The glass capillary was held vertical and
the central length of the capillary was contained in a clear rectangular box filled with the
working fluid to decrease refractive index difference compared to the glass as well as the
optical distortion from the curvature of the tube wall (Yu et al. 2017; Zhao et al. 2018).

During the experiments, the inlet of the glass capillary tube was connected to a syringe
pump (11 Pico Plus Elite, Harvard Apparatus) using a flexible connecting tube. After the
glass capillary was pre-filled with a sample solution, a small volume of air was created
in the connecting tube. The flow rate was then set to a very small value ≈10 µl min−1

to steadily transfer the long air bubble (of length L � R) from a flexible connecting tube
into the inlet of the glass capillary. When the front of the bubble reached the inlet, the
syringe pump was set to the targeted flow rate accordingly. The optical images of the
region of interest (ROI) were recorded at the rate of 60 frames per second using a digital
camera (20.9 Megapixel, D7500, Nikon) equipped with a long working distance objective
lens (12× zoom lens system, Navitar); see the schematic in figure 1(a). The maximum
resolution of the image in our experimental configuration is ≈1.3 µm per pixel, leading
to a maximum relative error in the film thickness measurement of less than 12 %. The
average velocity of the bubble can be evaluated by tracking the gas–liquid interface at the
bubble front tip using the images taken with a lower magnification. An analytical balance
(ME104E, Mettler Toledo) was installed at the outlet of the glass capillary to confirm
the flow rate. In the current experiment, Bo = ρgR2/σ < 0.04 and Re = ρUR/μ � 1, so
gravity and inertia effects are negligible (Atasi et al. 2017; Magnini et al. 2019).

2.2. Measurement of the liquid film thickness
The liquid film thickness around the bubble is estimated with the image visualization,
in which the film profile around the bubble is obtained from the difference between the
position of the bubble surface and the tube wall (see figure 1b). Since the length of the
bubble is larger than the size for the field of view in the images, we use a time-strip
analysis with ImageJ to ensure an accurate measurement of the uniform liquid film around
the bubble.

To confirm the accuracy from the image visualization method, we also measure the film
thickness using mass balance analysis. In the mass balance analysis, the film thickness is
determined based on the change of the length of the liquid plug Lp. We ensure the initial
length of the liquid plug is Lp ≈ 7 cm, so that Lp � R. The plug advances inside the tube,
deceasing Lp (see figure 1c) due to the deposition of the film on the tube wall. The moving
positions of the front and rear menisci of the liquid plug are analysed using ImageJ, which
determines the velocity at the front and rear menisci of the liquid plug, Upf and Upr,
respectively, ranging from 0.2 to 50 mm s−1. Assuming a homogeneous deposition of the
liquid film near the cylindrical capillary tube wall, a mass balance on the moving plug of
length LP yields the relation as (Laborie et al. 2017)

h
R

= 1 −
√

1 + 1
Upr

dLp

dt
= 1 −

√
Upf

Upr
. (2.1)
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Figure 1. (a) Schematic of the experimental configuration. A cylindrical glass tube (with an inner radius of
0.47 mm) is filled with a sample solution (e.g. glycerin, carboxymethyl cellulose (CMCell; 0.5, 1.0, 1.5 and 2.0
wt%), and Carbopol (0.1, 0.2 and 0.5 wt%)). The central part of the circular glass capillary is submerged in
a bath of a sample solution to match the refractive index of glass. Inset: schematic of a translating air bubble
confined in a circular tube. (b) Typical experimental images of a long bubble as it translates in a circular
capillary filled with glycerin (left) at Ca0 = 7.48 × 10−2, CMCell (1.0 wt%; centre) at Ca0 = 3.53 × 10−2

and Carbopol (0.2 wt%; right) solutions at Ca0 = 3.53 × 10−2. Images contain the front meniscus and the
middle part of the bubble, where the film thickness is uniform. The scale bar is 0.5 mm. (c) Schematic for the
mass balance analysis regarding the deposition of a liquid film in a circular capillary tube. (d) Comparison of
the liquid film thickness obtained by the image visualization, hi and the mass balance analysis of the liquid
plug, hm (2.1) for experimental cases over the range of 8 × 10−3 < Ca0 < 8 × 102. All the data lie along the
solid line with a slope of a unity.

Figure 1(d) compares the liquid film thickness measured by the image visualization, hi,
and the mass balance analysis, hm, when a bubble is translating in the glycerin, 1.0 wt%
CMCell and 0.2 wt% Carbopol solutions. The measurement is conducted over a wide
range of Ca0 (8 × 10−3 < Ca0 < 8 × 102). The results show that all the experimental
measurement data lie on the line with a slope of unity, confirming the two methods give
the same result on each experiment. We note that the deposited film thickness is observed
to be invariant by rotation along the axis of the glass capillary since the shear-thinning
effect dominates for the Carbopol solution with low mass fractions (figure 1b), while the
experiments performed by Laborie et al. (2017) showed that the annular Carbopol solution
film thickness was non-uniform azimuthally when the yield stress is important. In the
following, we will use the image visualization to determine the film thickness, h.
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Confined bubble moving in shear-thinning fluids

3. Results and discussion

3.1. Rheological properties of CMCell and Carbopol solutions
Rheological measurements of the CMCell and Carbopol solutions are performed with a
controlled stress rheometer (DHR-3, TA Instrument) using a parallel-plate geometry (with
a diameter of 25 mm) at a controlled temperature of 25 ◦C. Under a simple shear, the
rheological properties of shear-thinning fluids are classically modelled by the power-law
model μ = κγ̇ np−1 (Kamişli & Ryan 2001; de Sousa et al. 2007). However, the power-law
model cannot predict the viscosity at the low-shear-rate region (Picchi et al. 2017, 2021)
where the viscosity approaches to a constant value, known as the zero-shear-rate viscosity.
Instead, the Ellis model (Reiner & Leaderman 1960) was proposed to capture such a
viscosity plateau with a constitutive equation as

μ

μ0
= 1

1 + (τ/τ1/2)α−1 , (3.1)

where τ1/2 is the shear stress at which the viscosity is half of the Newtonian limit, while
μ0 and α are the zero-shear-rate viscosity and the degree of shear-thinning, respectively.

Here, we consider the C-Y model, which has been used to describe emulsions,
protein solutions and polymer melts (Myers 2005; Picchi et al. 2017). The C-Y model
is more convenient for experimental analysis since it expresses the viscosity as an
explicit function of the shear rate (Carreau 1972; Pipe, Majmudar & McKinley 2008;
Morozov & Spagnolie 2015). The constitutive equation of the C-Y model is μ =
(μ0 − μ∞)(1 + (λγ̇ )a)(nc−1)/a + μ∞, where μ0, μ∞, nc and a are the zero-shear-rate
viscosity, infinite-shear-rate viscosity, the power-law index and dimensionless parameter,
respectively. Here, λ is the inverse of a characteristic shear rate at which shear-thinning
becomes apparent. Figures 2(a) and 2(b) demonstrate that the C-Y model can well capture
the rheological behaviours for both the CMCell and Carbopol solutions in the range of
shear rates over five orders of magnitude. We note that μ∞ is neglected in the following
discussion since μ∞/μ0 < O(10−2) and therefore the constitutive equation for the C-Y
model can be written as

μ ≈ μ0(1 + (λγ̇ )a)(nc−1)/a. (3.2)

A very recent theoretical work by Picchi et al. (2021) derived the film thickness as a
function of the Ellis number El and the degree of shear-thinning α for an Ellis fluid, where
El is the ratio between the characteristic shear rate of the fluid and the characteristic shear
rate in the liquid film as

El = τ1/2h
Uμ0

. (3.3)

To compare our experimental measurements with the lubrication theory of Picchi et al.
(2021), we rewrite the C-Y model with a similar form to the Ellis model as

μ

μ0
= (1 + (Cu ˜̇γ )

a
)(nc−1)/a with Cu = λU

h
and ˜̇γ = γ̇

U/h
, (3.4)

where the Carreau number Cu is the ratio between the effective shear rate U/h in the film
and the cross-over strain rate 1/λ (Datt et al. 2015), and ˜̇γ is the dimensionless shear rate.
With the rheological data in figure 2(a,b), we used the method of least squares fitting to
obtain all the parameters for the Ellis and C-Y models. Notably, the value of a in the C-Y
model is chosen to impose nc = 1/α for an analogy between the Ellis and C-Y models,
and we find a ≈ 0.45n−1

c , as shown in figure 2(c). Next, for all the experimental cases,
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0.5 wt% CMCell

1.0 wt% CMCell

1.5 wt% CMCell

2.0 wt% CMCell

C-Y model

0.1 wt% Carbopol

0.2 wt% Carbopol

0.5 wt% Carbopol

C-Y model

0.5 wt% CMCell

1.0 wt% CMCell

1.5 wt% CMCell

0.1 wt% Carbopol

0.2 wt% Carbopol

0.5 wt% Carbopol

2.0 wt% CMCell

0.5 wt% CMCell

1.0 wt% CMCell

1.5 wt% CMCell

0.1 wt% Carbopol

0.2 wt% Carbopol

0.5 wt% Carbopol

2.0 wt% CMCell

Figure 2. (a) Rheogram of the glycerin and carboxymethyl cellulose (CMCell) solutions with different mass
fractions: viscosity μ versus shear rate γ̇ . (b) Rheogram of the Carbopol solutions with different mass fractions:
μ versus γ̇ . The dashed lines represent a fitting with the Carreau–Yasuda (C-Y) model. (c) Dimensionless
parameter a versus the power-law index nc in the C-Y model or the degree of shear-thinning α in the Ellis
model. (d) Ellis number El versus Carreau number Cu in the current experiments. Error bars are smaller than
the symbols.

once the bubble speed and the film thickness are determined, El and Cu are calculated as
shown in figure 2(d). In the current work, Cu is found to be inversely proportional to El
with an experimentally fitted relation of Cu ≈ 1.3El−1. The rheological parameters of the
CMCell and Carbopol solutions are reported in table 2, and we will focus on the effects of
Cu and nc on the deposition dynamics of the working fluids.

We note that Carbopol solutions can exhibit both yield stress and shear-thinning
behaviours. However, we use a low mass fraction of Carbopol to diminish the yield
stress effect (Spiers, Subbaraman & Wilkinson 1975; Ma et al. 2015), so that only
the shear-thinning behaviour dominates. We further justify this consideration by fitting
our rheological data of Carbopol with the Herschel–Bulkley model τ = τy + kHBγ̇ nHB ,
where τy is the yield stress and kHB is the consistency factor. A dimensionless number
B = τyR/σ is suggested to compare the yield stress to the capillary pressure (Deryagin
& Levi 1964; Laborie et al. 2017). In our experiments, B is O(10−3) while B is
O(1) in Laborie et al. (2017), thus we neglect the yield stress effect in the following
discussion.
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Confined bubble moving in shear-thinning fluids

Carreau–Yasuda model

Fluids σ (mN m−1) λ (s) μ0 (Pa s) μ∞ (×10−2, Pa s) nc a Cu

CMCell 0.5 wt% 73.2 ± 0.3 0.1 0.41 ± 0.04 0.1 ± 0.01 0.48 0.9 10.3–86.7
CMCell 1.0 wt% 73.2 ± 0.4 0.2 2.4 ± 0.06 0.1 ± 0.01 0.42 1.1 27.1–87.5
CMCell 1.5 wt% 67.4 ± 0.5 1.4 18.0 ± 0.08 0.9 ± 0.03 0.39 1.2 11.6–214.3
CMCell 2.0 wt% 62.4 ± 0.2 3.0 78.1 ± 0.12 0.5 ± 0.04 0.34 1.3 14.7–301.6
Carbopol 0.1 wt% 73.7 ± 0.4 300 28.3 ± 0.9 1.1 ± 0.01 0.27 1.9 1.4–2.5 × 105

Carbopol 0.2 wt% 71.0 ± 0.5 530 263.7 ± 3.1 2.0 ± 0.03 0.20 2.5 1.6–5.2 × 105

Carbopol 0.5 wt% 60.8 ± 0.3 440 1100.0 ± 12.1 4.0 ± 0.03 0.14 3.1 0.5–2.3 × 105

Table 2. Rheological properties of the CMCell and Carbopol solutions with different mass fractions
computed by the C-Y model.

10–1

10–2h/
R

10–3

10–3

100

10–2

10–4

10–6

10–1 101 103 10–3 10–2 10–1 100

0.5 wt% CMCell

Glycerin

1.0 wt% CMCell

1.5 wt% CMCell

0.1 wt% Carbopol

0.2 wt% Carbopol

0.5 wt% Carbopol

Equation (1.1)

2.0 wt% CMCell

0.5 wt% CMCell

1.0 wt% CMCell

1.5 wt% CMCell

0.1 wt% Carbopol

0.2 wt% Carbopol

0.5 wt% Carbopol

Equation (1.2)2.0 wt% CMCell

(b)(a)

Ca0 Ĉa2/(2np+1)

Figure 3. (a) Non-dimensional liquid film thickness h/R as a function of Ca0. The black line represents
prediction of (1.1). (b) h/R versus Ĉa2/2np+1, where Ĉa = κ(U/R)np/(σ/R), with κ and np ranging from 0.4 to
5.4 Pa snp and 0.16 to 0.51, respectively. The black line represents the prediction of (1.2) with a prefactor of 1.
The experimental measurements are shown as open symbols, and error bars are smaller than the symbols.

3.2. Scaling of the film thickness with the modified capillary number
The film thickness measured in the experiments with the CMCell and Carbopol solutions
is shown in figures 3(a) and 3(b), respectively, as a function of the zero-shear-rate capillary
number Ca0, as well as the modified capillary number Ĉa. As shown in figure 3(a),
compared to a Newtonian fluid at the same Ca0, the bubble forms a thinner liquid film in
both the CMCell and Carbopol solutions because of the shear-thinning effect. The thinner
liquid film formed in the Carbopol solutions compared with that in the CMCell solutions at
the same Ca0 results from that the stronger shear-thinning effect in the Carbopol solutions
than that in the CMCell solutions, as indicated by lower power-law indices of the Carbopol
solutions compared with those of the CMCell solutions in table 2.

With Ĉa to compare the shear stress from the power-law model and the capillary
pressure, (1.2) has been used to predict the film thickness (Gutfinger & Tallmadge 1965;
Hewson et al. 2009). We note that the values of κ and np for Ĉa are obtained by fitting the
rheological data with a power-law model considering the range of shear rates exhibiting
a shear-thinning behaviour, i.e. γ̇ = O(10–103 s−1) for CMCell and O(10−1–102 s−1) for
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Carbopol. As shown in figure 3(b), we report that the data do not precisely follow the
power law of 2/(2np + 1), as predicted by (1.2). The results imply that all the dynamics of
the coating process cannot be captured by using Ĉa, since the power-law model alone is not
sufficient to describe the rheological behaviours of the working fluids around the bubble.
In particular, the deviation of the experimental data for the CMCell solutions is larger
than those for the Carbopol solutions when comparing to the prediction of (1.2), which
can be attributed to the range of the effective shear rates. In the experiments, considering
the effective shear rates in the film γ̇ = U/h, we obtain Cu = O(10–102) for the CMCell
solutions while Cu = O(105) for the Carbopol solutions. The experiments for the CMCell
solutions include low- to intermediate-shear-rate regions, while the experiments for the
Carbopol solutions are performed at intermediate- to comparably high-shear-rate regions.
Therefore, the viscosity plateau at low-shear-rate is required to be considered to obtain
the better prediction for the case of the CMCell solutions, in addition to the power-law
dependence at intermediate-shear-rates. Furthermore, in the vicinity of the uniform film
thickness region, the fluid is at rest. However, the shear-thinning effect plays an important
role at the bubble front meniscus. Approaching the meniscus, the film starts growing
rapidly in the thickness and the shear rate also increases. However, the local shear rate
will decrease again in the region of the re-circulating flow ahead of the bubble. Such a
change of the local shear rate at different regions requires an accurate viscosity model
for a correct representation of the flow physics, which also highlights the importance of a
more realistic rheological model in free surface flow analyses.

3.3. Scaling of the film thickness with the effective capillary number
To explore the effect of the shear-thinning rheology on bubble characteristics, the
following ordinary differential equation for the bubble profile has been obtained in the
theoretical work by Picchi et al. (2021) considering an Ellis fluid

d3η

dξ3 + 3α

(α + 2)Elα−1
d3η

dξ3

∣∣∣∣d3η

dξ3

∣∣∣∣α−1

ηα−1 = η − 1
η3 , (3.5)

where ξ = x/[h(3Ca0)
−1/3] and η = y/h. Different from the Newtonian case, the bubble

profile η becomes a function of ξ , α and El. The two terms in the left-hand side of (3.5)
represent the Newtonian and shear-thinning contributions, respectively. The curvature of
the parabolic region needs to be matched to the curvature of the bubble spherical cap, 1/R,
and once that is done, the thickness of the uniform film region can be deduced.

By introducing the effective capillary number Cae that considers both the
zero-shear-rate and the shear-thinning effects, we obtain

h
R

= P(3Ca0)
2/3 = 0.643(3Cae)

2/3 with Cae = μeU
σ

, (3.6)

where μe is the effective viscosity defined as μe = μ0(P/0.643)3/2, and P is the
dimensionless curvature related to the capillary pressure as the second derivative of η

with respect to ξ , i.e. P = d2η/dξ2 at the limit of η � 1. Here, P is determined by
numerically solving (3.5) using the fully implicit solver ode15i of Matlab and the exact
initial conditions given by Picchi et al. (2021), and then taking a limit when η � 1 toward
the front meniscus. Furthermore, 0.643 is the numerical factor for the Newtonian limit
(Bretherton 1961). In addition, Picchi et al. (2021) used the numerical results of P from
(3.5) to obtain a master fitting curve of μe as a function of El and α. Here, we revise the
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fitting curve with Cu and nc considering the experimental rheological data (Cu ≈ 1.3El−1

and nc = 1/α, § 3.1) as follows:

μe

μ0
=
(

P
0.643

)3/2

=
⎧⎨⎩

1 if Cu → 0,

10 − 7nc

4

(
Cu
1.3

)nc−1

≡ Θ if Cu � 1.
(3.7)

The prefactor (10 − 7nc)/4 for Cu � 1 comes from the fitting curve obtained by Picchi
et al. (2021) at El → 0. When Cu → 0, (3.7) reduces to a Newtonian case. When Cu � 1,
the shear-thinning effect dominates, and thus the viscosity depends on nc and Cu given
that μ∞ is neglected in the current experiments. For other practical non-Newtonian fluids
with non-negligible μ∞, the limit of Cu → ∞ corresponds to the high-shear-rate viscosity
plateau with constant viscosity μ∞.

For each experiment, we compute the effective shear rate in the film U/h, using the
measured bubble speed and film thickness, and thus acquire the effective viscosity μe/μ0
of the CMCell and Carbopol solutions by using the C-Y model (figure 2). We find
the experimental values of μe/μ0 agree well with (P/0.634)3/2, which is numerically
calculated from (3.5). Indeed, figure 4(a) provides a plot of the effective viscosity as
a function of Cu and nc and all the viscosity data collapse around the fitting curve of
the master (3.7), as shown in figure 4(b), which suggests a universal scaling for the
effective viscosity to define the effective capillary number. Therefore, the comparison of
the effective capillary number Cae obtained from (3.6) against the experimental data show
good agreement over the entire range of Cae (figure 4c). The smaller values of μe/μ0
for the Carbopol solution demonstrate the greater extent of shear-thinning compared to
the CMCell solution, which are also indicated by the higher values of Cu for the Carbopol
solutions, as shown in table 2. We further recast (3.6) in the following expression proposed
by Aussillous & Quéré (2000) for the range of Cae (10−3 < Cae < 0.6) in the current
experiments as

h
R

= 1.34Ca2/3
e

1 + 2.5 × 1.34Ca2/3
e

. (3.8)

Figure 4(d) shows a plot of the non-dimensional liquid film thickness h/R as a function
of Cae. The values of h/R increase consistently with Cae for the non-Newtonian fluids, as
the viscous effect is increasingly important. The experimental data for both the CMCell
and Carbopol solutions agree well with (3.8), including the trend in low Cae and the
saturation behaviour at relatively large Cae. Thus, we demonstrate that the liquid film
thickness of the shear-thinning fluids can be estimated with the scaling law proposed
by Aussillous & Quéré (2000) using Cae. The better prediction accuracy compared with
(1.2) also highlights the importance of a practical rheological model. To the best of our
knowledge, our work serves as the first experimental validation of (3.8) with realistic
shear-thinning fluids based on Cae, which is helpful to assess the true range of applicability
for different scaling laws.

3.4. Scaling of the bubble speed with the effective capillary number
In addition, we experimentally measure the ratio of the bubble speed, U, to the average
velocity of the fluid flowing far from the bubble, U∞. The scaling law for the ratio U/U∞
can be derived by applying the mass balance near the thin film region in a reference frame
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Figure 4. (a) Non-dimensional effective viscosity μe/μ0 as a function of the Carreau number Cu and the
power-law index nc. (b) μe/μ0 of the experimental data as a function of Θ . All the experimental data from the
present work show good agreement with the master curve of (3.7). (c) Comparison of the effective capillary
number, Cae, between the theoretical and experimental results. All the data lie along the solid line with a slope
of a unity. (d) h/R as a function of Cae. The black line represents prediction of (3.8) with Cae (Aussillous &
Quéré 2000; Picchi et al. 2021). Error bars are smaller than the symbols.

moving with the bubble (Picchi et al. 2021). Using Cae, we obtain

U
U∞

= 1
(1 − h/R)2 = 1(

1 − 1.34Ca2/3
e

1 + 2.5 × 1.34Ca2/3
e

)2 . (3.9)

The experimentally obtained U/U∞ collapse well with (3.9) (figure 5), showing that
Cae, as a function of Cu and nc, can be used to describe the evolution of the bubble speed
with the rheological parameters of the shear-thinning fluids.

3.5. Characteristics of the bubble front and rear menisci
We further investigate the shape variations of the bubble translating in the CMCell
solution, in which the front and rear menisci of the bubble could be identified clearly
compared to those in the Carbopol solution. In this section, the bubble shape profiles
near the front and rear menisci are computed by solving (3.5) as a function of El and
α. Then we plot in figure 6 the numerically obtained profiles considering Cu and nc to
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1.0 wt% CMCell

2.0 wt% CMCell

1.5 wt% CMCell

Cae (Theor.)
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Figure 5. Ratio of the bubble speed to the average velocity of the fluid far from the bubble U/U∞, as a
function of Cae obtained from (3.6). Error bars are smaller than the symbols.

be given by the correlations Cu ≈ 1.3El−1 and nc = 1/α, and these correlations having
already been introduced back in § 3.1. Using the experimentally obtained bubble profiles,
we first identify the points at which the local film thickness increase by one pixel (≈
1.3 µm) compared with the uniform film thickness. Such a thickness increase corresponds
to ≈1.7–8.5 % of the uniform thickness of the deposited film. Then, these points are
overlapped with those corresponding to the same thickness increase in the numerically
obtained bubble profiles, as shown in figure 6. We note that the bubble profiles at the
front and the rear menisci are solved separately by integrating (3.5) with a different set
of boundary conditions. At the bubble front, we assume that the thin film region extends
to ξ → −∞ (i.e. η(−∞) = 1), and the front meniscus is obtained by integrating (3.5)
towards positive ξ . However, at the rear meniscus, the thin film region is at ξ → +∞, and
the profile at the rear meniscus is obtained by integrating (3.5) towards negative ξ starting
from the boundary condition η(+∞) = 1 (Bretherton 1961; Picchi et al. 2021).

For the bubble front meniscus, figure 6(a) shows good agreement between the
experimental results and the numerical predictions (Picchi et al. 2021) of the shape
changes when Cu increases at fixed nc = 0.48. Although the bubble maintains the rounded
shape similar to that in the Newtonian fluids, the delayed transition from the uniform
film to the parabolic region characterized by a constant dimensionless curvature becomes
significant due to the higher effective shear rate in the film. Considering the viscosity field
obtained from the numerical simulations by Moreira et al. (2020), the appearance of high
viscosity in the film is due to the almost stagnant liquid, while in the axis of the channel, it
is due to a low velocity gradient. In between, as Cu can be interpreted as the ratio between
the representative shear rate in the film to the onset of the shear-thinning effects, larger
values of Cu (i.e. lower El) indicate stronger shear-thinning effects and thus the weight of
the second term on the left-hand side of (3.5) increases, resulting in the delayed transition
to the parabolic region for the bubble shape. A similar trend is observed when decreasing
nc at fixed Cu = 13.8, as shown in figure 6(b). The decrease of nc indicates stronger
shear-thinning effects and thus the transition to the parabolic region is also expected
to be delayed. We note that the numerical solution of (3.5) starts to deviate from the
experimental data as Ca0 > 0.3 (figure 6b) since the lubrication approximation will no
longer strictly hold for the relatively large Ca0. We note that such a delayed transition
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Figure 6. Bubble front meniscus as a function of (a) the Carreau number Cu with the power-law index nc =
0.48 and (b) nc with Cu = 13.8. Bubble rear meniscus as a function of (c) the Carreau number Cu with the
power-law index nc = 0.48 and (d) nc with Cu = 13.8.

from the thin film to the parabolic profile is also theoretically observed in the case where
a charged oil droplet moves through a charged capillary. When the electrostatic interaction
between the capillary wall and the droplet surface is attractive, the visco-electro-osmotic
balance might not only reduce the film thickness, but also delay the transition because of
the cooperation of the electro-osmotic and capillary pressure (Grassia 2020, 2022).

For the bubble rear meniscus, (3.5) is solved following the initial and boundary
conditions given by Picchi et al. (2021). The general observation of the rear meniscus
is similar to that of the Newtonian case, where the bubble profile exhibits one main
crest and one main valley (Magnini et al. 2017) with a high degree of undulations, as
shown in figure 6(c,d). Although the experimental results do not agree with the numerical
solutions very well, the general trends are consistent with the results of Picchi et al. (2021),
considering the effect of the shear-thinning rheology. As the shear-thinning effect becomes
more important with increasing Cu or decreasing nc, the bubble profile stretches along ξ .
Unlike the front meniscus, where the viscosity profile is regular, the axial velocity gradient
near the rear meniscus should be considered when computing the shear rate due to the
undulations (Picchi et al. 2021). Therefore, an accurate description of the viscosity field at
the rear meniscus of the bubble requires a further correction for the axial derivative of the
velocity in future work.
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4. Conclusion

In this work, we provide an experimental framework to study the motion of a long
bubble translating in a circular capillary tube filled with non-Newtonian shear-thinning
fluids. The Carreau–Yasuda rheological model is used to describe the rheological
properties of the CMCell and Carbopol solutions, with full consideration for the viscosity
plateaus at the very low- or high-shear-rates and the shear-thinning behaviour at the
intermediate-shear-rates. We show that the deposited film thickness and the bubble speed
cannot be scaled by the modified capillary number based on the simple power-law
rheological model. Instead, the extended Bretherton’s law holds well if the effective
capillary number is considered, as a function of the Carreau number and power-law index
in the Carreau–Yasuda rheological model. In addition, we investigate the shear-thinning
effect on the variation of the bubble profile near the front and rear menisci. Based
on a recent theoretical work by Picchi et al. (2021), we systematically compare the
experimental measurements to the numerical prediction for the bubble profile. Stronger
shear-thinning effect, indicated by large Carreau number and smaller power-law index,
delays the transition from the uniform film to the parabolic region at the bubble front while
stretches the undulations at the rear meniscus. The numerical prediction of the bubble
profile works well for the bubble front but with less accuracy for the bubble rear given the
complexity of the velocity field. We believe our results serve as an experimental validation
of the recent modelling approach, which provides confidence in applying these models to
a variety of problems involving lubrication and coating flows with shear-thinning fluids.
The influences of other rheological properties, such as viscoelasticity and the resulting
coupling with the channel geometry, on the deposition dynamics will be the focus of our
future investigation.
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