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1. Introduction. Let S be a closed Riemann surface of genus

so that §, the universal covering surface of S, is hyperbolic. We can then uniformize S by
a discrete, nonabelian group Fx of Mobius transformations of the upper half-plane ^f. It
follows that A^ = A^Fj) is discrete; here Nt is the normalizer of Ft in Q, the group of
(conformal) automorphisms of ^f. An automorphism of S can be lifted to a coset of Nl/rl.
Hence C(S), the group of automorphisms of S, is isomorphic to N1/F1. The order of
C = C(S) equals the index of Fl in Nlt which in turn equals | Ft | / | A^ |, where | Nl | is
the hyperbolic area of a fundamental region of A^. Since I \ uniformizes a surface, we have
| Tj | = 4n(g — 1), while, by Siegel's results [7], | A^ | ^ n/2l and ^ can only be the triangle
group (2, 3, 7). Hence in all cases the order of C(S) is at most 84(# -1) , an old result of
Hurwitz [1]. The surfaces that permit a maximal automorphism group ( = automorphism
group of maximum order) can therefore be obtained by studying the finite factor groups of
(2, 3, 7). Such a treatment, purely algebraic in nature, has been promised by Macbeath [5].

In this paper we use another device to gain information on the genera which permit an S
for which C(S) is maximal. Let us make a finite number of punctures in a surface S of genus
g > 1; call the deleted surface S and its automorphism group C = C(S). The genus of £
is still g. Any yeC can be extended analytically to a yeC; consequently C is a subgroup
of C. Hence a punctured Riemann surface has at most 84(g — 1) automorphisms.
Moreover if C is maximal, so is C.

The group F that uniformizes £ will be a free group and its index in its normalizer
N — Nn(r) will be 84(# —1) if C is maximal. In §3 we derive necessary and sufficient con-
ditions on AT and T in order that this be the case. We find that N is of genus 0 and the
signature of N modulo T is (2, 3, 7). The latter means that three of the generators of N have
exponents 2, 3, 7, respectively, modulo T, while the remaining generators are already in F.
The parameters describing S may therefore be taken to be the following: the generators of N
(either elliptic or parabolic) bearing the exponents 2, 3, 7, and the integer /, the number of
parabolic classes in N. For our application we may just as well take / = 1. In §4 we exhibit
three such groups, say N2,N3,N1. For each A7^ we find an infinite family of normal sub-
groups {Fj,, q= 1,2,...} satisfying the above conditions on F. The corresponding surfaces
riq\Ji?, with the punctures filled in, all have maximal automorphism groups.

The surfaces determined by {Tlq} are equivalent to those found by Macbeath in [5],
and if we combine the results of [5] and [6] we find the surfaces determined by {F2,}. On
the other hand the groups {T3q} lead to new closed surfaces Sq with maximal automorphism
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groups. The genus of Sq is 1 + H7q236 and 5, is uniformized by the group KqK', where K
is a Fuchsian group defined in §3.

Macbeath obtains his results by methods of surface topology, while our approach may
be described as arithmetic; namely, we use explicit representations of these groups over
certain algebraic number fields. Our methods can be applied directly to the triangle group
(2, 3, 7), i.e., to closed surfaces, and will furnish infinitely many examples of genera for which
there exists a surface with maximal automorphism groups. However we do not pursue this
question here.

The method of this paper relates certain questions involving compact Fuchsian groups to
similar questions involving non-compact groups. The non-compact groups are easier to
study in some ways, since they are free products and their representations are found more
easily (see [4]). Among these groups is of course the modular group. We remark that the
open problem of determining all genera for which there exists a surface with maximal auto-
morphism group can be stated in the terms of the normal subgroups of the modular group.
If F denotes the modular group and A is the normal closure of /I 7\ in F, then F/A is iso-

\0 \)
morphic to the (2, 3, 7) triangle group. Thus the normal subgroups of finite index in the
(2, 3, 7) group correspond in a 1—1 manner to the normal subgroups of finite index in F
that contain A, i.e., the normal subgroups of finite index in F of level 7.

2. Punctured surfaces with maximal automorphism group. Let S be a punctured Riemann
surface of genus g with T punctures, where we assume throughout the following that

The group F such that S = T\3^" then has the signature

{g\- ;*} ;

i.e., F is a discrete subgroup of Q, its genus is g and it has T classes of parabolic elements and
no elliptic elements. A presentation of F is

i = l J = l

Thus F is a free group of rank x + 2g — l. We denote the hyperbolic area of a fundamental
region of F by | F |; by the results of Siegel [7], this is independent of the particular funda-
mental region used. Moreover,

and so | F | is finite.
Let N be the normalizer of F in Q. Because of our assumption (1), F is non-abelian and

so N is discrete and | N | > 0 [3, p. 403]. Since | F | < oo and the index n = (N: F) satisfies

n = \r\/\N\,
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we see that \i is finite. Suppose that N has signature

{9o;eue2,...,es;t}

and denote the parabolic generators of N by Qlt ..., Q,. Here g0 ^ 0, s^O. Since x is
positive, t must also be positive, and

By comparing | N | and | F | we find that

g-l+fr = H<g0-

However, F is normal in N and hence [2, p. 581]

v 1

where n, is the exponent of Qt modulo F(l ^ i g /).
Let us write

e, for i = l,...,s,

nf for i = s+l , . . . , r (n, > 1),

«,- for i = r+1 , ...,s+( («, = 1).

Then (2) becomes

In (4) we set n = k(g-1), so that k > 0. Then

(2)

(3)

(4)

(5)

The automorphism group is maximal if and only if k = 84. Hence r > 0. If we assume
0o > 0 we get 2/k ^ r/2 ^ 1/2, or k £ 4. Hence #0 = 0 and

(6)

We require the well-known and easily proved

LEMMA 1. Let yu ...,ynbe integers such that yt ^ 2 (1 g / ^ «) and
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Then

with equality only for n = 3 and(yu y2, y3) — (2, 3, 7).
The Lemma shows that xx = 2, x2 = 3, x3 = 7 and, from (3), x, = 1 for 4 ̂  i g
Let us define the signature of iV modulo F to be the unordered set (xl t . . . , xt). (Note

that this is simply the set of exponents x > 1 of the generators of N modulo F.) Then a
necessary condition that S = F \ ^ have an automorphism group of maximal order is that
N =Nn(T) be a non-compact group of genus 0 and that the signature of N modulo F be
(2, 3, 7).

We must now show that the above condition is sufficient. That is, we wish to prove that,
if N is a non-compact discrete subgroup of £2 of genus 0 and F is a free normal subgroup
of N of finite index such that the signature of N modulo F is (2, 3, 7), then S = T\$f is a
punctured Riemann surface with maximal automorphism group. For this purpose it is
sufficient to prove the following

LEMMA 2. Under the above hypotheses there is no discrete normal overgroup FofT with
Cl=>F=>Nandl< (F:N)< oo.

For then N is necessarily the normalizer of F in Q and we can apply the previous results.
From (4) we deduce that g, the genus of F, is greater than 1. From (5) we calculate that
k = 84, and so $ has a maximal automorphism group.

We go on to the proof of the Lemma. The signature of N is

{0; elt ..., es; t}, where t> 0.

Denote by tl g t the number of exponents nt that are greater than 1. Thus t—tx is the number
of parabolic generators Qt already in F. Assume the lemma false. Then there is an F=> N
with signature

(0j <?i, ..., 6S) Ci , . . . , eu\t j ,

where u ^ 0, t* > 0. Let (F: N) = p. The parabolic generators of F may be taken from the

parabolic generators Qt of iV; say Qu ..., Q,.. Let m, be the exponent of Qt modulo
F (1 ^ i ^ t*), and define t* to be the number of mt that are greater than 1. Then tt ^ t* and
m, = «, (1 S i ̂  t*). Hence

'* 1 fl 1
i=i mj ~ ,fj nl

Comparing the hyperbolic areas \N\ and | F\, we find that

t+E-2 = p(t*+E*+E-2) £ p(t*+E-2), (8)
where
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Next compare | F | and \f\. Recalling that F has T parabolic classes and is normal
in F of index pn, we have

T =

where

Finally, comparing | F | and | N\, we get

These relations give

Combining this with (8), we obtain

Since (6) implies that M+E-2= 1/42, it follows that p g l . Hence p = 1 and F = N.
Therefore Nis maximal and we have completed the proof of Lemma 2, and so of the following

THEOREM 1. Every punctured Riemann surface of genus g ^ 2 with maximal automorphism
group can be written in the form S = F\^f, where F c Q is a free group and the signature of
N = Nn(T) modulo T is (2, 3, 7). Conversely, if N, T <= fi are such that N is a non-compact
F-group of genus 0, F is a free normal subgroup of N of finite index, and the signature of N
modulo F is (2, 3, 7), then S = T\3V is a punctured Riemann surface with maximal auto-
morphism group.

3. Existence of surfaces of given type. So far we have not proved the existence of a single
punctured Riemann surface with maximal automorphism group. The possible surfaces can
be classified according to the signature of the normalizer N modulo F. Let ./V have s elliptic
generators, where 0 ^ s ^ 3; it must then have 3—s = t1 parabolic generators with exponents
« f > 1. The remaining t-tx parabolic generators already lie in F. Suppose that s<3;
then tt > 0. Two groups iV that differ only in the value of t— tx give rise to surfaces S that
differ only in the punctures; when the punctures are filled in, the closed surfaces S will be
the same. For our purpose, which is the construction of closed surfaces, we may assume that
/ = / j . On the other hand, when s = 3, we have tt = 0 and then we must have t > 0 in order
that N be compact; we may assume in this case that t = 1.

We treat the three cases for which

s = 2, t = t1 = l.
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Then (e,, e2, nt) is a permutation of (2, 3, 7). The triple (elt e2, «i) will be called the signature
of the Riemann surface.

In this section a theorem will be proved which shows the existence of infinitely many
inequivalent surfaces of a given signature provided that one such surface exists (Theorem 2,
below). In the following section we shall exhibit a surface of each of the three types under
consideration.

THEOREM 2. Suppose that N and F are F-groups such that F is a free normal subgroup
of N of finite index, N is of genus 0 and has exactly one parabolic class, and the signature of
N modulo F is (2, 3, 7). Let P be the generator of the parabolic class of N, and let A denote
the normal closure ofP" in N, where n is the exponent ofP modulo F. Define

Then each Fq is a free normal subgroup of N of finite index, the Fq are mutually distinct, and
the signature of N modulo Fq is (2, 3, 7).

Proof. Let us first observe that F contains A as a normal subgroup. Since F is free and
its parabolic classes consist of TV-conjugates P2, P3, ...,Pr of i ^ = P", its presentation is

where g > 0 is the genus of F [3, p. 235]. Now considering F as an abstract group, we obtain
the presentation of F/A by setting Pt = P" = 1 in the above presentation, which involves
setting all Pt = 1 (/ = 1, ..., r). Thus

i.e., K is isomorphic to the fundamental group of a closed surface of genus g. The groups
Fand ^Thave the same genus: dividing by A is equivalent to filling in the punctures in

Under the homomorphism F-> K, we have Fm-» Km and F'-+ K'. Hence

F/Fq s K/Kv

where we define
Kq = K"K'.

But K/Kq is the product of 2g cyclic groups of order q and so

Obviously the Fq are all distinct and each is of finite index in F, therefore in N. Since Fq is a
characteristic subgroup of F and F is a normal subgroup of N, Fq is normal in N. As a sub-
group off, Fq is free. Finally, iVhas signature (2, 3, 7) modulo Fq, since P"eFq. This completes
the proof of Theorem 2.
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Now suppose that N, F, and Fq are as in Theorem 2. Lemma 2 shows that N = Na(F).
Since the surface F\jf of genus g, say, has a maximal automorphism group, we have
IN: F] = 8 % -1 ) . Let N, = N/A; then from the presentation of N,

N = {x, y, P | xe> = yei = xyP = 1},
we deduce that

That is, Nt is the (2, 3, 7) group. Since K = F/A is normal in Nu the surface K\$f is maximal
and so [A^: # ] = 84(0-1).

Next we have

IN, : j y = [JVX : K] [X : X j = 84(<? - l)m2".

By applying the hyperbolic area formula to K and Kq we derive

l), (9)
where gq = genus of Kq. Hence

[JVx:iC,] = 84(0,-1),

so that Kq\3V is a closed surface with maximal automorphism group and genus given by (9).
Thus we have proved

THEOREM 3. If N, F, and Fq are as defined in Theorem 2, then there exist closed surfaces Sq

with maximal automorphism group whose genus gq is given by

where g is the genus of F. The uniformizing group of Sq may be taken to be Kq = KqK', where
K=F/A.

4. Construction of the particular groups F. The final step is to exhibit a group F for
each of the three cases (elt e2) = (2, 3), (2, 7), (3, 7), where eu e2 are the orders of the elliptic
generators of the overgroup N, and to calculate the genus of F. We can then apply Theorem 3.

The requirements on Fare that it should be free, of finite index in N, and that the parabolic
generator of N should have exponent n modulo F, where [eu e2, n) = {2, 3, 7}.

For {eu e2, n) = (2, 3, 7), N is the modular group and we can take F = F(7), the principal
congruence subgroup of level 7. The genus of F is 3. Thus

9q = l + 2q6. (10)

The corresponding surfaces are evidently the same as those obtained by Macbeath [5].
Suppose that (eu e2> ri) = (2, 7, 3) or (3, 7, 2). The group N is then isomorphic to the

free product of two cyclic finite groups of orders el,e2; representations of such groups have
been discussed in [4].
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Consider the case (2, 7, 3). Let E be the ring of integers in the field obtained by adjoining
£ = e"'n to the rationals. The representation of the F-group N = {0; 2, 7; 1} given in [4]
is over E. Define

JV(3) = {AeN\A=+I (mod (3))},

where (3) is the ideal generated by 3 in E. Clearly N(3) is of finite index in N. If N(3) contains
an element B of finite order, then B is conjugate to a power of either E2 or E-,, the elliptic
generators of N. Suppose, for example, that E™eN(3) (0<m<7). Since (m, 7) = 1, it
follows that E-, e N(3), which is seen to be false from the representation

£7 =

The remaining case is disposed of in the same way. But N is isomorphic to a free product;
by Kurosch's Subgroup Theorem, any subgroup with no elements of finite order must be free.
Thus JV(3) is free and we can take F=N(3) in Theorem 3. The case (3, 7, 2) is handled
similarly.

Let M = N(3). Since the surface M\3V is maximal, gM-1 = JI/84, n = [N:M]. In the
next section the index is calculated as n = 13 . 27 . 28, so that

9M = H 8 .

Writing Mq = MqM' and gq = genus of Mq, we get
6 (g = l,2,...). (11)

The corresponding surfaces cannot overlap with those in (10), since 6 does not divide 236.
A similar calculation for the case (3, 7, 2) yields n = 504, gM = 7,

gq = l + 6g14 fa = 1,2,...). (12)

For q = 1 this surface is found in Macbeath [6], and, if we make use of the methods of
Macbeath [5], we obtain the surfaces for*/ > 1.

5. Calculation of a certain index. In this section we shall prove that the index n = \_N: M]
is 13.27.28, where TV* is the group {0; 2,7; 1} and M=N(S). The remaining case,
N = {0; 3, 7; 1}, M = N(2), is handled in the same way but the details are far easier.

Let % be the ring of integers of an algebraic number field. Let {ov i = 1, ..., «} be an
integral basis for S£. We get

= LF{2,%),K =
L\-i o,

. = ±/(moda)},

where a is an ideal in 2£.
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LEMMA 3. KG(a) = G.

Proof. KG(a) is defined, since G(a) is normal in G. Let

(* A
6 G.

y
Since a and y are coprime in S£, we can choose T SO that at + y is prime to a. Then

OVa A /a P

with VJ prime to a. Next solve the congruence a+pyt = 1 (mod a) for p and get

P V « P\_n P2 \ A o\ / i
o lAri *.y ~ Vri i+^yi ; Vft Wo 1 ' ( m ° d a ) -

Thus

with P e G(a). Note that

' 1 0\ / I -pN A

since

and, similarly, the other.matrices in the right member of (*) belong to K. Hence

a p\
I G KG(<x),

o)
as required.

Now let 2£ be the ring of integers in g(() with C = — 1. Setting

we find that the irreducible equation satisfied by A over Q is

A3-A2-2A+1 = 0 . (13)
Let

0 '\ f
Since {1, A} is not a basis for ^", the group N does not satisfy the hypotheses for K, and
Lemma 3 is not directly applicable.

We proceed as follows. Let a = (3) and let M =N(3), n = [N: M~\. Since 3 is a prime
in % (because 3 is a primitive root of 7), we have
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where TV, the norm of 3 in 2£, equals 27, G = LF(2, 2?), and G(3) is the principal congruence
subgroup of G modulo (3). The idea will be to prove that

JVG(3) = G. (14)

Then, since M = Nn G(3), we shall have

G/C(3) s JV/M
and so

H = [JV : M] = [G : G(3)] = 13.27.28,

as asserted.
In any event NG(3) is a subgroup of G and so the isomorphism shows that p. | 13 . 27 . 28.

We also know that n = 84(g — 1). Hence setting

/x = 8 4 ^ , (15)
we have

/*i J9.13. (16)
Let

0\ 2

Its trace f = 2 +A2 satisfies the equationf

t3 = 2t2 + t-l (mod 3).

Using R2 = tR — I, we calculate successive powers of R and find that

R13 = I (mod 3).

Thus .K1 3eMand hence 13 | n; from (15) it follows that 13 | ^ . Set

li, = 13/i2, (17)
where /i2 19.

In order to prove \i2 = 9, we observe that

JVG(3)/G(3) S N/M;

hence [A^G(3): G(3)] = n = 84 . 13 . n2. In the chain

G = JVG(3) = C(3),

we have [G: G(3)] = 13 . 27 . 28; therefore [G:M7(3)] = 9/p2.
Suppose that SeG; then SkeNG(i) for some k in 1 ^ k g 9//i2- Choose

t For typographical convenience we write mod 3 instead of mod (3).
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Because of A13 = - 1 (mod 3)—as we calculate from (13)—it follows that S13eNG(3).
Hence k | 13, and k < 13 implies that k = 1, i.e., S is already in M7(3).

Now (\ X\eN, and so, for each integer r,

But the odd powers of A form an integral basis for 2£, as we see from the equations

1 = A3-3A+1/A, A2 = 2 +A-I/A.

Hence M7(3) contains / I <x>\, where a>t runs over a basis for 2£, and NG(3) certainly

[o i)
contains ( 0 l \ , since N does. Let K be the subgroup of M7(3) generated by

f/ 0 l \ 1 co

IV-i o/ \o i
Applying Lemma 3 we see that KG{3) = G; hence NG(3) = G. This proves the correctness
of (14) and completes the proof.
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