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Abstract

Large multigenerational cohort studies offer powerful ways to study the hereditary effects on various health outcomes. However, accounting
for complex kinship relations in big data structures can be methodologically challenging. The traditional kinship model is computationally
infeasible when considering thousands of individuals. In this article, we propose a computationally efficient alternative that employs fractional
relatedness of family members through a series of founding members. The primary goal of this study is to investigate whether the effect of
determinants on health outcome variables differs with and without accounting for family structure.We compare a fixed-effects model without
familial effects with several variance componentsmodels that account for heritability and shared environment structure. Our secondary goal is
to apply the fractional relatedness model in a realistic setting. Lifelines is a three-generation cohort study investigating the biological, behav-
ioral, and environmental determinants of healthy aging. We analyzed a sample of 89,353 participants from 32,452 reconstructed families. Our
primary conclusion is that the effect of determinants on health outcome variables does not differ with and without accounting for family
structure. However, accounting for family structure through fractional relatedness allows for estimating heritability in a computationally
efficient way, showing some interesting differences between physical and mental quality of life heritability. We have shown through simu-
lations that the proposed fractional relatedness model performs better than the standard kinship model, not only in terms of computational
time and convenience of fitting using standard functions in R, but also in terms of bias of heritability estimates and coverage.
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Excessive weight, especially obesity, is a major public health concern
in the western world. Around two-thirds of the adult population in
the USA and at least half of the population of many European coun-
tries are currently overweight or obese (Berghöfer et al., 2008; Flegal
et al., 2010; Wang et al., 2008). In the Netherlands, the prevalence of
overweight is 48.3% (Volksgezondheid, Nationaal Kompas, 2012),
and 12.7% of the Dutch population is classified as obese. It is known
that obesity — defined as a BMI of 30 or more — is a major risk
factor for many chronic diseases, such as hypertension, stroke, coro-
nary heart disease, diabetes, arthritis and overall mortality (Flegal
et al., 2013; Prospective Studies Collaboration et al., 2009).
Furthermore, increased BMI has also been shown to be associated
with reduced physical health-related quality of Life (HRQoL)
(Ul-Haq et al., 2012, 2013). However, evidence on the relationship
between BMI andmental HRQoL is inconclusive. Some studies have
found that BMI is associated with poor mental health (Baumeister &
Härter, 2007; Ohayon, 2007; Petry et al., 2008), whereas others did

not find such a relationship (Crisp & McGuiness, 1976; Goldney
et al., 2009; Palinkas et al., 1996; Petry et al., 2008). Ul-Haq et al.
(2014) also found that the association between BMI and mental
health among the Scottish adult population (N= 37,272) was
moderated by age and sex. In contrast to the above-mentioned
studies, Ul-Haq et al. (2014) used the full spectrum of BMI and
adjusted for potential confounders and found that only young obese
women (<45 years of age with BMI >29.9 kg/m2) had significantly
reduced mental health. Furthermore, being underweight was also
associated with diminished mental health among women of all ages,
but not men.

Background on Lifelines

Lifelines is a large, population-based cohort study and biobank
investigating the biological, behavioral and environmental
determinants of healthy aging among 167,729 inhabitants from
the northern part of the Netherlands. The cohort profile of the
Lifelines study has been extensively described in Scholtens et al.
(2015). Summarizing, the participants’ baseline visit took place
between December 2006 and December 2013. All general
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practitioners in the three northern provinces of the Netherlands
were asked to invite their registered patients aged 25–49 years.
All persons who consented to participate were asked to provide
contact details to invite their family members (i.e., partner,
parents and children), resulting in a three-generation study. In
addition, participants could also register their participation via
the Lifelines website. Lifelines adopted a multigenerational study
design to disentangle the genetic, lifestyle and environmental
contributions to the development of chronic diseases, study the
between-generation similarities and identify the preclinical stages
of ageing at an early age (Stolk et al., 2008). Baseline data were col-
lected from 167,729 participants, aged from 6 months to 93 years.
Follow-up is planned for at least 30 years, with questionnaires
administered every 1.5 years and a physical examination scheduled
every 5 years. The physical examinations, including anthropom-
etry, lung function, blood pressure, electrocardiogram (ECG) and
cognition tests, are conducted at one of the Lifelines research sites.
In addition, fasting blood and 24-h urine samples are collected
from all participants. A comprehensive questionnaire on history
of (chronic) diseases, HRQoL, lifestyle (physical activity, alcohol
use, diet and smoking status), individual socioeconomic status
(income and education level), psychosocial stress, work (profes-
sion, working hours), psychosocial characteristics and medication
use is completed at home.

Lifelines is a facility that is open to all researchers. Information
on application and data access procedure is summarized on
www.lifelines.net. An overview of the available data is presented
in the online Lifelines Data Catalogue.

Motivation and Goal

Although the explicit familial structure of the data is an advantage
in studying the genetic and environmental components of various
health-related outcomes, it is in fact a complicating factor in
studying the effect of traditional epidemiological covariates.
Given that participants are related (e.g., grandparent–grandchild,
parent–child, and sibling–sibling relations), genetic, shared envi-
ronmental and health behavioral factors may confound the effects
of BMI on physical and mental HRQoL.

The standard way to control for familial effects is through the
kinship model (Almasy & Blangero, 1998), which is a variance
components model whereby genetic relatedness is modeled
through a kinship covariance matrix. Despite the genetic plausibil-
ity of the model, it is computationally prohibitive for thousands of
individuals and hundreds of families. This means that it cannot be
used for the Lifelines study.

Our first objective is to study the effect of BMI on mental and
physical components of HRQoL scores with and without account-
ing for relatedness in a family. Another objective is to determine a
computationally efficient model that incorporates genetic and
shared environment to assess the contribution of epidemiological
determinants on health outcomes. Given the large sample size and
inclusion of extended families in the study, Lifelines allows the
identification of the effect of relatedness with higher precision than
other studies that are often (much) smaller and limited to particu-
lar types of family relationships (e.g., Lichtenstein et al., 2009; Noh
et al., 2006; Pawitan et al., 2004; Rabe-Hesketh et al., 2008; Yip
et al., 2008). The current Lifelines study includes extended families
with up to 19 members.

Not only are the variance components due to specific factors of
interest, but also the relative contribution of these variances in the
total variance of the outcome. Related to this is the concept of

intraclass correlation coefficient (ICC). The ICC represents the
heritability coefficient in a narrow sense when applied to additive
genetic models. The concept of heritability originates from Fisher
(1918) and Wright (1920) and was formalized by Lush (1940). An
extensive review on the concept and misconceptions of heritability
is given by Visscher et al. (2008). In the Methods section, we pro-
vide the definitions of shared environmental, unique environmen-
tal and hereditary ICCs in the context of our models. We also
briefly introduce the beta-approach (Demetrashvili et al., 2016)
to construct confidence intervals for the ICC. The beta-approach
has been successfully applied to construct confidence intervals for
ratios of sums of variance components in linear and nonlinear
mixed-effects models (Demetrashvili & Van den Heuvel, 2015).
This approach will use the first and second moments of the ICC
estimate in combination with a beta distribution for accurate con-
fidence intervals.

In the next section, we provide the background on the
reconstruction of families and outcome measures. Then we
describe various models and give a motivation of their use, includ-
ing criteria for their selection. Following, we provide the analysis of
familial confounding of BMI-related physical and mental HRQoL
in the Lifelines study. We then compare our fractional relatedness
model with more traditional kinship models through simulations.
We conclude the article with an extensive discussion.

Methods

In this section, we explain how we reconstructed extended families
from the available local kinship relationships. The outcomes of
interest are mental and physical health, which were reconstructed
from a RAND-36 questionnaire. Then we applied mixed-effects
models beside a fixed-effect model to study the effect of BMI on
mental and physical health.

Family Reconstruction

For a large number of participants in the Lifelines study, their
parents, partner and children are also included in the study.
Such information is relevant for disentangling the genetic, behav-
ioral and shared environmental variances. In biometric genetics,
the coefficient of relatedness or genetic correlation for two individ-
uals is defined as the expected proportion of genes of two individ-
uals that are identical by descent (Sham, 1998, p. 208). A related
concept in biometric genetics, which is used in this study, is that
of a founder. Individuals without ancestors in the study are called
founders, whereas others are called non-founders (Almgren et al.,
2003, p. 10). Founders in our study population are assumed
unrelated.

Considering the information provided by Lifelines participants,
we define a family as a group of related individuals sharing envi-
ronmental and/or genetic factors. For example, health responses of
mother and child may be similar due to both genetic similarity and
shared behavior and environment, whereas the health responses of
partners are related only due to the latter. Within the context of
the Lifelines study, we define the concept of an extended family
as a connected graph of individuals either via parent–child or
partner–partner relationships. An example of a family is given
in Figure 1. Note that the sibling relationships in this graph are
inferred from common parent relationships. Sibling information
itself is not recorded within Lifelines. We do not have extensive
information for all reconstructed families in the Lifelines study,
as some members might not participate in the study.
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Information on children from previous marriages is, in princi-
ple, also available. However, not all familial information is com-
plete in Lifelines, since people may not be willing, for example,
to identify ex-partners. Some of the information, however, can
be reconstructed from the partial information provided by the par-
ticipants. For example, if a child declares both parents and the
parents declare this child, but do not declare each other as partners,
we make a link between such parents as a couple. For family
reconstruction, we identify a set of related individuals through
parent–child and/or partner–partner relationships and call this
set a family. Once an individual is assigned to a particular family,
no further reassignments take place. The model we propose in this
study requires construction of the relatedness matrix. Relatedness
between founders and non-founders is fractional, as explained in
the next section. In Table 1, we outline the algorithm used for con-
struction of fractional relatedness matrix.

Outcome Measures

A sample consisting of 91,759 participants from the baseline
Lifelines cohort study data release was available for analysis.
HRQoL was measured using the Dutch version of the RAND-36
questionnaire (Hays & Morales, 2001; Van der Zee & Sanderman,
1993; Van der Zee et al., 1996). HRQoL refers to how health impacts
on an individual’s ability to function and his or her perceived well-
being in physical, mental and social domains of life. The RAND-36
consists of 36 itemsmeasuring eight health concepts, that is, physical
functioning, role limitations caused by physical health problems,
bodily pain, general health perceptions, role limitations caused by
emotional problems, social functioning, emotional well-being, and
energy/fatigue. The first four reflect the physical health and the
last four reflect the mental health of an individual. The scales of
these eight concepts are combined into two summary measures of
HRQoL, the physical component score (PCS) and the mental
component score (MCS), using the scoring algorithm of Ware et al.
(1994). PCS and MCS are between 0% and 100% and higher scores
correspond to better quality of life.

Statistical Models

We compare four models to examine whether the effect of BMI on
HRQoL differs with and without accounting for family structure.
These models are: M0: multiple regression model; M1: mixed-
effects model with random intercept for the family, capturing
the environmental familial effect; M2: mixed-effects model with
random slopes for founders within a family, capturing the genetic
familial effect. The fourth model, M3, is a combination of the last
two models. Thus, M3 is a mixed-effects model with random inter-
cept for family and random slopes for founders, capturing both
environmental and genetic familial effects.

Assume that a total of n individuals and I families are included
in the study. Suppose for the ith family ni members have been

observed (i= 1, 2, : : : , I), such that n ¼ PI
i¼1

ni. Themultiple regres-

sion model M0 of the HRQoL response yij for the jth member of
the ith family can be written as:

yij ¼ xT
ijβ þ "ij; (1)

where xij is a p × 1 vector for the jth individual in the ithfamily
measured on p covariates, including BMI and possible confound-
ers, β is a p× 1 vector of coefficients and residual errors εij across all
observations are assumed to be identically and independently dis-
tributed (iid) having a normal distribution with mean zero and

variance σ2R; "ij �iid Nð0; σ2RÞ. The fixed effects xij can be quantitative
or dummy variables to represent categorical variables, so the effec-
tive number of covariates may be less or equal to p.

Note, observations yij within the same family are most likely
correlated, but the multiple regression model M0 does not account
for this.ModelM1will account for this correlation by introducing a
random intercept ui for every family:

yij ¼ xT
ijβ þ ui þ "ij; (2)

where ui is normally distributed with mean zero and variance

σ2R; ui �iid Nð0; σ2uÞ; the definitions of xij, β and εij are the same
as in (1).

Model M1 does not disentangle the genetic and shared environ-
mental variation. Since one of the goals is to estimate the variance
contribution inMCS and PCS due to various factors, modelM2 will
assume that the genetic correlation between family members is due
to additive genetic effects of alleles (with no dominant and epistatic
effects). By assuming all genetic information is in the founders, and
consequently imposing the fractional relatedness effect between
founders and other members of the family, model M2 introduces
the random slopes υi for the set of founders mi in family i and can
be formulated as:

yij ¼ xT
ijβ þ FT

ij�i þ "ij (3)

where definitions of xij, β and εij are the same as in (1) and Fij is the
mi × 1 vector of founders for individual j in family I, where Fijk is a
fractional relatedness of individual j to founder k in family i withPmi

k¼1
Fijk ¼ 1; υi is themi × 1 vector of random slopes for founders in

family I, where υi= (υi1, : : : υim), �ik �iid Nð0; σ2f Þ. We assume inde-

pendence between random terms.

Table 1. Algorithm for Construction of a Fractional Relatedness Matrix

1. For family, i determine the set of founders, that is, individuals without
parents

2. Initialize a fractional relatedness matrix of size ni by mi as a matrix
with zeros, where ni is number of individuals and mi is number of
founders in family i

3. For each founder do the following: assign fractional relatedness equal
to one to himself/herself and assign fractional relatedness equal to
(1/2)g to offspring, where g is a generational distance (e.g., g = 1 for
child, g= 2 for grandchild, etc.)

Fig. 1. Family example consisting of 13 members.
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An important computational advantage of model M2 compared
to the traditional kinship model is employment of a substantially
smaller design matrix Fij. Namely, in M2, the design matrix across
all families is of size m by n, where m is the maximum number
of founders among all families and n is the total number of partic-
ipants in all families. In the classical kinship model, the variance
component matrix would be of size n by n. Dimensionality
reduction is particularly crucial when one analyzes large number
of participants, such as in Lifelines.

An example of a family consisting of 13 members in the
Lifelines study is shown in Figure 1: oval shapes refer to females
and squares to males. The associated fractional relatedness matrix
F is demonstrated below. The M2 model assumes that the health
outcome has a hereditary component. For example, the founders
F1 and F2 both share half of their random hereditary effects with
their child, member 3, and one-quarter with their grandchild,
member 7.

Fi ¼

1
2
3
4
5
6
7
8
9
10
11
12
13

F1 F2 F12 F13
1 0 0 0
0 1 0 0
1=2 1=2 0 0
1=2 1=2 0 0
1=2 1=2 0 0
1=2 1=2 0 0
1=4 1=4 1=2 0
1=4 1=4 1=2 0
1=4 1=4 1=2 0
1=4 1=4 0 1=2
1=4 1=4 0 1=2
0 0 1 0
0 0 0 1

����������������������������

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

Model M3 is a combination of models M1 and M2, and can be
written:

yij ¼ xT
ijβ þ ui þ FT

ij�i þ "ij; (4)

where definitions and assumptions used in models M1 and
M2 remain the same for this model. Variance components
σ2u; σ

2
f and σ

2
R are due to shared environmental, genetic and unique

factors, respectively.

Inference and Model Selection

The overall significance of each covariate is tested using a
conditional F test. In this test, as in the usual F test of covariates
for regressionmodels, the conditional estimate of the residual error
variance is used. More details on the F test are given in Pinheiro
and Bates (2009, §2.4.2). Confidence intervals for marginal
coefficients βl are constructed based on conditional t tests. Each
fixed-effect coefficient can be tested marginally in the presence
of other fixed effects in the model (Pinheiro & Bates, 2009, pp.
92–96). The approximate 100% (1−α) confidence limits on the
βl are computed as:

β̂l � tdf lð1� �=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂arðβ̂Þ

q
ll
; (5)

where β̂l is an estimate of lth fixed effect, tdflðqÞ denotes the qth
quantile of a t distribution with dfl degrees of freedom and

v̂arðβ̂Þll is an estimate of the variance of β̂l . Clearly v̂arðβ̂Þ is the
variance–covariance matrix of the vector β̂ of fixed-effects
estimates. More on the determination of the degrees of freedom
for our model is in the below ‘Estimation of fixed effects’ section.

To select the best model we used the Bayesian information
criterion (BIC; Schwarz, 1978). The BIC for these models is
defined as:

BICðMÞ ¼ �2lMð�jyÞ þ df ðMÞ lnðnÞ; (6)

where lMð�Þ is the log-likelihood function for the estimated model
M with θ a vector of all parameters, df(M) denotes the overall
number of parameters in the model, that is, the regression and
variance components parameters and n is the total number of
observations used to fit the model. The model with the smallest
BIC is preferred.

Intraclass Correlation Coefficient

Themodels we defined above allow us to define the following three
types of ICC: (1) the behavioral and shared environmental ICC
(c2), as the proportion of total variance due to shared environmen-
tal components; (2) the hereditary ICC (h2), as the proportion of
total variance due to the additive genetic component; and (3) the
unique environmental ICC (e2), as the proportion of total variance
due to unique environmental components. We define these ICCs
for model M3 as follows:

c2 ¼ σ2U
σ2U þ σ2f þ σ2R

h2 ¼
σ2f

σ2U þ σ2f þ σ2R
e2 ¼ σ2R

σ2U þ σ2f þ σ2R
(7)

For M1 and M2 models, the c2, h2 and e2 are deduced from for-
mula (7), by ignoring (setting to zero) those variance components
that are not present in the model.

We outline the beta-approach for obtaining the CI for h2,
though this approach can be similarly applied to c2 and e2. The
distribution of the estimator h2 is approximated with a beta
distribution, ĥ2 � Betaða; bÞ with parameters a > 0 and b > 0. If ĥ2

is an estimate of the variance of the mean and τ̂2
ĥ2
is an estimate of

the variance of ĥ2, the method of moment estimates for a and b are
given as:

â ¼ ĥ2½ĥ2ð1�ĥ2Þ�τ̂2
ĥ2
�

τ̂2
ĥ2

;

b̂ ¼ ð1�ĥ2Þ½ĥ2ð1�ĥ2Þ�τ̂2
ĥ2
�

τ̂2
ĥ2

:

(8)

A first-order Taylor expansion is used to approximate τ̂2
ĥ2
,

as shown in Demetrashvili et al. (2016). The approximate
100% (1−α) confidence interval on the h2 in (7) is then given by
the lower and upper confidence limits as:

LCLĥ2 ¼ B�1
â;b̂
ð1� �=2Þ;

LCLĥ2 ¼ B�1
â;b̂
ð�=2Þ; (9)

with B�1
a;bðqÞ being the qth quantile of the beta (a and b) distribu-

tion. A detailed description of the beta-approach is given in
Demetrashvili et al. (2016).
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Lifelines Analysis Results

Analysis of the Lifelines data was conducted using R (RCore Team,
2017), version 3.4.0. Mixed-effect models were fitted by applying
the lme function of the nlme package using maximum-likelihood.
Unlike for the traditional kinship model, we were able to fit all
models to thousands of subjects and families using the standard
R function. All results below are presented with two-sided 95%
confidence intervals.

A sample of the baseline Lifelines cohort was used consisting of
91,759 participants, from which we constructed 32,531 families.
The distribution of family sizes is summarized in Table 2. The
largest family has 19 members. There are 253 singletons, 18,585
families have two members, and so on. About 99% of all recon-
structed families consist of at least two members. Among all
participants, 44% were recruited via their general practitioner,
13% via self-registration and the remaining 43% were recruited
as family members of the first two groups. The number of declared
partners is 56,560, meaning that 62% of all individuals in Lifelines
currently have a partner. The number of declared fathers is 18,342
(20%), whereas the number of declared mothers is 26,627 (29%);
34% of all individuals in Lifelines have at least one child. The maxi-
mum number of declared children is 7, which occurred once.

We omitted 2406 (2.6%) observations for both MCS and PCS
analyses. These observations were incomplete with respect to PCS
scores, MCS scores or BMI. There were no missing values for sex
or age. Finally, 89,353 observations were included in the analysis.
The distribution of both outcomes, MCS and PCS, is slightly
left-skewed. The median (25th, 75th percentile) MCS and PCS were
53.4 (48.9, 56.4) and 54.6 (50.5, 56.8), respectively. The distribution of
family sizes for 89,353 participants is shown inTable 2. About 97% of
the 32,452 reconstructed families with complete data consisting of at
least two family members. The maximum number of founders is 9.

Descriptive Statistics of Covariates

BMI is calculated by dividing a person’s weight measurement
(in kilograms) by the square of their height (in meters) and
subsequently categorized into six categories: underweight (<18.5)
kg/m2, normal weight (18.5−24.9) kg/m2, overweight (25.0−29.9)
kg/m2, class I obese (30.0−34.9) kg/m2, class II obese (35.0−39.9)
kg/m2 and class III obese (>40) kg/m2 (World Health Organization,
1995). Out of 89,353 observations, 686 (0.7%) were underweight,
39,277 (44%) were normal, 35,824 (40.1%) were overweight,
10,494 (11.7%) were obese I, 2306 (2.6%) were obese II and 766
(0.9%) were obese III.

All subjects were 18 years and older, with an average age of 45.
Out of 89,353 observations, 38,841 (44%) were men. The same
proportions of males and females were found when all 91,759
observations were summarized.

Model Selection, Variance Components and Heritability

In the analysis of all models, we used 89,353 observations with
32,452 constructed families. BMI is treated as a categorical variable
with six levels. Age and sex are included in all models. Age is

treated as a continuous variable. Sex is a categorical variable with
male being a reference category. Model M0 is a multiple regression
model with BMI, age and sex. Models M1, M2 and M3 are the vari-
ance components models. M1 models the environmental random
component of the family. M2 models the genetic random compo-
nents of the founders. M3 models both the random components of
the family and founders.

We used BIC for model selection. BIC consistently selects the
true model for large sample sizes (Claeskens & Hjort, 2008) and
tends to choose parsimonious models (i.e., models with few
explanatory variables). Using the BIC model, M1 provides the best
fit for MCS and M3 for PCS. Since the best model for MCS is mod-
eling the shared environmental factors, the estimated ICC shown
in Table 3 implies that approximately 12–14% variation in MCS is
determined by shared environmental variation. Regarding the best
model M3 for PCS, both the shared environmental and the genetic
contribution are included; approximately 12–14% variation in PCS
is determined by genetic variation and 3–4% by shared environ-
mental variation.

Estimation of Fixed Effects

Besides accounting for the familial correlation structure, the aim of
the study was to estimate the effect of BMI, age and sex on the
HRQoL scores, PCS andMCS. The results of the conditional F tests
are presented in Table 4. The degrees of freedom for the tests of
significance of slopes are 56,894, which were calculated by sub-
tracting the number of families and the number of parameters
of fixed effects from the number of observations (i.e., 89,353
−32,452−7). These degrees of freedom are also used in the t test.
The results for individual effects are presented in Figures 2 and 3
and in Table 5.

Figures 2 and 3 show the effect sizes of BMI (middle line) sur-
rounded by confidence intervals (outer lines) of these effects. Plain
lines are used for the selected models of MCS and PCS. Dashed
lines are used for the other three models. Obviously, the effects
of BMI onMCS and PCS of HRQoL match very closely across four
models (lines overlap) and this is true for all categories of BMI.
Confidence intervals also match very closely. This implies that
the BMI effects do not change with and without accounting for
relatedness in a family.

We see inverted parabolic shape of MCS across increasing BMI
categories. A somewhat different shape is observed for PCS across
increasing BMI categories. Interestingly, theMCS slightly increases
for overweight people compared to the normal category. It also
shows a dramatic drop for underweight individuals. The PCS
decreases for all categories of BMI compared to the normal cat-
egory, and the decreasing trend of PCS is increasingly steeper with
increasing BMI. The confidence intervals of all BMI categories for
PCS are beyond the confidence limits of the normal category,
meaning that all BMI categories have substantially different
PCSs than the normal category.

In Table 5, we present the coefficients for fixed effects withmea-
sures of uncertainty, namely standard error and lower and upper
confidence limits. The results show that each additional year of age

Table 2. Counts of Family Sizes for the Original Set of 91,759 Participants and the Remaining 89,353 Participants after Removing Incomplete Records

Family size 1 2 3 4 5 6–7 8–12 13–15 16–19 total

Total 253 18,585 6990 3756 1389 1046 586 18 7 32,531

In analysis 883 18,446 6863 3542 1303 962 433 14 6 32,452
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is associated with a 0.078-unit increase (0.1% of maximum
observed value) in MCS and a decrease by about the same amount
in PCS, on average, holding BMI and sex constant. Women have
lower MCS, by approximately 1.891 units (2.6% of maximum
observed value), and lower PCS, by approximately 1.011 units
(1.4%), on average, holding BMI and age constant.

Simulation Study: Design and Results

We conducted a simulation study to compare the commonly used
variance component model with kinship matrix (Almasy &
Blangero, 1998) to our suggested model containing a reduced
matrix of founders. The kinship model is computationally
demanding and therefore we had to simulate relatively small sam-
ple sizes. We generated data using the model (10) shown below:

yij ¼ xT
ijβ þ ui þ kijσ

2
f þ "ij;

"ij �iid Nð0; σ2RÞ;
(10)

where definitions of xij, β, ui, σ2u; σ2R and εij are the same as in
models (2), (3) and (4), σ2f is the variance due to genetics and kij
is the kinship effect for the jth member of the ith family. kij is gen-
erated from the multivariate normal distribution with mean zero

and variance–covariance matrix Ω. The Ω consists of coefficients
of pairwise relationships formed in the following way: in the first
degree of relationship (parent–child and siblings), the coefficient of
relationship is 1/2, in the second degree of relationship (grand-
parent/grandchild, half-sibling and avuncular), the coefficient of
relationship is 1/4 and similarly for other degrees, as shown in
Table 1 of Almasy and Blangero (2010). Technically, Ω is a
block-diagonal matrix with coefficient of relationships among
family members on the diagonal blocks and zeros (the coefficients
of relationship between families) on the off-diagonal blocks.

Simulation parameters were selected from the results of the
best-fitted model for Lifelines PCS data (see parameters in PCS:
M3 of Table 5) and equal to: βunderweight= 56.5, βnormal= 57.5,
βoverweight = 56.7, βobese1= 54.9, βobese2= 53.0, βobese3= 50.2,
βage =−0.08, βsex =−1.0, σ2u ¼ 1:5; σ2f ¼ 6:0; σ2R ¼ 40:0. The
variable for age was generated from the normal distribution with
a mean of 45 and a standard deviation of 14. The variable for
sex was generated from Bernoulli distribution with a probability
of .44 (for men). The number of observations for BMI categories
‘underweight’, ‘normal’, ‘overweight’, ‘obese 1’, ‘obese 2’, and
‘obese 3’ were generated from the multinomial distribution with
probabilities of .007, .44, .401, .117, .026, and .009, respectively.
These probabilities were calculated from the Lifelines data. Then
the BMI was generated from a normal distribution based on the
number of observations from the multinomial distribution and
the following mean and standard deviation parameters: 17.7,
0.77 for ‘underweight’; 23.0, 1.5 for ‘normal’; 27.0, 1.4 for ‘over-
weight’; 32.0, 1.4 for ‘obese 1’; 37.0, 1.4 for ‘obese 2’; 43.0, 3.0
for ‘obese 3’. For family sizes, we set 2, 3, 4, 5 and 6 members, each
size repeated 2, 4, 10, 20 and 38 times, respectively. Even though
family sizes were repeated, in fact all families were different in their
composition (e.g., for a family size of 2, we constructed parent–
child and partner–partner families; for a size of 3, we constructed
families of parent–parent–child, parent–child–grandchild,
parent–child–child and parent–child–partner of child). In total,
74 families were constructed containing 384 numbers of

Table 4. Conditional F Tests for BMI, Age, and Sex of Selected Models

Model Term Numerator df Denominator df F-value p-value

MCS: M1 BMI 5 56,894 72.6 <.0001

Sex 1 56,894 1386.4 <.0001

Age 1 56,894 1573.4 <.0001

PCS: M3 BMI 5 56,894 695 <.0001

Sex 1 56,894 412 <.0001

Age 1 56,894 2460 <.0001

Table 3. Estimates of variance components, ICC and its confidence interval for outcomes MCS and PCS

Outcome Model

Variance component

ICC estimate

ICC confidence

BIC estimateEstimator Estimate bLCL bUCL
MCS M0 b�2

R 64.842 626,443

M1 b�2ub�2R
8.438
56.551

bc2 ¼ 0:130 0.123 0.137 625,134

M2 b�2
fb�2R

5.855
60.206

626,302

M3 b�2ub�2fb�2
R

8.438
2.11×10−6

56.551

625,145

MCS M0 b�2
R 45.546 594,882

M1 b�2ub�2R
3.063
42.499

594,495

M2 b�2
fb�2R

8.094
39.161

594,374

M3 b�2ub�2
fb�2
R

1.535
5.981
39.302

bc2 ¼ 0:130

bh2 ¼ 0:128

0.026
0.121

0.040
0.135

594,324

Note: LCL and UCL stand for lower and upper confidence limits, respectively; best model for outcomes MSC and PCS is in bold; bc2 shows the proportion of behavioral and shared environmental

variance in total phenotype variance and bh2 shows the proportion of additive genetic variance in total phenotype variance.
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observations. The PCS outcomes were generated using model (10).
Afterwards, we fitted both models (kinship andM3) and compared
the biases of heritability estimates and coverage probabilities of
95% confidence intervals of heritabilities. The heritability in model
(10) is equivalent to hereditary ICC (h2) and computed as shown in
(7). Confidence intervals for heritability were calculated using the
beta-approach, as described in Section 2.5. We conducted 100
simulations. The kinship model was fitted using the lmekin
function of the coxme (Therneau, 2018) package and model M3

using the lme function of the nlme (Pinheiro et al., 2017) package
in R. Results of the simulation studies are summarized in Table 6.

Results from setting 3 are shown in Figure 4. The kinship model
results in larger bias (0.18) in comparison with the one (0.09) inM3

model. The M3 model results in larger variation than the kinship
model on average, as shown in Figure 4. Subsequently, the kinship
model demonstrates substantial undercoverage (0.86) while theM3

model shows some overcoverage (0.98) for a two-sided 95% con-
fidence interval.

We compared the computational time needed for fitting the
kinship and M3 models. We varied the number of families and,
correspondingly, the total number of observations. We examined
three settings, each with 100 simulations. Settings and results are
shown in Table 6. M3 is 8 times faster than the kinship model (set-
ting 1). As the number of families quadruples (from setting 1 to 3),
the computational time increases 2.5 times for the M3 model (lme
function) and 15.2 times for the kinship model (lmekin function).
Thus, there is an exponential increase in computational time for
the kinship model as the number of observations increases while
there is much slower increase (roughly linear) in computational
time for the M3 model.

Discussion

In this study, the primary goal was to answer whether relatedness
in a family must be accounted for when estimating the effects of
risk factors of interest in large family-based cohort studies. The
answer to this question is of particular importance for researchers
analyzing the Lifelines data and data from other large cohort stud-
ies of families. From our study, it is clear that the effects of BMI on
MCS and PCS of HRQoL scores do not change when accounting

for family structure. This conclusion confirms theoretical consid-
erations within longitudinal data analysis given by Diggle et al.
(2002, chapter 1). The authors state that when the focus of the
study is on modeling the dependence between the response and
explanatory variable, then the nature of correlation among
responses is unimportant if there is a large number of families rel-
ative to the number of individuals per family. Our Lifelines data
clearly satisfy this criterion.

McArdle et al. (2007) conducted a simulation study with the
objective to compare the performance of association analysis of
family-based designs that account for and ignore family structure
in assessment of the phenotype–genotype association. They con-
cluded that effect size estimates and power are not significantly
affected by ignoring family structure, although type 1 error rates
increase when family structure is ignored, and the magnitude of
the increase depends on trait heritability and pedigree configura-
tion. Induced type 1 error is directly related to diminished standard
errors (and narrow confidence intervals), leading to liberal infer-
ence about regression coefficients, that is, falsely claiming signifi-
cance when there is none. In our analysis of both PCS andMCS, we
saw that ignoring the correlation (or family structure) led instead
to larger standard errors of the regression coefficients (although
the increase was very small), thereby leading to conservative infer-
ence about the covariate effects. Therefore, the standard errors of
regression parameters can be larger or smaller when ignoring
family structure, and therefore may lead not only to liberal infer-
ence and inflated type I errors, but also to conservative inference
and deflated type I errors. Increase or decrease of the standard
errors depends on (1) the relationship between the family structure
and the covariates of interest and (2) the family structure effect size
on the outcome.

We compared the Lifelines analysis results on association
between BMI and HRQoL with similar results in the literature.
Increased BMI has been shown to be associated with reduced
physical HRQoL (Ul-Haq et al., 2012, 2013); however, evidence
on the relationship between BMI and mental HRQoL was antago-
nistic. In the Lifelines study, we see reduced mental HRQoL for all
categories of BMI in comparison with the overweight category.
This conclusion matches with the conclusion of Ul-Haq et al.
(2013) from meta-analysis study. Furthermore, an inverted

underweight normal overweight obese 1 obese 2 obese 3

M1: fam is random
M0: only fixed effects
M2: founders are random
M3: fam and founders are random
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Fig. 2. BMI effects for MCS surrounded by confidence intervals.
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Fig. 3. BMI effects for PCS surrounded by confidence intervals.
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U-shape of mental HRQoL across increasing BMI categories is
seen in both our Lifelines study (Figure 2) and that of Scottish
study conducted by Ul-Haq et al. (2012). Similarly to Ul-Haq et al.
(2013), we see that increasing BMI is associated with impaired
HRQoL in Lifelines. In addition, our study reveals a shape of
association between BMI and physical HRQoL. There is an inverted
J-shape negative association in PCS across increasing BMI categories
(Figure 3).

In this work, we studied real data and did not assume any a priori
family inheritance structure. The main strength of our study is the
use of Lifelines data which makes it possible to estimate the related-
ness in more complex families than other studies can. Consequently,
our results are practically more relevant. We learned that with or
without accounting for family structure, the effect of determinants
on health outcomes does not significantly change. Nevertheless,
the ability to incorporate a family structure into our model in a
computationally efficient way allows one to disentangle the genetic,
shared behavioral and environmental variances. Furthermore, our
proposed model allows for estimating hereditary, behavioral and
shared environmental, and unique environmental ICCs of both
HRQoL outcomes in computationally an efficient way through
fractional relatedness of founders and non-founders.

The kinship model as implemented in the SOLAR (Almasy &
Blangero, 1998) software is unable to handle the analysis of the
Lifelines data with over 89,000 individuals, although we did not
study exhaustively all methods, such as generalized estimating
equations (Liang & Zeger, 1986) that could have been used to
implement the kinship model. We overcame the computational
infeasibility with the kinship model by introducing and fitting a
variance component model with fractional relatedness using
standard functions in R.

We have made the assumption in our study that founders
are unrelated, but Lifelines may not have complete information.
For example, siblings’ information itself is not recorded within

Lifelines, and therefore siblings might be modeled as two founders
while they do have a common ancestor and are related. It would be
interesting to examine whether modeling just a subset of founders
would impact the variance component parameter estimates.

Furthermore, MCS and PCS may be genetically correlated,
meaning that there is genetic overlap between these two traits
(i.e., the same set of genes may regulate these traits). If interest
lies in separation of genetic and environmental contributions
simultaneously in MCS and PCS, then bivariate models could be
used, similarly to the way that others (Lichtenstein et al., 2009;
Yip et al., 2008) modeled schizophrenia and bipolar disorder using
multivariate generalized linear mixed models.

In summary, the proposed model offers to solve the computa-
tional issues involved in modeling family structure when thou-
sands of families are analyzed, and subsequently to fit the model
accurately using standard functions of R.

Table 5. Estimates of Coefficients for BMI, Age and Sex of Selected Models

Model Parameter Estimate SE bLCL bUCL
MCS: M1

BMI (underweight)
47.502 0.313 46.889 48.114

BMI (normal) 48.890 0.099 48.696 49.083

BMI (overweight) 48.931 0.108 48.720 49.142

BMI (obese 1) 48.790 0.129 48.538 49.042

BMI (obese 2) 48.482 0.195 48.100 48.865

BMI (obese 3) 48.364 0.307 47.763 48.965

Sex (female) −1.891 0.053 −1.995 −1.788

Age 0.078 0.002 0.074 0.081

PCS: M3

BMI (underweight)
56.653 0.259 56.145 57.161

BMI (normal) 57.491 0.082 57.331 57.650

BMI (overweight) 56.731 0.090 56.556 56.906

BMI (obese 1) 54.927 0.107 54.716 55.137

BMI (obese 2) 52.978 0.164 52.656 53.299

BMI (obese 3) 50.373 0.258 49.868 50.879

Sex (female) −1.011 0.046 −1.100 −0.921

Age −0.081 0.002 −0.084 −0.078

Table 6. Comparison of Heritability Parameters and Computational Time
between Kinship (lmekin Function) and M3 (lme Function) Models

Setting 1 2 3

Number of families 19 37 74

Total number of observation 96 192 384

Time per simulation in M3 model (seconds) 0.11 0.12 0.27

Time per simulation in kinship model (seconds) 0.92 2.69 13.99

True heritability 0.13 0.13 0.13

Bias of heritabilitya in M3 model 0.09 0.08 0.09

Bias of heritabilitya in kinship model 0.19 0.18 0.18

Coverage of 95% confidence intervals of
heritability in M3 model

0.78 0.91 0.98

Coverage of 95% confidence intervals of
heritability in kinship model

0.66 0.88 0.86

aHeritability is equivalent to hereditary ICC (h2) and computed using formula (7).

0.0 0.2 0.4 0.6 0.8

Heritability

5
6

Fig. 4. Overlapping histograms for comparison of estimated heritabilities across M3

and kinship models in setting 3: vertical bar (0.13) shows true heritability, light grey
histogram (left) and smoothed plain line show distribution of estimated heritabilities
in M3 model and dark grey histogram (right) and smoothed dashed line show distri-
bution of estimated heritabilities in kinship model.
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