Bull. Aust. Math. Soc. 82 (2010), 79–83 doi:10.1017/S0004972710000262

SOLUTION TO A QUESTION ON A FAMILY OF IMPRIMITIVE SYMMETRIC GRAPHS

GUANGJUN XU[™] and SANMING ZHOU

(Received 28 September 2009)

Abstract

We answer a recent question posed by Li *et al.* ['Imprimitive symmetric graphs with cyclic blocks', *European J. Combin.* **31** (2010), 362–367] regarding a family of imprimitive symmetric graphs.

2000 *Mathematics subject classification*: primary 05C25; secondary 05E99. *Keywords and phrases*: symmetric graph, arc-transitive graph, quotient graph.

A graph $\Gamma = (V, E)$ is called *G*-symmetric if Γ admits *G* as a group of automorphisms such that *G* is transitive on *V* and on the set of arcs of Γ , where an *arc* is an ordered pair of adjacent vertices. If in addition Γ admits a *nontrivial G*-invariant partition, that is, a partition \mathcal{B} of *V* such that $1 < |\mathcal{B}| < |V|$ and $\mathcal{B}^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$ for $\mathcal{B} \in \mathcal{B}$ and $g \in G$, then Γ is called an *imprimitive G*-symmetric graph. In this case the *quotient* graph $\Gamma_{\mathcal{B}}$ of Γ with respect to \mathcal{B} is defined to have vertex set \mathcal{B} such that $\mathcal{B}, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ between \mathcal{B} and C. We assume that $\Gamma_{\mathcal{B}}$ contains at least one edge, so that each block of \mathcal{B} is an independent set of Γ . Denote by $\Gamma(\alpha)$ the neighbourhood of $\alpha \in V$ in Γ , and define $\Gamma(X) = \bigcup_{\alpha \in X} \Gamma(\alpha)$ for $X \in \mathcal{B}$. For blocks $\mathcal{B}, C \in \mathcal{B}$ adjacent in $\Gamma_{\mathcal{B}}$, let $\Gamma[\mathcal{B}, C]$ be the bipartite subgraph of Γ induced on $(\mathcal{B} \cap \Gamma(C)) \cup (C \cap \Gamma(\mathcal{B}))$. Then $\Gamma[\mathcal{B}, C]$ is independent of the choice of (\mathcal{B}, C) up to isomorphism. Define

$$v := |B|$$
 and $k := |B \cap \Gamma(C)|$

to be the block size of \mathcal{B} and the size of each part of the bipartition of $\Gamma[B, C]$, respectively.

In line with a geometrical approach suggested in [1], various situations may occur for Γ , G, $\Gamma_{\mathcal{B}}$, $\Gamma[B, C]$ and a certain 1-design with point set B; see, for example, [1, 3, 5–7]. The case where $k = v - 2 \ge 1$ was studied in [2, 4] and a necessary and sufficient condition for $\Gamma_{\mathcal{B}}$ to be (G, 2)-arc-transitive was given in [2]. In this case, the multigraph Γ^{B} [2] with vertex B and an edge joining the two vertices of $B \setminus \Gamma(C)$ for every $C \in \Gamma_{\mathcal{B}}(B)$ plays an important role in the structure of Γ and $\Gamma_{\mathcal{B}}$,

The first author acknowledges support of an MIFRS and an SFS from The University of Melbourne. © 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

where $\Gamma_{\mathcal{B}}(B)$ is the neighbourhood of B in $\Gamma_{\mathcal{B}}$. Since Γ is G-symmetric, up to isomorphism Γ^B is independent of the choice of B, and the multiplicity of each edge { α , β } of Γ^B , namely

$$m := |\{C \in \Gamma_{\mathcal{B}}(B) : B \setminus \Gamma(C) = \{\alpha, \beta\}\}|,$$

is independent of the choice of $\{\alpha, \beta\}$. Denote by Simple(Γ^B) the underlying simple graph of Γ^B and by G_B the setwise stabilizer of B in G. It has been proved [2, Theorem 2.1] that Simple(Γ^B) is G_B -vertex-transitive and G_B -edge-transitive, and either Γ^B is connected or v is even and Simple(Γ^B) is a perfect matching $(v/2) \cdot K_2$. In the latter case detailed information about Γ was obtained in [2, Theorem 1.3] when Γ^B is simple. In [4], Li *et al.* proved that, if Simple(Γ^B) is a cycle, then v must be small, namely v is equal to 3 or 4. Based on this they posed the following question.

QUESTION 1. In the case where k = v - 2 and Γ^B is connected, is v bounded by some function of the valency of Simple(Γ^B)?

Define

$$b := \operatorname{val}(\Gamma_{\mathcal{B}}), \quad s := \operatorname{val}(\Gamma[B, C]), \quad r := |\{C \in \mathcal{B} : \alpha \in \Gamma(C)\}|$$

to be respectively the valency of $\Gamma_{\mathcal{B}}$, the valency of $\Gamma[B, C]$, and the number of blocks of \mathcal{B} that contain at least one neighbour of a fixed vertex $\alpha \in V$ in Γ . Note that v, k, b, r and s all rely on the G-invariant partition \mathcal{B} .

In this paper we answer Question 1 by proving the following stronger result: there are only two possibilities for Simple(Γ^B) and v can take two values only.

THEOREM 2. Suppose that Γ is a G-symmetric graph which admits a nontrivial *G*-invariant partition \mathcal{B} such that $k = v - 2 \ge 1$, $\Gamma_{\mathcal{B}}$ is connected and $Simple(\Gamma^B)$ is connected with valency $d \ge 2$. Then one of the following occurs.

- (a)
- Simple(Γ^B) $\cong K_v$, v = d + 1, b = m(v 1)v/2, and G^B_B is 2-homogeneous. Simple(Γ^B) $\cong K_{v/2,v/2}$, v = 2d, $b = mv^2/4$, and the bipartition of (b) Simple(Γ^B) induces a *G*-invariant partition \mathcal{B}^* of the vertex set of Γ (which is a refinement of \mathcal{B}) such that one of the following holds for its parameters:
 - (i) $v^* = k^* + 1 = v/2, b^* = b, r^* = r, s^* = s;$
 - (ii) $v^* = k^* + 1 = v/2, b^* = 2b, r^* = 2r, s^* = s/2;$
 - (iii) $v^* = 2k^* + 1 = v/2, b^* = 2b, r^* = r, s^* = s.$

PROOF. Suppose that Γ , G and \mathcal{B} satisfy the conditions in the theorem. Denote $\Omega := \text{Simple}(\Gamma^B)$. Let B and C be two blocks of B adjacent in Γ_B , and let $\{\alpha, \beta\} = B \setminus \Gamma(C)$ be the corresponding edge of Ω . Define

$$U := (\Omega(\alpha) \cup \Omega(\beta)) \setminus \{\alpha, \beta\}$$

to be the neighbourhood of the subset $\{\alpha, \beta\}$ of B in Ω , and set

$$W := B \setminus (U \cup \{\alpha, \beta\}).$$

[3]

81

Since Ω has valency $d \ge 2$, we have $U \ne \emptyset$. Since every element of G_{BC} (= $(G_B)_C$) fixes $\{\alpha, \beta\}$ setwise, it follows that every element of G_{BC} fixes each of U and W setwise. Thus $G_{BC} \le G_U \cap G_W$.

Claim 1. $W = \emptyset$, that is, $U = B \setminus \{\alpha, \beta\}$, or every vertex in *B* is adjacent to at least one of α and β in Ω .

Suppose otherwise and let $\delta \in W$. Since $U \neq \emptyset$, we may take a vertex $\gamma \in U$. Since δ , $\gamma \neq \alpha$, β , there exist δ_1 , $\gamma_1 \in C$ adjacent to δ , γ in Γ , respectively. (It may occur that $\delta_1 = \gamma_1$.) Since Γ is *G*-symmetric, there exists $g \in G$ such that $(\gamma, \gamma_1)^g = (\delta, \delta_1)$. Since *g* maps $\gamma \in B$ to $\delta \in B$ and $\gamma_1 \in C$ to $\delta_1 \in C$, it fixes *B* and *C* setwise. Hence $g \in G_{BC} \leq G_U \cap G_W$. However, this is a contradiction, because *g* maps $\gamma \in U$ to $\delta \in W$. Therefore $W = \emptyset$ as claimed.

Since Ω has valency d, by Claim 1, $d - 1 \le |U| \le 2(d - 1)$. Since v = |U| + 2 by Claim 1, it follows that

$$d+1 \le v \le 2d.$$

Claim 2. In Ω any two adjacent vertices have 2d - v common neighbours, and two nonadjacent vertices have the same neighbourhood.

In fact, since Ω is G_B -edge-transitive [2, Theorem 2.1], the number λ of common neighbours of a pair of adjacent vertices in Ω is a constant. Consider the neighbourhood U of $\{\alpha, \beta\}$ in Ω , where α and β are as above. There are exactly $d - \lambda - 1$ vertices in B which are adjacent to α but not β (β but not α , respectively). Thus, by Claim 1, $2(d - \lambda - 1) + \lambda = v - 2$, which implies that $\lambda = 2d - v$.

Now let σ and τ be any two nonadjacent vertices of Ω . If $\gamma \in B$ is adjacent to σ in Ω , then by applying Claim 1 to the edge $\{\sigma, \gamma\}$, every vertex in *B* is adjacent to either σ or γ in Ω . Thus, since τ is not adjacent to σ , it must be adjacent to γ in Ω and so $\Omega(\sigma) \subseteq \Omega(\tau)$. Similarly, $\Omega(\tau) \subseteq \Omega(\sigma)$. Hence $\Omega(\sigma) = \Omega(\tau)$ and Claim 2 is proved.

Consider any maximal (with respect to set-theoretic inclusion) independent set X of Ω . By Claim 2 the vertices in X have the same neighbourhood in Ω . Denote this common neighbourhood by Y, so that |Y| = d. If $B \setminus (X \cup Y) \neq \emptyset$, then by the maximality of X, any vertex in $B \setminus (X \cup Y)$ must be adjacent to at least one vertex $\delta \in X$ in Ω , which implies that δ is adjacent to d + 1 vertices in Ω . This contradiction shows that $X \cup Y = B$ and consequently |X| = v - d. Since this holds for any maximal independent set of Ω and since Ω is G_B -vertex-transitive, we have the following claim.

Claim 3. v - d divides d and Ω is a complete t-partite graph with each part containing v - d vertices, where t = v/(v - d).

Based on this we now prove the following claim.

Claim 4. $\Omega \cong K_v$ or $K_{v/2,v/2}$; that is, t = v or 2.

Suppose to the contrary that 2 < t < v. Denote by B^1, B^2, \ldots, B^t the parts of the *t*-partition of Ω . Similarly, for any $D \in \mathcal{B}$, denote by D^1, D^2, \ldots, D^t the parts of the *t*-partition of Simple(Γ^D) ($\cong \Omega$). Set

$$\mathcal{B}^* := \{D^1, D^2, \ldots, D^t : D \in \mathcal{B}\}.$$

It is straightforward to verify that \mathcal{B}^* is a nontrivial *G*-invariant partition of the vertex set of Γ and that \mathcal{B}^* is a refinement of \mathcal{B} . For adjacent $B, C \in \mathcal{B}$ and $\{\alpha, \beta\} = B \setminus \Gamma(C)$ as above, α and β belong to different parts of Ω , and so we may assume that $\alpha \in B^1$ and $\beta \in B^2$ without loss of generality. Since t < v, each part of Ω has size at least two and hence we can take a vertex $\xi \in B^2 \setminus \{\beta\}$. Since t > 2, Ω has at least three parts and so we can take a vertex $\eta \in B^3$. Since $B \setminus \Gamma(C) = \{\alpha, \beta\}$ and $\xi, \eta \neq \alpha, \beta$, each of ξ and η has at least one neighbour in *C*. Let ξ be adjacent to $\gamma \in C$ and η adjacent to $\delta \in C$. Since Γ is *G*-symmetric, there exists an element $g \in G$ which maps (η, δ) to (ξ, γ) . Thus $g \in G_{BC}$. Since \mathcal{B}^* is *G*-invariant and *g* maps $\eta \in B^3$ to $\xi \in B^2$, *g* should map B^3 to B^2 . Since every vertex in B^3 has a neighbour in *C*, it follows that every vertex in B^2 has a neighbour in *C*. However, this is a contradiction since $\beta \in B^2$ has no neighbour in *C*. Therefore we have proved Claim 4.

Obviously, if $\Omega \cong K_v$, then d = v - 1, b = mdv/2 = m(v - 1)v/2, and moreover G_B is 2-homogeneous on B since Ω is G_B -edge-transitive by [2, Theorem 2.1].

In the case $\Omega \cong K_{v/2,v/2}$, we have d = v/2, $b = mdv/2 = mv^2/4$, and the *G*-invariant partition \mathcal{B}^* above becomes $\mathcal{B}^* = \{D^1, D^2 : D \in \mathcal{B}\}$. Obviously, \mathcal{B}^* is a nontrivial partition of the vertex set of Γ and is a refinement of \mathcal{B} . In the case where each of $\Gamma(B^1)$ and $\Gamma(B^2)$ has nonempty intersection with exactly one of C^1 and C^2 , it is easy to see that $v^* = k^* + 1$, $b = b^*$, $r = r^*$ and $s = s^*$, and so case (b)(i) occurs. In the remaining case, each of $\Gamma(B^1)$ and $\Gamma(B^2)$ has nonempty intersection with both C^1 and C^2 , and hence $b^* = 2b$. If further every vertex in $B^1 \setminus \{\alpha\}$ has neighbours in both C^1 and C^2 , then $v^* = k^* + 1$, $r^* = 2r$ and $s^* = s/2$, and so case (b)(ii) occurs. If not every vertex in $B^1 \setminus \{\alpha\}$ has neighbours in both C^1 and C^2 , then by symmetry the numbers of vertices in $B^1 \setminus \{\alpha\}$ having neighbours in C^1 and C^2 are equal. This implies that

$$k^* = (v^* - 1)/2$$
, $r^* = b^* k^* / v^* = b(v - 2) / v = r$ and $s^* = rs/r^* = s$,

and hence case (b)(iii) occurs.

Example 2.4 in [2] can serve as an example for case (a) in Theorem 2 when v = 3. Examples for case (b)(i) when v = 4 can be obtained from [4, Construction 3.2]: let M be a regular map on a closed surface such that its underlying graph Σ has valency four. (A regular map is a 2-cell embedding of a connected (multi)graph on a closed surface such that its automorphism group is regular on incident vertex–edge–face triples.) For each edge { σ , σ' } of Σ , let f and f' denote the faces of M with { σ , σ' } as a common edge. Denote by f_{σ} and f'_{σ} the other two faces of M incident with σ and opposite to f and f' respectively, and define $f_{\sigma'}$ and $f'_{\sigma'}$ similarly. Let $\Gamma_1(M)$, $\Gamma_2(M)$, $\Gamma_3(M)$ and $\Gamma_4(M)$ be the graphs [4] with vertices the incident vertex–face pairs of M and

adjacency defined as follows (where ~ means adjacency): for each edge { σ, σ' } of Σ , $(\sigma, f) \sim (\sigma', f)$ and $(\sigma, f') \sim (\sigma', f')$ in $\Gamma_1(M)$; $(\sigma, f) \sim (\sigma', f')$ and $(\sigma, f') \sim (\sigma', f)$ in $\Gamma_2(M)$; $(\sigma, f_{\sigma}) \sim (\sigma', f_{\sigma'})$ and $(\sigma, f'_{\sigma}) \sim (\sigma', f'_{\sigma'})$ in $\Gamma_3(M)$; $(\sigma, f_{\sigma}) \sim (\sigma', f'_{\sigma'})$ and $(\sigma, f'_{\sigma}) \sim (\sigma', f_{\sigma'})$ in $\Gamma_4(M)$. These graphs are *G*-symmetric [4, Lemma 3.3] and admit $\mathcal{B} := \{B(\sigma) : \sigma \in V(\Sigma)\}$ as a *G*-invariant partition, where $B(\sigma) = \{(\sigma, f) : \sigma \text{ incident with } f\}$, such that k = v - 2 = 2, $\Gamma_B \cong \Sigma$, $\Gamma^{B(\sigma)} = K_{2,2}$ and $\Gamma[B(\sigma), B(\tau)] = 2 \cdot K_2$ for adjacent $B(\sigma), B(\tau) \in \mathcal{B}$. These four graphs fall into case (b)(i) in Theorem 2 and the *G*-invariant partition induced by the bipartition of $\Gamma^{B(\sigma)}$ is $\mathcal{B}^* := \{B^1(\sigma), B^2(\sigma) : \sigma \in V(\Sigma)\}$, where $B^1(\sigma) = \{(\sigma, f), (\sigma, f_{\sigma})\}$ and $B^2(\sigma) = \{(\sigma, f'), (\sigma, f'_{\sigma})\}$.

References

- A. Gardiner and C. E. Praeger, 'A geometrical approach to imprimitive graphs', *Proc. London Math. Soc.* (3) **71** (1995), 524–546.
- [2] M. A. Iranmanesh, C. E. Praeger and S. Zhou, 'Finite symmetric graphs with two-arc transitive quotients', J. Combin. Theory (Ser. B) 94 (2005), 79–99.
- [3] C. H. Li, C. E. Praeger and S. Zhou, 'A class of finite symmetric graphs with 2-arc transitive quotients', *Math. Proc. Cambridge Philos. Soc.* **129** (2000), 19–34.
- [4] C. H. Li, C. E. Praeger and S. Zhou, 'Imprimitive symmetric graphs with cyclic blocks', *European J. Combin.* **31** (2010), 362–367.
- [5] Z. Lu and S. Zhou, 'Finite symmetric graphs with 2-arc transitive quotients (II)', *J. Graph Theory* **56** (2007), 167–193.
- [6] S. Zhou, 'Constructing a class of symmetric graphs', European J. Combin. 23 (2002), 741–760.
- [7] S. Zhou, 'Almost covers of 2-arc transitive graphs', *Combinatorica* 24 (2004), 731–745; [*Erratum*: 27 (2007), 745–746].

GUANGJUN XU, Department of Mathematics and Statistics, The University of Melbourne, Parkville, Vic 3010, Australia e-mail: gx@ms.unimelb.edu.au

SANMING ZHOU, Department of Mathematics and Statistics, The University of Melbourne, Parkville, Vic 3010, Australia e-mail: smzhou@ms.unimelb.edu.au