SOLUTION TO A QUESTION ON A FAMILY OF IMPRIMITIVE SYMMETRIC GRAPHS

GUANGJUN XU ${ }^{\boxtimes}$ and SANMING ZHOU

(Received 28 September 2009)

Abstract

We answer a recent question posed by Li et al. ['Imprimitive symmetric graphs with cyclic blocks', European J. Combin. 31 (2010), 362-367] regarding a family of imprimitive symmetric graphs.

2000 Mathematics subject classification: primary 05C25; secondary 05E99.
Keywords and phrases: symmetric graph, arc-transitive graph, quotient graph.

A graph $\Gamma=(V, E)$ is called G-symmetric if Γ admits G as a group of automorphisms such that G is transitive on V and on the set of arcs of Γ, where an arc is an ordered pair of adjacent vertices. If in addition Γ admits a nontrivial G-invariant partition, that is, a partition \mathcal{B} of V such that $1<|B|<|V|$ and $B^{g}:=\left\{\alpha^{g}: \alpha \in B\right\} \in \mathcal{B}$ for $B \in \mathcal{B}$ and $g \in G$, then Γ is called an imprimitive G-symmetric graph. In this case the quotient graph $\Gamma_{\mathcal{B}}$ of Γ with respect to \mathcal{B} is defined to have vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ between B and C. We assume that $\Gamma_{\mathcal{B}}$ contains at least one edge, so that each block of \mathcal{B} is an independent set of Γ. Denote by $\Gamma(\alpha)$ the neighbourhood of $\alpha \in V$ in Γ, and define $\Gamma(X)=\bigcup_{\alpha \in X} \Gamma(\alpha)$ for $X \in \mathcal{B}$. For blocks $B, C \in \mathcal{B}$ adjacent in $\Gamma_{\mathcal{B}}$, let $\Gamma[B, C]$ be the bipartite subgraph of Γ induced on $(B \cap \Gamma(C)) \cup(C \cap \Gamma(B))$. Then $\Gamma[B, C]$ is independent of the choice of (B, C) up to isomorphism. Define

$$
v:=|B| \quad \text { and } \quad k:=|B \cap \Gamma(C)|
$$

to be the block size of \mathcal{B} and the size of each part of the bipartition of $\Gamma[B, C]$, respectively.

In line with a geometrical approach suggested in [1], various situations may occur for $\Gamma, G, \Gamma_{\mathcal{B}}, \Gamma[B, C]$ and a certain 1-design with point set B; see, for example, [1, 3, 5-7]. The case where $k=v-2 \geq 1$ was studied in [2, 4] and a necessary and sufficient condition for $\Gamma_{\mathcal{B}}$ to be ($G, 2$)-arc-transitive was given in [2]. In this case, the multigraph Γ^{B} [2] with vertex B and an edge joining the two vertices of $B \backslash \Gamma(C)$ for every $C \in \Gamma_{\mathcal{B}}(B)$ plays an important role in the structure of Γ and $\Gamma_{\mathcal{B}}$,

[^0]where $\Gamma_{\mathcal{B}}(B)$ is the neighbourhood of B in $\Gamma_{\mathcal{B}}$. Since Γ is G-symmetric, up to isomorphism Γ^{B} is independent of the choice of B, and the multiplicity of each edge $\{\alpha, \beta\}$ of Γ^{B}, namely
$$
m:=\left|\left\{C \in \Gamma_{\mathcal{B}}(B): B \backslash \Gamma(C)=\{\alpha, \beta\}\right\}\right|,
$$
is independent of the choice of $\{\alpha, \beta\}$. Denote by Simple $\left(\Gamma^{B}\right)$ the underlying simple graph of Γ^{B} and by G_{B} the setwise stabilizer of B in G. It has been proved [2, Theorem 2.1] that $\operatorname{Simple}\left(\Gamma^{B}\right)$ is G_{B}-vertex-transitive and G_{B}-edge-transitive, and either Γ^{B} is connected or v is even and Simple $\left(\Gamma^{B}\right)$ is a perfect matching $(v / 2) \cdot K_{2}$. In the latter case detailed information about Γ was obtained in [2, Theorem 1.3] when Γ^{B} is simple. In [4], Li et al. proved that, if Simple $\left(\Gamma^{B}\right)$ is a cycle, then v must be small, namely v is equal to 3 or 4 . Based on this they posed the following question.
QUESTION 1. In the case where $k=v-2$ and Γ^{B} is connected, is v bounded by some function of the valency of Simple $\left(\Gamma^{B}\right)$?

Define

$$
b:=\operatorname{val}\left(\Gamma_{\mathcal{B}}\right), \quad s:=\operatorname{val}(\Gamma[B, C]), \quad r:=|\{C \in \mathcal{B}: \alpha \in \Gamma(C)\}|
$$

to be respectively the valency of $\Gamma_{\mathcal{B}}$, the valency of $\Gamma[B, C]$, and the number of blocks of \mathcal{B} that contain at least one neighbour of a fixed vertex $\alpha \in V$ in Γ. Note that v, k, b, r and s all rely on the G-invariant partition \mathcal{B}.

In this paper we answer Question 1 by proving the following stronger result: there are only two possibilities for Simple $\left(\Gamma^{B}\right)$ and v can take two values only.

THEOREM 2. Suppose that Γ is a G-symmetric graph which admits a nontrivial G-invariant partition \mathcal{B} such that $k=v-2 \geq 1, \Gamma_{\mathcal{B}}$ is connected and Simple $\left(\Gamma^{B}\right)$ is connected with valency $d \geq 2$. Then one of the following occurs.
(a) Simple $\left(\Gamma^{B}\right) \cong K_{v}, v=d+1, b=m(v-1) v / 2$, and G_{B}^{B} is 2-homogeneous.
(b) Simple $\left(\Gamma^{B}\right) \cong K_{v / 2, v / 2}, \quad v=2 d, \quad b=m v^{2} / 4, \quad$ and the bipartition of Simple $\left(\Gamma^{B}\right)$ induces a G-invariant partition \mathcal{B}^{*} of the vertex set of Γ (which is a refinement of \mathcal{B}) such that one of the following holds for its parameters:
(i) $v^{*}=k^{*}+1=v / 2, b^{*}=b, r^{*}=r, s^{*}=s$;
(ii) $v^{*}=k^{*}+1=v / 2, b^{*}=2 b, r^{*}=2 r, s^{*}=s / 2$;
(iii) $v^{*}=2 k^{*}+1=v / 2, b^{*}=2 b, r^{*}=r, s^{*}=s$.

Proof. Suppose that Γ, G and \mathcal{B} satisfy the conditions in the theorem. Denote $\Omega:=$ Simple $\left(\Gamma^{B}\right)$. Let B and C be two blocks of \mathcal{B} adjacent in $\Gamma_{\mathcal{B}}$, and let $\{\alpha, \beta\}=B \backslash \Gamma(C)$ be the corresponding edge of Ω. Define

$$
U:=(\Omega(\alpha) \cup \Omega(\beta)) \backslash\{\alpha, \beta\}
$$

to be the neighbourhood of the subset $\{\alpha, \beta\}$ of B in Ω, and set

$$
W:=B \backslash(U \cup\{\alpha, \beta\})
$$

Since Ω has valency $d \geq 2$, we have $U \neq \emptyset$. Since every element of $G_{B C}\left(=\left(G_{B}\right)_{C}\right)$ fixes $\{\alpha, \beta\}$ setwise, it follows that every element of $G_{B C}$ fixes each of U and W setwise. Thus $G_{B C} \leq G_{U} \cap G_{W}$.

Claim 1. $W=\emptyset$, that is, $U=B \backslash\{\alpha, \beta\}$, or every vertex in B is adjacent to at least one of α and β in Ω.

Suppose otherwise and let $\delta \in W$. Since $U \neq \emptyset$, we may take a vertex $\gamma \in U$. Since $\delta, \gamma \neq \alpha, \beta$, there exist $\delta_{1}, \gamma_{1} \in C$ adjacent to δ, γ in Γ, respectively. (It may occur that $\delta_{1}=\gamma_{1}$.) Since Γ is G-symmetric, there exists $g \in G$ such that $\left(\gamma, \gamma_{1}\right)^{g}=\left(\delta, \delta_{1}\right)$. Since g maps $\gamma \in B$ to $\delta \in B$ and $\gamma_{1} \in C$ to $\delta_{1} \in C$, it fixes B and C setwise. Hence $g \in G_{B C} \leq G_{U} \cap G_{W}$. However, this is a contradiction, because g maps $\gamma \in U$ to $\delta \in W$. Therefore $W=\emptyset$ as claimed.

Since Ω has valency d, by Claim $1, d-1 \leq|U| \leq 2(d-1)$. Since $v=|U|+2$ by Claim 1, it follows that

$$
d+1 \leq v \leq 2 d
$$

Claim 2. In Ω any two adjacent vertices have $2 d-v$ common neighbours, and two nonadjacent vertices have the same neighbourhood.

In fact, since Ω is G_{B}-edge-transitive [2, Theorem 2.1], the number λ of common neighbours of a pair of adjacent vertices in Ω is a constant. Consider the neighbourhood U of $\{\alpha, \beta\}$ in Ω, where α and β are as above. There are exactly $d-\lambda-1$ vertices in B which are adjacent to α but not β (β but not α, respectively). Thus, by Claim 1, 2($d-\lambda-1)+\lambda=v-2$, which implies that $\lambda=2 d-v$.

Now let σ and τ be any two nonadjacent vertices of Ω. If $\gamma \in B$ is adjacent to σ in Ω, then by applying Claim 1 to the edge $\{\sigma, \gamma\}$, every vertex in B is adjacent to either σ or γ in Ω. Thus, since τ is not adjacent to σ, it must be adjacent to γ in Ω and so $\Omega(\sigma) \subseteq \Omega(\tau)$. Similarly, $\Omega(\tau) \subseteq \Omega(\sigma)$. Hence $\Omega(\sigma)=\Omega(\tau)$ and Claim 2 is proved.

Consider any maximal (with respect to set-theoretic inclusion) independent set X of Ω. By Claim 2 the vertices in X have the same neighbourhood in Ω. Denote this common neighbourhood by Y, so that $|Y|=d$. If $B \backslash(X \cup Y) \neq \emptyset$, then by the maximality of X, any vertex in $B \backslash(X \cup Y)$ must be adjacent to at least one vertex $\delta \in X$ in Ω, which implies that δ is adjacent to $d+1$ vertices in Ω. This contradiction shows that $X \cup Y=B$ and consequently $|X|=v-d$. Since this holds for any maximal independent set of Ω and since Ω is G_{B}-vertex-transitive, we have the following claim.

Claim 3. $v-d$ divides d and Ω is a complete t-partite graph with each part containing $v-d$ vertices, where $t=v /(v-d)$.

Based on this we now prove the following claim.
Claim 4. $\Omega \cong K_{v}$ or $K_{v / 2, v / 2}$; that is, $t=v$ or 2 .

Suppose to the contrary that $2<t<v$. Denote by $B^{1}, B^{2}, \ldots, B^{t}$ the parts of the t-partition of Ω. Similarly, for any $D \in \mathcal{B}$, denote by $D^{1}, D^{2}, \ldots, D^{t}$ the parts of the t-partition of Simple $\left(\Gamma^{D}\right)(\cong \Omega)$. Set

$$
\mathcal{B}^{*}:=\left\{D^{1}, D^{2}, \ldots, D^{t}: D \in \mathcal{B}\right\} .
$$

It is straightforward to verify that \mathcal{B}^{*} is a nontrivial G-invariant partition of the vertex set of Γ and that \mathcal{B}^{*} is a refinement of \mathcal{B}. For adjacent $B, C \in \mathcal{B}$ and $\{\alpha, \beta\}=$ $B \backslash \Gamma(C)$ as above, α and β belong to different parts of Ω, and so we may assume that $\alpha \in B^{1}$ and $\beta \in B^{2}$ without loss of generality. Since $t<v$, each part of Ω has size at least two and hence we can take a vertex $\xi \in B^{2} \backslash\{\beta\}$. Since $t>2, \Omega$ has at least three parts and so we can take a vertex $\eta \in B^{3}$. Since $B \backslash \Gamma(C)=\{\alpha, \beta\}$ and $\xi, \eta \neq \alpha, \beta$, each of ξ and η has at least one neighbour in C. Let ξ be adjacent to $\gamma \in C$ and η adjacent to $\delta \in C$. Since Γ is G-symmetric, there exists an element $g \in G$ which maps (η, δ) to (ξ, γ). Thus $g \in G_{B C}$. Since \mathcal{B}^{*} is G-invariant and g maps $\eta \in B^{3}$ to $\xi \in B^{2}, g$ should map B^{3} to B^{2}. Since every vertex in B^{3} has a neighbour in C, it follows that every vertex in B^{2} has a neighbour in C. However, this is a contradiction since $\beta \in B^{2}$ has no neighbour in C. Therefore we have proved Claim 4.

Obviously, if $\Omega \cong K_{v}$, then $d=v-1, b=m d v / 2=m(v-1) v / 2$, and moreover G_{B} is 2-homogeneous on B since Ω is G_{B}-edge-transitive by [2, Theorem 2.1].

In the case $\Omega \cong K_{v / 2, v / 2}$, we have $d=v / 2, b=m d v / 2=m v^{2} / 4$, and the G invariant partition \mathcal{B}^{*} above becomes $\mathcal{B}^{*}=\left\{D^{1}, D^{2}: D \in \mathcal{B}\right\}$. Obviously, \mathcal{B}^{*} is a nontrivial partition of the vertex set of Γ and is a refinement of \mathcal{B}. In the case where each of $\Gamma\left(B^{1}\right)$ and $\Gamma\left(B^{2}\right)$ has nonempty intersection with exactly one of C^{1} and C^{2}, it is easy to see that $v^{*}=k^{*}+1, b=b^{*}, r=r^{*}$ and $s=s^{*}$, and so case (b)(i) occurs. In the remaining case, each of $\Gamma\left(B^{1}\right)$ and $\Gamma\left(B^{2}\right)$ has nonempty intersection with both C^{1} and C^{2}, and hence $b^{*}=2 b$. If further every vertex in $B^{1} \backslash\{\alpha\}$ has neighbours in both C^{1} and C^{2}, then $v^{*}=k^{*}+1, r^{*}=2 r$ and $s^{*}=s / 2$, and so case (b)(ii) occurs. If not every vertex in $B^{1} \backslash\{\alpha\}$ has neighbours in both C^{1} and C^{2}, then by symmetry the numbers of vertices in $B^{1} \backslash\{\alpha\}$ having neighbours in C^{1} and C^{2} are equal. This implies that

$$
k^{*}=\left(v^{*}-1\right) / 2, \quad r^{*}=b^{*} k^{*} / v^{*}=b(v-2) / v=r \quad \text { and } \quad s^{*}=r s / r^{*}=s,
$$

and hence case (b)(iii) occurs.
Example 2.4 in [2] can serve as an example for case (a) in Theorem 2 when $v=3$. Examples for case (b)(i) when $v=4$ can be obtained from [4, Construction 3.2]: let M be a regular map on a closed surface such that its underlying graph Σ has valency four. (A regular map is a 2-cell embedding of a connected (multi)graph on a closed surface such that its automorphism group is regular on incident vertex-edge-face triples.) For each edge $\left\{\sigma, \sigma^{\prime}\right\}$ of Σ, let f and f^{\prime} denote the faces of M with $\left\{\sigma, \sigma^{\prime}\right\}$ as a common edge. Denote by f_{σ} and f_{σ}^{\prime} the other two faces of M incident with σ and opposite to f and f^{\prime} respectively, and define $f_{\sigma^{\prime}}$ and $f_{\sigma^{\prime}}^{\prime}$ similarly. Let $\Gamma_{1}(M), \Gamma_{2}(M), \Gamma_{3}(M)$ and $\Gamma_{4}(M)$ be the graphs [4] with vertices the incident vertex-face pairs of M and
adjacency defined as follows (where \sim means adjacency): for each edge $\left\{\sigma, \sigma^{\prime}\right\}$ of $\Sigma,(\sigma, f) \sim\left(\sigma^{\prime}, f\right)$ and $\left(\sigma, f^{\prime}\right) \sim\left(\sigma^{\prime}, f^{\prime}\right)$ in $\Gamma_{1}(M) ;(\sigma, f) \sim\left(\sigma^{\prime}, f^{\prime}\right)$ and $\left(\sigma, f^{\prime}\right) \sim$ $\left(\sigma^{\prime}, f\right)$ in $\Gamma_{2}(M) ;\left(\sigma, f_{\sigma}\right) \sim\left(\sigma^{\prime}, f_{\sigma^{\prime}}\right)$ and $\left(\sigma, f_{\sigma}^{\prime}\right) \sim\left(\sigma^{\prime}, f_{\sigma^{\prime}}^{\prime}\right)$ in $\Gamma_{3}(M) ;\left(\sigma, f_{\sigma}\right) \sim$ ($\sigma^{\prime}, f_{\sigma^{\prime}}^{\prime}$) and $\left(\sigma, f_{\sigma}^{\prime}\right) \sim\left(\sigma^{\prime}, f_{\sigma^{\prime}}\right)$ in $\Gamma_{4}(M)$. These graphs are G-symmetric [4, Lemma 3.3] and admit $\mathcal{B}:=\{B(\sigma): \sigma \in V(\Sigma)\}$ as a G-invariant partition, where $B(\sigma)=\{(\sigma, f): \sigma$ incident with $f\}$, such that $k=v-2=2, \Gamma_{\mathcal{B}} \cong \Sigma, \Gamma^{B(\sigma)}=K_{2,2}$ and $\Gamma[B(\sigma), B(\tau)]=2 \cdot K_{2}$ for adjacent $B(\sigma), B(\tau) \in \mathcal{B}$. These four graphs fall into case (b)(i) in Theorem 2 and the G-invariant partition induced by the bipartition of $\Gamma^{B(\sigma)}$ is $\mathcal{B}^{*}:=\left\{B^{1}(\sigma), B^{2}(\sigma): \sigma \in V(\Sigma)\right\}$, where $B^{1}(\sigma)=\left\{(\sigma, f),\left(\sigma, f_{\sigma}\right)\right\}$ and $B^{2}(\sigma)=\left\{\left(\sigma, f^{\prime}\right),\left(\sigma, f_{\sigma}^{\prime}\right)\right\}$.

References

[1] A. Gardiner and C. E. Praeger, 'A geometrical approach to imprimitive graphs', Proc. London Math. Soc. (3) 71 (1995), 524-546.
[2] M. A. Iranmanesh, C. E. Praeger and S. Zhou, 'Finite symmetric graphs with two-arc transitive quotients', J. Combin. Theory (Ser. B) 94 (2005), 79-99.
[3] C. H. Li, C. E. Praeger and S. Zhou, 'A class of finite symmetric graphs with 2-arc transitive quotients', Math. Proc. Cambridge Philos. Soc. 129 (2000), 19-34.
[4] C. H. Li, C. E. Praeger and S. Zhou, 'Imprimitive symmetric graphs with cyclic blocks', European J. Combin. 31 (2010), 362-367.
[5] Z. Lu and S. Zhou, 'Finite symmetric graphs with 2-arc transitive quotients (II)', J. Graph Theory 56 (2007), 167-193.
[6] S. Zhou, 'Constructing a class of symmetric graphs', European J. Combin. 23 (2002), 741-760.
[7] S. Zhou, 'Almost covers of 2-arc transitive graphs', Combinatorica 24 (2004), 731-745; [Erratum: 27 (2007), 745-746].

GUANGJUN XU, Department of Mathematics and Statistics, The University of Melbourne, Parkville, Vic 3010, Australia e-mail: gx@ms.unimelb.edu.au

SANMING ZHOU, Department of Mathematics and Statistics, The University of Melbourne, Parkville, Vic 3010, Australia e-mail: smzhou@ms.unimelb.edu.au

[^0]: The first author acknowledges support of an MIFRS and an SFS from The University of Melbourne.
 (C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

