Canad. Math. Bull. Vol. 20 (1), 1977

CONJUGACY OF ELEMENTS IN A NORMAL RING

вү TAW-PIN LIM

Let (R, *) be a ring R with an involution *, i.e., * is a map $R \rightarrow R$ such that for all $a, b \in R$

$$(a+b)^* = a^* + b^*$$

 $(ab)^* = b^*a^*$
 $a^{**} = a.$

The trace and norm of an element a in (R, *) are respectively

$$T(a) = a + a^*, \qquad N(a) = aa^*.$$

(R, *) is said to be a normal ring if for all $a \in R$

$$N(a) = N(a^*)$$

or equivalently,

$$aa^* = a^*a$$
.

It is well-known that two real quaternionic elements a and b have the same trace and norm if and only if they are conjugates, i.e., there exists a non-zero quaternion x such that xa = bx. This result is now extended to a normal ring (R, *), R being not commutative and having no zero divisors.

As usual, we write [x, y] = xy - yx for all $x, y \in R$. The symbol Z denotes the center of R. Clearly, $x \in Z$ implies $x^* \in Z$.

Following Dyson [1], a ring (R, *) is said to have the scalar product property (and is henceforth abbreviated as a SPP-ring) if for all $a, b \in R$

$$[a^*, b^*] = [a, b]$$

or equivalently,

8

$$T(ab) = T(ba)$$
.

LEMMA 1. (i) A normal ring (R, *) is a SPP-ring. (ii) A 2-torsionfree SSP-ring (R, *) is a normal ring.

Proof. (i) For all $a, b \in R$

$$T(ab) = N(a + b^*) - N(a) - N(b^*)$$

= N(a^* + b) - N(a^*) - N(b)
= T(ba).

Received by the editors Sept. 15, 1976.

TAW-PIN LIM

(ii) For all $a \in R$, $2aa^* = T(aa^*) = T(a^*a) = 2a^*a$. Hence, $aa^* = a^*a$.

A SPP-ring which is not 2-torsionfree need not be normal. We have the following

EXAMPLE 1. Let F be a field of char 2 and R be the F-algebra of matrices of the form:

$$\begin{bmatrix} x & y & z \\ 0 & x & w \\ 0 & 0 & x \end{bmatrix}, \qquad x, y, z, w \in F.$$

The map which sends

$$\begin{bmatrix} x & y & z \\ 0 & x & w \\ 0 & 0 & x \end{bmatrix}$$
 to
$$\begin{bmatrix} x & w & z \\ 0 & x & y \\ 0 & 0 & x \end{bmatrix}$$

is an involution * on R. It is easy to verify that (R, *) is a SPP-ring. It is not normal because for

	0	1	0	
a =	0	0	0	,
	0	0	0_	

 $aa^* \neq a^*a$.

LEMMA 2. Let (R, *) be a normal ring which is not commutative. Then for all $a, b \in R$

 $T(a) = T(b), \qquad N(a) = N(b)$

imply xa = bx for some $x \in R$, $x \neq 0$.

Proof. First assume $b \neq a^*$. Since T(a) = T(b), $X = b - a^* = a - b^* \neq 0$ and we have $xa = (b - a^*)a = ba - a^*a = ba - bb^* = b(a - b^*) = bx$.

Next assume $b = a^*$ and $a \notin Z$. Then $x = [a, y] \neq 0$ for some $y \in R$, $y \neq 0$. Whence, $xa = [a, y]a = [a, ya] = [a^*, a^*y^*] = a^*[a^*, y^*] = a^*[a, y] = bx$.

Lastly, assume $b = a^*$ and $a \in \mathbb{Z}$. Since R is not commutative, there exists non-zero elements y, z in R such that $x = [y, z] \neq 0$. Hence, $xa = [y, z]a = [y, za] = [y^*, a^*z^*] = a^*[y^*, z^*] = a^*[y, z] = bx$.

The converse to the above is not true in general.

EXAMPLE 2. Let F be a field of char $\neq 2$ and R be the ring of 2×2 matrices over F. The map * defined by

$$\begin{bmatrix} t & u \\ v & w \end{bmatrix}^* = \begin{bmatrix} w & -u \\ -v & t \end{bmatrix}, \quad t, u, v, w \in F$$

https://doi.org/10.4153/CMB-1977-020-2 Published online by Cambridge University Press

[March

is an involution on R. It is easily verified that (R, *) is a normal ring. For

$$a = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad b = x = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

xa = x = bx but clearly a and b have distinct traces and norms.

The converse, however, is true if R has no zero divisors.

THEOREM. Let (R, *) be a normal ring which is not commutative and has no zero divisors. Then for all $a, b \in R$,

$$T(a) = T(b), \qquad N(a) = N(b)$$

if and only if

$$xa = bx$$
 for some $x \in R$, $x \neq 0$.

Proof. Assume xa = bx for sime $x \in R$, $x \neq 0$. Then $xT(a)x^* = T(xax^*) = T(bxx^*) = T(bx^*x) = T(xbx^*) = xT(b)x^*$ and $xaa^*x^* = bxx^*b^* = bx^*xb^* = bx^*(bx^*)^* = (bx^*)^*bx^* = xb^*bx^* = xbb^*x^*$. Hence,

$$T(a) = T(b)$$
 and $aa^* = bb^*$.

The converse is Lemma 2.

ACKNOWLEDGEMENT. The author wishes to thank his Ph.D. supervisor Dr. D. Ž. Djoković of the University of Waterloo, Ontario for many helpful comments.

REFERENCES

- 1. F. J. Dyson, Quaternion Determinants, Helvetica Physica Acta, Vol. 45 (1972), 289-302.
- 2. G. Maxwell, Algebras of Normal Matrices, Pacific Jour. of Math., Vol. 43, No. 2 (1972). 421-428.
- 60 Underhill Drive #410 Don Mills, Ontario M3A 2J7 Canada

1977]