CONJUGACY OF ELEMENTS IN A NORMAL RING

BY
TAW-PIN LIM

Let $\left(R,{ }^{*}\right)$ be a ring R with an involution ${ }^{*}$, i.e., ${ }^{*}$ is a map $R \rightarrow R$ such that for all $a, b \in R$

$$
\begin{aligned}
(a+b)^{*} & =a^{*}+b^{*} \\
(a b)^{*} & =b^{*} a^{*} \\
a^{* *} & =a .
\end{aligned}
$$

The trace and norm of an element a in $\left(R,{ }^{*}\right)$ are respectively

$$
T(a)=a+a^{*}, \quad N(a)=a a^{*} .
$$

$\left(R,{ }^{*}\right)$ is said to be a normal ring if for all $a \in R$

$$
N(a)=N\left(a^{*}\right)
$$

or equivalently,

$$
a a^{*}=a^{*} a .
$$

It is well-known that two real quaternionic elements a and b have the same trace and norm if and only if they are conjugates, i.e., there exists a non-zero quaternion x such that $x a=b x$. This result is now extended to a normal ring $\left(R,{ }^{*}\right), R$ being not commutative and having no zero divisors.

As usual, we write $[x, y]=x y-y x$ for all $x, y \in R$. The symbol Z denotes the center of R. Clearly, $x \in Z$ implies $x^{*} \in Z$.

Following Dyson [1], a ring $\left(R,{ }^{*}\right)$ is said to have the scalar product property (and is henceforth abbreviated as a SPP-ring) if for all $a, b \in R$

$$
\left[a^{*}, b^{*}\right]=[a, b]
$$

or equivalently,

$$
T(a b)=T(b a) .
$$

Lemma 1. (i) A normal ring ($R,^{*}$) is a SPP-ring.
(ii) A 2-torsionfree SSP-ring $\left(R,{ }^{*}\right)$ is a normal ring.

Proof. (i) For all $a, b \in R$

$$
\begin{aligned}
T(a b) & =N\left(a+b^{*}\right)-N(a)-N\left(b^{*}\right) \\
& =N\left(a^{*}+b\right)-N\left(a^{*}\right)-N(b) \\
& =T(b a) .
\end{aligned}
$$

Received by the editors Sept. 15, 1976.
(ii) For all $a \in R, 2 a a^{*}=T\left(a a^{*}\right)=T\left(a^{*} a\right)=2 a^{*} a$. Hence, $a a^{*}=a^{*} a$.

A SPP-ring which is not 2 -torsionfree need not be normal. We have the following

Example 1. Let F be a field of char 2 and R be the F-algebra of matrices of the form:

$$
\left[\begin{array}{ccc}
x & y & z \\
0 & x & w \\
0 & 0 & x
\end{array}\right], \quad x, y, z, w \in F
$$

The map which sends

$$
\left[\begin{array}{lll}
x & y & z \\
0 & x & w \\
0 & 0 & x
\end{array}\right] \text { to }\left[\begin{array}{lll}
x & w & z \\
0 & x & y \\
0 & 0 & x
\end{array}\right]
$$

is an involution * on R. It is easy to verify that $\left(R,{ }^{*}\right)$ is a SPP-ring. It is not normal because for

$$
a=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],
$$

$a a^{*} \neq a^{*} a$.
Lemma 2. Let $\left(R,{ }^{*}\right)$ be a normal ring which is not commutative. Then for all $a, b \in R$

$$
T(a)=T(b), \quad N(a)=N(b)
$$

imply $x a=b x$ for some $x \in R, x \neq 0$.
Proof. First assume $b \neq a^{*}$. Since $T(a)=T(b), X=b-a^{*}=a-b^{*} \neq 0$ and we have $x a=\left(b-a^{*}\right) a=b a-a^{*} a=b a-b b^{*}=b\left(a-b^{*}\right)=b x$.

Next assume $b=a^{*}$ and $a \notin Z$. Then $x=[a, y] \neq 0$ for some $y \in R, y \neq 0$. Whence, $x a=[a, y] a=[a, y a]=\left[a^{*}, a^{*} y^{*}\right]=a^{*}\left[a^{*}, y^{*}\right]=a^{*}[a, y]=b x$.

Lastly, assume $b=a^{*}$ and $a \in Z$. Since R is not commutative, there exists non-zero elements y, z in R such that $x=[y, z] \neq 0$. Hence, $x a=[y, z] a=$ $[y, z a]=\left[y^{*}, a^{*} z^{*}\right]=a^{*}\left[y^{*}, z^{*}\right]=a^{*}[y, z]=b x$.

The converse to the above is not true in general.
Example 2. Let F be a field of char $\neq 2$ and R be the ring of 2×2 matrices over F. The map * defined by

$$
\left[\begin{array}{cc}
t & u \\
v & w
\end{array}\right]^{*}=\left[\begin{array}{cc}
w & -u \\
-v & t
\end{array}\right], \quad t, u, v, w \in F
$$

is an involution on R. It is easily verified that $\left(R,{ }^{*}\right)$ is a normal ring. For

$$
a=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad b=x=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

$x a=x=b x$ but clearly a and b have distinct traces and norms.
The converse, however, is true if R has no zero divisors.
Theorem. Let $\left(R,{ }^{*}\right)$ be a normal ring which is not commutative and has no zero divisors. Then for all $a, b \in R$,

$$
T(a)=T(b), \quad N(a)=N(b)
$$

if and only if

$$
x a=b x \quad \text { for some } \quad x \in R, \quad x \neq 0 .
$$

Proof. Assume $x a=b x$ for sime $x \in R, x \neq 0$. Then $x T(a) x^{*}=T\left(x a x^{*}\right)=$ $T\left(b x x^{*}\right)=T\left(b x^{*} x\right)=T\left(x b x^{*}\right)=x T(b) x^{*} \quad$ and $\quad x a a^{*} x^{*}=b x x^{*} b^{*}=b x^{*} x b^{*}=$ $b x^{*}\left(b x^{*}\right)^{*}=\left(b x^{*}\right)^{*} b x^{*}=x b^{*} b x^{*}=x b b^{*} x^{*}$. Hence,

$$
T(a)=T(b) \quad \text { and } \quad a a^{*}=b b^{*} .
$$

The converse is Lemma 2.

Acknowledgement. The author wishes to thank his Ph.D. supervisor Dr. D. Ž. Djoković of the University of Waterloo, Ontario for many helpful comments.

References

1. F. J. Dyson, Quaternion Determinants, Helvetica Physica Acta, Vol. 45 (1972), 289-302.
2. G. Maxwell, Algebras of Normal Matrices, Pacific Jour. of Math., Vol. 43, No. 2 (1972). 421-428.

60 Underhill Drive \# 410
Don Mills, Ontario M3A 2J7
Canada

