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Summary

Marker Assisted Selection (MAS) based on additive effects associated with alleles at marker loci,
estimated by linear regression of individual phenotype on the markers, was applied to characters
with non-additive gene action and non-additive environment. The base population was the F,
generation of a cross between two inbred lines. Computer simulations of MAS were conducted for
characters with dominance, epistasis and genotype-environment interaction approximated by the
‘additive-multiplicative’ model. MAS was more effective than purely phenotypic selection in all
cases. The efficiency of MAS for characters with non-additive gene action is comparable to (and
for negative dominance even higher than) the efficiency of MAS for strictly additive characters.
Environmental non-additivity, however, lowers the efficiency of MAS. Almost all results
concerning the efficiency of MAS in our previous simulations of purely additive traits are

applicable to non-additive traits.

1. Introduction

A method of Marker Assisted Selection (MAS)
proposed by Lande & Thompson (1990) utilizes the
linkage disequilibrium between molecular genetic
marker loci and quantitative trait loci (QTLs) in
populations created by a cross between two inbred
lines. Additive effects of marker genes on the trait are
estimated by multiple linear regression of the pheno-
type on the markers, and selection is based on an
index incorporating the phenotype and the estimated
effects of markers. Gimelfarb & Lande (1994) reported
results of computer simulations of MAS using this
method. The simulations confirmed the conclusions
reached by Lande & Thompson from their theoretical
analysis that selection for a quantitative character
based on the estimated additive effects of markers is
generally more effective (especially in the initial
generations) than selection based strictly on pheno-
types. Zhang & Smith (1992, 1993) conducted similar
simulations of MAS. They, however, compared MAS
not to purely phenotypic selection but rather to
selection based on the BLUP estimate of an indi-
vidual’s breeding value. Their conclusion was that
selection based on an index combining the effects of
markers and the BLUP estimate is more effective than
selection based solely on the BLIJP estimate.
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Characters in simulations by Zhang & Smith (1992,
1993) and by Gimelfarb & Lande (1994) were additive,
1.e., genes as well as environment contributed addi-
tively to the phenotype. This is important since, even
though the method of Lande & Thompson (1990) can
be applied to non-additive characters, their theoretical
analysis of the efficiency of MAS required the
additivity assumption. No theoretical work or com-
puter simulation has been done so far on the
effectiveness of MAS for characters that are not
additive. It is important, however, to know whether
MAS can be more effective than purely phenotypic
selection for such characters as well. To answer this
question we conducted a series of computer simu-
lations of MAS based on the method by Lande &
Thompson, but with characters that are not additive.

We investigated the following deviations from the
strictly additive model of quantitative traits: non-
additivity within a locus (dominance), non-additivity
between loci (epistasis), and non-additivity of the
environmental effect (genotype-environment interac-
tion, G X E). There are many biological mechanisms
that may cause these non-additivities, and, almost
certainly, different mechanisms are responsible for
non-additivity of different traits in different organisms.
Our goal, however, was not to investigate a particular
biological mechanism, but rather to find out whether
MAS based on the additive effects of marker genes
estimated by linear regression can be more effective
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than selection based strictly on the phenotype, even if
the additivity assumption does not hold. To this end
we have employed an ‘additive-multiplicative’ ap-
proximation for dominant and epistatic gene inter-
actions (Gimelfarb, 1989) as well as for the interaction
between genotype and environment.

2. Methods

The genetic map used in the simulations consisted of
10 chromosomes of 100 cM each. All chromosomes
carried marker genes equidistantly spaced along the
chromosome. The number of markers was the same
for each chromosome. Six out of ten chromosomes
also carried a total of 10 QTLs distributed among
them as shown in Fig. 1, in which a square indicates
a QTL. Also shown there are genetic markers (11 per
chromosome). The remaining four chromosomes did
not have QTLs on them (but did carry marker genes).
.Each QTL had two alleles, 0 and 1, and all loci were
equivalent in their effect on the character.

The effect by the ith QTL in the individual’s
genotype on the character was calculated as

z; = (1+D)(Qi+ Q7)) —2DQ; 07, (D

where Q; and Q7 are the homologous alleles (0 or 1)
at the locus. Parameter D represents the degree of
dominance. Indeed, it is not difficult to see that (1)
yields the following effect by a QTL:

z;,=0 in 0/0 homozygote,
z,=14+D in 0/1 heterozygote, (2)
z,=2 in 1/1 homozygote.

Hence, allele 1 is dominant if D > 0, allele 0 is
dominant if D <0 and allelic contributions are
additive if D = 0.
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Fig. 1. Genetic map of 10 chromosomes with 11 markers
per chromosome and a total of 10 QTLs of equal effect
(indicated by squares).
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Given the effects on the character by all QTLs in the
genotype of an individual, the individual’s genotypic
value was computed as

z=(1—-C)Zzi+CHzi, €))

where the parameter 0 < C <1 determines the
strength of the multiplicative interaction between loci.
If C = 0, the contributions by QTLs to the genotypic
value are strictly additive, whereas they are strictly
multiplicative if C = 1. Thus, the model (3) can be
viewed as a combination of two scales widely used in
practical applications: linear and logarithmic.

Given the genotypic value of an individual, z, its

phenotypic value was determined as
Z =(1—B)(z+e)+ Bze, @
where e is a random variable representing the
environmental effect on the character which is assumed
normally distributed with zero mean. Thus, instead of
being just the sum of the genotypic value and the
environmental effect, as in the traditional additive
model, the phenotype in our model is a mixture of
their sum and their product. If B = 0, the environ-
mental contribution is strictly additive, whereas it is
strictly multiplicative if B = 1. It should be pointed
out that when discussing environment in this paper we
refer only to microenvironment, i.e., non-genetic
differences between individuals within a population.
We do not consider macroenvironment, i.e., non-
genetic differences between populations. The variance
of the environmental effect, v,, was computed at the
beginning of each run, and it remained unchanged in
subsequent generations of the run. For purely additive
environment, the variance v, was calculated in the
same way as in our previous paper, whereas the
calculation of v, for additive-multiplicative environ-
ment was based on equation (A 13) in the Appendix.
The phenotype of an individual was scaled by the
following linear transformation of the value deter-
mined by formula (4):
Z= 20[2,/(1 _B)_zmin]/(zmax—zmin) - 105 (5)
where 2z, and z,, are the minimum and the
maximum of the genotypic values among all possible
QTL genotypes (we have considered only environ-
ments with B < 1). Given that the mean of the
environment effect is zero, transformation (5) con-
strains the mean phenotype in a population to the
interval between —10 and 10. Consequently, the
mean value of any trait under any selection could not
exceed 10.

Except for the processes determining the phenotype,
all other processes were simulated as in our previous
paper (Gimelfarb & Lande, 1994). Selection was
based on the index,

I=Z+b, M, (6)
incorporating the phenotype, Z, as well as the

molecular score, M, of an individual. The molecular
score for an individual was equal to the sum of the
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Table 1. Parameters used in simulations

BASE ALTERNATE

Markers on chromosome 11 3 6 21 51
Markers in selection index 6 3 9 12 15
Individuals of each sex 500 100 200 3000
Initial heritability 01

Selection strength 25%

additive effects associated with alleles at marker loci
included in the index (the coefficients of a linear
regression of the phenotype on the markers). The
molecular score coeflicient, b,,, was calculated as

by = (1/H2_ 1)/(1 —Pu)s @)
where H?® is the broad heritability and p,, is the
proportion of the genotypic variance in the population
accounted for by the markers included in the index.
The heritability in a given generation was computed
as the ratio of the variance of the genotypic values
(calculated based on expression (3)) to the phenotypic
variance. Parameter p,, was computed as

Pu= R*/H?, ®)
where R? is the coefficient of determination for the
linear regression. Lande & Thompson (1990) and
Gimelfarb & Lande (1994) used the narrow heritability
rather than the broad heritability in computing b,,
and p,,. Given, however, that both papers dealt with
purely additive traits, the two heritabilities were the
same. A two-stage multiple regression procedure
described in our previous paper was used to choose
marker loci for inclusion in the index out of the total
number of markers in the genome and to estimate
‘additive effects’ associated with the chosen marker
loci. This procedure was employed in each generation
of a computer run. No correction was made for the
bias in R? due to the non-random selection of markers
in the regression procedure, since our simulations for
additive characters indicate that the effect of the
correction is negligible if the population size is above
100 individuals of each sex.

Parameters used in the computer simulations for
non-additive traits are shown in Table 1. They are
similar to those used in our simulations for additive
traits (Gimelfarb & Lande, 1994). The majority of
simulations were conducted with parameters in the
BASE set, but other parameters were also used. In such
cases, only one ALTERNATE parameter was substituted
in the BASE set at a time. Each run was initiated from
the F, generation of a cross between two inbred lines,
so that the initial allelic frequencies were 1/2 at all
QTLs and marker loci. Two distinct types of initial
populations with respect to the gametic phase of
QTLs were considered : total coupling (alleles of equal
effect in adjacent QTLs on a chromosome) and total
repulsion (alleles of opposite effect at adjacent QTLs
on a chromosome). Simulations for a given set of
parameters and an initial gametic phase were repli-
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cated, and a result reported here represents the average
over 40 runs for populations of 100 and 200 individuals
of each sex, over 30 runs for 500 individuals of each
sex, and over 20 runs for 3000 individuals of each sex.

3. Results and Discussion

Only one deviation from the strictly additive model of
quantitative characters was investigated at a time.
Thus, neither epistasis nor non-additive environment
were present in runs with dominance. On the other
hand, there was no dominance and the environment
was additive in runs with epistasis. A range of
parameters D for dominance, C for epistasis and B
for non-additive environment were investigated, but
results for only some of them are reported here,
namely, D =1 (complete positive dominance), D
= —1 (complete negative dominance), epistasis with
C =001, and ‘additive-multiplicative’ environment
with B =01, 0-5, 0-8.

Table 2 presents the variance components (as
proportions of the total phenotypic variance) in the
initial population. Their computation is explained in
the Appendix. Depending on the initial gametic phase,
the non-additive component of variance accounts for
20% or 50% of the total genotypic variance in the
case of positive dominance, and for 40% or 50% in
the case of negative dominance. On the other hand,
the non-additive component in the first generation is
practically zero for characters with epistasis. This
does not mean, however, that there is practically no
interaction between the contributions by the QTLs to
the character. Indeed, the non-additive component of
variance is determined not only by the mode and
strength of gene interaction but also by the distribution
of the genotypes in the population, and it increases in
later generations of selection. The variance component
due to genotype-environment interaction for
characters with additive-multiplicative environment

Table 2. Variance components (as proportions of the
total phenotypic variance) in the initial F, population.

I/A VNA VE I/GE
Dominance C 0-08 0-02 090 0-00
(+) R 005 0-05 090 0-00
Dominance C 0-06 0-04 0-90 0-00
(=) R 005 0-05 090 0-00
Epistasis C 010 0-00 090 0-00
R 010 0-00 090 0-00
GxE C 0-10 0-00 0-82 0-08
©1) R 010 0-00 0-87 0-03
GxE C 010 0-00 0-10 0-80
©0-5) R 0-10 0-00 023 0-67
GxFE C 010 0-00 0-01 0-89
R

(0-8) 010 0-00 0-02 0-88

(V, —additive genetic; ¥, , -non-additive genetic; V,—
environmental; ¥, — genotype-environment interaction; C
and R indicate total coupling and total repulsion initial

gametic phase).


https://doi.org/10.1017/S0016672300032730

A. Gimelfarb and R. Lande

130

T
- (@

Mean phenotype

|

-
—
}—

10
Generation

12

14 16 18 20

Fig. 2. Dynamics of the mean phenotype of characters with non-additive gene action under purely phenotypic selection

(a) coupling; (b) repulsion. ..... , epistasis; ————, dominance (—); ———, dominance (+);

changes from only 8% or 3% (depending on the
initial gametic phase) of the total phenotypic variance
if the coefficient B in (4} is 0-1 to almost 90% if B =
0-8.

Figure 2 shows the dynamics of the mean phenotype
of characters with additive and non-additive gene
action under purely phenotypic selection for higher
values of the trait. Both dominance and epistasis are
seen to have a noticeable effect on the dynamics.
Characters with negative dominance show the largest
overall gain in the mean after 20 generations of
selection, whereas positive dominance yields the
smallest gain. The response by characters with epistasis
is relatively slow initially, but after generation 6 it
accelerates appreciably, reaching a plateau by gener-
ation 12, while traits with additive and dominant gene
action continue responding until generation 20. Hence,
non-additivity in gene action may influence the
response to selection. The accelerated response by
characters with epistasis was accompanied by a rise in
the broad sense heritability. Starting from the initial
value of 0-1, the broad heritability was declining
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, additivity.

initially, but then went up, reaching at generation 9 a
maximum of 022 if the initial gametic phase was
coupling, and a maximum of 0-39 if the gametic phase
was repulsion.

The effectiveness of Marker Assisted Selection
relative to purely phenotypic selection for characters
with additive or non-additive gene action can be seen
in Fig. 3 which shows the efficiencies of MAS with the
BASE parameter set. Efficiency is defined as the ratio
of the response by the mean phenotype under MAS to
the response under purely phenotypic selection with
the same set of parameters. Efficiency higher (lower)
than 1 means that MAS is more (less) effective than
phenotypic selection. Fig. 3 clearly indicates that
MAS based on additive effects associated with marker
loci estimated by a linear regression is effective not
only for purely additive characters but for characters
with non-additive gene action as well. Moreover, for
characters with negative dominance, the efficiency is
much higher than for additive characters. The effici-
ency for characters with positive dominance is
generally lower than for additive characters (except
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Fig. 3. Efficiency of MAS relative to purely phenotypic selection for characters with non-additive gene action (a)
coupling; (b) repulsion. ..... , epistasis; ————, dominance (—); —-——, dominance (+); —, additivity.

generation 1 in coupling), but the difference is quite
small.

Quite unexpected is the behaviour of the efficiency
of MAS for characters with multiplicative epistasis.
Indeed, given that MAS utilizes linkage disequilibrium
between marker loci and QTLs, and that this
disequilibrium is reduced by recombination, the
efficiency of MAS is expected to decline with each
generation of selection. This was shown in our
previous paper to be true for additive characters, and
it is also true for characters with dominance (Fig. 3).
The same is not true, however, for characters with
multiplicative epistasis (Fig. 3). In this case, efficiency
does not go down in each generation, but rather has
a ‘hump’, i.e., after an initial decline, efficiency starts
climbing up, reaches a maximum at generation 6 or 8
(depending on the initial gametic phase) and then goes
down again. The efficiency on the top of the ‘hump’
is quite high, almost comparable to that in the first
generation, especially for coupling gametic phase.
This behaviour of the efficiency is accompanied by a
similar behaviour of the broad heritability. Starting
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from an initial value 01, the broad heritability also
declines initially but then rises, reaching a maximum
of 0-20 at generation 6 {(coupling) or a maximum of
0-38 at generation 8 (repulsion), i.e., at the same
generation at which the “hump’ of the efficiency has
its peak (Fig. 3).

Besides investigating multiplicative . epistasis, we
have also conducted a few simulations of MAS using
the formula

Z=224+CZZZ,Z; @i =+)) ®
i t 5

instead of formula (3) to compute the genotypic value
of an individual. In simulations with the BASE
parameter set, the efficiency of MAS for characters
with strong ‘pairwise’ epistasis (C = 1 in the above
formula) was similar to the efficiency of MAS for
purely additive characters. The trajectory of the
efficiency did not have a ‘hump’ as in the case of
multiplicative epistasis, but declined monotonically.
Let us now turn to characters with purely additive
gene action but with ‘additive-multiplicative’ en-
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Fig. 4. Dynamics of the mean phenotype of characters with non-additive environment under purely phenotypic selection
(a) coupling; () repulsion. ..... , GXE(08); ————, GX E (0-5); ———, G x E (0-1); ——, additivity.

vironment. Figure 4 shows the response by such
characters to purely phenotypic selection. It is seen
that, while the effect of non-additivity in gene action
on the response to purely phenotypic selection is quite
substantial (Fig. 2), the effect of environmental non-
additivity is not very large, especially if the initial
gametic phase is repulsion, although it is more
noticeable for coupling gametic phase. In general,
characters with additive-multiplicative environment
respond to phenotypic selection faster than characters
with purely additive environment. Notice also that the
response in the first generation with B = 0-8 (high
non-additivity) is slower than the response with B =
0-1 (low non-additivity). After generation 2, however,
the response with B = 0-8 becomes faster than with B
=01.

Figure 5 shows the efficiency of MAS with the
BASE parameter set for characters with purely
additive or additive-multiplicative environment. It is
seen that the influence of environmental non-additivity
on the efficiency of MAS is noticeably greater than on
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the response to purely phenotypic selection (Fig. 4).
The efficiency is generally much higher if the en-
vironment is additive than if it is non-additive. This is
because in the presence of genotype-environment
interaction (even in an infinite population), the
additive effects associated with markers include not
only a contribution from QTLs but also a contribution
from the environment. Thus, even though the additive
effects associated with markers may be statistically
significant and may predict well the phenotypes in the
same generation in which they have been evaluated,
they are not as good at predicting phenotypes in the
following generation because the genotype-environ-
ment interaction changes during evolution. The lowest
efficiency is for MAS in the case of non-additive
environment with the coefficient B in (4) equal to 0-5.
In fact, after two or three generations (depending on
the gametic phase) MAS for such a character becomes
less effective than purely phenotypic selection. With B
= 0-8 MAS also becomes less effective than phenotypic
selection after two or three generations. In the first
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Fig. 5. Efficiency of MAS relative to purely phenotypic selection for characters with non-additive environment (a)
coupling; (b) repulsion. ..... , GXE (08); ————, GX E (0-5); ———, G x E (0-1); ——, additivity.

generation, however, the efficiency with B=0-8 is
higher than for characters with B=0-5 or B=0-1.
Moreover, if the gametic phase is coupling, the
efficiency in the case of B =0-8 nearly equals the
efficiency with strictly additive environment.

We demonstrated in our previous paper that, while
the response by an additive character to purely
phenotypic selection is practically not affected by
changes in population size above 100 individuals of
each sex, population size is the most important factor
influencing the efficiency of MAS for additive
characters. The same is also true for characters with
non-additive gene action and with non-additive
environment. Their response to purely phenotypic
selection is almost the same for any population size
above 100 individuals of each sex, whereas the
efficiency of MAS is always higher in a population of
a larger size. Table 3 demonstrates the influence of the
population size on the efficiency in the first generation
of MAS for characters with different types of non-
additivity. It is seen that the influence can be very
strong. For example, changing the population size
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from 100 to 500 individuals of each sex increases
efficiency of MAS by between 70% and 100% for
dominance or epistasis and between 40% and 50%
for non-additive environment.

Runs with ALTERNATE parameters (Table 1) yielded
results similar to those reported by (Gimelfarb and
Lande, 1994) for additive traits. Increasing the number
of marker loci on a chromosome, or including more
markers in the selection index does not necessarily
result in an increased efficiency of MAS. In fact, there
is an optimum number of markers per chromosome as
well as an optimum number of markers included in
the index that give the highest response to MAS. The
exact value of the optimum depends on other
parameters as well as on the initial gametic phase. For
example, given 11 markers per chromosome, the
optimum number of markers for inclusion in the index
was 6 in almost all simulations, except for those with
epistasis and repulsion gametic phase, for which the
highest response to MAS was if 15 rather than six
markers were included in the index. In gencral,
however, changing the number of markers on a
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Table 3. The efficiency in the first generation of
MAS in populations of different sizes

Population size

100 200 500 3000

Dominance C 1-41 1-93 2-44 2-87
(+) R 0-94 1-53 2-:08 3-09
Dominance C 1-45 216 2:71 3-40
(=) R 1-45 1-74 2-53 3-70
Epistasis C 1-45 1-83 2-46 2-83

R 1-23 1-57 205 263
Gx E C 1-11 1-28 1-69 1-88
01) R 1-04 1-32 1-44 1-96
Gx E C 1-07 1-31 1-65 2:03
(0-5) R 0-89 093 1-31 1-49
GxE C 1-23 1-80 2-18 2:74
(0-8) R 1-11 1-51 1-66 206

(Population size refers to the number of individuals of each
sex; C and R indicate total coupling and total repulsion
initial gametic phase)

chromosome (from 6 to 51) or the number of markers
in the index (from 3 to 15) has relatively little influence
on the response to MAS. Even with only three
markers per chromosome, the efficiency of MAS for
characters with dominance or epistasis is surprisingly
high, if six markers (out of a total of 30) are included
in the index, although it is greatly reduced if only three
markers are in the index.

Besides simulations in which markers included in
the selection index were chosen in each generation out
of all the markers in the genome, we have also
conducted simulations in which markers included in
the index were chosen in the first generation, and only
their effects were reestimated in subsequent genera-
tions. The efficiency of MAS in such simulations was
always much lower than in the simulations with all
markers in the genome reevaluated each generation.

In all our simulations of MAS for characters with
non-additive gene action as well as with non-additive
environment, the coefficient b,, in the selection index
(6), i.e., the relative weight in the index of markers was
so high that selection was based exclusively on the
markers with the phenotype playing no role at all. The
same was also true in simulations of MAS for purely
additive characters (Gimelfarb & Lande, 1994).
Actually for population sizes of at least 100 individuals
of each sex the values of p,, in (8) was always greater
than one, making the denominator in (7) negative,
and the computer program automatically excluded
the phenotype from selection index. Even when R? in
(8) was corrected as described in our previous paper,
the value of p,, still exceeded one. Using the narrow
instead of the broad heritability in computing b,,
would not help. Indeed, in simulations with non-
additive environment, both heritabilities were the
same. In simulations with non-additive gene action,
on the other hand, given that the narrow heritability
is always lower than broad heritability, replacing the
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latter with the former in (8) will yield even higher
values of p,,. Can it be that giving some weight to the
phenotype in the selection index may improve the
efficiency of MAS? We have conducted simulations in
which the coefficient b,, in the index was not computed
based on formulas (7) and (8), but was fixed on a
particular value: b,, =9, 4 and 1 corresponding to
10%, 20% and 50% of the contribution by the
phenotype in the index. In all simulations with the
phenotype contributing 10 %, the éfficiency of MAS
was virtually the same as in simulations in which
phenotype played no role in selection, whereas in all
simulations with contribution by the phenotype
greater than 10 %, the efficiency was lower. Thus, as
for a purely additive character, in a population of at
least 100 individuals of each sex MAS for characters
with non-additive gene action or environment is most
effective if it is based exclusively on markers.

In all our simulations, the method of Lande &
Thompson (1990) was applied without any adjust-
ments for non-additivity of the traits. It is possible
that the linear model based strictly on the additive
effects associated with markers is not adequate for
traits that are non-additive. This seems to be the case
particularly for characters with non-additive environ-
ment. Some adjustments for non-additivity can, in
principle, be made. For example, not only the additive
marker effects but also dominance effects as well as
the effects of pairwise interactions between markers
can be estimated by linear regression (Haley & Knott,
1992), and included in the computation of the selection
index. It is unlikely, however, that this will improve
the efficient of MAS in the case of non-additive
environments. Even in the cases of dominance and
epistasis, it is not certain that accounting for non-
additive effects will necessarily help. Indeed, this
would require estimating a very large number of
parameters with an inevitable decrease of their
statistical significance. Also, pairwise interactions may
not be sufficient to account for epistasis involving
multiple QTLs (e.g., the ‘multiplicative’ epistasis
considered in this paper), and including in the
regression of higher order interactions between
markers may be necessary, which would further
decrease the statistical significance of estimated para-
meters.

4. Conclusions

The main conclusion of this work is that MAS based
on the ‘additive effects’ of genetic markers estimated
by linear regression of the phenotype on marker
genotypes can be efficient even if the action by genes
or environment on the character is not additive. MAS
for such characters is more effective than selection
based strictly on the phenotype. The efficiency of
MAS for characters with negative dominance is even
higher than the efficiency of MAS for characters with
purely additive genetic and environmental effects.
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MAS for characters with non-additive environment is
the least efficient.

Practically all conclusions reached in our previous
work for additive characters are also valid for non-
additive characters. Increasing the number of markers
on a chromosome or the number of markers included
in the computation of the selection index does not
necessarily result in more effective selection. If markers
included in the selection index are chosen in each
generation out of the total number of markers in the
genome, the efficiency of selection is much higher than
if the markers in the index are chosen in the first
generation with only their effects reestimated in the
subsequent generations. For population sizes of at
least 100 individuals of each sex, the efficiency of
MAS is maximized if the phenotype does not
contribute to the selection index, i.e., selection is
based exclusively on genetic markers. Population size
is the most important factor determining the efficiency
of MAS.

This work was supported by U.S. Public Health Service
grant GM27120.
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Appendix

The initial variance components in simulations with
non-additive gene effects (Table 2) were computed by
the standard formulas utilizing the broad, H?, and
narrow, A%, heritabilities in the initial population:

Vol Ve = I, (A1)
V. V,=1-H, (A 2)
Vaal Vo = H =1, (A3)

where V, is the phenotypic variance in the initial
population. The initial H* was 0-1 in all runs. The
initial narrow heritability was estimated by the realized
heritability in the first generation of purely phenotypic
selection:

h* = R/S, (A4)
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where S and R are, respectively, the average selection
differential and the average response in the first
generation of purely phenotypic selection for a number
of runs with each particular set of parameter values
(see text). The selection differential was computed by
using the formula:

S =iop,

(A3)

where i is the intensity of selection (standardized
selection differential) and o, = v/ ¥} (Falconer 1983).
Given the proportion of selected individuals 0-25 and
assuming a normal distribution of the character in the
initial population, i = 1-25 (Falconer 1983, fig. 11.3).
The response, R, was calculated directly as the
difference between the mean in the first generation of
phenotypic selection and the mean in the initial
population.

As for the components of variance in the initial
population with non-additive environment (Table 2),
given the assumption of additive gene action, the
additive genetic variance is the same as the genotypic
variance, and, hence, V, = V,, h* = H?, and V, =V,
= 0. The genotypic and environmental variances are
the variances of the components G and E in the
decomposition of the phenotype,

Z=G+E+GxE, (A6)

where G is the genotypic value, £ is the environmental
effect, and their sum, G+ E, provides the least squares
fit to the phenotype. Given that the phenotype is
determined by expression (4), these components are,
by definition, functions G(z) and E(e) producing the
minimum of the integral

J f[(l —B)(z+e)+ Bze—G(2)

—E(@)) p(z) g(e)dzde, (A7)

where p(z) and g(e) are the distributions of the
genotypic value and of the environmental effect,
respectively. It can be shown that the minimum of the
integral is produced by

G=(1-B)z, (A8)
E = (1—B)e+ Bem, (A9)
where m is the mean genotypic value. Consequently,
G x E = BE(z—m). (A 10)

Since the mean genotypic value in the initial popu-
lation is zero,

E=(1-B)e. (A9a)
G x E = Bez. (A 10a)
Given that V,+ V., = (1-H) V,,

Vel Ve = 1= H?)/(1 + %), (A11)
Voe/ Ve = (1 — H) f%0,/(1 + f0,), (A12)

where f=B/(1—B) and v,=V,/(1—-BY¥=V,
H?/(1— B)? is the variance of the genotypic values in
the initial population. .

It follows from (A 11) that for a given broad
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heritability among F, offspring, the variance of the
environmental effect is

v, = (1-H*) V,/[(1-B)*+ B’v,), (A13)

where V, and v, are, respectively, the phenotypic
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variance and the variance of genotypic values expected
among F, offspring. The latter variances were esti-
mated among 10000 offspring generated from the
initial population at the beginning of each computer
simulation.
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