Duality for hypergeometric functions and invariant Gauss-Manin systems

MICHITAKE KITA ${ }^{1 \star}$ and KEIJI MATSUMOTO ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Liberal Arts, Kanazawa University, Kakuma Kanazawa 920-11, Japan
${ }^{2}$ Department of Mathematics, Faculty of Science, Hiroshima University, Kagamiyama Higashi-Hiroshima 739, Japan; e-mail: matsu@knight.math.sci.hiroshima-u.ac.jp

Received: 15 December 1995; accepted in final form 15 August 1996

Abstract

We present some basic identities for hypergeometric functions associated with the integrals of Euler type. We give a geometrical proof for formulae such as the identity between the single and double integrals expressing Appell's hypergeometric series $F_{1}\left(a, b, b^{\prime}, c ; x, y\right)$.

Mathematics Subject Classification (1991). 33 Cxx.
Key words: hypergeometric function, twisted (co)homology group, Gauss-Manin connection, period matrix.

0. Introduction

It is well-known that the Appell hypergeometric series $F_{1}\left(a, b_{1}, b_{2}, c ; z_{1}, z_{2}\right)$ admits two integral representations of Euler type, one of which is a single integral and the other a double integral

$$
\begin{aligned}
& F_{1}\left(a, b_{1}, b_{2}, c ; z_{1}, z_{2}\right) \\
& =\sum_{m_{1}, m_{2}=0}^{\infty} \frac{\left(a ; m_{1}+m_{2}\right)\left(b_{1} ; m_{1}\right)\left(b_{2} ; m_{2}\right)}{\left(c ; m_{1}+m_{2}\right)\left(1 ; m_{1}\right)\left(1 ; m_{2}\right)} z_{1}^{m_{1}} z_{2}^{m_{2}} \\
& =C_{1}(a, c) \int_{0}^{1} s^{a}(1-s)^{c-a}\left(1-z_{1} s\right)^{-b_{1}}\left(1-z_{2} s\right)^{-b_{2}} \frac{\mathrm{~d} s}{s(1-s)}= \\
& =C_{2}(b, c) \iint_{\substack{s_{1}, s_{2}>0}}\left(1-z_{1} s_{1}-z_{2} s_{2}\right)^{-a} \\
& \quad \times s_{1}{ }^{b_{1}} s_{2}{ }^{b_{2}}\left(1-s_{1}-s_{2}\right)^{c-b_{1}-b_{2}} \frac{\mathrm{~d} s_{1} \wedge \mathrm{~d} s_{2}}{s_{1} s_{2}\left(1-s_{1}-s_{2}\right)}
\end{aligned}
$$

[^0]where $\left|z_{1}\right|<1,\left|z_{2}\right|<1,(\alpha, m)=\alpha(\alpha+1) \cdots(\alpha+m-1)$, and
$$
C_{1}(a, c)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)}, \quad C_{2}(b, c)=\frac{\Gamma(c)}{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right) \Gamma\left(c-b_{1}-b_{2}\right)} .
$$

In order to look into the feature of this identity between these two integrals, we express the identity as

$$
\int_{\Delta_{01}(x)} U^{\alpha}(x) \varphi_{01}(x)=C_{01,01} \int_{\Delta_{234}(y)} U^{-\alpha}(y) \varphi_{234}(y)
$$

where

$$
\begin{aligned}
& \alpha=\left(\alpha_{0}, \ldots, \alpha_{4}\right)=\left(a, c-a,-b_{1},-b_{2}, b_{1}+b_{2}-c\right), \\
& x=\left(\begin{array}{ccccc}
1 & -1 & -z_{1} & -z_{2} & 0 \\
0 & 1 & 1 & 1 & 1
\end{array}\right), \quad y=\left(\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 1 \\
-z_{1} & 0 & 1 & 0 & -1 \\
-z_{2} & 0 & 0 & 1 & -1
\end{array}\right), \\
& \left(L_{0}(x), \ldots, L_{4}(x)\right)=(s, 1) x, \quad\left(L_{0}(y), \ldots, L_{4}(y)\right)=\left(1, s_{1}, s_{2}\right) y, \\
& U^{\alpha}(x)=\prod_{j=0}^{4} L_{j}(x)^{\alpha_{j}}, \quad U^{-\alpha}(y)=\prod_{j=0}^{4} L_{j}(y)^{-\alpha_{j}}, \\
& \varphi_{01}(x)=\mathrm{d} \log \frac{L_{1}(x)}{L_{0}(x)}, \quad \varphi_{234}(y)=\mathrm{d} \log \frac{L_{3}(y)}{L_{2}(y)} \wedge \mathrm{d} \log \frac{L_{4}(y)}{L_{3}(y)},
\end{aligned}
$$

and, furthermore, $\Delta_{01}(x)$ is the 1-dimensional simplex bounded by $L_{0}(x)=0$ and $L_{1}(x)=0 ; \Delta_{234}(y)$ is the 2-dimensional simplex bounded by $L_{2}(y)=0, L_{3}(y)=$ 0 and $L_{4}(y)=0$; and finally $C_{01,01}$ is a constant expressed in terms of α_{j}. We observe that
(i) there exists a regular diagonal 5×5 matrix H such that $x H^{t} y=0$, in other words, the configuration $[y]$ of the 5 hyperplanes $L_{j}(y)=0$ in the 2dimensional projective space \mathbb{P}^{2}, which is the equivalence class of the set of ordered 5 hyperplanes $L_{j}(y)=0$ in \mathbb{P}^{2} modulo the the projective transformations, is dual to the configuration $[x]$ of the 5 points $L_{j}(x)=0$ in \mathbb{P}^{1},
(ii) for each j, the exponent of $L_{j}(x)$ in $U^{\alpha}(x)$ and $L_{j}(y)$ in $U^{-\alpha}(y)$ differ only by the sign,
(iii) the multi-index of 1-form $\varphi_{01}(x)$ (resp. 1-cycle $\Delta_{01}(x)$) and that of $\varphi_{234}(y)$ (resp. $\left.\Delta_{234}(y)\right)$ are complementary.

By the above observation, we can expect that the identity

$$
\begin{equation*}
\int_{\Delta_{J}(x)} U^{\alpha}(x) \varphi_{I}(x)=C_{I J} \int_{\Delta_{J} \perp(y)} U^{-\alpha}(y) \varphi_{I^{\perp}}(y) \tag{0.1}
\end{equation*}
$$

holds for any multi-indices $I=\left\{i_{0}, i_{1}\right\}$ and $J=\left\{j_{0}, j_{1}\right\}$ (put $I^{\perp}=\left\{i_{2}, i_{3}, i_{4}\right\}=$ $\{0, \ldots, 4\} \backslash I$ and $\left.J^{\perp}=\left\{j_{2}, j_{3}, j_{4}\right\}=\{0, \ldots, 4\} \backslash J\right)$, where

$$
\varphi_{I}(x)=\mathrm{d} \log \frac{L_{i_{1}}(x)}{L_{i_{0}}(x)}, \quad \varphi_{I^{\perp}}(y)=\mathrm{d} \log \frac{L_{i_{3}}(y)}{L_{i_{2}}(y)} \wedge \mathrm{d} \log \frac{L_{i_{4}}(y)}{L_{i_{3}}(y)},
$$

and $\Delta_{J}(x)$ is the 1-dimensional simplex bounded by $L_{j_{0}}(x)=0$ and $L_{j_{1}}(x)=0$, and $\Delta_{J^{\perp}}(y)$ is the 2-dimensional simplex bounded by $L_{j_{2}}(y)=0, L_{j_{3}}(y)=0$ and $L_{j_{4}}(y)=0$. Note that we need to assign a suitable branch of $U^{\alpha}(x)$ on $\Delta_{J}(x)$, and that of $U^{-\alpha}(y)$ on $\Delta_{J^{\perp}}(y)$ in order to state (0.1) precisely. For the case $J=\{0,1\}$, there are the standard assignment of branch of $U^{\alpha}(x)$ on $\Delta_{J}(x)$ and that of $U^{-\alpha}(y)$ on $\Delta_{J \perp}(y)$, for $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$. These yield the identities between the hypergeometric series and the integrals. For a general multi-index J, we have neither standard assignments of branches nor expressions by series for the integrals. To show (0.1), we must find systematical assignments of branches and determine the constant $C_{I J}$ depending on the assignments of branches.

More generally, it is shown in [GGr1] and [Kit1] that the hypergeometric series of $k \times l$ variables with parameters $\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l}, c\right)$ admits k-fold and l fold integrals both of Euler type. We can see that the feature of the identity between these integrals is similar to (i) \sim (iii) as follows. Put

$$
\begin{aligned}
& n=k+l \\
& \left(\alpha_{0}, \ldots, \alpha_{n+1}\right)=\left(a_{1}, \ldots, a_{k}, c-\sum_{j=1}^{k} a_{j},-b_{1}, \ldots,-b_{l},-c+\sum_{j=1}^{l} b_{j}\right)
\end{aligned}
$$

and define a $(k+1) \times(n+2)$-matrix x and $(l+1) \times(n+2)$-matrix y from the linear forms $L_{j}(x)$ and $L_{j}(y)$ in the k-fold and the l-fold integrals, respectively. Then the configuration $[y]$ of $L_{j}(y)=0$ in \mathbb{P}^{l} is dual to the configuration $[x]$ of $L_{j}(x)=0$ in \mathbb{P}^{k}, i.e., there exists a regular diagonal $(n+2) \times(n+2)$ matrix H such that x $H^{t} y=0$, and the identity is expressed as (0.1) for $I=J=\{0,1, \ldots, k\}$ and $I^{\perp}=J^{\perp}=\{k+1, \ldots, n, n+1\}$.

In this paper, we show the identity (0.1) for general multi-indices I and J of cardinality $k+1$. Since the correspondence of the variables in (0.1) is the duality of the configurations as we saw, it is convenient to define functions of the configuration $[x]$ of hyperplanes in \mathbb{P}^{k} with parameter $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n+1}\right) \in$ $(\mathbb{C} \backslash \mathbb{Z})^{n+2}$ satisfying $\sum_{j=0}^{n+1} \alpha_{j}=0$ by modifying the left-hand side in (0.1), where $x=\left(x_{i j}\right)_{0 \leqslant i \leqslant k, 0 \leqslant j \leqslant n+1}$ is a $(k+1) \times(n+2)$ complex matrix such that no
$(k+1)$-minor vanishes. We prepare two kinds of such functions $F_{I J}^{+}(\alpha,[x])$ and $F_{I J}^{-}(\alpha,[x])$ by assigning combinatorially two branches $U_{\Delta_{J}^{+}}^{\alpha}$ and $U_{\Delta_{J}^{-}}^{\alpha}$ of U^{α} on $\Delta_{J}(x)$. Our main theorem stated strictly is the identity

$$
F_{I_{0} J_{0}}^{+}(\alpha,[x])=c\left(I_{0}, J_{0}\right) F_{I_{0}^{\perp} J_{0}^{\perp}}^{-}\left(-\alpha,[x]^{\perp}\right),
$$

where $[x]^{\perp}$ is the dual configuration of $[x]$, i.e., the configuration $[x]^{\perp}$ is represented by an $(l+1) \times(n+2)$ matrix y of rank $(l+1)$ such that $x H^{t} y=0$, and

$$
I_{0}=\left\{0, i_{1}, \ldots, i_{k}\right\}, J_{0}=\left\{0, j_{1}, \ldots, j_{k}\right\}, \quad i_{k}, j_{k} \leqslant n ;
$$

I_{0}^{\perp} and J_{0}^{\perp} are the complements of I_{0} and J_{0}, respectively. The constant $c\left(I_{0}, J_{0}\right)$ is expressed combinatorially in terms of α_{j}. For $I_{0}=J_{0}=\{0, \ldots, k\}$, this identity reduces to the identity obtained from the hypergeometric series, which will be seen in section 5.2.

We construct the $\binom{n}{k} \times\binom{ n}{k}$ matrices $\Pi_{0}^{ \pm}(\alpha,[x])$ (resp. $\left.\Pi_{n+1}^{ \pm}(\alpha,[x])\right)$ by arranging the functions $F_{I J}^{ \pm}(\alpha,[x])$ lexicographically for the set of multi-indices I and J satisfying $i_{0}=j_{0}=0$ and $i_{k}, j_{k} \leqslant n$ (resp. $1 \leqslant i_{0}, j_{0}$ and $i_{k}=j_{k}=n+1$). We call them the hypergeometric period matrices of type (k, n). We present our main theorem as the identity between $\Pi_{0}^{+}(\alpha,[x])$ and $\Pi_{n+1}^{-}\left(-\alpha,[x]^{\perp}\right)$.

In our proof of the main theorem, - it is essential to consider the hypergeometric period matrices - there are three keys: the wedge formulae for hypergeometric period matrices studied in [Ter] and [Var], twisted Riemann's period relations presented in [CM], and the invariant Gauss-Manin system on the configuration space, essentially obtained in [Aom], or [AK, Ch 3.8]. Our proof enables us to present constant $c\left(I_{0}, J_{0}\right)$ in terms of geometrical quantities, which are both intersection numbers of forms and those of cycles.

1. The hypergeometric period matrices

1.1. Let $M=M(k+1, n+2)$ be the set of $(k+1) \times(n+2)$ complex matrices such that no $(k+1)$-minor vanishes; for an element $x=\left(x_{i j}\right)_{0 \leqslant i \leqslant k, 0 \leqslant j \leqslant n+1} \in$ $M(k+1, n+2)$, put

$$
x\langle J\rangle=\operatorname{det}\left(x_{i j_{\lambda}}\right)_{0 \leqslant i, \lambda \leqslant k},
$$

where $J=\left\{j_{0}, j_{1}, \ldots, j_{k}\right\}, 0 \leqslant j_{0}<j_{1}<\cdots<j_{k} \leqslant n+1$, denotes a multiindex. We define $\mathcal{M}=\mathcal{M}(k+1, n+2)$ as

$$
\begin{aligned}
& \mathcal{M}(k+1, n+2)=\left(\mathbb{P}^{k} \times M(k+1, n+2)\right) \backslash \bigcup_{j=0}^{n+1}\left\{L_{j}=0\right\} \\
& L_{j}=L_{j}(t, x)=\sum_{i=0}^{k} t_{i} x_{i j}
\end{aligned}
$$

where $t=\left(t_{0}, t_{1}, \ldots, t_{k}\right)$ is a homogeneous coordinate system of the complex projective space \mathbb{P}^{k}. Let μ be the projection from \mathcal{M} to M; the triple (\mathcal{M}, M, μ) is a C^{∞} fiber bundle. We denote the fiber $\mu^{-1}(x)$ over x by $T(x)$ and the inclusion map of $T(x)$ into \mathcal{M} by $\tau_{x}: T(x) \rightarrow \mathcal{M}$. The space $T(x)$ is given by

$$
T(x)=\mathbb{P}^{k} \backslash \bigcup_{j=0}^{n+1}\left\{t \in \mathbb{P}^{k} \mid L_{j}(t, x)=0\right\} .
$$

We define the holomorphic 1-from ω^{α} on \mathcal{M} by

$$
\omega^{\alpha}=\omega^{\alpha}(t, x)=\sum_{j=0}^{n+1} \alpha_{j} \mathrm{~d} \log L_{j}(t, x)-\frac{1}{\binom{n}{k}} \sum_{J} \alpha_{J} \mathrm{~d} \log x\langle J\rangle,
$$

where

$$
\begin{aligned}
& \alpha=\left(\alpha_{0}, \alpha_{1} \ldots, \alpha_{n+1}\right), \quad \alpha_{j} \in \mathbb{C} \backslash \mathbb{Z}, \quad \sum_{j=0}^{n+1} \alpha_{j}=0, \\
& \alpha_{J}=\alpha_{j_{0}}+\cdots+\alpha_{j_{k}}
\end{aligned}
$$

and J runs over all subsets of $\{0,1, \ldots, n+1\}$ with cardinality $k+1$; note that $\omega^{-\alpha}=-\omega^{\alpha}$. Let \mathcal{L}^{α} be the kernel of the connection $\nabla^{\alpha}=d+\omega^{\alpha} \wedge$ and $\mathcal{L}^{\alpha}(x)$ the restriction of \mathcal{L}^{α} on $T(x) ; \mathcal{L}^{\alpha}$ is a locally constant subsheaf of $\mathcal{O}_{\mathcal{M}}$ of rank 1 . Since each local branch of the multi-valued function

$$
\begin{aligned}
& U^{\alpha}=U^{\alpha}(t, x)=\prod_{j=0}^{n+1} L_{j}(t, x)^{\alpha_{j}} / D(x), \\
& D(x)=\prod_{J} x\langle J\rangle^{\alpha_{J} /\binom{n}{k}}
\end{aligned}
$$

on a simply connected open set \mathcal{V} of \mathcal{M} is a solution of $\nabla^{-\alpha} u=0$, it is a section of $\mathcal{L}^{-\alpha}$ on \mathcal{V} and its restriction on $T(x)$ is that of $\mathcal{L}^{-\alpha}(x)$ on $\mathcal{V} \cap T(x)$ for $x \in \mu(\mathcal{V})$.
1.2. For $0 \leqslant i \leqslant n+1$, put

$$
\psi_{i}=\psi_{i}(t, x)=\mathrm{d} \log L_{i}(t, x)-\frac{1}{\binom{n}{k}} \sum_{J_{i}} \mathrm{~d} \log x\left\langle J_{i}\right\rangle,
$$

where J_{i} runs over the multi-indices of cardinality $k+1$ including the index i; note that

$$
\omega^{\alpha}(t, x)=\sum_{i=0}^{n+1} \alpha_{i} \psi_{i}(t, x)
$$

We define holomorphic k-forms $\varphi_{I}=\varphi_{I}(t, x)$ on \mathcal{M} by

$$
\varphi_{I}(t, x)=\left(\psi_{i_{0}}-\psi_{i_{1}}\right) \wedge \cdots \wedge\left(\psi_{i_{k-1}}-\psi_{i_{k}}\right)
$$

where $I=\left\{i_{0}, i_{1}, \ldots, i_{k}\right\}, 0 \leqslant i_{0}<i_{1}<\cdots<i_{k} \leqslant n+1$. Let Φ_{k} be the \mathbb{C}-vector space spanned by the φ_{I} 's, where we regard Φ_{0} as \mathbb{C}. We can easily show that the quotient space $\Phi_{k} /\left(\omega^{\alpha} \wedge \Phi_{k-1}\right)$ is $\binom{n}{k}$-dimensional and that the equivalence classes of $\varphi_{I_{0}}$'s and those of $\varphi_{I_{n+1}}$'s form different bases of the space, where I_{0} 's and I_{n+1} 's are multi-indices of the following type

$$
\begin{aligned}
& I_{0}=\left\{0, i_{1}, \ldots, i_{k}\right\}, \quad I_{n+1}=\left\{i_{1}, \ldots, i_{k}, n+1\right\} \\
& 1 \leqslant i_{1}<\cdots<i_{k} \leqslant n
\end{aligned}
$$

For a fixed $x \in M$, it is known that the twisted cohomology groups with coefficients in $\mathcal{L}^{\alpha}(x)$ survive only at the k th degree and that $H^{k}\left(T(x), \mathcal{L}^{\alpha}(x)\right)$ is canonically isomorphic to the pull back of $\Phi_{k} /\left(\omega^{\alpha} \wedge \Phi_{k-1}\right)$ by $\tau_{x}: T(x) \rightarrow \mathcal{M}$; especially, its rank is $\binom{n}{k}$; refer to [AK] and [KN]. Note that the pull-back $\tau_{x}^{*}\left(\varphi_{I}\right)$ of φ_{I} by τ_{x} is given by

$$
\begin{equation*}
\tau_{x}^{*}\left(\varphi_{I}\right)=\mathrm{d}_{t} \log \frac{L_{i_{0}}(t, x)}{L_{i_{1}}(t, x)} \wedge \cdots \wedge \mathrm{d}_{t} \log \frac{L_{i_{k-1}}(t, x)}{L_{i_{k}}(t, x)} . \tag{1.2.1}
\end{equation*}
$$

1.3. Since the direct image sheaf $\mu_{*}\left(\mathcal{L}^{-\alpha}\right)$ of $\mathcal{L}^{-\alpha}$ by the smooth map μ is locally constant, the sheaf $\mathcal{H}_{p}\left(M, \mu_{*}\left(\mathcal{L}^{-\alpha}\right)\right)$ over M associated to the presheaf $V \mapsto H_{p}\left(V, \mu_{*}\left(\mathcal{L}^{-\alpha}\right)\right)$ whose stalk on x is the p th twisted homology group $H_{p}\left(T(x), \mathcal{L}^{-\alpha}(x)\right)$ with coefficients in $\mathcal{L}^{-\alpha}(x)$, is also locally constant. For any $x \in M$, it is known that the twisted homology groups with coefficients in $\mathcal{L}^{-\alpha}(x)$ survive only at the k th degree and that the rank of $H_{k}\left(T(x), \mathcal{L}^{-\alpha}(x)\right)$ is $\binom{n}{k}$; see [IK1], [IK2] and [KN]. Let ξ be a fixed element of M given by real numbers $0 \leqslant \zeta_{0}<\zeta_{1}<\cdots<\zeta_{n}$ as

$$
\xi=\xi_{k}=\left(\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 0 \\
\zeta_{0} & \zeta_{1} & \ldots & \zeta_{n} & 0 \\
\zeta_{0}^{2} & \zeta_{1}^{2} & \ldots & \zeta_{n}^{2} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\zeta_{0}^{k} & \zeta_{1}^{k} & \ldots & \zeta_{n}^{k} & 1
\end{array}\right) \in M(k+1, n+2)
$$

For each multi-index $J=\left\{j_{0}, j_{1}, \ldots, j_{k}\right\}, 0 \leqslant j_{0}<j_{1}<\cdots<j_{k} \leqslant n+1$, we will define, in section 3.2, an element $\gamma_{J}^{+}(\alpha)$ (resp. $\left.\gamma_{J}^{-}(\alpha)\right)$ of $H_{k}\left(T(\xi), \mathcal{L}^{-\alpha}(\xi)\right)$ as a pair $\left(\Delta_{J}^{+}, U_{\Delta_{J}^{\alpha}}^{+}\right)\left(\right.$resp. $\left.\left(\Delta_{J}^{-}, U_{\Delta_{J}^{-}}^{\alpha}\right)\right)$ of the real k-dimensional surface Δ_{J}^{+}in
$T(\xi)$ and the branch $U_{\Delta_{J}^{+}}^{\alpha}$ of U^{α} on Δ_{J}^{+}(resp. Δ_{J}^{-}and $U_{\Delta_{J}^{-}}^{\alpha}$). The $\gamma_{J_{0}}^{+}(\alpha)$'s as well as $\gamma_{J_{n+1}}^{-}(\alpha)$'s form a basis, where the multi-indices J_{0} 's and J_{n+1} 's are of type

$$
\begin{aligned}
& J_{0}=\left\{0, j_{1}, \ldots, j_{k}\right\}, \quad J_{n+1}=\left\{j_{1}, \ldots, j_{k}, n+1\right\}, \\
& 1 \leqslant j_{1}<\cdots<j_{k} \leqslant n
\end{aligned}
$$

The local triviality of $\mathcal{H}_{k}\left(M, \mu_{*}\left(\mathcal{L}^{-\alpha}\right)\right)$ enables us to define elements $\gamma_{J}^{ \pm}(\alpha, x)$ in $H_{k}\left(T(x), \mathcal{L}^{-\alpha}(x)\right)$ on a general $x \in M$ as the continuation of $\gamma_{J}^{ \pm}(\alpha)$ along a path $x(s)$ from ξ to x in M

$$
x(s):[0,1] \rightarrow M, \quad x(0)=\xi, \quad x(1)=x ;
$$

note that they depend on the choice of $x(s)$.
1.4. The duality of the spaces $H^{k}\left(T(x), \mathcal{L}^{\alpha}(x)\right)$ and $H_{k}\left(T(x), \mathcal{L}^{-\alpha}(x)\right)$ induces the natural pairing between $\tau_{x}^{*}\left(\varphi_{I}\right)$ and $\gamma_{J}^{ \pm}(\alpha, x)$, which defines the hypergeometric functions $F_{I J}^{+}(\alpha, x)$ and $F_{I J}^{-}(\alpha, x)$ on $M(k+1, n+2)$

$$
\begin{align*}
F_{I J}^{ \pm}(\alpha, x) & =F_{I J}^{ \pm}(\alpha, x(s))=\left\langle\tau_{x}^{*}\left(\varphi_{I}\right), \gamma_{J}^{ \pm}(\alpha, x)\right\rangle \\
& =\int_{\Delta_{J}^{ \pm}(x)} U_{\Delta_{J}^{ \pm}(x)}^{\alpha} \tau_{x}^{*}\left(\varphi_{I}\right), \tag{1.4.1}
\end{align*}
$$

where $\gamma_{J}^{ \pm}(\alpha, x)$'s are defined by the path $x(s)$ from ξ to x in M and are represented by $\left(\Delta_{J}^{ \pm}(x), U_{\Delta_{J}(x)}^{\alpha}\right)$. Since $\gamma_{J}^{ \pm}(\alpha, x)$ depend on the choice of $x(s), F_{I J}^{ \pm}(\alpha, x)$ are multi-valued holomorphic functions on M; more precisely, they are holomorphic functions on the universal covering $\tilde{M}(k+1, n+1)=\tilde{M}$ of M with the base point ξ.
DEFINITION 1.4.1. The $\binom{n}{k} \times\binom{ n}{k}$ matrices

$$
\begin{aligned}
& \Pi_{0}^{+}(\alpha, x)=\left(F_{I_{0} J_{0}}^{+}(\alpha, x)\right)_{I_{0}, J_{0}} \quad \text { and } \\
& \Pi_{n+1}^{-}(\alpha, x)=\left(F_{I_{n+1} J_{n+1}}^{-}(\alpha, x)\right)_{I_{n+1}, J_{n+1}}
\end{aligned}
$$

are called the hypergeometric period matrices of type (k, n) with parameter α, where the multi-indices

$$
\begin{aligned}
& I_{0}=\left\{0, i_{1}, \ldots, i_{k}\right\}, \quad I_{n+1}=\left\{i_{1}, \ldots, i_{k}, n+1\right\}, \\
& 1 \leqslant i_{1}<\cdots<i_{k} \leqslant n, \\
& J_{0}=\left\{0, j_{1}, \ldots, j_{k}\right\}, \quad J_{n+1}=\left\{j_{1}, \ldots, j_{k}, n+1\right\}, \\
& 1 \leqslant j_{1}<\cdots<j_{k} \leqslant n,
\end{aligned}
$$

are arranged lexicographically.
1.5. We define actions of the group $G=\mathrm{GL}_{k+1}(\mathbb{C}) \times\left(\mathbb{C}^{*}\right)^{n+2}$ on $M(k+1, n+2)$ and its universal covering \tilde{G} on $\tilde{M}(k+1, n+2)$ as follows

$$
\begin{aligned}
& (g, r): x \mapsto g \cdot x \cdot \operatorname{diag}\left(r_{0}, \ldots, r_{n+1}\right) \\
& (g(s), r(s)): x(s) \mapsto g x r(s)=g(s) \cdot x(s) \cdot \operatorname{diag}\left(r_{0}(s), \ldots, r_{n+1}(s)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& x(s):[0,1] \rightarrow M, \quad x(0)=\xi, \quad x(1)=x, \\
& g(s):[0,1] \rightarrow \mathrm{GL}_{k+1}(\mathbb{C}), \quad g(0)=1_{k+1}, \quad g(1)=g, \\
& r(s):[0,1] \rightarrow\left(\mathbb{C}^{*}\right)^{n+2}, \quad r(0)=(1, \ldots, 1), \quad r(1)=r=\left(r_{0}, \ldots, r_{n+1}\right),
\end{aligned}
$$

are paths from ξ to x in M, from 1_{k+1} to g in $\mathrm{GL}_{k+1}(\mathbb{C})$, and from $(1, \ldots, 1)$ to r in $\left(\mathbb{C}^{*}\right)^{n+1}$, respectively. We call the space

$$
X=X(k, l)=M(k+1, n+2) / G, \quad l=n-k
$$

the configuration space of ordered $k+l+2$ hyperplanes on \mathbb{P}^{k} in general position and denote by $[x]$ the element of X represented by $x \in M$. By the action of G, any element $x \in M$ can be transformed into the following form

$$
\left(\begin{array}{ccccccc}
(-1)^{k} & & & -1 & & & 0 \tag{1.5.1}\\
& \ddots & & \vdots & & -z[x] & \\
& & (-1)^{1} & -1 & & & \\
& & & 1 & 1 & \cdots & 1
\end{array}\right)
$$

$z[x]$ is a $(k \times l)$-matrix of which $(p+1, q-k)$ component of $z[x]$ is

$$
\frac{x\left\langle J^{q \backslash j_{p}}\right\rangle x\left\langle J^{k \backslash j_{k}}\right\rangle}{x\left\langle J^{k \backslash j_{p}}\right\rangle x\left\langle J^{\left.q \backslash j_{k}\right\rangle}\right.} \quad(1 \leqslant p+1 \leqslant k, 1 \leqslant q-k \leqslant l),
$$

where

$$
J=\left\{j_{0}, \ldots, j_{k}\right\}=\{0,1, \ldots, k-1, n+1\}, \quad J^{q \backslash j_{p}}=J \cup\{q\} \backslash\left\{j_{p}\right\} .
$$

Indeed, Cramer's formula implies that the (p, q) component $x_{p, q}^{\prime}$ of $x^{\prime}=x\langle J\rangle^{-1} \cdot x$ is

$$
x_{p, q}^{\prime}=\left\{\begin{array}{l}
\delta_{j_{p}, q}, \quad q \in J, \\
(-1)^{k-p-1} \frac{x\left\langle J^{q \backslash\left\langle j_{p}\right\rangle}\right.}{x\langle J\rangle}, \quad q \notin J, \quad p<k, \\
\frac{x\left\langle J^{q \backslash\left\langle j_{p}\right\rangle}\right.}{x\langle J\rangle}, \quad q \notin J, \quad p=k ;
\end{array}\right.
$$

by acting

$$
\begin{aligned}
& \operatorname{diag}\left(\frac{-1}{x_{0, k}^{\prime}}, \ldots, \frac{-1}{x_{k-1, k}^{\prime}}, \frac{1}{x_{k, k}^{\prime}}\right) \\
& \quad \times\left((-1)^{k-1} x_{0, k}^{\prime}, \ldots,(-1)^{0} x_{k-1, k}^{\prime}, 1, \frac{x_{k, k}^{\prime}}{x_{k, k+1}^{\prime}}, \ldots, \frac{x_{k, k}^{\prime}}{x_{k, n}^{\prime}}, x_{k, k}^{\prime}\right)
\end{aligned}
$$

on x^{\prime}, we have (1.5.1). Note that each component of $z[x]$ is invariant under the action of G.

The normal form (1.5.1) implies that X is a $(k \times l)$-dimensional affine manifold. Since the subgroup $G^{\prime}=\left\{(g, r) \in G \mid r_{n+1}=1\right\}$ acts freely on M and M is included in the G^{\prime}-orbit of the set of normal forms (1.5.1), we have

$$
M(k+1, n+2) \simeq X(k, l) \times G^{\prime} .
$$

Noting that the universal covering \tilde{M} is isomorphic to $\tilde{X} \times \tilde{G}^{\prime}$, we have

$$
\begin{equation*}
\tilde{M} / \tilde{G}^{\prime} \simeq \tilde{X} \tag{1.5.2}
\end{equation*}
$$

LEMMA 1.5.1. The functions $F_{I J}^{ \pm}(\alpha, x)$ are invariant under the action of \tilde{G}

$$
F_{I J}^{ \pm}(\alpha, g x r(s))=F_{I J}^{ \pm}(\alpha, x(s))
$$

Proof. It is sufficient to prove

$$
F_{I J}^{ \pm}(\alpha, g \cdot x \cdot \operatorname{diag}(r))=F_{I J}^{ \pm}(\alpha, x),
$$

for $(g, r) \in G$ near to the unity. We have

$$
\begin{aligned}
& D(g \cdot x \cdot \operatorname{diag}(r)) \\
&=\prod_{J}\left(\operatorname{det}(g) \cdot x\langle J\rangle \cdot\left(r_{j_{0}} \ldots r_{j_{k}}\right)\right)^{\alpha_{J} /\left({ }_{k}^{n}\right)} \\
& \quad=\operatorname{det}(g)^{\Sigma_{J} \alpha_{J} /\left({ }_{k}^{n}\right)} D(x) \prod_{i=0}^{n+1} r_{i}^{\Sigma_{J_{i}} \alpha_{J_{i}} /\left({ }_{k}^{n}\right)}=D(x) \prod_{j=0}^{n+1} r_{j}^{\alpha_{j}} .
\end{aligned}
$$

Since $L_{j}(t, g x)=L_{j}(t g, x)$, the action of g induces the map $g: T(g \cdot x) \ni t \rightarrow$ $t g \in T(x)$. We have

$$
\begin{aligned}
& g\left(\Delta_{J}^{ \pm}(g \cdot x)\right)=\Delta_{J}^{ \pm}(x), \\
& U_{\Delta_{J}^{ \pm}(g \cdot x)}^{\alpha}(t, g \cdot x)=g^{*}\left(U_{\Delta_{J}^{ \pm}(x)}^{\alpha}(t, x)\right), \\
& \tau_{g \cdot x}^{*}\left(\varphi_{I}(t, g \cdot x)\right)=g^{*}\left(\tau_{x}^{*}\left(\varphi_{I}(t, x)\right)\right),
\end{aligned}
$$

which imply

$$
\begin{aligned}
& \int_{\Delta_{J}^{ \pm}(g \cdot x)} U_{\Delta_{J}^{ \pm}(g \cdot x)}^{\alpha}(t, g \cdot x) \tau_{g \cdot x}^{*}\left(\varphi_{I}(t, g \cdot x)\right) \\
& \quad=\int_{\Delta_{J}^{ \pm}(x)} U_{\Delta_{J}^{ \pm}(x)}^{\alpha}(t, x) \tau_{x}^{*}\left(\varphi_{I}(t, x)\right), \\
& F_{I J}^{ \pm}(\alpha, g \cdot x)=F_{I J}^{ \pm}(\alpha, x) .
\end{aligned}
$$

Since $T(x)=T(x \cdot \operatorname{diag}(r)), \Delta_{J}^{ \pm}(x)$ is invariant under the action of r. We have

$$
\begin{aligned}
U_{\Delta_{J}^{ \pm}(x)}^{\alpha}(t, x \cdot \operatorname{diag}(r)) & =U_{\Delta_{J}^{ \pm}(x)}^{\alpha}(t, x), \\
\tau_{x}^{*}\left(\varphi_{I}(t, x \cdot \operatorname{diag}(r))\right) & =\tau_{x}^{*}\left(\varphi_{I}(t, x)\right),
\end{aligned}
$$

which imply

$$
F_{I J}^{ \pm}(\alpha, x \cdot \operatorname{diag}(r))=F_{I J}^{ \pm}(\alpha, x)
$$

This lemma together with (1.5.2) shows that the functions $F_{I J}^{ \pm}(\alpha, x)$ are defined on \tilde{X}. When we regard them as multi-valued functions on the configuration space X, we denote them by $F_{I J}^{ \pm}(\alpha,[x])$ and the hypergeometric period matrices by $\Pi_{0}^{+}(\alpha,[x])$ and $\Pi_{n+1}^{-}(\alpha,[x])$. Refer to [MSTY] for the monodromy behavior of the hypergeometric period matrices defined on X.

2. The duality of the configuration spaces

2.1. For every $x \in M(k+1, n+2)$ there exists a unique $x^{*} \in M(l+1, n+2)$ modulo $\mathrm{GL}_{l+1}(\mathbb{C})$ such that $x^{t} x^{*}=O$. Moreover, we have

$$
\begin{aligned}
& (x \cdot \operatorname{diag}(r))^{t}\left(x^{*} \cdot \operatorname{diag}(r)^{-1}\right)=x^{t} x^{*}=O \\
& r=\left(r_{0}, \ldots, r_{n+1}\right) \in\left(\mathbb{C}^{*}\right)^{n+2}
\end{aligned}
$$

We give a bijective map \perp as follows.
DEFINITION 2.1.1. The map $\perp: X(k, l) \rightarrow X(l, k)$ is defined by

$$
\perp: X(k, l) \ni[x] \mapsto[x]^{\perp}=\left[x^{*}\right] \in X(l, k),
$$

where

$$
x^{t} x^{*}=O, \quad x \in M(k+1, n+2), \quad x^{*} \in M(l+1, n+2) .
$$

Note that such x^{*} is given by

$$
x^{*}=\left({ }^{t} x_{I{ }^{\perp}}{ }^{t} x_{I}^{-1},-1_{l+1}\right)
$$

for

$$
x=\left(x_{I}, x_{I^{\perp}}\right), \quad x_{I} \in \mathrm{GL}_{k+1}(\mathbb{C}), \quad I=\{0, \ldots, k\} .
$$

The straightforward calculation shows the following lemma.
LEMMA 2.1.2. For any $(k \times l)$-matrix z, we have

$$
\begin{aligned}
& x_{z} \operatorname{diag}\left((-1)^{n},(-1)^{n-1}, \ldots,(-1)^{0},(-1)^{-1}\right)^{t} y_{z}=O \\
& x_{z}\langle J\rangle=(-1)^{n(k-l+1) / 2} y_{z}\left\langle J^{\perp}\right\rangle
\end{aligned}
$$

where

$$
\begin{align*}
& x_{z}=\left(\begin{array}{cccccccc}
(-1)^{k} & & & -1 & & & 0 \\
& \ddots & & & & & & -z \\
& & (-1)^{1} & -1 & & & & \vdots \\
& & & 1 & 1 & \cdots & 1 & 1
\end{array}\right), \\
& y_{z}=\left(\begin{array}{cccccccc}
1 & \cdots & 1 & 1 & & & & (-1)^{l} \\
& & & 0 & (-1)^{0} & & & (-1)^{l-1} \\
& -^{t} z & & \vdots & & \ddots & & \vdots \\
& & 0 & & & (-1)^{l-1} & (-1)^{l-1}
\end{array}\right) . \tag{2.1.1}
\end{align*}
$$

Recall that the base point $\xi_{k} \in M(k+1, n+2)$ is given by

$$
\xi_{k}=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 0 \\
\zeta_{0} & \zeta_{1} & \cdots & \zeta_{n} & 0 \\
\zeta_{0}^{2} & \zeta_{1}^{2} & \cdots & \zeta_{n}^{2} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\zeta_{0}^{k} & \zeta_{1}^{k} & \cdots & \zeta_{n}^{k} & 1
\end{array}\right) \in M(k+1, n+2)
$$

We define a $(k \times l)$-matrix as

$$
\begin{aligned}
& z\left[\xi_{k}\right]=\left(\begin{array}{ccc}
\frac{\zeta_{k}-\zeta_{0}}{\zeta_{k+1}-\zeta_{0}} & \cdots & \frac{\zeta_{k}-\zeta_{0}}{\zeta_{n}-\zeta_{0}} \\
\vdots & \frac{\zeta_{k}-\zeta_{i}}{\zeta_{j}-\zeta_{i}} & \vdots \\
\frac{\zeta_{k}-\zeta_{k-1}}{\zeta_{k+1}-\zeta_{k-1}} & \cdots & \frac{\zeta_{k}-\zeta_{k-1}}{\zeta_{n}-\zeta_{k-1}}
\end{array}\right) \\
& 0 \leqslant i<k<j \leqslant n
\end{aligned}
$$

LEMMA 2.1.3. The element $\xi_{k} \in M(k+1, n+2)$ is transformed into $x_{z\left[\xi_{k}\right]}$ in (2.1.1) by the actions of $\mathrm{GL}_{k+1}(\mathbb{R})$ and $\left(\mathbb{R}_{>0}\right)^{n+2}$; the element $\xi_{l} \in M(l+1, n+2)$ is transformed into $y_{z\left[\xi_{k}\right]}$ in $(2.1 .1)$ by the actions of $\mathrm{GL}_{l+1}(\mathbb{R})$ and $\left(\mathbb{R}_{>0}\right)^{n+2}$. Hence we have

$$
\begin{equation*}
\left[\xi_{k}\right]^{\perp}=\left[\xi_{l}\right] \tag{2.1.2}
\end{equation*}
$$

Proof. Use the Vandermonde determinant formula and the argument leading the normal form (1.5.1).

3. The main theorem

3.1. We introduce some notations in order to state our main theorem. Let $E_{l k}$ be the $\binom{n}{l} \times\binom{ n}{k}$ matrix

$$
E_{l k}=\left((-1)^{(l(l+1) / 2)+p_{1}+\cdots+p_{l}} \delta_{P, J^{\perp}}\right)_{P, J}
$$

where multi-indices $P=\left\{p_{1}, \ldots, p_{l}\right\}, 1 \leqslant p_{1}<\cdots<p_{l} \leqslant n$ and $J=$ $\left\{j_{1}, \ldots, j_{k}\right\}, 1 \leqslant j_{1}<\cdots<j_{k} \leqslant n$ are arranged lexicographically, $J^{\perp}=$ $\{1, \ldots, n\} \backslash J$ and $\delta_{P, J^{\perp}}$ is Kronecker's symbol. Note that $E_{l k}$ is anti-diagonal. For an element $g=\left(g_{p q}\right) \in \mathrm{GL}_{n}(\mathbb{C})$, put

$$
\wedge^{l} g=\left(\operatorname{det}\left(g_{p q}\right)_{p \in P, q \in Q}\right)_{P Q} \in \mathrm{GL}_{\binom{n}{l}}(\mathbb{C})
$$

where the multi-indices P and Q of cardinality l are arranged lexicographically. Note that

$$
\wedge^{l}\left(g_{1} g_{2}\right)=\left(\wedge^{l} g_{1}\right)\left(\wedge^{l} g_{2}\right), \quad \wedge^{l} g_{1}^{-1}=\left(\wedge^{l} g_{1}\right)^{-1}
$$

for $g_{1}, g_{2} \in \mathrm{GL}_{n}(\mathbb{C})$.
The following is our main theorem.
THEOREM 3.1.1. (Duality for hypergeometric period matrices)

$$
\begin{align*}
\Pi_{0}^{+}(\alpha,[x])= & V(\alpha)^{t} E_{l k}\left(\wedge^{l} I_{c h}(\alpha)^{-1}\right) \\
& \times \Pi_{n+1}^{-}\left(-\alpha,[x]^{\perp}\right)\left(\wedge^{l} I_{h}(\alpha)^{-1}\right) E_{l k} \tag{3.1.1}
\end{align*}
$$

where

$$
\begin{aligned}
& V(\alpha)=\mathrm{e}^{n \pi \sqrt{-1} \alpha_{0}} \mathrm{e}^{(n-1) \pi \sqrt{-1} \alpha_{1}} \ldots \mathrm{e}^{\pi \sqrt{-1} \alpha_{n-1}} \frac{\Gamma\left(\alpha_{0}\right) \Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{n}\right)}{\Gamma\left(-\alpha_{n+1}\right)}, \\
& I_{c h}(\alpha)=\operatorname{diag}\left(\frac{2 \pi \sqrt{-1}}{-\alpha_{1}}, \frac{2 \pi \sqrt{-1}}{-\alpha_{2}}, \ldots, \frac{2 \pi \sqrt{-1}}{-\alpha_{n}}\right), \\
& I_{h}(\alpha)=\operatorname{diag}\left(\frac{\mathrm{e}^{2 \pi \sqrt{-1}\left(\alpha_{0}+\alpha_{1}\right)}}{\mathrm{e}^{2 \pi \sqrt{-1} \alpha_{1}}-1}, \frac{\mathrm{e}^{2 \pi \sqrt{-1}\left(\alpha_{0}+\alpha_{1}+\alpha_{2}\right)}}{\mathrm{e}^{2 \pi \sqrt{-1} \alpha_{2}}-1}, \ldots, \frac{\mathrm{e}^{2 \pi \sqrt{-1}\left(\alpha_{0}+\cdots+\alpha_{n}\right)}}{\mathrm{e}^{2 \pi \sqrt{-1} \alpha_{n}}-1}\right),
\end{aligned}
$$

and the path from $[\xi(l)]$ to $[x]^{\perp}$ defining $\Pi_{n+1}^{-}\left(-\alpha,[x]^{\perp}\right)$ is the \perp-image of the path defining $\Pi_{0}^{+}(\alpha,[x])$.

Remark 3.1.2. Each component of (3.1.1) says

$$
F_{I_{0} J_{0}}^{+}(\alpha,[x])=c\left(I_{0}, J_{0}\right) F_{I_{0}^{\perp} J_{0}^{\perp}}^{-}\left(-\alpha,[x]^{\perp}\right)
$$

for a constant $c\left(I_{0}, J_{0}\right) \in \mathbb{C}^{*}$.
3.2. We construct $\gamma_{J}^{ \pm}(\alpha) \in H_{k}\left(T\left(\xi_{k}\right), \mathcal{L}^{-\alpha}\left(\xi_{k}\right)\right)$ for $J=\left\{j_{0}, \ldots, j_{k}\right\}$. Since

$$
\begin{equation*}
\xi_{k}\langle I\rangle=\prod_{0 \leqslant \kappa<\lambda \leqslant k} \xi_{1}\left\langle i_{\kappa}, i_{\lambda}\right\rangle>0, \tag{3.2.1}
\end{equation*}
$$

we assign $\arg \left(\xi_{k}\langle I\rangle\right)=0$ for every I. Let Δ_{J} be the simplex in \mathbb{P}^{k} defined by

$$
0<-L_{j_{\lambda-1}}\left(t, \xi_{k}\right) / L_{j_{\lambda}}\left(t, \xi_{k}\right)<\infty, \quad 1 \leqslant \lambda \leqslant k
$$

it will turn out in the next section that Δ_{J} and the hyperplane $L_{j}\left(t, \xi_{k}\right)=0$ intersect for $j_{\lambda-1}<j<j_{\lambda}$. We assign arguments of L_{j} / L_{n+1} 's on $\Delta_{J} \cap T\left(\xi_{k}\right)$ as follows

$$
\begin{align*}
& \arg _{\frac{L_{j}\left(t, \xi_{k}\right)}{L_{n+1}\left(t, \xi_{k}\right)}}=\left\{\begin{array}{l}
k \pi, \quad j<j_{0}, \\
0, \\
(k-\lambda) \pi, \quad j=j_{\lambda},
\end{array}\right. \\
& \arg _{\frac{L_{j}}{L_{n}\left(t, \xi_{k}\right)}}\left(t, \xi_{k}\right)
\end{aligned} \quad \begin{aligned}
& \quad=\begin{array}{l}
(k-\lambda+1) \pi, \quad \text { for points }(-1)^{k-\lambda}\left(L_{j} / L_{n+1}\right)<0, \\
(k-\lambda) \pi, \quad \text { for points }(-1)^{k-\lambda}\left(L_{j} / L_{n+1}\right)>0,
\end{array} \tag{3.2.2}\\
& j_{\lambda-1}<j<j_{\lambda},
\end{align*}
$$

which fix the choice of branch $U_{\Delta_{J}^{+}}^{+}\left(t, \xi_{k}\right)$ on $\Delta_{J} \cap T\left(\xi_{k}\right)$. We define $\gamma_{J}^{+}(\alpha)$ as the pair of $\Delta_{J} \cap T\left(\xi_{k}\right)$ and the branch $U_{\Delta_{J}^{+}}^{\alpha}\left(t, \xi_{k}\right)$ of U^{α} by the above assignment. Similarly, we define $\gamma_{J}^{-}(\alpha)$ as the pair of $\Delta_{J} \cap T\left(\xi_{k}\right)$ and the branch $U_{\Delta_{J}^{-}}^{(}\left(t, \xi_{k}\right)$ of U^{α} by the assignment of the argument of $L_{j}\left(t, \xi_{k}\right) / L_{n+1}\left(t, \xi_{k}\right)$ with the minus sign of (3.2.2).
3.3. It is not so easy to see the structure of $\gamma_{J}^{ \pm}(\alpha) \in H_{k}\left(T\left(\xi_{k}\right), \mathcal{L}^{-\alpha}\left(\xi_{k}\right)\right)$ for $k \neq 1$. Here we give the another description of $\gamma_{J}^{ \pm}(\alpha)$ for a general k. Let ι_{k} be the map

$$
\mathbb{C}^{k} \ni\left(s_{(1)}, \ldots, s_{(k)}\right) \mapsto\left(\sigma_{k}, \ldots, \sigma_{1}\right) \in \mathbb{C}^{k}
$$

where σ_{j} is the j th fundamental symmetric polynomial of $s_{(i)}$'s, i.e.,

$$
\sigma_{j}=\sum_{1 \leqslant i_{1}<\cdots<i_{j} \leqslant k} s_{\left(i_{1}\right)} \ldots s_{\left(i_{j}\right)} .
$$

We can regard ι_{k} as a map from $\left(\mathbb{P}^{1}\right)^{k}=\mathbb{P}_{(1)}^{1} \times \cdots \times \mathbb{P}_{(k)}^{1}$ to \mathbb{P}^{k}. By using affine coordinates $s_{(i)}=\left(t_{0} / t_{1}\right)_{(i)}$ on $\mathbb{P}_{(i)}^{1}$ and $\left(t_{0} / t_{k}, \ldots, t_{k-1} / t_{k}\right)$ on \mathbb{P}^{k}, the pull-back of $L_{j}\left(t, \xi_{k}\right) / L_{n+1}\left(t, \xi_{k}\right)$ by ι_{k} is easily obtained as follows

$$
\begin{align*}
& \iota_{k}^{*}\left(\frac{L_{j}\left(\left(t_{0}, \ldots, t_{k}\right), \xi_{k}\right)}{L_{n+1}\left(\left(t_{0}, \ldots, t_{k}\right), \xi_{k}\right)}\right) \\
& \quad=\iota_{k}^{*}\left(\sum_{i=0}^{k}\left(t_{i} / t_{k}\right) \zeta_{j}^{i}\right)=\prod_{i=1}^{k}\left(s_{(i)}+\zeta_{j}\right) \\
& \quad=\prod_{i=1}^{k} \frac{L_{j}\left(\left(t_{0}, t_{1}\right)_{(i)}, \xi_{1}\right)}{L_{n+1}\left(\left(t_{0}, t_{1}\right)_{(i)}, \xi_{1}\right)} . \tag{3.3.1}
\end{align*}
$$

Then ι_{k} induces the map from $T\left(\xi_{1}\right)_{(1)} \times \ldots \times T\left(\xi_{1}\right)_{(k)}$ to $T\left(\xi_{k}\right)$. Though the map ι_{k} is of $k!: 1$, the restriction of ι_{k} on $\Delta_{\left\{j_{0}, j_{1}\right\}} \times \ldots \times \Delta_{\left\{j_{k-1}, j_{k}\right\}}$ is bijective for $J=\left\{j_{0}, \ldots, j_{k}\right\}$ since each intersection $\Delta_{\left\{j_{k-1}, j_{k}\right\}} \cap \Delta_{\left\{j_{\lambda-1}, j_{\lambda}\right\}}(1 \leqslant \kappa<\lambda \leqslant k)$ is empty. Let us show

$$
\gamma_{J}^{+}(\alpha)=\iota_{k}\left(\gamma_{\left\{j_{0}, j_{1}\right\}}^{+}(\alpha)_{(1)} \times \cdots \times \gamma_{\left\{j_{k-1}, j_{k}\right\}}^{+}(\alpha)_{(\kappa)}\right),
$$

i.e.,

$$
\begin{align*}
& \Delta_{J} \cap T\left(\xi_{k}\right)=\iota_{k}\left(\Delta_{\left\{j_{0}, j_{1}\right\}} \times \cdots \times \Delta_{\left\{j_{k-1}, j_{k}\right\}}\right), \\
& U_{\Delta_{J}^{+}}^{\alpha}\left(\left(t_{0}, \ldots, t_{k}\right), \xi_{k}\right)=\iota_{k *}\left(\prod_{\lambda=1}^{k} U_{\Delta_{\left\{j_{\lambda}-1, j_{\lambda}\right\}}^{\alpha}}^{\alpha}\left(\left(t_{0}, t_{1}\right)_{(\lambda)}, \xi_{1}\right)\right) . \tag{3.3.3}
\end{align*}
$$

Because of (3.2.1), we have

Recall that the argument of $L_{j}\left(t, \xi_{1}\right) / L_{n+1}\left(t, \xi_{1}\right)$ on the simplex $\Delta_{\left\{j_{\lambda-1}, j_{\lambda}\right\}}$ defining the branch $U_{\left.\Delta_{\left\{j_{\lambda}-1\right.}, j_{\lambda}\right\}}^{\alpha}$ is given by

$$
\arg \frac{L_{j}\left(t, \xi_{1}\right)}{L_{n+1}\left(t, \xi_{1}\right)}=\left\{\begin{array}{l}
\pi, \quad j \leqslant j_{\lambda-1}, \\
0, \quad j \geqslant j_{\lambda}, \\
\pi \text { or } 0, \quad j_{\lambda-1}<j<j_{\lambda} .
\end{array}\right.
$$

By summing up the values for $1 \leqslant \lambda \leqslant k$, we have the argument of

$$
\iota_{k *}\left(\prod_{\lambda=1}^{k} \frac{L_{j}\left(\left(t_{0}, t_{1}\right)_{(\lambda)}, \xi_{1}\right)}{L_{n+1}\left(\left(t_{0}, t_{1}\right)_{(i)}, \xi_{1}\right)}\right)=\frac{L_{j}\left(\left(t_{0}, \ldots, t_{k}\right), \xi_{k}\right)}{L_{n+1}\left(\left(t_{0}, \ldots, t_{k}\right), \xi_{k}\right)}
$$

on $\iota_{k}\left(\Delta_{\left\{j_{0}, j_{1}\right\}} \times \cdots \times \Delta_{\left\{j_{k-1}, j_{k}\right\}}\right)$, which coincides with that of $L_{j}\left(t, \xi_{k}\right) / L_{n+1}\left(t, \xi_{k}\right)$ on Δ_{J} in (3.2.2). This implies (3.3.2) and (3.3.3). Now that the assignment in (3.2.2) is justified, we can see that Δ_{J} and the hyperplane $L_{j}\left(t, \xi_{k}\right)=0$ intersect for $j_{\lambda-1}<j<j_{\lambda}$.

4. Proof of the main theorem

4.1. The following proposition was essentially proved in [Ter]; since the choice of our forms and cycles is distinct from that in [Ter], a proof shall be attached.

PROPOSITION 4.1.1. (Wedge formulae for period matrices)

$$
\begin{aligned}
& \wedge^{k} \Pi_{0}^{+}\left(\alpha, \xi_{1}\right)=\Pi_{0}^{+}\left(\alpha, \xi_{k}\right) \\
& \wedge^{k} \Pi_{n+1}^{-}\left(\alpha, \xi_{1}\right)=\Pi_{n+1}^{-}\left(\alpha, \xi_{k}\right)
\end{aligned}
$$

in particular,

$$
\wedge^{n} \Pi_{0}^{+}\left(\alpha, \xi_{1}\right)=\Pi_{0}^{+}\left(\alpha, \xi_{n}\right)=V(\alpha)
$$

Proof. By (3.3.1), we have

$$
\begin{aligned}
\iota_{k}^{*} & \left(\varphi_{I}\left(\left(t_{0}, \ldots, t_{k}\right), \xi_{k}\right)\right) \\
& =\left(\sum_{\lambda=1}^{k} \varphi_{1}\left(\left(t_{0}, t_{1}\right)_{(\lambda)}, \xi_{1}\right)\right) \wedge \cdots \wedge\left(\sum_{\lambda=1}^{k} \varphi_{k}\left(\left(t_{0}, t_{1}\right)_{(\lambda)}, \xi_{1}\right)\right) \\
& =\sum_{\varsigma \in \mathfrak{S}_{k}} \operatorname{sign}(\varsigma)\left(\varphi_{\varsigma(1)}\left(\left(t_{0}, t_{1}\right)_{(1)}, \xi_{1}\right) \wedge \cdots \wedge \varphi_{\varsigma(k)}\left(\left(t_{0}, t_{1}\right)_{(k)}, \xi_{1}\right)\right)
\end{aligned}
$$

where \mathfrak{S}_{k} is the symmetric group of degree k. This identity and (3.3.2), (3.3.3) yield

$$
\wedge^{k} \Pi_{0}^{+}\left(\alpha, \xi_{1}\right)=\Pi_{0}^{+}\left(\alpha, \xi_{k}\right)
$$

By Lemma 2.1.3, and (3.2.2), we can easily obtain

$$
\Pi_{0}^{+}\left(\alpha, \xi_{n}\right)=V(\alpha)
$$

This proposition is deeply related to the isomorphisms between $\wedge^{k} H^{1}\left(T\left(\xi_{1}\right), \mathcal{L}^{\alpha}\left(\xi_{1}\right)\right)$ and $H^{k}\left(T\left(\xi_{k}\right), \mathcal{L}^{\alpha}\left(\xi_{k}\right)\right)$ and between $\wedge^{k} H_{1}\left(T\left(\xi_{1}\right)\right.$, $\left.\mathcal{L}^{-\alpha}\left(\xi_{1}\right)\right)$ and $H_{k}\left(T\left(\xi_{k}\right), \mathcal{L}^{-\alpha}\left(\xi_{k}\right)\right)$ studied in [IK1] and [IK2].
4.2. The integral (1.4.1) does not converge in the usual sense for a general parameter α. In order that it makes sense, we introduce the notion of the regularization of $\gamma_{J}^{ \pm}(\alpha)$. In this section we explicitly give the regularization $\tilde{\gamma}_{J}^{ \pm}(\alpha)$ of $\gamma_{J}^{ \pm}(\alpha)$ for $k=1$. Deform $\Delta_{J}, J=\left\{j_{0}, j_{1}\right\}$, into Δ_{J}^{+}and Δ_{J}^{-}as shown in the following figure.

The assignments of $\arg \left(L_{j}\left(t, \xi_{1}\right) / L_{n+1}\left(t, \xi_{1}\right)\right)$ on $\Delta_{J}^{ \pm}$are naturally defined by the deformations, these induce the branches $U_{\Delta_{J}^{ \pm}}^{\alpha}$ on $\Delta_{J}^{ \pm}$; note that the assignment on Δ_{J}^{+}is determined by (3.2.2) and that on Δ_{J}^{-}is determined by the minus sign of (3.2.2). For a sufficiently small positive number ε, let $C_{J}\left(j_{\lambda}\right), \lambda=0,1$, be the

$$
\left(-L_{j_{0}} / L_{j_{1}}\right) \text { space }
$$

Figure 4.2.1.
circles

$$
\begin{aligned}
& C_{J}\left(j_{0}\right):-L_{j_{0}} / L_{j_{1}}=\varepsilon \mathrm{e}^{\sqrt{-1} s}, \quad 0 \leqslant s<2 \pi \\
& C_{J}\left(j_{1}\right):-L_{j_{0}} / L_{j_{1}}=\varepsilon^{-1} \mathrm{e}^{-\sqrt{-1} s}, \quad 0 \leqslant s<2 \pi
\end{aligned}
$$

We define branches $U_{C_{J}^{ \pm}\left(j_{\lambda}\right)}^{\alpha}$ on $C_{J}\left(j_{\lambda}\right)$ by the continuations of the branches $U_{\Delta_{J}^{ \pm}}^{\alpha}$. We define the regularizations $\tilde{\gamma}_{J}^{ \pm}(\alpha)$ of $\gamma_{J}^{ \pm}(\alpha)$ by the following formal summations

$$
\begin{align*}
\tilde{\gamma}_{J}^{ \pm}(\alpha)= & \frac{1}{c_{j_{0}}-1}\left(C_{J}\left(j_{0}\right), U_{C_{J}^{ \pm}\left(j_{0}\right)}^{\alpha}\right)+\left(\Delta_{J}^{ \pm}, U_{\Delta_{J}^{ \pm}}^{\alpha}\right) \\
& -\frac{1}{c_{j_{1}}-1}\left(C_{J}\left(j_{1}\right), U_{C_{J}^{ \pm}\left(j_{1}\right)}^{\alpha}\right) \tag{4.2.2}
\end{align*}
$$

where $c_{j}=\exp \left(2 \pi \sqrt{-1} \alpha_{j}\right)$.
For a general k, we define $\tilde{\gamma}_{J}^{ \pm}(\alpha)$ by

$$
\tilde{\gamma}_{J}^{ \pm}(\alpha)=\iota_{k}\left(\tilde{\gamma}_{\left\{j_{0}, j_{1}\right\}}^{ \pm}(\alpha)_{(1)} \times \cdots \times \tilde{\gamma}_{\left\{j_{k-1}, j_{k}\right\}}^{ \pm}(\alpha)_{(k)}\right)
$$

The values $\left\langle\tau_{\xi_{k}}^{*}\left(\phi_{I}\right), \tilde{\gamma}_{J}^{ \pm}(\alpha)\right\rangle$ are well-defined under the condition (1.1.1), moreover the Cauchy integral theorem implies that they are independent of the choice of the small positive number ε and that they coincide with $\left\langle\tau_{\xi_{k}}^{*}\left(\phi_{I}\right), \gamma_{J}^{ \pm}(\alpha)\right\rangle$ when it exists in the classical sense.
4.3. We compute the intersection number of $\tilde{\gamma}_{I_{0}}^{+}(\alpha) \in H_{1}\left(T\left(\xi_{1}\right), \mathcal{L}^{-\alpha}\left(\xi_{1}\right)\right)$ and $\tilde{\gamma}_{J_{n+1}}^{-}(-\alpha) \in H_{1}\left(T\left(\xi_{1}\right), \mathcal{L}^{\alpha}\left(\xi_{1}\right)\right)\left(I_{0}=\{0, i\}, J_{n+1}=\{j, n+1\}\right)$, which is defined as the summation of the products of the topological intersection number
of chains and the branches U^{α} and $U^{-\alpha}$ at every intersection point, refer to [KY1] for details. Note that, if $i \neq j$, then the topological chains defining $\tilde{\gamma}_{I_{0}}^{+}(\alpha)$ and $\tilde{\gamma}_{J_{n+1}}^{-}(-\alpha)$ do not intersect and that if $i=j$ then there is one intersection point on the chain $C_{I_{0}}(i)$, where we assume that the small positive number ε for $\tilde{\gamma}_{J_{n+1}}^{-}(-\alpha)$ is much smaller than that for $\tilde{\gamma}_{I_{0}}^{+}(\alpha)$; the following figure helps us to understand the situation.

$$
-L_{0} / L_{n+1} \text { space }
$$

Figure 4.3.1.
By considering the coefficient of $C_{I_{0}}(i)$ and the signature and branches $U_{C_{I_{0}}(i)}^{\alpha}$ and $U_{\Delta_{J_{n+1}}^{-}}^{-\alpha}$ at the intersection point, the intersection number is given by

$$
\begin{gathered}
\left\langle\tilde{\gamma}_{I_{0}}^{+}(\alpha), \tilde{\gamma}_{J_{n+1}}^{-}(-\alpha)\right\rangle=\delta_{i j} \frac{\mathrm{e}^{2 \pi \sqrt{-1}\left(\alpha_{0}+\cdots+\alpha_{j}\right)}}{\mathrm{e}^{2 \pi \sqrt{-1} \alpha_{j}-1}} \\
I_{0}=\{0, i\}, J_{n+1}=\{j, n+1\}
\end{gathered}
$$

where $\delta_{i j}$ is Kronecker's symbol. The regularity of the intersection matrix

$$
I_{h}(\alpha)=\left(\left\langle\tilde{\gamma}_{I_{0}}^{+}(\alpha), \tilde{\gamma}_{J_{n+1}}^{-}(-\alpha)\right\rangle\right)_{1 \leqslant i, j \leqslant n}
$$

shows that the cycles $\tilde{\gamma}_{I_{0}}^{+}(\alpha)$'s and $\tilde{\gamma}_{J_{n+1}}^{-}(-\alpha)$'s form bases of $H_{1}\left(T\left(\xi_{1}\right)\right.$, $\left.\mathcal{L}^{-\alpha}\left(\xi_{1}\right)\right)$ and $H_{1}\left(T\left(\xi_{1}\right), \mathcal{L}^{\alpha}\left(\xi_{1}\right)\right)$, respectively.

The first theorem in [CM] implies that the intersection number of the 1 -forms $\tau_{\xi_{1}}^{*}\left(\varphi_{I_{0}}\right) \in \tau_{\xi_{1}}^{*}\left(\Phi_{1} / \mathbb{C} \omega^{\alpha}\right)$ and $\tau_{\xi_{1}}^{*}\left(\varphi_{J_{n+1}}\right) \in \tau_{\xi_{1}}^{*}\left(\Phi_{1} / \mathbb{C} \omega^{-\alpha}\right)$ is

$$
\begin{gathered}
\left\langle\tau_{\xi_{1}}^{*}\left(\varphi_{I_{0}}\right), \tau_{\xi_{1}}^{*}\left(\varphi_{J_{n+1}}\right)\right\rangle=\delta_{i j} \frac{2 \pi \sqrt{-1}}{-\alpha_{j}}, \\
I_{0}=\{0, i\}, \quad J_{n+1}=\{j, n+1\} .
\end{gathered}
$$

The regularity of the intersection matrix

$$
I_{c h}(\alpha)=\left(\left\langle\tau_{\xi_{1}}^{*}\left(\varphi_{I_{0}}\right), \tau_{\xi_{1}}^{*}\left(\varphi_{J_{n+1}}\right)\right\rangle\right)_{1 \leqslant i, j \leqslant n}
$$

shows that the 1-forms $\tau_{\xi_{1}}^{*}\left(\varphi_{I_{0}}\right)$'s and $\tau_{\xi_{1}}^{*}\left(\varphi_{J_{n+1}}\right)$'s form bases of $H^{1}\left(T\left(\xi_{1}\right), \mathcal{L}^{\alpha}\left(\xi_{1}\right)\right)$ and $H^{1}\left(T\left(\xi_{1}\right), \mathcal{L}^{-\alpha}\left(\xi_{1}\right)\right)$, respectively.

The second theorem in [CM] implies the following proposition.
PROPOSITION 4.3.1. (The twisted Riemann's period relation for $k=1$)

$$
\begin{equation*}
\Pi_{n+1}^{-}\left(-\alpha,\left[\xi_{1}\right]\right) I_{h}(\alpha)^{-1 t} \Pi_{0}^{+}\left(\alpha,\left[\xi_{1}\right]\right)=I_{c h}(\alpha) . \tag{4.3.1}
\end{equation*}
$$

We give a key lemma to prove our main theorem.
LEMMA 4.3.2. The identity (3.1.1) holds for the point $[x]=\left[\xi_{k}\right]$.
Proof. We have proved $\left[\xi_{k}\right]^{\perp}=\left[\xi_{l}\right]$ in Lemma 2.1.3. By taking the l-fold wedge product of (4.3.1), we have

$$
\begin{aligned}
& \left(\wedge^{l} I_{c h}(\alpha)^{-1}\right)\left(\wedge^{l} \Pi_{n+1}^{-}\left(-\alpha ;\left[\xi_{1}\right]\right)\right)\left(\wedge^{l} I_{h}(\alpha)^{-1}\right) \\
& \quad={ }^{t}\left(\wedge^{l} \Pi_{0}^{+}\left(\alpha ;\left[\xi_{1}\right]\right)\right)^{-1} .
\end{aligned}
$$

The Laplace expansion formula yields that

$$
\begin{aligned}
& { }^{t}\left(\wedge^{l} \Pi_{0}^{+}\left(\alpha ;\left[\xi_{1}\right]\right)\right)^{-1} \\
& \quad=\frac{1}{\operatorname{det}\left(\Pi_{0}^{+}\left(\alpha ;\left[\xi_{1}\right]\right)\right)} E_{l k}\left(\wedge^{k} \Pi_{0}^{+}\left(\alpha ;\left[\xi_{1}\right]\right)\right)^{t} E_{l k},
\end{aligned}
$$

Proposition 4.1.1 implies our claim.
4.4. We present the differential equation associated to $\Pi_{0}^{+}(\alpha ; x)$.

PROPOSITION 4.4.1. (The invariant Gauss-Manin system). The hypergeometric period matrix $\Pi_{0}^{+}(\alpha ; x)$ satisfies the following differential equation

$$
\begin{equation*}
\mathrm{d} \Pi_{0}^{+}(\alpha ; x)=\Theta_{0}^{\alpha}[x] \Pi_{0}^{+}(\alpha ; x) . \tag{4.4.1}
\end{equation*}
$$

The connection form $\Theta_{0}^{\alpha}[x]=\left(\theta_{I_{0} J_{0}}^{\alpha}\right)_{I_{0} J_{0}}$ is given by

$$
\begin{aligned}
& \begin{aligned}
& \theta_{J_{0} J_{0}}^{\alpha}= \sum_{j_{\kappa} \in J_{0}} \alpha_{j_{\kappa}} \mathrm{d} \log \frac{x\left\langle J_{0}^{n+1 \backslash 0}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j_{\kappa}}\right\rangle} \\
&+\sum_{j_{\lambda} \in J_{0}^{\perp}} \alpha_{j_{\lambda}} \mathrm{d} \log \frac{x\left\langle J_{0}^{j_{\lambda} \backslash 0}\right\rangle}{x\left\langle J_{0}\right\rangle}-\frac{1}{\left(n_{k}^{n}\right)} \sum_{J} \alpha_{J} \mathrm{~d} \log x\langle J\rangle, \\
& \theta_{J_{0} J_{0}^{j_{\lambda} \backslash j_{\kappa}}}^{\alpha}=\frac{j_{\lambda}-j_{\kappa}}{\left|j_{\lambda}-j_{\kappa}\right|}(-1)^{j_{\lambda}-\kappa-\lambda+k} \alpha_{j_{\lambda}} \mathrm{d} \log \frac{x\left\langle J_{0}^{j_{\lambda} \backslash j_{\kappa}}\right\rangle x\left\langle J_{0}^{n+1 \backslash 0}\right\rangle}{x\left\langle J_{0}^{j_{\lambda} \backslash 0}\right\rangle x\left\langle J_{0}^{\left.n+1 \backslash j_{\kappa}\right\rangle}\right\rangle}, \\
& \theta_{I_{0} J_{0}}^{\alpha}=0 \quad \text { otherwise, }
\end{aligned}, l
\end{aligned}
$$

where J runs over the multi-indices of cardinality $k+1$ and $J_{0}^{j_{\lambda} \backslash j_{k}}$ is the multiindex corresponding to the set $\left(J_{0} \backslash\left\{j_{\kappa}\right\}\right) \cup\left\{j_{\lambda}\right\}, j_{\kappa} \in J_{0}=\left\{0, j_{1}, \ldots, j_{k}\right\}, j_{\lambda} \in$ $J_{0}^{\perp}=\left\{j_{k+1}, \ldots, j_{n}, n+1\right\}$. The connection form $\Theta_{0}^{\alpha}[x]$ is invariant under the action of $\mathrm{GL}_{k+1}(\mathbb{C}) \times\left(\mathbb{C}^{*}\right)^{n+2}$ on $x \in M(k+1, n+2)$.

Proof. By using the results in [Aom] or [AK] Ch. 3.8, we can show that the hypergeometric period matrix satisfies the system of differential equation stated in the proposition. We have only to show that the invariance of $\Pi_{0}^{+}(\alpha ; x)$, the invariance is clear for $\theta_{J_{0} J_{0}^{j^{\lambda} \backslash j_{\kappa}}}^{\alpha}$. In order to see the invariance of $\theta_{J_{0} J_{0}}^{\alpha}$, we eliminate α_{0} from $\theta_{J_{0} J_{0}}^{\alpha}$ by $\sum_{j=0}^{n+1} \alpha_{j}=0$ and see the coefficient of α_{j} in the expression of $\theta_{J_{0} J_{0}}^{\alpha}$. Then we have

$$
\begin{aligned}
\theta_{J_{0} J_{0}}^{\alpha}= & \frac{1}{\binom{n}{k}} \sum_{j \in J_{0}} \alpha_{j} \mathrm{~d} \log \frac{x\left\langle J_{0}^{n+1 \backslash 0}\right\rangle_{\binom{n}{k}} \prod_{I_{0}} x\left\langle I_{0}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j}\right\rangle_{k}^{n} \begin{array}{l}
k
\end{array} \prod_{I_{j}} x\left\langle I_{j}\right\rangle} \\
& +\frac{1}{\binom{n}{k}} \sum_{j \in J_{0}^{\perp}} \alpha_{j} \mathrm{~d} \log \frac{x\left\langle J_{0}^{j \backslash 0}\right\rangle_{k}^{n} \begin{array}{l}
n \\
k
\end{array} \prod_{I_{0}} x\left\langle I_{0}\right\rangle}{\left.x\left\langle J_{0}\right\rangle_{k}^{n}\right)} \prod_{I_{j}} x\left\langle I_{j}\right\rangle
\end{aligned} .
$$

The homogeneity of the terms in the logarithmic differentials above shows the desired invariance.

The connection form $\Theta_{0}^{\alpha}[x]$ is called the Gauss-Manin connection on the configuration space $X(k, l)$ for the basis $\varphi_{I_{0}}$'s.

EXAMPLE 1. Type (1,2), $k=l=1, n=2,\{0,1,2,3\}$.

$$
\theta_{0}(01 ; 01 ; \alpha)=\frac{\alpha_{1}}{2} \mathrm{~d} \log \frac{x\langle 13\rangle x\langle 02\rangle}{x\langle 03\rangle x\langle 12\rangle}
$$

$$
+\frac{\alpha_{2}}{2} \mathrm{~d} \log \frac{x\langle 12\rangle x\langle 03\rangle}{x\langle 01\rangle x\langle 23\rangle}+\frac{\alpha_{3}}{2} \mathrm{~d} \log \frac{x\langle 13\rangle x\langle 02\rangle}{x\langle 01\rangle x\langle 23\rangle},
$$

$\theta_{0}(02 ; 02 ; \alpha)=\frac{\alpha_{1}}{2} \mathrm{~d} \log \frac{x\langle 12\rangle x\langle 03\rangle}{x\langle 02\rangle x\langle 13\rangle}$

$$
+\frac{\alpha_{2}}{2} \mathrm{~d} \log \frac{x\langle 23\rangle x\langle 01\rangle}{x\langle 03\rangle x\langle 12\rangle}+\frac{\alpha_{3}}{2} \mathrm{~d} \log \frac{x\langle 23\rangle x\langle 01\rangle}{x\langle 02\rangle x\langle 13\rangle},
$$

$\theta_{0}(01 ; 02 ; \alpha)=\alpha_{2} \mathrm{~d} \log \frac{x\langle 02\rangle x\langle 13\rangle}{x\langle 12\rangle x\langle 03\rangle}$,
$\theta_{0}(02 ; 01 ; \alpha)=\alpha_{1} \mathrm{~d} \log \frac{x\langle 01\rangle x\langle 23\rangle}{x\langle 12\rangle x\langle 03\rangle}$.
EXAMPLE 2. Type $(1,3), k=1, l=2, n=3,\{0,1,2,3,4\}$. We give only $\theta_{0}(01 ; 01 ; \alpha)$

$$
\begin{aligned}
\theta_{0}(01 ; 01 ; \alpha)= & \frac{\alpha_{1}}{3} \mathrm{~d} \log \frac{x\langle 14\rangle^{2} x\langle 02\rangle x\langle 03\rangle}{x\langle 04\rangle^{2} x\langle 12\rangle x\langle 13\rangle} \\
& +\frac{\alpha_{2}}{3} \mathrm{~d} \log \frac{x\langle 12\rangle^{2} x\langle 03\rangle x\langle 04\rangle}{x\langle 01\rangle^{2} x\langle 23\rangle x\langle 24\rangle} \\
& +\frac{\alpha_{3}}{3} \mathrm{~d} \log \frac{x\langle 13\rangle^{2} x\langle 02\rangle x\langle 04\rangle}{x\langle 01\rangle^{2} x\langle 23\rangle x\langle 34\rangle} \\
& +\frac{\alpha_{4}}{3} \mathrm{~d} \log \frac{x\langle 14\rangle^{2} x\langle 02\rangle x\langle 03\rangle}{x\langle 01\rangle^{2} x\langle 24\rangle x\langle 34\rangle} .
\end{aligned}
$$

4.5. A similar calculation as in the proof of Proposition 4.4.1 leads to a system of differential equations for $\Pi_{n+1}^{-}(-\alpha, y), y \in M(l+1, n+2)$.
LEMMA 4.5.1. We have

$$
\mathrm{d} \Pi_{n+1}^{-}(-\alpha, y)=\Theta_{n+1}^{-\alpha}[y] \Pi_{n+1}^{-}(-\alpha, y) .
$$

The connection form $\Theta_{n+1}^{-\alpha}[y]=\left(\theta_{P_{n+1} Q_{n+1}}^{-\alpha}\right)_{P_{n+1} Q_{n+1}}$ is given by

$$
\begin{aligned}
\theta_{P_{n+1} P_{n+1}}^{-\alpha}= & \sum_{p_{\nu} \in P_{n+1}} \alpha_{p_{\nu}} \mathrm{d} \log \frac{y\left\langle P_{n+1}^{0 \backslash p_{\nu}}\right\rangle}{y\left\langle P_{n+1}^{0 \backslash n+1}\right\rangle} \\
& +\sum_{p_{v} \in P_{n+1}^{\perp}} \alpha_{p_{v}} \mathrm{~d} \log \frac{y\left\langle P_{n+1}\right\rangle}{y\left\langle P_{n+1}^{p_{v} \backslash n+1}\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{\binom{n}{l}} \sum_{P}\left(\sum_{p \in P} \alpha_{p}\right) \mathrm{d} \log y\langle P\rangle \\
& \left.\left.=\frac{1}{\binom{n}{l}} \sum_{p \in P_{n+1}} \alpha_{p} \mathrm{~d} \log \frac{\left.y\left\langle P_{n+1}^{0 \backslash p}\right\rangle^{n}{ }_{l}^{n}\right)}{y\left\langle\prod_{Q_{p}} y\left\langle Q_{p}\right\rangle\right.} \underset{n+1}{0 \backslash+1}\right\rangle^{\left({ }_{l}^{n}\right)} \prod_{Q_{n+1}} y\left\langle Q_{n+1}\right\rangle\right) \\
& +\frac{1}{\binom{n}{l}} \sum_{p \in P_{n+1}^{\perp}} \alpha_{p} \mathrm{~d} \log \frac{y\left\langle P_{n+1}\right\rangle^{\left({ }_{n}^{n}\right)}{ }_{l} \prod_{Q_{p}} y\left\langle Q_{p}\right\rangle}{y\left\langle P_{n+1}^{p \backslash n+1}\right\rangle^{\binom{n}{l}} \prod_{Q_{n+1}} y\left\langle Q_{n+1}\right\rangle}, \\
& \theta_{P_{n+1} P_{n+1}^{p_{v} \backslash p_{\nu}}}^{-\alpha}=-\frac{p_{v}-p_{\nu}}{\left|p_{v}-p_{\nu}\right|}(-1)^{p_{v}-\nu-v+l} \alpha_{p_{v}} \mathrm{~d} \log \frac{y\left\langle P_{n+1}^{0 \backslash n+1}\right\rangle y\left\langle P_{n+1}^{p_{v} \backslash p_{\nu}}\right\rangle}{y\left\langle P_{n+1}^{p_{\nu} \backslash n+1}\right\rangle y\left\langle P_{n+1}^{0 \backslash p_{\nu}}\right\rangle}, \\
& \theta_{P_{n+1} Q_{n+1}}^{-\alpha}=0 \quad \text { otherwise },
\end{aligned}
$$

where P_{n+1} and Q_{n+1} are multi-indices of type

$$
\begin{array}{ll}
P_{n+1}=\left\{p_{0}, \ldots, p_{l}, n+1\right\} & 0<p_{0} \leqslant \cdots \leqslant p_{l}<n+1, \\
Q_{n+1}=\left\{q_{0}, \ldots, q_{l}, n+1\right\} & 0<q_{0} \leqslant \cdots \leqslant q_{l}<n+1,
\end{array}
$$

and $P_{n+1}^{p_{\nu} \backslash p_{\nu}}$ is the multi-index corresponding to the set $\left(P_{n+1} \backslash\left\{p_{\nu}\right\}\right) \cup\left\{p_{v}\right\}, p_{\nu} \in$ $P_{n+1}=\left\{p_{1}, \ldots, p_{l}, n+1\right\}, p_{v} \in P_{n+1}^{\perp}=\left\{0, p_{l+1}, \ldots, p_{n}\right\}$. The $\theta_{n+1}^{-\alpha}[y]$ is invariant under the action of $\mathrm{GL}_{l+1}(\mathbb{C}) \times\left(\mathbb{C}^{*}\right)^{n+2}$; hence it induces a system differential equations on the configuration space $X(l, k)$.
REMARK 4.5.2. The connection form $\Theta_{n+1}^{-\alpha}[y]$ is obtained from $\Theta_{0}^{\alpha}[x]$ just by replacing

$$
\begin{gathered}
\alpha \rightarrow-\alpha, \quad k \rightarrow l \quad x \rightarrow y, \quad J \rightarrow P, \\
\text { the index } 0 \rightarrow \text { the index } n+1 .
\end{gathered}
$$

4.6. The following proposition concludes our proof of the main theorem.

PROPOSITION 4.6.1. The right-hand side of (3.1.1) satisfies the system (4.4.1). Proof. Since we have

$$
\begin{aligned}
\mathrm{d}\left(g_{1} \Pi_{n+1}^{-}(-\alpha, y) g_{2}\right) & =g_{1} \mathrm{~d} \Pi_{n+1}^{-}(-\alpha, y) g_{2} \\
& =g_{1} \Theta_{n+1}^{-\alpha}[y] \Pi_{n+1}^{-}(-\alpha, y) g_{2} \\
& =\left(g_{1} \Theta_{n+1}^{-\alpha}[y] g_{1}^{-1}\right)\left(g_{1} \Pi_{n+1}^{-}(-\alpha, y) g_{2}\right),
\end{aligned}
$$

for $g_{1}, g_{2} \in \mathrm{GL}_{\binom{n}{l}}(\mathbb{C})$, the connection form associated to the right hand side of (3.1.1) is the pull-back of

$$
{ }^{t} E_{l k}\left(\wedge^{l} I_{c h}(\alpha)^{-1}\right) \Theta_{n+1}^{-\alpha}[y]\left(\wedge^{l} I_{c h}(\alpha)\right)^{t} E_{l k}^{-1}
$$

by the map $\perp:[x] \mapsto[x]^{\perp}=[y]$. By virtue of Lemma 2.1.2, we have only to substitute $y\langle P\rangle$ into $x\left\langle P^{\perp}\right\rangle$ in order to get the pull-back $\perp^{*}\left(\Theta_{n+1}^{-\alpha}[y]\right)$ of $\Theta_{n+1}^{-\alpha}[y]$ by \perp. We put $P=J^{\perp}$ and

$$
\begin{aligned}
P_{n+1} & =\left\{p_{1}, \ldots, p_{\nu}, \ldots, p_{l}, n+1\right\} \\
& =\left\{j_{k+1}, \ldots, j_{\lambda}, \ldots, j_{k+l}, n+1\right\}=J_{0}^{\perp}, \quad p_{\nu}=j_{\lambda}, \\
P_{n+1}^{\perp} & =\left\{0, p_{l+1}, \ldots, p_{v}, \ldots, p_{l+k}\right\} \\
& =\left\{0, j_{1}, \ldots, j_{\kappa}, \ldots, j_{k}\right\}=J_{0}, \quad p_{v}=j_{\kappa} ;
\end{aligned}
$$

note that

$$
\begin{aligned}
& p_{\nu} \in P_{n+1} \Leftrightarrow j_{\lambda} \in J_{0}^{\perp}, \quad p_{v} \in P_{n+1}^{\perp} \Leftrightarrow j_{\kappa} \in J_{0}, \\
& \quad \nu=\lambda-k, \quad v=\kappa+l, \\
& \left(P_{n+1}\right)^{\perp}=J_{0}, \quad\left(P_{n+1}^{0 \backslash n+1}\right)^{\perp}=J_{0}^{n+1 \backslash 0}, \quad\left(P_{n+1}^{0 \backslash p_{\nu}}\right)^{\perp}=J_{0}^{j_{\lambda} \backslash 0}, \\
& \left(P_{n+1}^{p_{v} \backslash n+1}\right)^{\perp}=J_{0}^{n+1 \backslash j_{\kappa}},\left(P_{n+1}^{p_{v} \backslash p_{\nu}}\right)^{\perp}=J_{0}^{j_{\lambda} \backslash j_{\kappa}},
\end{aligned}
$$

and that

$$
\alpha_{0} \mathrm{~d} \log \frac{x\left\langle J_{0}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j_{\kappa}}\right\rangle}=-\left(\sum_{j=1}^{n+1} \alpha_{j}\right) \mathrm{d} \log \frac{x\left\langle J_{0}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j_{\kappa}}\right\rangle} .
$$

We have

$$
\begin{aligned}
\perp^{*}\left(\theta_{P_{n+1}}^{-\alpha} P_{n+1}\right)= & \sum_{j_{\lambda} \in J_{0}^{\perp}} \alpha_{j_{\lambda}} \mathrm{d} \log \frac{x\left\langle J_{0}^{j_{\lambda} \backslash 0}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash 0}\right\rangle} \\
& +\sum_{j_{k} \in J_{0}} \alpha_{j_{\kappa}} \mathrm{d} \log \frac{x\left\langle J_{0}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j_{\kappa}}\right\rangle} \\
& +\frac{1}{\binom{n}{l}} \sum_{P}\left(\sum_{j \in P^{\perp}}-\alpha_{j}\right) \mathrm{d} \log x\left\langle P^{\perp}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
&= \sum_{j_{\kappa} \in J_{0}} \alpha_{j_{\kappa}} \mathrm{d} \log \frac{x\left\langle J_{0}^{n+1 \backslash 0}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j_{\kappa}}\right\rangle} \\
&+\sum_{j_{\lambda} \in J_{0}^{\perp}} \alpha_{j_{\lambda}} \mathrm{d} \log \frac{x\left\langle J_{0}^{j_{\lambda} \backslash 0}\right\rangle}{x\left\langle J_{0}\right\rangle} \\
&-\frac{1}{\binom{n}{k}} \sum_{J}\left(\sum_{j \in J} \alpha_{j}\right) \mathrm{d} \log x\langle J\rangle, \\
& \perp^{*}\left(\theta_{\left.P_{n+1} P_{n+1}^{p u \backslash p_{\nu}}\right)=}=-\frac{j_{\kappa}-j_{\lambda}}{\left|j_{\kappa}-j_{\lambda}\right|}(-1)^{j_{\kappa}-\kappa-l-\lambda+k+l}\right. \\
& \times \alpha_{j_{\kappa}} \mathrm{d} \log \frac{x\left\langle J_{0}^{n+1 \backslash 0}\right\rangle x\left\langle J_{0}^{j_{\lambda} \backslash j_{\kappa}}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j_{\kappa}}\right\rangle x\left\langle J_{0}^{j_{\lambda} \backslash 0}\right\rangle}, \\
&= \frac{j_{\lambda}-j_{\kappa}}{\left|j_{\lambda}-j_{\kappa}\right|}(-1)^{j_{\kappa}-\kappa-\lambda+k} \alpha_{j_{\kappa}} d \log \frac{x\left\langle J_{0}^{n+1 \backslash 0}\right\rangle x\left\langle J_{0}^{j_{\lambda} \backslash j_{\kappa}}\right\rangle}{x\left\langle J_{0}^{n+1 \backslash j_{\kappa}}\right\rangle x\left\langle J_{0}^{j_{\lambda} \backslash 0}\right\rangle} .
\end{aligned}
$$

By taking the conjugate, we see

$$
{ }^{t} E_{l k}\left(\wedge^{l} I_{c h}(\alpha)^{-1}\right) \perp^{*}\left(\Theta_{n+1}^{-\alpha}[y]\right)\left(\wedge^{l} I_{c h}(\alpha)\right) E_{l k}^{-1}
$$

$\perp^{*}\left(\theta_{P_{n+1} P_{n+1}}^{-\alpha}\right)$ is the $\left(J_{0}, J_{0}\right)$-component and $\perp^{*}\left(\theta_{P_{n+1} P_{n+1}^{p, \alpha}}^{p_{p}}\right)$ is multiplied

$$
\begin{aligned}
& \left(\prod_{p \in P_{n+1}}(-1)^{p} \alpha_{p}\right)\left(\prod_{p \in P_{n+1}^{p_{\nu} \backslash p_{\nu}}}(-1)^{p} \alpha_{p}^{-1}\right) \\
& =(-1)^{p_{\nu}-p_{v}} \alpha_{p_{\nu}} / \alpha_{p_{v}}=(-1)^{j_{\lambda}-j_{k}} \alpha_{j_{\lambda}} / \alpha_{j_{k}}
\end{aligned}
$$

and the $\left(J_{0}, J_{0}^{j_{\lambda} \backslash j_{\kappa}}\right)$-component, which are equal to those of $\Theta_{0}^{\alpha}[x]$.
The Cauchy fundamental theorem together with Lemma 4.3.2 and Proposition 4.6.1 proves our main theorem.

5. Examples

5.1. We recall the definition of the hypergeometric series $F(a, b, c ; z)$ of type (k, l)

$$
F(a, b, c ; z)=\sum_{m} \frac{\prod_{i=1}^{k}\left(a_{i} ;\left|m_{i}\right|\right) \prod_{j=1}^{l}\left(b_{j} ;\left.\right|^{t} m_{j} \mid\right)}{(c ;|m|) m!} z^{m}
$$

where $m=\left(m_{i j}\right)$ runs over the set $\mathbb{Z}_{\geqslant 0}^{k l}$ and

$$
\begin{aligned}
& \left|m_{i}\right|=\sum_{j=1}^{l} m_{i j}, \quad\left|{ }^{t} m_{j}\right|=\sum_{i=1}^{k} m_{i j} \\
& |m|=\sum_{1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l} m_{i j}, \quad m!=\prod_{1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l} m_{i j}!, \\
& a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{C}^{k}, \quad b=\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{C}^{l}, \quad c \in \mathbb{C}-\mathbb{Z}_{<0}, \\
& (c ;|m|)=c(c+1) \ldots(c+|m|-1)
\end{aligned}
$$

$z=\left(z_{i j}\right)$ is an element of $\mathbb{C}^{k l}$ near to 0 and

$$
z^{m}=\prod_{1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l} z_{i j}^{m_{i j}}
$$

Note that $F(a, b, c ; z)$ is the Gauss hypergeometric series

$$
\sum_{m=0}^{\infty} \frac{(a ; m)(b ; m)}{(c ; m) m!} z^{m},
$$

when $(k, l)=(1,1)$, and that it is the Appell hypergeometric series F_{1}

$$
\sum_{m_{1}, m_{2}=0}^{\infty} \frac{\left(\alpha ; m_{1}+m_{2}\right)\left(\beta_{1} ; m_{1}\right)\left(\beta_{2} ; m_{2}\right)}{\left(\gamma ; m_{1}+m_{2}\right) m_{1}!m_{2}!} x^{m_{1}} y^{m_{2}}
$$

when $(k, l)=(1,2)$. It is shown in [Kit1] that under the condition that any of

$$
a_{i}, c-\sum_{i=1}^{k} a_{i}, b_{i}, c-\sum_{j=1}^{l} b_{j}
$$

is not integral, $F(a, b, c ; z)$ admits two integral representations of Euler type

$$
\begin{align*}
F(a, b, c ; z) & =\frac{\Gamma(c)}{\Gamma\left(c-\sum_{i=1}^{k} a_{i}\right) \prod_{i=1}^{k} \Gamma\left(a_{i}\right)} \int_{\Delta^{k}} u^{\alpha}(s, z) \varphi^{k}(s) \\
& =\frac{\Gamma(c)}{\Gamma\left(c-\sum_{j=1}^{l} b_{j}\right) \prod_{j=1}^{l} \Gamma\left(b_{j}\right)} \int_{\Delta^{l}} u^{-\alpha}\left(s^{\prime}, z\right) \varphi^{l}\left(s^{\prime}\right), \tag{5.1.1}
\end{align*}
$$

where $s=\left(s_{0}, \ldots, s_{k-1}\right), s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{l}^{\prime}\right)$,

$$
u^{\alpha}(s, z)=\left(\prod_{i=1}^{k} s_{i-1}^{a_{i}}\right)\left(1-\sum_{i=1}^{k} s_{i-1}\right)^{c-\Sigma a_{i}}
$$

$$
\begin{aligned}
& \times\left(\prod_{j=1}^{l}\left(1-\sum_{i=1}^{k} z_{i j} s_{i-1}\right)^{-b_{j}}\right), \\
& u^{-\alpha}\left(s^{\prime}, z\right)=\left(\prod_{i=1}^{k}\left(1-\sum_{j=1}^{l} z_{i j} s_{j}^{\prime}\right)^{-a_{i}}\right) \\
& \times\left(\prod_{j=1}^{l} s_{j}^{\prime b_{j}}\right)\left(1-\sum_{j=1}^{l} s_{j}^{\prime}\right)^{c-\Sigma b_{j}}, \\
& \alpha=\left(\alpha_{0}, \ldots, \alpha_{n+1}\right) \\
& =\left(a_{1}, \ldots, a_{k}, c-\sum_{i=1}^{k} a_{i},-b_{1}, \ldots,-b_{l},-c+\sum_{j=1}^{l} b_{j}\right), \\
& \varphi^{k}(s)=\frac{\mathrm{d} s_{0} \wedge \cdots \wedge \mathrm{~d} s_{k-1}}{\left(\prod_{i=0}^{k-1} s_{i}\right)\left(1-\sum_{i=0}^{k-1} s_{i}\right)}, \\
& \varphi^{l}\left(s^{\prime}\right)=\frac{\mathrm{d} s_{1}^{\prime} \wedge \cdots \wedge \mathrm{d} s_{l}^{\prime}}{\left(\prod_{j=1}^{l} s_{j}^{\prime}\right)\left(1-\sum_{j=1}^{l} s_{j}^{\prime}\right)}, \\
& \Delta^{k}=\left\{s \in \mathbb{R}^{k} \mid s_{0}, \ldots, s_{k-1}, 1-\sum_{i=0}^{k-1} s_{i}>0\right\}, \\
& \Delta^{l}=\left\{s^{\prime} \in \mathbb{R}^{l} \mid s_{1}^{\prime}, \ldots, s_{l}^{\prime}, 1-\sum_{j=1}^{l} s_{j}^{\prime}>0\right\}
\end{aligned}
$$

and the branch $u^{\alpha}(s, z)$ on Δ^{k} and $u^{-\alpha}\left(s^{\prime} z\right)$ on Δ^{l} are defined by assigning arguments near to zero for all linear forms of s in $u^{\alpha}(s, z)$ on Δ^{k} and for those of s^{\prime} in $u^{-\alpha}\left(s^{\prime} z\right)$ on Δ^{l}. The identity (5.1.1) implies that

$$
\begin{aligned}
& \frac{\Gamma(c-b) \Gamma(b)}{\Gamma(c-a) \Gamma(a)} \int_{0}^{1} s_{0}^{a}\left(1-s_{0}\right)^{c-a} \\
& \quad \times\left(1-z s_{0}\right)^{-b} \frac{\mathrm{~d} s_{0}}{s_{0}\left(1-s_{0}\right)} \\
& \quad=\int_{0}^{1}\left(1-z s_{1}^{\prime}\right)^{-a} s_{1}^{\prime}\left(1-s_{1}^{\prime}\right)^{c-b} \frac{\mathrm{~d} s_{1}^{\prime}}{s_{1}^{\prime}\left(1-s_{1}^{\prime}\right)},
\end{aligned}
$$

when $(k, l)=(1,1)$, and that

$$
\begin{aligned}
& \frac{\Gamma\left(c-b_{1}-b_{2}\right) \Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right)}{\Gamma(c-a) \Gamma(a)} \int_{0}^{1} s_{0}{ }^{a}\left(1-s_{0}\right)^{c-a} \\
& \times\left(1-z_{1} s_{0}\right)^{-b_{1}}\left(1-z_{2} s_{0}\right)^{-b_{2}} \frac{\mathrm{~d} s_{0}}{s_{0}\left(1-s_{0}\right)} \\
& =\int_{\Delta^{2}}\left(1-z_{1} s_{1}^{\prime}-z_{2} s_{2}^{\prime}\right)^{-a} s_{1}^{\prime b_{1}} s_{2}^{\prime b_{2}} \\
& \times\left(1-s_{1}^{\prime}-s_{2}^{\prime}\right)^{c-b_{1}-b_{2}} \frac{\mathrm{~d} s_{1}^{\prime} \wedge \mathrm{d} s_{2}^{\prime}}{s_{1}^{\prime} s_{2}^{\prime}\left(1-s_{1}^{\prime}-s_{2}^{\prime}\right)},
\end{aligned}
$$

when $(k, l)=(1,2)$.
5.2. We show the identity (5.1.1) between the k-fold integral and the l-fold integral in the previous section by picking up the top-left component of (3.1.1) in our main theorem. Take a $(k \times l)$-matrix z near to $z\left[\xi_{k}\right]$. Our main theorem and Lemma 2.1.2 says

$$
\begin{equation*}
F_{I_{0} I_{0}}^{+}\left(\alpha,\left[x_{z}\right]\right)=c\left(I_{0}, I_{0}\right) F_{I_{0}^{\perp} I_{0}^{\perp}}^{-}\left(-\alpha,\left[y_{z}\right]\right), \tag{5.2.1}
\end{equation*}
$$

where

$$
I_{0}=\{0,1, \ldots, k\}, \quad I_{0}^{\perp}=\{k+1, \ldots, n, n+1\},
$$

x_{z} and y_{z} are in (2.1.1) and

$$
\begin{aligned}
c\left(I_{0}, I_{0}\right)= & V(\alpha) \frac{\left(-\alpha_{k+1}\right) \ldots\left(-\alpha_{n}\right)}{(2 \pi \sqrt{-1})^{l}} \frac{1}{\mathrm{e}^{2 \pi \sqrt{-1} l\left(\alpha_{0}+\cdots+\alpha_{k}\right)}} \\
& \times \prod_{j=1}^{l} \frac{\mathrm{e}^{2 \pi \sqrt{-1} \alpha_{k+j}}-1}{\mathrm{e}^{2 \pi \sqrt{-1}(l+1-j) \alpha_{k+j}}} .
\end{aligned}
$$

By using the formula

$$
\Gamma(c) \Gamma(-c)=\frac{2 \pi \sqrt{-1}}{-c} \frac{\mathrm{e}^{\pi \sqrt{-1} c}}{\mathrm{e}^{2 \pi \sqrt{-1} c}-1},
$$

the constant $c\left(I_{0}, I_{0}\right)$ can be written as

$$
c\left(I_{0}, I_{0}\right)=\frac{\Gamma\left(\alpha_{0}\right) \ldots \Gamma\left(\alpha_{k}\right)}{\Gamma\left(-\alpha_{k+1}\right) \ldots \Gamma\left(-\alpha_{n+1}\right)}
$$

$$
\begin{equation*}
\times \prod_{i=0}^{k} \mathrm{e}^{-\pi \sqrt{-1}(i-k+l) \alpha_{i}} \prod_{j=1}^{l} \mathrm{e}^{-\pi \sqrt{-1}(l+1-j) \alpha_{k+j}} \tag{5.2.2}
\end{equation*}
$$

$\operatorname{Put}\left(s_{0}, \ldots, s_{k-1}\right):=\left(t_{0} / t_{k}, \ldots, t_{k-1} / t_{k}\right)$. Since

$$
\varphi^{k}(s)=\tau_{x_{z}}^{*}\left(\varphi_{I_{0}}\right)\left(t, x_{z}\right), \quad \Delta^{k}=\Delta_{I_{0}}\left(x_{z}\right)
$$

and the argument of $(-1)^{k-i} s_{i}=L_{i}\left(t, x_{z}\right) / L_{n+1}\left(t, x_{z}\right)(0 \leqslant i \leqslant k-1)$ is assigned near to $(k-i) \pi$ on Δ^{k}, we have

$$
\begin{align*}
& \int_{\Delta^{k}} u^{\alpha}(s, z) \varphi^{k}(s) \\
& \quad=\left(\prod_{i=0}^{k} \mathrm{e}^{\pi \sqrt{-1}(k-i) \alpha_{i}}\right) \cdot D\left(x_{z}\right) \cdot F_{I_{0} I_{0}}^{+}\left(\alpha,\left[x_{z}\right]\right) . \tag{5.2.3}
\end{align*}
$$

Put $\left(s_{1}^{\prime}, \ldots, s_{l}^{\prime}\right):=\left(t_{1} / t_{0}, \ldots, t_{l} / t_{0}\right)$ and note that

$$
\varphi^{l}\left(s^{\prime}\right)=\tau_{y_{z}}^{*}\left(\varphi_{I_{0}^{\perp}}\right)\left(t, y_{z}\right), \quad \Delta^{l}=\Delta_{I_{0}^{\perp}}\left(y_{z}\right) .
$$

Since the argument of

$$
\begin{aligned}
(-1)^{j-1} s_{j}^{\prime} & =L_{k+j}\left(t, y_{z}\right) / L_{k}\left(t, y_{z}\right) \\
& =\frac{L_{k+j}\left(t, y_{z}\right) / L_{n+1}\left(t, y_{z}\right)}{L_{k}\left(t, y_{z}\right) / L_{n+1}\left(t, y_{z}\right)} \quad(1 \leqslant j \leqslant l)
\end{aligned}
$$

is assigned near to $(j-1) \pi$ and that of $1-s_{1}^{\prime}-\cdots-s_{l}^{\prime}=L_{n+1}\left(t, y_{z}\right) / L_{k}\left(t, y_{z}\right)$ is assigned near to $l \pi$ on Δ^{l}, we have

$$
\begin{align*}
& \int_{\Delta^{l}} u^{-\alpha}\left(s^{\prime}, z\right) \varphi^{l}\left(s^{\prime}\right) \\
& \quad=\left(\prod_{j=1}^{l+1} \mathrm{e}^{-\pi \sqrt{-1}(j-1) \alpha_{k+j}}\right) \cdot D\left(y_{z}\right) \cdot F_{I_{0}^{\perp} I_{0}^{\perp}}^{-}\left(-\alpha,\left[y_{z}\right]\right) . \tag{5.2.4}
\end{align*}
$$

Since $D\left(x_{z}\right)=D\left(y_{z}\right)$ and $\sum_{j=0}^{n+1} \alpha_{j}=0$, we have

$$
\begin{aligned}
& \int_{\Delta^{k}} u^{\alpha}(s, z) \varphi^{k}(s) / \int_{\Delta^{l}} u^{-\alpha}\left(s^{\prime}, z\right) \varphi^{l}\left(s^{\prime}\right) \\
& =\left(\left(\prod_{i=0}^{k} \mathrm{e}^{\pi \sqrt{-1}(k-i) \alpha_{i}}\right) \cdot F_{I_{0} I_{0}}^{+}\left(\alpha,\left[x_{z}\right]\right)\right) /
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(\prod_{j=1}^{l+1} \mathrm{e}^{-\pi \sqrt{-1}(j-1) \alpha_{k+j}}\right) \cdot F_{I_{0}^{\perp} I_{0}^{\perp}}^{-}\left(-\alpha,\left[y_{z}\right]\right)\right) \\
= & c\left(I_{0}, I_{0}\right) \prod_{i=0}^{k} \mathrm{e}^{\pi \sqrt{-1}(k-i) \alpha_{i}} \prod_{j=1}^{l+1} \mathrm{e}^{\pi \sqrt{-1}(j-1) \alpha_{k+j}} \\
= & \frac{\Gamma\left(\alpha_{0}\right) \ldots \Gamma\left(\alpha_{k}\right)}{\Gamma\left(-\alpha_{k+1}\right) \ldots \Gamma\left(-\alpha_{n+1}\right)} .
\end{aligned}
$$

Hence, we conclude the argument by proving the identity (0.1) in a rigorous way.

Acknowledgement

The authors are grateful to Professors K. Aomoto, K. Cho, K. Iwasaki and M. Yoshida for having valuable discussions and suggestions.

References

[AK] Aomoto, K. and Kita, M.: Hypergeometric functions (in Japanese), Springer-Verlag, Tokyo, 1994.
[AKOT] Aomoto, K., Kita, M., Orlik, P. and Terao, H.: Twisted de Rham cohomology groups of logarithmic forms, to appear in Adv. in Math.
[Aom] Aomoto, K.: On the structure of integrals of power product of linear functions, Sci. Papers, Coll. Gen. Ed., Univ. Tokyo, 27 (1977) 49-61.
[CM] Cho, K. and Matsumoto, K.: Intersection theory for twisted cohomologies and twisted Riemann's period relation I, Nagoya Math. J. 139 (1995) 67-86.
[Del] Deligne, P.: Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer-Verlag, 1970.
[GGR] Gelfand, I. M., Graev, M. I. and Retakh, V. S.: General hypergeometric systems of equations and series of hypergeometric type, Russian Math. Surveys 47 (1992) 1-88.
[GGr1] Gelfand, I. M. and Graev, M. I.: A duality theorem for general hypergeometric functions, Soviet Math. Dokl. 34 (1987) 9-13.
[GGr2] Gelfand, I. M. and Graev, M. I.: Hypergeometric functions associated with the Grassmannian $G_{3,6}$, Math. USSR Sbornik 66 (1990) 1-40.
[Hat] Hattori, A.: Topology of \mathbb{C}^{n} minus a finite number of affine hyperplanes in general position, J. Fac. Univ. Tokyo, Sci. IA 22 (1975) 205-219.
[IK1] Iwasaki, K. and Kita, M.: Exterior power structure of the twisted de Rham cohomology associated with hypergeometric function of type $(n+1, m+1)$, J. Math. Pures Appl. 75 (1996) 69-84.
[IK2] Iwasaki, K. and Kita, M.: Twisted homology of the configuration space of n-points with application to the hypergeometric functions, The University of Tokyo Preprint Series, UTMS 94-11 (1994) 1-68.
[IKSY] Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida, M.: From Gauss to Painlevé, Vieweg, Wiesbaden, 1991.
[KN] Kita, M. and Noumi, M.: On the structure of cohomology groups attached to the integral of certain many-valued analytic functions, Japan J. Math. 9 (1983) 113-157.
[KY] Kita, M. and Yoshida, M.: Intersection theory for twisted cycles I, II, Math. Nachr. 166 (1994) 287-304, 168 (1994) 171-190.
[Kit1] Kita, M.: On hypergeometric functions in several variables I, - New integral representations of Euler type -, Japan J. Math. 18 (1992) 25-74.
[Kit2] Kita, M.: On hypergeometric functions in several variables II, - The Wronskian of the hypergeometric functions of type $(n+1, m+1)-$, J. Math. Soc. Japan 45 (1993) 645-669.
[MSY] Matsumoto, K., Sasaki, T. and Yoshida, M.: The monodromy of the period map of a 4parameter family of $K 3$ surfaces and the hypergeometric function of type (3, 6), Internat. J. Math. 3 (1992) 1-164.
[MSTY] Matsumoto, K., Sasaki, T., Takayama, N. and Yoshida, M.: Monodromy of the hypergeometric differential equation of type (3, 6) I, Duke Math. J. 71 (1993) 403-426.
[Ter] Terasoma, T.: Exponential Kummer coverings and determinants of hypergeometric functions, Tokyo J. Math. 16 (1993) 497-508.
[Var] Varchenko, A. N.: The Euler beta function, the Vandermonde determinant, Legendre's equation and critical values of linear functions on a configuration of hyperplanes I, II, Math. USSR Izv. 35 (1990) 543-571, 36 (1991) 155-167.
[Yos] Yoshida, M.: Fuchsian Differential Equations, Vieweg, Wiesbaden, 1987.

[^0]: * The first author died on April 151995

