
JFP 23 (3): 249–292, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796813000099
249

A consistent semantics of
self-adjusting computation

UMUT A. ACAR
Carnegie Mellon University, Pittsburgh, PA 15213, USA

(e-mail:)umut@cs.cmu.edu)

MATTHIAS BLUME
Google Inc., Chicago, IL, USA
(e-mail:)blume@google.com)

JACOB DONHAM
Twitter Inc., San Francisco, CA, USA
(e-mail:)jake.donham@gmail.com)

Abstract

This paper presents a semantics of self-adjusting computation and proves that the semantics is correct
and consistent. The semantics introduces memoizing change propagation, which enhances change
propagation with the classic idea of memoization to enable reuse of computations even when memory
is mutated via side effects. During evaluation, computation reuse via memoization triggers a change-
propagation algorithm that adapts the reused computation to the memory mutations (side effects) that
took place since the creation of the computation. Since the semantics includes both memoization and
change propagation, it involves both non-determinism (due to memoization) and mutation (due to
change propagation). Our consistency theorem states that the non-determinism is not harmful: any
two evaluations of the same program starting at the same state yield the same result. Our correctness
theorem states that mutation is not harmful: Self-adjusting programs are compatible with purely
functional programming. We formalize the semantics and its meta-theory in the LF logical framework
and machine check our proofs using Twelf.

1 Introduction

Many applications operate on data that change over time: compilers respond to changes
to source code by recompiling as necessary, robots must interact with the physical world
as it naturally changes over time, and scientific simulations compute with objects whose
properties change over time, e.g., as they interact. Self-adjusting computation offers tech-
niques for designing, analyzing, and implementing programs that respond to changes to
their data automatically and efficiently. Previous work on self-adjusting computation de-
veloped programming languages for implementing such programs (e.g., Ley-Wild et al.,
2008b; Hammer et al., 2009), cost semantics, and algorithmic analysis techniques for
designing and analyzing them (e.g. Acar, 2005; Ley-Wild et al., 2008a). Applications of
self-adjusting computation to a broad range of problems (Acar et al., 2009) have been
also considered, including diverse areas such as computational geometry (e.g., Acar et al.,

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

250 U. A. Acar et al.

2010), machine learning (e.g., Sümer et al., 2011), and large-scale data sets (Bhatotia et al.,
2011). The results on applications show that the approach can help achieve asymptotic
optimal updates and even help solve open problems.

Research on self-adjusting computation started with the invention of dynamic depen-
dency graphs (DDGs) and a change-propagation algorithm for updating them (Acar et al.,
2006). The idea behind these techniques is to represent evaluation of purely functional
programs with a DDG and use a change-propagation algorithm to update the graph and the
output of the evaluation when the data changes. To perform correct and efficient updates,
change propagation identifies the nodes of the DDG that depend on the changed data,
re-evaluates the computations performed by the nodes – the nodes contains fragments of
code – and restructures the DDG by inserting and deleting dependency edges as needed.
Change propagation is an imperative algorithm: It mutates a selected subset of memory
cells in order to mimic a re-evaluation of the whole program. While change propagation
can indeed update computations efficiently in certain cases, as we discuss in Section 2, in
many cases it falls short of the goal reusing computations optimally.

In this paper, we enhance change propagation with the classical idea of memoization for
improved computation reuse. The idea behind memoization (Michie, 1968) is to remember
the results of function calls (by recording a map from the arguments to the results) and
reuse them instead of repeating calls. For memoization to be correct, it is critical for
memoized functions to be pure because otherwise the mapping from the arguments of
functions to their results can change as a result of mutations to memory. As we describe
in Section 2, the form of computation reuse provided by memoization turns out to be
essentially dual to change propagation, suggesting that if applied simultaneously they can
lead to a broadly effective computation reuse mechanism. Using both techniques in the
same computation, however, is challenging because memoization can reuse only purely
functional computations whereas DDGs and change propagation rely heavily on imperative
updates.

We overcome this challenge by introducing memoizing change propagation, which inte-
grates change propagation and memoization by offering a mechanism for reusing impure,
imperative computations. The key idea behind memoizing change propagation is to reuse
computations themselves instead of just results of computations. More specifically, as in
classical memoization, we use memoized function calls (or expressions more generally) to
trigger computation reuse. Instead of remembering and reusing results of function calls as
in classical memoization, however, we remember and reuse their DDGs. This allows us to
reuse a function call even when its arguments have changed (due to mutations) by applying
recursively the change-propagation algorithm on the reused DDG.

To study the expressiveness and soundness of memoizing change propagation, we ex-
tend the adaptive functional language (AFL) (Acar et al., 2006), which supports change
propagation, with a construct for memoization. We call this language AML (Section 3).
The dynamic semantics of AML is store-based. Mutation to the store between successive
evaluations models incremental changes to the input. The evaluation of an AML program
also allocates store locations and updates existing locations. We model memoization as a
nondeterministic oracle: a memoized expression is evaluated by first consulting the memo-
oracle, which nondeterministically returns either a miss or a hit. In evaluation, a hit returns
a trace of the evaluation of the memoized expression, which is recursively adapted to

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 251

mutations by performing a change propagation on the returned trace. By using a non-
deterministic oracle for modeling memoization, we ensure that the semantics and thus our
results remain applicable irrespective of how memoization is realized, e.g., specifics of
which computations are maintained in cache do not matter.

We prove two main theorems stating that the semantics is consistent and correct (Sec-
tion 4). The consistency theorem proves that the non-determinism (due to memoization)
is harmless by showing that any two evaluations of the same program in the same store
yield the same result. Specifically, this implies that an execution in which no computations
were reused (nondeterministic oracle always ‘missing’) and any computation where results
were reused (nondeterministic oracle sometimes ‘hitting’) are equivalent. The correctness
theorem in turn states a correspondence between self-adjusting computation and purely
functional programming by showing that evaluation returns (observationally) the same
value as a purely functional evaluation. Taken together the two theorems imply that self-
adjusting computation is congruous with purely functional programming. Our proofs do
not make any assumptions about typing. Our results therefore apply in both typed and
un-typed settings.

The proofs for the correctness and consistency theorems (Section 4) are made chal-
lenging because the semantics consists of a complex set of judgments (where change
propagation and ordinary evaluation are mutually recursive), and because the semantics
involves mutation and two kinds of non-determinism: non-determinism in memory allo-
cation, and non-determinism due to memoization. Due to mutation, we are required to
prove that evaluation preserves certain well-formedness properties (e.g., absence of cycles
and dangling pointers). Due to nondeterministic memory allocation, we cannot compare
the results from different evaluations directly. Instead, we compare values structurally by
comparing the contents of locations. To address non-determinism due to memoization,
we allow evaluation to recycle existing memory locations. Based on these techniques, we
first prove that memoization is harmless: for any evaluation there exists a memoization-
free counterpart that yields the same result without reusing any computations. Based on
structural equality, we then show that memoization-free evaluations and fully deterministic
evaluations are equivalent. These proof techniques may be of independent interest.

To increase confidence in our results, we encoded the syntax and semantics of AML and
its meta-theory in the LF logical framework (Harper et al., 1993) and machine-checked the
proofs using Twelf (Pfenning & Schürmann, 1999) (Section 6). The Twelf formalization
consists of 7,800 lines of code. The Twelf code is fully foundational: It encodes all back-
ground structures required by the proof and proves all lemmas from the first principles. The
full Twelf code for the proofs (as a tar archive) can be found at the url http://www.umut-
acar.org/publications/jfp2013-twelf-proof.tar. The Twelf proof is also reach-
able via the first author’s web page at http://www.umut-acar.org.

We note that checking the proofs in Twelf was not merely an encoding exercise. In fact,
our initial attempts at producing a paper-and-pencil proof failed. The process of creating
and checking the proof mechanically in Twelf allowed us to come up with the proof while
also helping us simplify the rule systems and generalize the proof to un-typed languages.
We therefore feel that the use of Twelf was critical to this result.

Since the semantics models memoization as a nondeterministic oracle, and since it does
not specify how the memory should be allocated while allowing pre-existing locations to

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

252 U. A. Acar et al.

datatype ’a list = nil | cons ’a * ’a list

map :: (’a -> ’b) -> (’a list) -> (’b list)

fun map f l =

case l of

nil => nil

cons(h,t) => cons(f h, map f t)

Fig. 1. The code for map in an ML-like functional language.

be recycled, the dynamic semantics of AML does not translate to an algorithm directly.
The semantics, however, can be implemented by controlling reuse of computations and
memory locations carefully. Since the publication of the conference version of this paper,
several such implementations have been completed and applied to a relatively broad range
of problems. In Sections 7 and 8, we briefly overview the follow-up papers that implement
and apply the presented semantics.

2 Overview

We briefly describe the main limitation of self-adjusting computation based on DDGs and
change propagation (Acar et al., 2006), how it may be improved, the challenges in realizing
this improvement, and how we tackle these challenges. We use an ML-like language
extended with several primitives for self-adjusting computation and use a simple example
to guide the discussion. We make the language primitives and their semantics precise in
the rest of the paper.

Example. map: Figure 1 shows the code for our running example, map. The function
map operates on lists, which are defined either as empty (nil) or a cons cell consisting of
a head element and a tail, which itself is a list. It applies the specified function f to every
element of the list to produce an output list of the same length.

2.1 Call trees and data dependencies

In this discussion, we will carefully look into the structure of the evaluations of the map

function. We will represent the evaluations with their computation graphs consisting of the
function calls performed during the execution along with edges that illustrate the function-
call operations (caller–callee relationships between function calls) and the dependencies
between data and function calls. We refer to the subgraph consisting of function calls and
the edges between them as the call tree. Computation graphs are similar to the DDGs that
we will discuss soon.

Figure 2 illustrates the computation graph for an execution of map when applied to the
list [2,3,4] with the integer increment function. We draw a list as a sequence of ‘cons’
cells, each of which contains an element and a ‘tail’. We draw the call tree as a sequence
of circles, each of which represents a function call. The calls are linked with edges that
represent the function calls, or the caller–callee relationships. In addition, we illustrate
the data dependencies between the function calls and the input by using curved edges.
For simplicity, we omit the data dependencies between calls and the individual elements
(which are implied by the dependencies on the cons cells), and the dependencies to the
increment function.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 253

\2 3 4

\3 4 5

Fig. 2. The call tree and the data dependencies for map (fn x => x+1) [2,3,4].

datatype ’a modlist’ = nil | cons ’a * (’a modlist’ mod)

type ’a modlist = ’a modlist’

map :: (a -> b) -> (’a modlist) -> (’a modlist)

fun map f l =

mod (read l as l’ in

case l’ of

nil => write nil

cons(h,t) => write (cons(f h, map f t)))

Fig. 3. The code for self-adjusting map with modifiables.

We say that a function call u is deeper (shallower) than another call v if the distance
between the root of the call tree and u is greater (less) than the distance between v and
the root. Informally, we say that a function call is deep (shallow) if it has only a constant
number of descendants (ancestors), i.e., the number of descendants is independent of the
input size. The shallowest node in a call tree is the root and the deepest nodes are the leaves.

Following a similar methodology, we say that a data change is deep (shallow) if the
function calls that depend on the data affected by the change are deep (shallow). For
example, in Figure 2, inserting a new element at the end of the list performs a deep change
because the function calls affected are deep in the call tree; inserting a new element at the
head of the list performs a shallow change because the function calls affected are shallow.

2.2 Dynamic dependency graphs and change propagation

To enable computations respond to incremental changes to their data, previous work on
self-adjusting computation propose the notion of modifiable references or modifiables for
writing programs that can respond to changes to the contents of modifiables automatically.
The idea behind the automatic updates is to record the evaluation of a program in the
form of a DDG and use a change-propagation algorithm to update the graph whenever the
contents of the modifiables change.

Figure 3 illustrates the code for the self-adjusting map written with modifiable refer-
ences. We define a modifiable list, modlist, as a list where each ‘tail’ is inside a modifi-
able. We use the notation [| |] to denote modifiable lists. Placing the tail inside a modifiable
allows the user to change (mutate) its contents and ask the computation to update the
output automatically. Having determined the input type for map, we modify the body of the
function by inserting primitives for creating (mod), reading (read), and writing (write)
modifiable references so that the output is also a modifiable list. These primitives are
analogous to the primitives for creating, de-referencing, and writing ordinary references

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

254 U. A. Acar et al.

but are actually quite different. For example, the read primitive requires the modifiable
to be read, and specifies a body (an expression) that would be evaluated with the contents
of the modifiable read. A read takes place only inside the scope of a modifiable (mod)
and ends with a write to that modifiable. Type systems can enforce correct usage of these
primitives (Carlsson, 2002; Acar et al., 2006, 2009).

Having annotated the code for map to operate on modifiable lists, we can now evaluate it.
As this evaluation takes place, we construct a DDG to represent the evaluation. The DDG
consists of a call tree of evaluated read operations and the data dependencies between
read operations and the modifiables that they read. The nodes and edges are ordered to
enable determining when in the evaluation the actions represented by the dependence graph
take place. DDGs are closely related to computation graphs discussed previously in this
section. We can use computation graphs to represent DDGs by tracking not all function
calls but just the calls to read operations. For example, we can use Figure 2 to illustrate
the DDG for the evaluation, map (fn x => x+1) [|2,3,4|]. In the illustration, modi-
fiables are shown as dark circles, memory cells are shown as squares, and read operations
are shown as empty circles. The straight edges between read operations illustrate the con-
trol flow between the reads. The curved edges represent read/write from/into modifiables.

After we construct a DDG, we can change the input by mutating the contents of the
modifiables and ask the output and the DDG to be updated by calling change propagation.
Intuitively, change propagation mimics a complete re-evaluation of the program with the
changed data but only re-evaluates the read operations that depend on the changes. To
this end, change propagation maintains a work queue of reads to be re-evaluated; the
work queue initially contains the reads that directly depend on the changed modifiables.
When re-evaluated, a read can change other data (by writing to memory), effectively
inserting the reads depending on the changed data into the work queue. For correctness,
change propagation re-evaluates the reads in the work queue in the same order as they are
originally evaluated. This is important because re-evaluation can affect, via data and control
dependencies, reads that come afterwards. Since it is impossible to know a priori which
reads will be evaluated, change propagation deletes all the descendants of a read from
the DDG along with their dependencies. When change propagation completes, it yields a
DDG that is isomorphic to the DDG that would be obtained by re-evaluating the program
from scratch with the modified data.

2.3 Limitations of change propagation

Consider evaluating
map (fn x => x+1) [|2,3,4|],
and then inserting a new element 5 at the end of the input list. We can compute the new
output by evaluating
map (fn x => x+1) [|2,3,4,5|],
which, in the general case, would take linear time in the length of the list. In self-adjusting
computation, instead of re-evaluating we can use change propagation by starting with the
DDG for map (fn x => x+1) [|2,3,4|], inserting 5 into the input by mutating the
appropriate modifiable and then performing change propagation. Figure 4 (bottom left)
illustrates such a change propagation , highlighting the new and affected parts of the DDG.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 255

\2 3 4

\3 4 5

2 \3 4 5

3 4 5 6 \

1 \2 3 4

2 3 4 5 \

Fig. 4. (Colour online) Change propagation: a dynamic dependency graph (top), and deep changes
(bottom left), and shallow changes (bottom right).

To insert the new key, we mutate the modifiable containing the tail of the cell 4. This
change affects the recursive map call on the changed tail (more precisely, the read within),
which when evaluated would map the inserted element, and the empty list (nil) to update
the new output. Since change propagation evaluates the body of the map once on the new
element and once on the empty list, it would update the output in constant time. More
generally, it is not difficult to see that change propagation performs well for deep changes
because such changes affect function calls that have a small number of descendants that
would need to re-evaluated.

Unfortunately, change propagation does not perform well with shallow changes. To see
this, consider evaluating
map (fn x => x+1) [|2,3,4|]

and then inserting the new element 1 at the head of the input list. We can compute the new
output by evaluating map (fn x => x+1) [|1,2,3,4|], which, in the general case,
would take linear time in the length of the list. We can also use change propagation by
starting with the DDG for map (fn x => x+1) [|2,3,4|], inserting 1 into the input,
and then performing change propagation. Figure 4 (bottom right) illustrates such a change
propagation, highlighting the new and affected parts of the DDG. To insert the new key,
we modify the beginning of the list. This change affects the first recursive map call (more
precisely, the read within), which when evaluated maps the inserted element, as well as the
rest of the input list, essentially re-computing the output. In this case, change propagation
requires linear time. It is not difficult to see that in the general case change propagation
performs poorly with shallow changes because such changes have many descendants that
need to be re-evaluated.

By generalizing these examples, we can show that when averaged over all possible
insertions and deletions (e.g., at the first, second, third location, etc.), change propaga-
tion requires asymptotically linear time. Thus, change propagation yields no asymptotic
improvement in evaluation time compared to re-evaluating the program.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

256 U. A. Acar et al.

datatype ’a list = nil | cons ’a * (’a list)

map :: (a -> b) -> (’a list) -> (’b list)

fun map f l =

memo(

case l of

nil => nil

cons(h,t) => cons(f h, map f t))

Fig. 5. The code for map with memoization.

2.4 Memoization

The classic idea of memoization or function caching offers another approach to reusing
computation by remembering results of function calls and reusing them when possible.
Memoization can be applied automatically by memoizing every function call, but it is
often more efficient to allow the programmer to control memoization by allowing them to
annotate the expressions to be memoized. Figure 5 shows the code for the map function,
where the body of the function is memoized by using the memo keyword. With such mem-
oization, whenever map is called with the same argument, the result can be reused instead
of recomputing it unnecessarily. To support such reuse of results, we store a mapping from
memoized expressions and the values of their free variables (arguments) to the results in
some kind of table data structure that provides fast searches.

Memoization can help in incremental computation in cases where making small changes
to input data requires a comparatively small change in the set of function calls performed;
i.e., when many calls are repeated. As we now describe, as with change propagation, the
effectiveness of memoization depends on how data is changed. More specifically, we show
an interesting duality between memoization and change propagation: memoization per-
forms poorly with deep changes (where change propagation performs well) and performs
well with shallow changes (where change propagation performs poorly).

Let us consider our two examples involving a deep and a shallow change starting with
the evaluation
map (fn x => x+1) [2,3,4].
When we perform this evaluation with memoization, we effectively store the results of the
calls to map with [2,3,4], [3,4], [3,4], [4], and []. Suppose now we change the input
by inserting a new element 5 at the end. As illustrated in Figure 6 (bottom left), when we
evaluate
map (fn x => x+1) [2,3,4,5],
we cannot reuse any of the results except for the empty list case because the inputs will
never match (they will all contain the new element 5). Consider now inserting the new
element 1 at the head of the list. This time, as illustrated in Figure 6 (bottom right), we can
reuse all function calls except for the first call that operates on the new element (1).

By generalizing this example, we can show that memoization performs well for shallow
changes but performs poorly for deep changes. For the map function specifically, we can
show that when averaged over all possible insertions and deletions (e.g., at the first, second,
third location, etc.), memoization requires asymptotically linear time. Thus, memoization
yields no asymptotic improvement in evaluation time compared to re-evaluating an pro-
gram.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 257

\2 3 4

\3 4 5

2 3 4 5 \

2 3 4 5 \

1 \2 3 4

2 3 4 5 \

Fig. 6. (Colour online) Memoization: computation graph (top), deep changes (bottom left), and
shallow changes (bottom right).

2.5 Memoizaing change propagation

As described above, neither change propagation nor memoization alone are effective in en-
suring efficient incremental updates. They are, however, duals in how they perform: change
propagation performs well with deep changes whereas memoization performs well with
shallow changes. This suggests that it might be possible to obtain an effective technique by
using memoization and change propagation in combination.

One way to apply memoization and change propagation would be to use memoization for
shallow changes and change propagation for deep changes. Unfortunately, many changes
are neither deep nor shallow. As an example, imagine inserting a new element in the
middle of the input list. Such a change is not deep because affected nodes can have many
descendant in the call tree. Nor is it shallow because affected nodes can have many ancestor
in the call tree. As another example, consider inserting an element at the head and another
at the end of the list as shown in Figure 8; such a change is also neither deep nor shallow.
Thus, such an orthogonal application of change propagation and memoization does not
provide an efficient approach to computation reuse.

There is another major challenge that must be overcome for memoization and change
propagation to be applied to the same computation: memoization requires purely functional
programming, but change propagation is an imperative algorithm and mutates memory.
The purity assumption is necessary for memoization because otherwise the arguments of
a function do not necessarily determine its result. One way to generalize memoization
would be to take a ‘brute-force’ approach and track all data dependencies of a function
call, including those that are updated imperatively. This approach, however, is not effective
because it requires checking for equality of all stored dependencies when performing a
memo lookup. Such an equality test can require linear time in the size of the reachable data.
To the best our knowledge, there are no known techniques for improving the complexity
of equality checks (in the purely functional setting, there is). Linear-time equality test
introduces a large overhead to computation. For example, when we evaluate map with

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

258 U. A. Acar et al.

datatype ’a modlist’ = nil | cons ’a * (’a modlist’ mod)

datatype ’a modlist = ’a modlist’

fun map (f: a -> b) (l: ’a modlist) =

memo (mod (read l as l’ in

case l of

nil => write nil

cons(h,t) => write (cons(f h, map f t))))

Fig. 7. The code for self-adjusting map with modifiables.

\2 3 4

\3 4 5

2 \3 4 5

3 4 5 6 \

1

2

Fig. 8. (Colour online) Change propagation + memoization: a dynamic dependency graph (top),
and its update.

this approach, many calls to map would require linear time (in the size of the input) just to
compare the arguments because the tail of the list would be accessible via the argument.
Thus, the memoized map function can take linear time even in the case of a perfect match,
wiping out the benefits of result reuse.

To apply memoization and change propagation to the same computation, we integrate
them closely so that they can work together to maximize reuse of results. To apply the
proposed technique, the programmer operates on all changeable data by using primitives
on modifiables, and memoizes desired expressions via a simple memo keyword. Figure 7
shows the code for map. To take advantage of modifiables, we convert the input list into a
modifiable list; to take advantage of memoization, we memoize the body of the function.
Memoizing the body of the function effectively memoizes all recursive calls to map.

To support effective updates under incremental changes to data, we represent computa-
tions with their DDGs and also remember for each memoized expression the DDG of that
expression. Remembering the DDG enables using memoization, even as the memory is
mutated imperatively, by allowing us to adapt reused computations to mutations via change
propagation. As a result, when matching memoized expressions, we can rely on syntactic
or tag/label equality without having to compare the whole of data that the expression may
depend on – more precisely, equality checks are agnostic to the contents of the store or
memory.

As an example, consider the case shown in Figure 8 and suppose that we perform
change propagation after inserting the elements 1 and 5. Change propagation will start by

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 259

re-executing the read inside the first call to map, which will map the new element to
the output and recursively call map on the tail. This recursive call has as its input a list
that is similar to its input in the previous invocation but not quite the same because the
element 5 appears at the end. Our memoization mechanism will still match and reuse
its DDG by matching the (label of) modifiable holding the input list. Since, however,
the input is different than the previous (it has a new tail containing 5), the computation
must be updated.1 We update the reused computation by a recursive invocation of change
propagation on the DDG reused. In the example, change propagation will execute the final
recursive call to map, which will map the final element, reuse the computation for the empty
list, and return. Thus, we have updated the output by performing small local computations
only for the fragments of the computation (highlighted in the figure) affected by the change
regardless of the number of elements in the middle of the list.

3 The language

We describe a language, called AML, that combines the features of an AFL (Acar et al.,
2006) with memoization. The syntax of the language extends that of AFL with memo
constructs for memoizing expressions. The dynamic semantics integrates change propaga-
tion and evaluation to ensure correct reuse of computations under mutations. As explained
before, our results do not rely on typing properties of AML. We therefore omit a type
system but identify a minimal set of conditions under which evaluation is consistent. In
addition to the memoizing and change propagating dynamic semantics, we give a pure
interpretation of AML that provides no reuse of computations.

3.1 Abstract syntax

The abstract syntax of AML is given in Figure 9. We use meta-variables x, y, and z (and
variants) to range over an unspecified set of variables, and meta-variable l (and variants)
to range over a separate, unspecified set of locations – the locations are modifiable refer-
ences. The syntax of AML is restricted to ‘2/3-cps’, or ‘named form’, to streamline the
presentation of the dynamic semantics.

Expressions are classified into three categories: values, stable expressions, and change-
able expressions. Values are constants, variables, locations, and the introduction forms
for sums, products, and functions. The value of a stable expression is not sensitive to
modifications to the inputs whereas the value of a changeable expression may be directly
or indirectly affected by them.

The familiar mechanisms of functional programming are embedded in AML as sta-
ble expressions. Stable expressions include the let construct, the elimination forms for
products and sums, application of stable functions, and the creation of new modifiables.
A stable function is a possibly recursive function whose body is a stable expression.
The application of a stable function, applys(v1,v2), where v1 = funs f (x) is es is a
stable expression. The expression mod ec allocates a modifiable reference and initializes

1 Note that with classical memoization, where we reuse results of function calls, such a reuse would not be
possible.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

260 U. A. Acar et al.

Values v : := () | n | x | l | (v1,v2) | inl v | inr v |
funs f (x) is es | func f (x) is ec

Primitive Operations o : := not | + | - | = | < | . . .

Expression e : := es | ec

Stable Expressions es : := v | o(v1, . . . ,vn) | mod ec | memos es |
applys(v1,v2) | let x = es in e′s |
letx1×x2 = vines |
casevof {inl (x1) ⇒ es ,inr (x2) ⇒ e′s }

Changeable Expressions ec : := write(v) | read v as x in ec | memoc ec |
applyc(v1,v2) | let x = es in ec |
letx1×x2 = vinec |
casevof {inl (x1) ⇒ ec ,inr (x2) ⇒ e′c }

Program p : := es

Fig. 9. The abstract syntax of AML.

its contents by executing the changeable expression ec. Note that the modifiable itself is
stable, even though its contents are subject to change. A memoized stable expression is
written as memos es.

Changeable expressions always execute in the context of an enclosing mod-expression
that provides the implicit target location to which every changeable expression writes (eval-
uation of every changeable expression ends by writing to the target location).
The changeable expression write(v) writes the value v into the target. The expression
read v as x in ec binds the contents of the modifiable v to the variable x, then continues
evaluation of ec. A read is considered changeable because the contents of the modifiable
on which it depends are subject to change. A changeable function is a possibly recursive
function whose body is a changeable expression. A changeable function is stable as a
value. The application of a changeable function is a changeable expression. A memoized
changeable expression is written as memoc ec. The changeable expressions include the let
expression for ordering evaluation and the elimination forms for sums and products. These
differ from their stable counterparts because their bodies consist of changeable expressions.

Figure 10 illustrates the code for map in AML. Since AML is un-typed, the code contains
no typing information. Since the language is un-typed, expressing recursive data structures
such as lists merely by using sum types becomes possible.

3.2 Stores, well-formed expressions, and lifting

Evaluation of an AML expression takes place in the context of a store, written σ (and
variants), defined as a finite map from locations l to values v. We write dom(σ) for the
domain of a store, and σ(l) for the value at location l, provided l ∈ dom(σ). We write
σ [l ← v] to denote the extension of σ with a mapping of l to v. If l is already in the domain
of σ , then the extension replaces the previous mapping,

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 261

funs map (f ,x) is

memo (mod (

read x as x′ in

case x of { inl()⇒ write (inl()),

inry ⇒ let h × t = y in

let h′ = applys (f,h) in

let t ′ = applys (map,(f , t)) in

write(inr(h’,t’))

end end end

}
end))

Fig. 10. The code for map in AML.

σ [l ← v](l′) =
{

v if l = l′

σ(l′) if l �= l′ and l′ ∈ dom(σ)

dom(σ [l ← v]) = dom(σ)∪{l}
We say that an expression e is well-formed in store σ if (a) all locations reachable from

e in σ are in dom(σ) (‘no dangling pointers’), and (b) the portion of σ reachable from e
is free of cycles. If e is well-formed in σ , then we can obtain a ‘lifted’ expression e′ by
recursively replacing every reachable location l with its stored value σ(l). The notion of
lifting will be useful in the formal statement of our main theorems (Section 4).

We use the judgment e,σ wf−→ e′,L to say that e is well-formed in σ , e′ is e lifted in σ ,
and L is the set of locations reachable from e in σ . The rules for deriving such judgments
are shown in Figure 11. Any finite derivation of such a judgment implies well-formedness
of e in σ .

We will use two notational shorthands for the rest of the paper: by writing e ↑ σ or
reach(e,σ) we implicitly assert that there exist a location-free expression e′ and a set of

locations L such that e,σ wf−→ e′,L. The notation e↑σ itself stands for the lifted expression
e′, and reach(e,σ) stands for the set of reachable locations L. It is easy to see that e and
σ uniquely determine e↑σ and reach(e,σ) (if they exist).

3.3 Dynamic semantics

The evaluation judgments of AML (Figures 14 and 15) consist of separate judgments for
stable and changeable expressions. The judgment σ ,e ⇓s v,σ ′,Ts states that the evaluation
of the stable expression e relative to the input store σ yields the value v, the trace Ts (defined
below), and the updated store σ ′. Similarly, the judgment σ , l ← e ⇓c σ ′,Tc states that
evaluation of the changeable expression e relative to the input store σ writes its value to
the target l, and yields the trace Tc together with the updated store σ ′.

Since we do not employ a type system, the evaluation judgment is partial: there are many
terms that cannot be evaluated using the presented judgments. Specifically, ill-typed terms
would be ruled out by a type system ‘get stuck’ and have no evaluation derivation.

A trace records the adaptive aspects of evaluation. Like the expressions whose evalua-
tions they describe, traces come in stable and changeable varieties. The abstract syntax of

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

262 U. A. Acar et al.

v ∈ {(),n,x}

v,σ
wf−→ v, / 0

l ∈ dom(σ) σ (l),σ wf−→ v,L

l,σ
wf−→ v,{l}∪L

v1,σ
wf−→ v′1,L1 v2,σ

wf−→ v′2,L2

(v1,v2),σ
wf−→ (v′1,v

′
2),L1 ∪L2

v,σ
wf−→ v′,L

inl v,σ
wf−→ inl v′,L

v,σ
wf−→ v′,L

inr v,σ
wf−→ inr v′,L

e,σ
wf−→ e′,L

fun{s,c} f (x) is e,σ
wf−→ fun{s,c} f (x) is e′,L

v1,σ
wf−→ v′1,L1 · · · vn,σ

wf−→ v′n,Ln

o(v1, . . . ,vn),σ
wf−→ o(v′1, . . . ,v

′
n),L1 ∪·· ·∪Ln

e,σ
wf−→ e′,L

memo{s,c} e,σ
wf−→ memo{s,c} e′,L

v1,σ
wf−→ v′1,L1 v2,σ

wf−→ v′2,L2

apply{s,c}(v1,v2),σ
wf−→ apply{s,c}(v′1,v

′
2),L1 ∪L2

e1,σ
wf−→ e′1,L e2,σ

wf−→ e′2,L
′

let x = e1 in e2,σ
wf−→ let x = e′1 in e′2,L∪L′

v,σ
wf−→ v′,L e,σ

wf−→ e′,L′

letx1×x2 = vine,σ
wf−→ letx1×x2 = v′ ine′,L∪L′

v,σ
wf−→ v′,L e1,σ

wf−→ e′1,L1 e2,σ
wf−→ e′2,L2

casevof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 },σ
wf−→

casev′ of {inl (x1) ⇒ e′1 ,inr (x2) ⇒ e′2 },L∪L1 ∪L2

ec,σ
wf−→ e′c,L

mod ec,σ
wf−→ mod e′c,L

v,σ
wf−→ v′,L

write(v),σ
wf−→ write(v′),L

v,σ
wf−→ v′,L ec,σ

wf−→ e′c,L
′

read v as x in ec,σ
wf−→ read v′ as x in e′c,L∪L′

Fig. 11. Well-formed expressions and lifts.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 263

traces is given by the following grammar:

Stable Ts : := ε | mod l ← Tc | let Ts Ts

Changeable Tc : := write v | let Ts Tc | readl→x=v.e Tc

A stable trace records the sequence of allocations of modifiables that arise during the
evaluation of a stable expression. The trace mod l ← Tc records the allocation of the
modifiable l and the trace of the initialization code for l. The trace let Ts T′s results
from evaluating a let expression in stable mode, the first trace resulting from the bound
expression, and the second from its body.

A changeable trace has one of the three forms. A write, write v, records the storage
of the value v in the target. A sequence let Ts Tc records the evaluation of a let expres-
sion in changeable mode, with Ts corresponding to the bound stable expression, and Tc

corresponding to its body. A read readl→x=v.e Tc specifies the location read (l), the value
read (v), the context of use of its value (x.e), and the trace (Tc) of the remainder of the
evaluation within the scope of that read. A read-trace records the dependency of the target
on the value of the location read. The context x.e specifies the expression that depends on
the contents of the location, the sources; change propagation re-evaluates the expressions
when the sources change.

We define the set of allocated locations of a trace T, denoted alloc(T), as follows:

alloc(ε) = /0
alloc(write v) = /0
alloc(mod l ← Tc) = {l}∪alloc(Tc)
alloc

(
let T1 T2

)
= alloc

(
T1

)
∪alloc

(
T2

)
alloc

(
readl→x=v.e Tc

)
= alloc(Tc)

For example, if Tsample = let (mod l1 ← write 2) (readl1→x=2.e write 3), then

alloc(Tsample) = {l1}.

3.3.1 Well-formedness, lifts, and primitive operations

We require that primitive operations preserve well-formedness. In other words, when a
primitive operation is applied to some arguments, it does not create dangling pointers or
cycles in the store, nor does it extend the set of locations reachable from the argument.
Formally, this property can be stated as follows:

If ∀i.vi,σ
wf−→ v′i,Li and v = o(v1, . . . ,vn),

then v,σ wf−→ v′,L such that L ⊆ ⋃n
i=1 Li.

Moreover, primitive operations must be insensitive to the identity of locations. In the case
of primitive operations we formalize this by postulating that they commute with lifts:

If ∀i.vi,σ
wf−→ v′i,Li and v = o(v1, . . . ,vn),

then v,σ wf−→ v′,L such that v′ = o(v′1, . . . ,v
′
n).

In short, this can be stated as o(v1 ↑σ , . . . ,vn ↑σ) = (o(v1, . . . ,vn))↑σ .
For example, all primitive operations that operate only on non-location values preserve

well-formedness and commute with lifts.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

264 U. A. Acar et al.

σ ,es ⇓s v,σ ′,T
alloc(T)∩reach(es,σ) =0

σ ,es ⇓sok v,σ ′,T
(valid/s)

σ , l ← ec ⇓c σ ′,T
alloc(T)∩reach(ec,σ) =
l �∈ reach(ec,σ)∪alloc(T)

σ , l ← ec ⇓cok σ ′,T
(valid/c)

/
0/

Fig. 12. Valid evaluations.

3.3.2 Valid evaluations

We consider only evaluations of well-formed expressions e in stores σ , i.e., those e and σ
where e↑σ and reach(e,σ) are defined. Well-formedness is critical for proving correct-
ness. First, the requirement that the reachable portion of the store is acyclic ensures that
the approach is consistent with purely functional programming. Second, the requirement
that all reachable locations are in the store ensures that evaluations do not cause disaster
by allocating a ‘fresh’ location that happens to be reachable. We note that it is possible
to omit the well-formedness requirement by giving a type system and a type safety proof.
This approach limits the applicability of the theorem to only type-safe programs. Because
of the imperative nature of the dynamic semantics, a type safety proof for AML is also
complicated. We therefore choose to formalize well-formedness separately.

Our approach requires showing that evaluation preserves well-formedness. To establish
well-formedness inductively, we define valid evaluations. We say that an evaluation of an
expression e in the context of a store σ is valid if

1. e is well-formed in σ ,
2. the locations allocated during evaluation are disjoint from locations that are initially

reachable from e (i.e., those that are in reach(e,σ)), and
3. the target location of a changeable evaluation is contained neither in

reach(e,σ) nor in the locations allocated during evaluation.

We use ⇓sok instead of ⇓s and ⇓cok instead of ⇓c to indicate valid stable and
changeable evaluations, respectively. The rules for deriving valid evaluation judgments are
shown in Figure 12.

3.3.3 The oracle

The dynamic semantics for AML uses an oracle to model memoization. Figure 13 shows
the evaluation rules for the oracle. For a stable or a changeable expression e, we write an
oracle miss as σ ,e ↑s or σ , l ← ec ↑c, respectively. The treatment of oracle hits depends
on whether the expression is stable or changeable. For a stable expression, it returns the
value and the trace of a valid evaluation of the expression in some store. For a changeable
expression, the oracle returns a trace of a valid evaluation of the expression in some store
with some destination. Note that the target location that is part of the evaluation of the
changeable expression is dropped. This enables reuse of a changeable computation in
the context of another target location. This is important for efficiency. Indeed, otherwise,
changeable computations can only be used in the context of the same target location. For

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 265

σ ,es ↑s
(miss/s)

σ0,es ⇓sok v,σ ′
0,T

σ ,es ↓s v,T
(hit/s)

σ ,ec ↑c
(miss/c)

σ0, l ← ec ⇓cok σ ′
0,T

σ ,ec ↓c T
(hit/c)

Fig. 13. The oracle.

example, a sequence of tail recursive function calls may have to be repeated when the target
location does not match.

The key difference between the oracle and the conventional approaches to memoization
is that the oracle is free to return the trace (and the value for stable expressions) of a
computation that is consistent with any store – not necessarily with the current store. Since
the evaluation whose results are being returned by the oracle can take place in a different
store than the current store, the trace and the value (if any) returned by the oracle cannot
be incorporated into the evaluation directly. Instead, the dynamic semantics performs a
change propagation on the trace returned by the oracle before incorporating it into the
current evaluation (this is described below).

3.3.4 Stable evaluation

Figure 14 shows the evaluation rules for stable expressions. Most rules are standard for a
store-passing semantics except that they also return traces. The interesting rules are those
for let, mod, and memo.

The let rule sequences evaluation of its two expressions, performs binding by substi-
tution, and yields a trace consisting of the sequential composition of the traces of its sub-
expressions. For the traces to be well-formed, the rule requires that they allocate disjoint
sets of locations. The mod rule allocates a location l, adds it to the store, and evaluates
its body (a changeable expression) with l as the target. To ensure that l is not allocated
multiple times, the rule requires that l is not allocated in the trace of the body. Note that the
allocated location does not need to be fresh – it can already be in the store, i.e., l ∈ dom(σ).
Since every changeable expression ends with a write, it is guaranteed that an allocated
location is written before it can be read.

The memo rule consults an oracle to determine if its body should be evaluated or not. If
the oracle returns a miss, then the body is evaluated as usual and the value, the store, and
the trace obtained via evaluation are returned. If the oracle returns a hit, then it returns a
value v and a trace T. To adapt the trace to the current store σ , the evaluation performs
a change propagation on T in σ and returns the value v returned by the oracle, and the
trace and the store returned by change propagation. Note that since change propagation
can change the contents of the store, it can also indirectly change the (lifted) contents of
v. As an example, consider performing a deep change and updating the output as shown
in Figure 4. Change propagation will only evaluate several calls deep in the DDG. The re-
evaluated calls will update the list by writing to modifiables embedded deep in the output
list, updating consequently the output list, i.e., its lifted value.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

266 U. A. Acar et al.

σ ,v ⇓s v,σ ,ε
(value)

v = app(o,(v1, . . . ,vn))

σ ,o(v1, . . . ,vn) ⇓s v,σ ,ε
(prim.’s)

l �∈ alloc(T) σ , l ← e ⇓c σ ′,T

σ ,mod e ⇓s l,σ ′,mod l ← T
(mod)

σ ,e ↑s
σ ,e ⇓s v,σ ′,T

σ ,memos e ⇓s v,σ ′,T
(memo/miss)

σ ,e ↓s v,T

σ ,T
s
� σ ′,T′

σ ,memos e ⇓s v,σ ′,T′
(memo/hit)

v1 = funs f (x) is e σ , [v1/ f ,v2/x] e ⇓s v,σ ′,T

σ ,applys(v1,v2) ⇓s v,σ ′,T
(apply)

σ ,e1 ⇓s v1,σ1,T1 σ1, [v1/x] e2 ⇓s v2,σ2,T2 alloc T1

)
∩alloc T2

)
=

σ ,let x = e1 in e2 ⇓s v2,σ2,let T1 T2

(let)

σ , [v1/x1,v2/x2] e ⇓s v,σ ′,T

σ ,letx1×x2 = (v1,v2)ine ⇓s v,σ ′,T
(let×)

σ , [v/x1] e1 ⇓s v′,σ ′,T

σ ,caseinl vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓s v′,σ ′,T
(case/inl)

σ , [v/x2] e2 ⇓s v′,σ ′,T

σ ,caseinr vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓s v′,σ ′,T
(case/inr)

0/

Fig. 14. Evaluation of stable expressions.

3.3.5 Changeable evaluation

Figure 15 shows the evaluation rules for changeable expressions. Evaluations in changeable
mode perform destination passing. The let, memo, and apply rules are similar to the
corresponding rules in stable mode except that the body of each expression is evaluated in
changeable mode. The read expression substitutes the value stored at σ(l′) (the location
being read) for the bound variable x in e and continues evaluation in changeable mode. A
read is recorded in the trace along with the value read, the variable bound, and the body
of the read. A write simply assigns its argument to the target in the store. The evaluation
of memoized changeable expressions is similar to that of stable expressions.

3.3.6 Change propagation

Figure 16 shows the rules for change propagation. As with evaluation rules, change-
propagation rules are partitioned into stable and changeable, depending on the kind of the

trace being processed. The stable change-propagation judgment σ ,Ts
s
� σ ′,T′s states that

change propagating into the stable trace Ts in the context of the store σ yields the store σ ′

and the stable trace T′s. The changeable change-propagation judgment σ , l ← Tc
c
� σ ′,T′c

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 267

σ , l ← write(v) ⇓c σ [l ← v],write v
(write)

σ , l ← [σ (l′)/x] e ⇓c σ ′,T

σ , l ← read l′ as x in e ⇓c σ ′,readl′→x=σ (l′).e T
(read)

σ ,e ↑c
σ ,e ⇓c σ ′,T

σ , l ← memoc e ⇓c σ ′,T
(memo/miss)

σ ,e ↓c T

σ , l ← T
c
� σ ′,T′

σ , l ← memoc e ⇓c σ ′,T′
(memo/hit)

v1 = func f (x) is e σ , l ← [v1/ f ,v2/x] e ⇓c σ ′,T

σ , l ← applyc(v1,v2) ⇓c σ ′,T
(apply)

σ ,e1 ⇓s v,σ1,T1 σ1, l ← [v/x] e2 ⇓c σ2,T2 alloc T1

)
∩alloc T2

)
=

σ , l ← let x = e1 in e2 ⇓c σ2,let T1 T2

(let)

σ , l ← [v1/x1,v2/x2] e ⇓c σ ′,T

σ , l ← letx1×x2 = (v1,v2)ine ⇓c σ ′,T
(let×)

σ , l ← [v/x1] e1 ⇓c σ ′,T

σ , l ← caseinl vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓c σ ′,T
(case/inl)

σ , l ← [v/x2] e2 ⇓c σ ′,T

σ ,caseinr vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓c σ ′,T
(case/inr)

0/

Fig. 15. Evaluation of changeable expressions.

states that change propagation into the changeable trace Tc with target l in the context of
the store σ yields the changeable trace T′c and the store σ ′. The change propagation rules
mimic evaluation by either skipping over the parts of the trace that remain the same in the
given store or by re-evaluating the reads that read locations whose values are different in
the given store. The rules are labeled with the expression forms they mimic.

If the trace is empty, change propagation returns an empty trace and the same store.
The mod rule recursively propagates into the trace T of the body to obtain a new trace
T′ and returns a trace where T is substituted by T′ under the condition that the target l
is not allocated in T′. This condition is necessary to ensure the allocation integrity of the
returned trace. The stable let rule propagates into its two parts, T1 and T2, recursively and
returns a trace by combining the resulting traces, T′1 and T′2, provided that the resulting
trace ensures allocation integrity. The write rule performs the recorded write in the given
store by extending the target with the value recorded in the trace. This is necessary to
ensure that the result of a reused changeable computation is recorded in the new store. The
read rule depends on whether the contents of the location l′ being read are the same in
the store as the value v recorded in the trace. If the contents are the same as in the trace,
then change propagation proceeds into the body T of the read and the resulting trace is
substituted for T. Otherwise, the body of the read is evaluated with the specified target.
Note that this makes evaluation and change propagation mutually recursive – evaluation

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

268 U. A. Acar et al.

σ ,ε
s
� σ ,ε

(empty)

l �∈ alloc(T′)

σ , l ← T
c
� σ ′,T′

σ ,mod l ← T
s
� σ ′,mod l ← T′

(mod)
σ , l ← write v

c
� σ [l ← v],write v

(write)

σ ,T1
s
� σ ′,T′1

σ ′,T2
s
� σ ′′,T′2

alloc T′1
)
∩alloc T′2

)
=

σ ,let T1 T2
s
� σ ′′,let T′1 T

′
2

(let/s)

σ ,T1
c
� σ ′,T′1

σ ′, l ← T2
c
� σ ′′,T′2

alloc T′1
)
∩alloc T′2

)
=

σ , l ← (let T1 T2)
c
� σ ′′,(let T′1 T

′
2)

(let/c)

σ (l′) = v σ , l ← T
c
� σ ′,T′

σ , l ← readl′→v=x.e T
c
� σ ′,readl′→v=x.e T

′
(read/no ch.)

σ (l′) �= v σ , l ← [σ (l′)/x]e ⇓c σ ′,T′

σ , l ← readl′→x=v.e T
c
� σ ′,readl′→x=σ(l′).e T

′
(read/ch.)

0/ 0/

Fig. 16. Change-propagation judgments.

calls change propagation in the case of an oracle hit. The changeable let rule is similar to
the stable let.

Most change-propagation judgments perform some consistency checks or otherwise
propagate forward. Only when change propagation finds that the a location read has
changed, does it rerun the body of the read expression (a changeable computation) and
replace the corresponding trace.

3.3.7 Evaluation invariants

Valid evaluations of stable and changeable expressions satisfy the following invariants:

1. All locations allocated in the trace are also allocated in the result store, i.e.,
if σ ,e ⇓sok v,σ ′,T or σ , l ← e ⇓cok σ ′,T, then dom(σ ′) = dom(σ)∪alloc(T).

2. For stable evaluations, any location whose content changes is allocated during that
evaluation, i.e., if σ ,e ⇓sok v,σ ′,T and σ ′(l) �= σ(l), then l ∈ alloc(T).

3. For changeable evaluations, a location whose content changes is either the target or
gets allocated during evaluation, i.e, if σ , l′ ← e ⇓cok σ ′,T and σ ′(l) �= σ(l), then
l ∈ alloc(T)∪{l′}.

3.3.8 Memo-free evaluations

The oracle rules introduce non-determinism into the dynamic semantics. Lemmas 5 and
6 in Section 4 express the fact that this non-determinism is harmless: change propagation

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 269

will correctly update all answers returned by the oracle and make everything look as if
the oracle never produced any answer at all (meaning that only memo/miss rules were
used).

We write σ ,e ⇓s/0 v,σ ′,T or σ , l ← e ⇓c/0 σ ′,T if there is a derivation for σ ,e ⇓s v,σ ′,
T or σ , l ← e ⇓c σ ′,T, respectively, that does not use any memo/hit rule. We call such
an evaluation memo-free. We use ⇓s/0,ok in place of ⇓sok and ⇓c/0,ok in place of ⇓cok to
indicate that a valid evaluation is also memo-free.

3.4 Deterministic, purely functional semantics

By ignoring memoization and change propagation, we can give an alternative, purely
functional semantics for location-free AML programs, which we present in Figure 17. This
semantics gives a store-free, pure, deterministic interpretation of AML that provides for no
computation reuse. Under this semantics, both stable and changeable expressions evaluate
to values, memo, mod, and write are simple identities, and read acts as another binding
construct. Our correctness result states that the pure interpretation of AML yields results
that are the same (up to lifting) as those obtained by AML’s dynamic semantics (Section 4).

3.5 The map example

In Section 2 we used the map example to discuss the strengths and weaknesses of change
propagation alone and described how our proposed techniques address these limitations.
We briefly describe the relationship between the informal exposition used ‘there’ in Sec-
tion 2, and the formal treatment we presented ‘here’ in this section. The traces presented
here make precise dynamic dependence graphs illustrated there. The change-propagation
judgments presented here make precise the change-propagation algorithm outlined there.
The memoization oracle presented here makes precise the idea of memoization returning
computations as their DDGs instead of just results by defining the oracle to return a trace
not the result of an evaluation. The fact that the oracle does not care for the current store
and just looks for a trace in an arbitrary store captures the idea that we are in an imperative
setting, permitting the contents of the store to change.

As an example, consider evaluating map [2,3,4] and map [1,2,3,4,5] using our
self-adjusting semantics as shown in Figure 8. Since the lists are actually represented
as modifiable lists, and since map recursively walks down the list, when we call map
[2,3,4,5] the oracle can return the trace for the evaluation map [2,3,4] because the
expressions actually match up to the contents of the last cell. The trace returned by the
oracle corresponds to the DDG returned by the memoization mechanism described in the
Overview section. Next, the semantics fires change propagation on the reused trace in the
context of the current store. Since the modifiable holding the last element is changed,
change propagation fires map [5] recursively, mapping 5 in the output, and recursively
calling map [], which would be matched trivially by the oracle. Since there are no further
changes, the semantics yields the updated trace and the updated memory which contains
the output for the changed list.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

270 U. A. Acar et al.

v �= l

v ⇓sdet v
(value)

v = app(o,(v1, . . . ,vn))

o(v1, . . . ,vn) ⇓sdet v
(prim.)

e ⇓cdet v

mod e ⇓sdet v
(mod)

e ⇓sdet v

memos e ⇓sdet v
(memo)

(v1 = funs f (x) is e)
[v1/ f ,v2/x] e ⇓sdet v

applys(v1,v2) ⇓sdet v
(apply)

e1 ⇓sdet v1

[v1/x] e2 ⇓sdet v2

let x = e1 in e2 ⇓sdet v2

(let)
[v1/x1,v2/x2] e ⇓sdet v

letx1×x2 = (v1,v2)ine ⇓sdet v
(let×)

[v/x1] e1 ⇓sdet v′

caseinl vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓sdet v′
(case/inl)

[v/x2] e2 ⇓sdet v′

caseinr vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓sdet v′
(case/inr)

write(v) ⇓cdet v
(write)

[v/x] e ⇓cdet v′

read v as x in e ⇓cdet v′
(read)

e ⇓cdet v

memoc e ⇓cdet v
(memo)

v1 = func f (x) is e
[v1/ f ,v2/x] e ⇓cdet v

applyc(v1,v2) ⇓cdet v
(apply)

e1 ⇓sdet v1

[v1/x] e2 ⇓cdet v2

let x = e1 in e2 ⇓cdet v2

(let)
[v1/x1,v2/x2] e ⇓cdet v

letx1×x2 = (v1,v2)ine ⇓cdet v
(let×)

[v/x1] e1 ⇓cdet v′

caseinl vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓cdet v′
(case/inl)

[v/x2] e2 ⇓cdet v′

caseinr vof {inl (x1) ⇒ e1 ,inr (x2) ⇒ e2 } ⇓cdet v′
(case/inr)

Fig. 17. Purely functional semantics of stable (top) and changeable (bottom) expressions.

4 Consistency and correctness

We now state consistency and correctness theorems for AML and outline their proofs in
terms of several main lemmas. As depicted in Figure 18, consistency (Theorem 1) is a
consequence of correctness (Theorem 2).

4.1 Main theorems

Consistency uses structural equality based on the notion of lifts (see Section 3.2) to com-
pare the results of two potentially different evaluations of the same AML program under its

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 271

If σ ,e ⇓sok v1,σ1,T1
then σ ,e ⇓s/0,ok v1,σ1,T1

Lemma 5

If s,e ⇓s/0,ok v1,σ1,T1
then (e↑σ) ⇓sdet (v1 ↑σ1)

Lemma 3

�

Theorem 2

If σ ,e ⇓sok v2,σ2,T2
then σ ,e ⇓s/0,ok v2,σ2,T2

Lemma 5

If σ ,e ⇓s/0,ok v2,σ2,T2
then (e↑σ) ⇓sdet (v2 ↑σ2)

Lemma 3

�

Theorem 2

But since ⇓sdet is deterministic,
it follows that (v1 ↑σ1) = (v2 ↑σ2)

�
��

Theorem 1

Fig. 18. The structure of the proofs.

nondeterministic semantics. Correctness, on the other hand, compares one such evaluation
to a pure, functional evaluation. It justifies the claim that even with stores, memoization,
and change propagation, AML is essentially a purely functional language.

Theorem 1 (Consistency)
If σ ,e ⇓sok v1,σ1,T1 and σ ,e ⇓sok v2,σ2,T2, then v1 ↑σ1 = v2 ↑σ2.

Theorem 2 (Correctness)
If σ ,e ⇓sok v,σ ′,T, then (e ↑ σ) ⇓sdet (v ↑ σ ′).

Recall that by our convention the use of the notation v↑σ implies well-formedness of
v in σ . Therefore, part of the statement of consistency and correctness is the preservation
of well-formedness during evaluation, and the inability of AML programs to create cyclic
memory graphs.

4.2 Proof outline

The consistency theorem is proved in two steps. First, Lemmas 3 and 4 state that consis-
tency is true in the restricted setting where all evaluations are memo-free.

Lemma 3 (purity/st.)
If σ ,e ⇓s/0,ok v,σ ′,T, then (e ↑ σ) ⇓sdet (v ↑ σ ′).

Lemma 4 (purity/ch.)
If σ , l ← e ⇓c/0,ok σ ′,T, then (e ↑ σ) ⇓cdet (l ↑ σ ′).

Second, Lemmas 5 and 6 state that for any evaluation there is a memo-free counterpart
that yields an identical result and has identical effects on the store. Note that this is
stronger than saying that the memo-free evaluation is ‘equivalent’ in some sense (e.g.,
under lifts). The statements of these lemmas are actually even stronger since they include a
‘preservation of well-formedness’ statement. Preservation of well-formedness is required
in the inductive proof.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

272 U. A. Acar et al.

Lemma 5 (memo-freedom/st.)
If σ ,e ⇓sok v,σ ′,T, then σ ,e ⇓s/0 v,σ ′,T where reach(v,σ ′) ⊆ reach(e,σ)∪alloc(T).

Lemma 6 (memo-freedom/ch.)
If σ , l ← e ⇓cok σ ′,T, then σ , l ← e ⇓c/0 σ ′,T where reach(σ ′(l),σ ′) ⊆ reach(e,σ)∪
alloc(T).

The proof for Lemmas 5 and 6 proceeds by simultaneous induction over the expression
e. It is outlined in far more detail in Section 5. Both lemmas state that if there is a well-
formed evaluation leading to a store, a trace, and a result (the value v in the stable lemma,
or the target l in the changeable lemma), the same result (which will be well-formed
itself) is obtainable by a memo-free run. Moreover, all locations reachable from the result
were either reachable from the initial expression or allocated during the evaluation. These
conditions help to re-establish well-formedness in inductive steps.

The lemmas are true, thanks to a key property of the dynamic semantics: allocated
locations need not be completely ‘fresh’ in the sense that they may be in the current store
as long as they are neither reachable from the initial expression nor get allocated multiple
times. This means that a location that is already in the store can be chosen for reuse by
the mod expression (Figure 14). To see why this is important, consider as an example the
expression: memos (mod (write(3))) in σ . Suppose now that the oracle returns the value l
and the trace T0: σ0,mod (write(3)) ⇓s l,σ ′

0,T0. Even if l ∈ dom(σ), change propagation
will simply update the store as σ [l ← 3] and return l. In a memo-free evaluation of the same
expression the oracle misses, and mod must allocate a location. Thus, if the evaluation of
mod were restricted to using fresh locations only, it would allocate some l′ �∈ dom(σ) and
return that. But since l ∈ dom(σ), l �= l′.

5 The proofs

This section presents a proof sketch for four memo-elimination lemmas as well as two
lemmas comparing AML’s dynamic semantics with the pure semantics (Section 4). We
give a detailed analysis for the most difficult cases. These proofs have all been formalized
and machine-checked in Twelf (see Section 6).

5.1 Proofs for memo-elimination

Informally speaking, the proofs for Lemmas 5 and 6, as well as Lemmas 8 and 9, all
proceed by simultaneous induction on the derivations of the respective result evaluation
judgments. The imprecision in this statement stems from the fact that, as we will see, there
are instances where we use the induction hypothesis on something that is not really a sub-
derivation of the given derivation. For this reason, a full formalization of the proof defines
a metric on derivations which demonstrably decreases on each inductive step. Section 6
discusses the Twelf formalization in more detail.

5.1.1 Substitution

We will frequently appeal to the following substitution lemma. It states that
well-formedness and lifts of expressions are preserved under substitution.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 273

Lemma 7 (Substitution)

If e,σ wf−→ e′,L and v,σ wf−→ v′,L′, then [v/x] e,σ wf−→ [v′/x] e′,L′′ with L′′ ⊆ L∪L′.

The proof of the lemma proceeds by induction on the structure of e.

5.1.2 Hit-elimination lemmas

Since the cases for the memo/hit rules involve many sub-cases, it is instructive to separate
these out into separate lemmas.

Lemma 8 (hit-elimination/stable)

If σ0,e ⇓sok v,σ ′
0,T0 and σ ,T0

s
� σ ′,T where reach(e,σ)∩alloc(T) = /0,

then σ ,e ⇓s/0 v,σ ′,T with reach(v,σ ′) ⊆ reach(e,σ)∪alloc(T).

Lemma 9 (hit-elimination/changeable)

If σ0, l0 ← e ⇓cok σ ′
0,T0 and σ , l ← T0

c
� σ ′,T where reach(e,σ)∩ alloc(T) = /0 and

l �∈ reach(e,σ)∪alloc(T),
then σ , l ← e ⇓c/0 σ ′,T with reach(σ ′(l),σ ′) ⊆ reach(e,σ)∪alloc(T).

5.1.3 Proof sketch for Lemma 5 (stable memo-freedom)

For the remainder of the current section we will ignore the added complexity caused by
the need for a decreasing metric on derivations. Here is a sketch of the cases that need to
be considered in the part of the proof that deals with Lemma 5.

• value: Since the expression itself is the value, with the trace being empty, this case
is trivial.

• primitives: The case for primitive operations goes through straightforwardly using
preservation of well-formedness.

• mod: Given σ ,mod e ⇓sok l,σ ′,mod l ← T we have

reach(mod e,σ)∩alloc(mod l ← T) = /0.

This implies that l �∈ reach(mod e,σ). By the evaluation rule mod it is also true that
σ ,e ⇓c σ ′,T and l �∈ alloc(T). By definition of reach and alloc we also know
that reach(e,σ)∩alloc(T) = /0, implying σ ,e ⇓cok σ ′,T.
By induction (using Lemma 6) we get σ , l ← e ⇓c/0 σ ′,T with reach(σ ′(l),σ ′) ⊆
reach(e,σ)∪alloc(T). Since l is the final result, we find that

reach
(
l,σ ′) = reach

(
σ ′(l),σ ′)∪{l}

⊆ reach(e,σ)∪alloc(T)∪{l}
= reach(e,σ)∪alloc(mod l ← T) .

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

274 U. A. Acar et al.

• memo/hit: Since the result evaluation is supposed to be memo-free, there is really
no use of the memo/hit rule. However, a memo/miss in the memo-free trace can be
the result of eliminating a memo/hit in the original run. We refer to this situation
here, which is really the heart of the matter: use of the memo/hit rule for which we
have to show that we can eliminate it in favor of some memo-free evaluation. This
case has been factored out as a separate lemma (Lemma 8), which we can use here
inductively.

• memo/miss: The case of a retained memo/miss is completely straightforward, using
the induction hypothesis (Lemma 5) on the subexpression e in mod e.

• let: The difficulty here is to establish that the second part of the evaluation is valid.
Given

σ ,let x = e1 in e2 ⇓sok v2,σ
′′,let T1 T2

we have L∩alloc
(
let T1 T2

)
= /0

where L = reach
(
let x = e1 in e2,σ

)
.

By the evaluation rule let it is the case that σ ,e1 ⇓s v1,σ
′,T1 where alloc

(
T1

)
⊆

alloc(T) . Well-formedness of the whole expression implies well-formedness of
each of its parts, so reach

(
e1,σ

)
⊆ L and reach

(
e2,σ

)
⊆ L. This means that

reach
(
e1,σ

)
∩alloc

(
T1

)
= /0, so σ ,e1 ⇓sok v1,σ

′,T1. Using the induction hypoth-
esis (Lemma 5) this implies

σ ,e1 ⇓s/0 v1,σ
′,T1

and reach
(
v1,σ

′) ⊆ reach
(
e1,σ

)
∪alloc

(
T1

)
.

Since reach
(
e2,σ

)
⊆ L, we have reach

(
e2,σ

)
∩alloc

(
T1

)
= /0. Store σ ′ is equal

to σ up to alloc
(
T1

)
, so reach

(
e2,σ

)
= reach

(
e2,σ

′). Therefore, by substitution
(Lemma 7) we get

reach
(
[v1/x] e2,σ

′) ⊆ reach
(
e2,σ

′)∪reach
(
v1,σ

′)
⊆ reach

(
e2,σ

)
∪reach

(
v1,σ

′)
⊆ reach

(
e2,σ

)
∪reach

(
e1,σ

)
∪alloc

(
T1

)
= L∪alloc

(
T1

)

Since alloc
(
T2

)
is disjoint from both L and alloc

(
T1

)
, this means that

σ ′, [v1/x] e2 ⇓sok v2,σ
′′,T2. Using the induction hypothesis (Lemma 5) for the sec-

ond time, we get

σ ′, [v1/x] e2 ⇓s/0 v2,σ
′′,T2,

so by definition

σ ,let x = e1 in e2 ⇓s/0 v2,σ
′′,let T1 T2.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 275

It is then also true that

reach
(
v2,σ

′′) ⊆ reach
(
[v1/x] e2,σ

′)∪alloc
(
T2

)
⊆ L∪alloc

(
T1

)
∪alloc

(
T2

)
= L∪alloc

(
let T1 T2

)
,

which concludes the argument.

The remaining cases are all followed by a straightforward application of Lemma 7
(substitution), followed by the use of the induction hypothesis (Lemma 5).

5.1.4 Proof sketch for Lemma 6 (changeable memo-freedom)

• write: Given σ , l ← write(v) ⇓cok σ [l ← v],write v we clearly also have σ , l ←
write(v) ⇓c/0 σ [l ← v],write v. First we need to show that σ ′(l) is well-formed
in s′ = σ [l ← v]. This is true because σ ′(l) = v and l is not reachable from v in
σ , so the update to l cannot create a cycle. Moreover, this means that the locations
reachable from v in σ ′ are the same as the ones reachable in σ , i.e., reach(v,σ) =
reach(v,σ ′). Since nothing is allocated, alloc(write v) = /0, it follows that
reach(σ ′(l),σ ′) ⊆ reach(v,σ)∪alloc(write v).

• read: For the case of σ , l ← read l′ as x in e ⇓cok σ ′,T we observe that by definition
of well-formedness σ(l′) is also well-formed in σ . From here the proof proceeds
by an application of the substitution lemma, followed by the use of the induction
hypothesis (Lemma 6).

• memo/hit: Again, this is the case of a memo/miss which is the result of eliminating
the presence of a memo/hit in the original evaluation. Like in the stable setting, we
have factored this out as a separate lemma (Lemma 9).

• memo/miss: As before, the case of a retained use of memo/miss is handled by the
straightforward use of the induction hypothesis (Lemma 6).

• let: The proof for the let case in the changeable setting is tedious but straightforward
and proceeds along the lines of the proof for the let case in the stable setting.
Lemma 5 is used inductively for the first sub-expression, Lemma 6 for the second
(after establishing validity using the substitution lemma).

The remaining cases follow the application of the substitution lemma and the use of the
induction hypothesis (Lemma 6).

5.1.5 Proof of Lemma 8 (stable hit-elimination)

• value: Immediate.

• primitives: Immediate.

• mod: The case of mod requires some attention, since the location being allocated
may already be present in σ , a situation which, however, is tolerated by our relaxed
evaluation rule for mod e. We show the proof in detail, using the following calcu-
lations, which established the conclusions (lines (16,19)) from the preconditions

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

276 U. A. Acar et al.

(lines (1,2,3)):

(1) σ0,mod e ⇓sok l,σ ′
0,mod l ← T0

(2) σ ,mod l ← T0
s
� σ ′,mod l ← T

(3) reach(e,σ)∩alloc(T) = /0

l �∈ alloc(T)∪reach(e,σ)

(4) by (1) σ0, l ← e ⇓c σ ′
0,T0

(5) by (1) alloc
(
mod l ← T0

)
∩reach

(
e,σ0

)
= /0

(6) by (5) alloc
(
T0

)
∩reach

(
e,σ0

)
= /0

(7) by (5) l �∈ reach
(
e,σ0

)
(8) by (1),mod l �∈ alloc

(
T0

)
(9) by (4,6,7,8) σ0, l ← e ⇓cok σ ′

0,T0

(10) by (2),mod σ , l ← T0
c
� σ ′,T

(11) by (3) reach(e,σ)∩alloc(T) = /0

(12) by (3) l �∈ reach(e,σ)

(13) by (3) l �∈ alloc(T)

(14) by (9−13), IH σ , l ← e ⇓c/0 σ ′,T

(15) by (9−13), IH reach(σ ′(l),σ ′) ⊆ reach(e,σ)∪alloc(T)

(16) by (8,14),mod σ ,mod e ⇓s/0 l,σ ′,mod l ← T

(17) by (7,8,15) l �∈ reach(σ ′(l),σ ′)

(18) by (17) reach(l,σ ′) = reach(σ ′(l),σ ′)∪{l}

(19) by (15,18)
reach(l,σ ′) ⊆ reach(e,σ)∪alloc(T)∪{l}

= reach(e,σ)∪alloc(mod l ← T)

• memo/hit: This case is proved by two consecutive applications of the induction
hypothesis, one time to obtain a memo-free version of the original evaluation
σ0,e ⇓s/0 v,σ ′

0,T0, and then starting from that the memo-free final result.
It is here that the straightforward induction on the derivation breaks down, since the
derivation of the memo-free version of the original evaluation is not a sub-derivation
of the overall derivation. In the formalized and proof-checked version (Section 6)
this is handled using an auxiliary metric on derivations.

• memo/miss: This is the case in which the original evaluation of memos e did not use
the oracle and evaluated e directly. We prove the result by applying the induction
hypothesis (Lemma 8).

• let: We consider the evaluation of let x = e1 in e2. Again, the main challenge here
is to establish that the evaluation of [v1/x] e, where v1 is the result of e1, is well-
formed. The argument is tedious but straightforward and proceeds much like that in
the proof of Lemma 5.

All remaining cases are handled simply by applying the substitution lemma (Lemma 7)
and then using the induction hypothesis (Lemma 8).

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 277

5.1.6 Proof of Lemma 9 (changeable hit-elimination)

• write: We have e = write(v) and T0 = T = write v. Therefore, trivially, σ , l ←
e ⇓c/0 σ ′,T with σ ′ = σ [l ← v]. Also, reach(write(v),σ) = reach(v,σ) = L.
Therefore, reach(σ ′(l),σ ′) = L because l �∈ L. Of course, L ⊆ L∪alloc(T).

• read/no ch.: We handle read in two parts. The first part deals with the situation
where there is no change to the location that has been read. In this case we apply the
substitution lemma to establish the preconditions for the induction hypothesis and
conclude using Lemma 9.

• read/ch.: If change propagation detects that the location being read contains a new
value, it re-executes the body of read l′ as x in e. Using substitution we establish
the pre-conditions of Lemma 6 and conclude by using the induction hypothesis.

• memo/hit: Like in the proof for Lemma 8, the memo/hit case is handled by two
cascading applications of the induction hypothesis (Lemma 9).

• memo/miss: Again, the case where the original evaluation did not get an answer
from the oracle is handled easily by using the induction hypothesis (Lemma 9).

• let: We consider the evaluation of let x = e1 in e2. As before, the challenge is to
establish that the evaluation of [v1/x] e, where v1 is the (stable) result of e1, is well-
formed. The argument is tedious but straightforward and proceeds much like that in
the proof of Lemma 6.

All remaining cases are handled by the induction hypothesis (Lemma 9), which becomes
applicable after establishing validity using the substitution lemma.

5.2 Proofs for equivalence to pure semantics

The proofs for Lemmas 3 and 4 proceed by simultaneous induction on the derivation of the
memo-free evaluation. The following two sections outline the two major parts of the case
analysis.

5.2.1 Proof sketch for Lemma 3 (stable evaluation)

We proceed by considering each possible stable evaluation rule:

• value: Immediate.

• primitives: Using the condition on primitive operations that they commute with lifts,
this is immediate.

• mod: Consider mod ec. The induction hypothesis (Lemma 4) on the evaluation of ec

directly gives the required result.

• memo: Since we consider memo-free evaluations, we only need to consider the use
of the memo/miss rule. The result follows by direct application of the induction
hypothesis (Lemma 3).

• let: We have σ ,let x = e1 in e2 ⇓s/0 v2,σ
′′,let T1 T2. Because of validity of the

original evaluation, we also have let x = e1 in e2,σ
wf−→ L, where

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

278 U. A. Acar et al.

L∩ alloc
(
let T1 T2

)
= /0. Therefore, σ ,e1 ⇓s/0 v1,σ

′,T1 where e1,σ
wf−→ L1 and

L1∩alloc(T) = /0 because L1 ⊆ L and alloc
(
T1

)
⊆ alloc

(
let T1 T2

)
. By induc-

tion hypothesis (Lemma 3) we get (e1 ↑ σ) ⇓sdet (v1 ↑ σ ′).

We can establish validity for σ ′, [v1/x] e2 ⇓s/0 v2,σ
′′,T2 the same way as we did in the

proof of Lemma 5, so by the second application of the induction hypothesis we get
([v1/x] e2 ↑ σ ′) ⇓sdet (v2 ↑ σ ′′). But by substitution (Lemma 7) we have ([v1/x] e2) ↑
σ ′ = [(v1 ↑ σ ′)/x] (e2 ↑ σ ′). Using the evaluation rule let/p this gives the desired
result.

The remaining cases follow straightforwardly by applying the induction
hypothesis (Lemma 3) after establishing validity using the substitution lemma.

5.2.2 Proof sketch for Lemma 4 (changeable evaluation)

Here we consider each possible changeable evaluation rule:

• write: Immediate by the definition of lift.

• read: Using the definition of lift and the substitution lemma, this follows by an
application of the induction hypothesis (Lemma 4).

• memo: Like in the stable setting, this case is handled by straightforward application
of the induction hypothesis because no memo hit needs to be considered.

• let: The let case is again somewhat tedious. It proceeds by first using the induction
hypothesis (Lemma 3) on the stable sub-expression, then re-establishing validity
using the substitution lemma, and finally applying the induction hypothesisfor the
second time (this time in the form of Lemma 4).

All other cases are handled by an application of the induction hypothesis (Lemma 4)
after establishing validity using the substitution lemma.

6 Mechanization in twelf

To increase our confidence in the proofs for the correctness and the consistency theorems,
we have encoded the AML language and the proofs in Twelf (Pfenning & Schürmann,
1999), and machine-checked the proofs. We follow the standard judgments as types method-
ology (Harper et al., l993), and check our theorems using the Twelf metatheorem checker.
For full details on using Twelf in this way for proofs about programming languages, see
Harper and Licata’s (2007) paper.

The LF encoding of the syntax and semantics of AML corresponds very closely to the
paper judgments. (In an informal sense, we have not proved formally that the LF encoding

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 279

is adequate, and take adequacy to be evident.) However, in a few cases we have altered the
judgments, driven by the needs of the mechanized proof. For example, on paper we write
memo-free and general evaluations as different judgments, and silently coerce memo-free
to general evaluations in the proof. We could represent the two judgments by separate
LF-type families, but the proof would then require a lemma to convert one judgment to
the other. Instead, we define a type family to represent general evaluations, and a separate
type family, indexed by evaluation derivations, to represent the judgment that an evaluation
derivation is memo-free.

The proof of consistency (a metatheorem in Twelf) corresponds closely to the paper
proof in overall structure. The proof of memo-freedom consists of four mutually inductive
lemmas: memo-freedom for stable and changeable expressions (Lemmas 5 and 6), and
versions of these with an additional change propagation following the evaluation (needed
for the hit cases). In the hit cases for these latter lemmas, we must eliminate two change
propagations: we call the lemma once to eliminate the first, then the second time on the
output of the first call to eliminate the second. Since the evaluation in the second call
is not a sub-derivation of the input, we must give a separate termination metric. The
metric is defined on evaluation derivations and simply counts the number of evaluations
in the derivations, including those inside of change propagations. In an evaluation that
contains change propagations, there are ‘garbage’ evaluations which are removed during
hit-elimination. Therefore, hit-elimination reduces this metric (or keeps it the same if there
were no change propagations to remove). We add arguments to the lemmas to account for
the metric, and simultaneously prove that the metric is smaller in each inductive call, in
order for Twelf to check termination.

Aside from this structural difference due to termination checking, the main difference
from the paper proof is that the Twelf proof must of course spell out all the details which
the paper proof leaves to the reader to verify. In particular, we must encode ‘background’
structures such as finite sets of locations, and prove relevant properties of such structures.
While we are not the first to use these structures in Twelf, we have found it difficult
to reuse libraries at present due to poor library support for Twelf. Our needs are also
somewhat specialized: Because we need to prove properties about stores which differ
only on a set of locations, it is convenient to encode stores and location sets in a slightly
unusual way: location sets are represented as lists of bits, and stores are represented as
lists of value options; in both representations the nth list element corresponds to the nth
location. This makes it easy to prove the necessary lemmas by parallel induction over the
lists.

The full Twelf code for the proofs (as a tar archive) can be found at the url http://
www.umut-acar.org/publications/jfp2013-twelf-proof.tar. The Twelf proof is
also reachable via the first author’s web page at http://www.umut-acar.org. The Twelf
code archive consists of a number of individual Twelf files. In the rest of this section we
present some more details on how we mechanized the semantics of the proof in Twelf,
which we hope will guide the interested reader in understanding the Twelf code. When
referring to the Twelf code, we mention the names of Twelf files that contains the code
fragments of interest. For improved readability we typeset the left and right arrows in text
mode with rendered arrows.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

280 U. A. Acar et al.

6.1 The syntax and the semantics

The language syntax (Figure 9) is given in the Twelf file syntax.elf, type families val,
es, and ec. They follow the standard Twelf approach to encoding syntax (Harper & Licata,
2007); in particular the binding forms are encoded using higher order abstract syntax.

Traces (Section 3.3) are given in trace.elf, type families trs and trc. This is again
a standard syntax encoding. This file also contains the allocated locations of a trace (type
families trs-gen and trc-gen).

Well-formed expressions (Figure 11) are given in wf-ex.elf, type families wf-val,
wf-es, and wf-ec. For example, the rule for well-formedness of a location (upper right in
Figure 11) is

wf-val-loc :wf-val (val-loc L) S V’ X1+X2

← st-lookup S L V

← wf-val V S V’ X1

← ls-sing L X2

← ls-union X1 X2 X1+X2.

This rule says that a (val-loc L) (that is, a location viewed as a value) is well-formed
in store S, lifts to V’, and reaches locations X1+X2, provided that

• L is bound to V in S
• V is well-formed in S, lifts to V’, and reaches locations X1
• L as a singleton set is X2
• and the union of X1 and X2 is X1+X2.

In other words, modulo renaming of variables and expanding some notational shorthand,
this says exactly what the paper rule says. The well-formedness rule for stable let illus-
trates working with higher order syntax in Twelf:

wf-es-let :wf-es (es-let Es1 Es2) S (es-let Es1’ Es2’) X

← wf-es Es1 S Es1’ X1

← ({v}{d : var v} wf-es (Es2 v) S (Es2’ v) X2)

← ls-union X1 X2 X.

This rule says that (es-let Es1 Es2) is well-formed in store S, lifts to
(es-let Es1’ Es2’), and reaches locations X, provided that:

• Es1 is well-formed in S, lifts to Es1’, reaches X1
• Es2 is well-formed in S, lifts to Es2’, reaches X2
• the union of X1 and X2 is X.

The {v}{d: var v} deals with a technical detail of higher order abstract syntax: it
cannot directly represent expressions with free variables. The expression Es2 may contain
x as a free variable, but it is encoded as a lambda expression, so (wf-es Es2 [...])

is not well-typed. To get around this, we assume that there is some value v (writing {v}
or equivalently {v : val}) and ‘tag’ it as a variable – we assume a derivation d of the
judgment (var v) (writing {d : var v}); we apply Es2 to v (the Twelf way to say
[v/x] Es2); and we include a well-formedness rule to treat variables, which corresponds
to the paper rule:

wf-val-var :wf-val V S V ls-nil

← var V.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 281

This rule says that an arbitrary value V is well-formed in store S, lifts to V, and reaches
the empty set of locations, provided that it is tagged as a variable. This is a standard Twelf
technique for treating the variable case in paper definitions.

Evaluation (Figures 14 and 15) are given in eval.elf, type families evals and evalc;
change propagation (Figure 16) is also in eval.elf, type families cps and cpc.

A complicated looking rule on paper is the let rule for stable expressions; in Twelf this
is encoded as

evals-let :evals S (es-let Es1 Es2) V2 S2 (trs-let Ts1 Ts2)

← evals S Es1 V1 S1 Ts1

← evals S1 (Es2 V1) V2 S2 Ts2

← trs-gen Ts1 G1

← trs-gen Ts2 G2

← ls-disjoint G1 G2.

This rule says that expression (es-let Es1 Es2) (i.e., let x = e1 in e2) evaluates
to V2 in store S, yielding a new store S2 and the trace (trs-let Ts1 Ts2), provided that

• Es1 evaluates to V1 in store S, yielding a new store S1 and the trace Ts1
• Es2 applied to V1 (i.e., [V1/x] Es2) evaluates to V2 in store S1, yielding a new

store S2 and the trace Ts2
• the allocated locations of Ts1 is G1
• the allocated locations of Ts2 is G2, and
• G1 and G2 are disjoint.

In other words, this again says exactly what the paper rule says.
Valid evaluations are also given in eval.elf, type families wf-evals and wf-evalc.

In contrast to the paper definitions, these are higher order judgments in Twelf: a derivation
of the general evaluation judgment is an argument to the valid evaluation judgment rather
than a premise. The reason for this is that in the proof we silently coerce valid evaluations
to general evaluations, but this is not permitted in Twelf – instead we work with general
evaluations, with a separate derivation witnessing their validity. The rule for stable evalua-
tion is

wf-evals :wf-evals Es’ R G (Devals : evals S Es V S’ Ts)

← wf-es Es S Es’ R

← trs-gen Ts G

← ls-disjoint R G.

This rule says that the derivation of (evals S Es V S’ Ts) (i.e., (Es) evaluates to V

in store S, yielding a new store S’ and trace Ts) is valid provided that Es reaches locations
R, Ts allocates locations G, and R and G are disjoint.

The memo/hit rule for stable evaluation illustrates working with this higher order judg-
ment:

evals-memo-hit :cps S Ts1 S’ Ts

→ {Devals : evals S1 Es V S1’ Ts1}
wf-evals Es’ R G Devals

→ evals S (es-memo Es) V S’ Ts.

This says that (es-memo Es) evaluates to V in store S, yielding a new store S’ and trace
Ts, provided that:

• change propagation of trace Ts1 in store S yields a new store S’ with trace Ts

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

282 U. A. Acar et al.

• we have a derivation Devals that Es evaluates to V in store S1, yielding a new store
S1’ and trace Ts1

• Devals is a valid evaluation.

(Here we have inlined the paper oracle judgment – the oracle premise becomes a valid
evaluation premise.) The syntax {Devals : evals [...]} just names the derivation of
the evals premise, so we can refer to it in the wf-evals premise. (This is a bit confusing
syntactically – elsewhere we use the A ← B syntax, which has a logic programming flavor;
here we use B → A for consistency with the definition preceding reference of Devals;
either is acceptable in Twelf.)

Memo-free evaluation is also given in eval.elf, type families cln-evals and
cln-evalc. These are also higher order judgments, which witness that the argument
(general) evaluation derivation contains no evals-memo-hit or evalc-memo-hit cases.

Purely functional evaluation (Figure 17) is given in pure.elf, type families
evals-pure and evalc-pure. These are very straightforward translations of the paper
rules.

6.2 Theorems

The Twelf view of a theorem (in Twelf jargon, a ‘metatheorem’, because it is stated in the
Twelf metalogic, not in the encoded logic) comprises several parts: a relation among type
families (judgments); a set of cases defining the relation; a ‘mode declaration’ describing
which arguments to the relation are inputs and which outputs; a ‘worlds declaration’ de-
scribing in what contexts (‘worlds’) the theorem holds; and a ‘totality declaration’ asserting
that for all possible input terms, cases are provided which yield appropriate output terms –
i.e. the relation is total.

For example, Theorem 2 (Correctness) is given (in consistency.thm, type family
wf-evals-imp-pure) as follows:

wf-evals-imp-pure : {Devals : evals Es V S’ }
wf-evals Es’ R G Devals →

%%

wf-val V S’ V̂ RV →
evals-pure Es’ V̂ →
type.

%mode wf-evals-imp-pure +X1 +X2 -X3 -X4.

In other words, given derivations of judgments that

• Es evaluates in store S to value V, resulting in new store S’ (and some trace which is
ignored)

• the evaluation is valid (recall the wf-evals is a higher order judgment)

return derivations of judgments that

• V is well-formed in store S’, and lifts to V̂
• Es’ (the lift of Es in S) evaluates under the pure semantics to V̂

Twelf deals directly only with relations, so where the on-paper proof uses functional
notation, the Twelf translation must expand the shorthand. In this case, the proposition that
(e ↑ σ) ⇓sdet (v ↑ σ ′) expands to three relations:

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 283

• e lifts to some e′ in σ
• v lifts to some v′ in σ ′

• e′ evaluates under the pure semantics to v′

The first is given as a sub-derivation of the wf-evals derivation (wf-es Es S Es’

R); the second and the third are the outputs of wf-evals-imp-pure.
For auxiliary judgments (in this case wf-es), whether they are inputs or outputs to

a metatheorem (and whether they are given separately or as sub-derivations of another
argument) are matters of convenience and proof engineering. From a relational point of
view such variations do not state identical theorems, but each is a plausible reading of the
on-paper theorem (which is not precise about its inputs and outputs).

The wf-evals-imp-pure relation is defined by one clause, which appeals to several
lemmas:

- :wf-evals-imp-pure Devals (wf-evals Dld Dtg Dwe) Dwv’ Devals’

← can-evals-met Devals Dem

← evals-imp-cln-evals Devals Dem (wf-evals Dld Dtg Dwe)

Devals’’ Dce

← evals-imp-pure-evals

Devals’’

(wf-evals Dld Dtg Dwe) Dce Dwv’ Devals’.

We use evals-imp-cln-evals (corresponding to Lemma 5) to turn a general eval-
uation derivation into a clean evaluation derivation, and evals-imp-pure-evals (cor-
responding to Lemma 3) to turn the clean evaluation derivation into a pure evaluation
derivation. In order to apply these lemmas, we provide a metric argument to show the
induction is well-founded, and we use can-evals-met to generate a suitable metric term.

The meat of the proof is in Lemmas 3 and 4 (given in purity.thm, type families
evals-imp-pure-evals and evalc-imp-pure-evalc) and Lemmas 5 and 6 (given in
memo-elim.thm, type families evals-imp-cln-evals, evalc-imp-cln-evalc,
evals-cps-imp-cln-evals, and evalc-cpc-imp-cln-evalc;
the latter two are strengthenings of Lemmas 5 and 6 with an additional change propagation.

Here is evals-cps-imp-cln-evals:
evals-cps-imp-cln-evals :

N

{Devals : evals S1 Es V S1’ Ts1}
evals-met Devals Nevals →
wf-evals Es1’ R1 G1 Devals →
{Dcps : cps S Ts1 S’ Ts}
cps-met Dcps Ncps →
sum Nevals Ncps N →
wf-es Es S Es’ R →
trs-gen Ts G →
ls-disjoint R G →

%%{Devals’ : evals S Es V S’ Ts}
evals-met Devals’ N’ →
leq N’ N →
cln-evals Devals’ →

type.

%mode evals-cps-imp-cln-evals +X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10

-X11 -X12 -X13 -X14.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

284 U. A. Acar et al.

- :evals-cps-imp-cln-evals

(evals-memo-hit Dcps0 Devals Dwfe)

(evals-met-hit (Dsum0 : sum N1 N2 N1+N2) Dcm0 Dem)

(wf-evals (Dld0 : ls-disjoint R0 G0)

Dtg0

(wf-es-memo Dwe0))

Dcps

Dcm

(sum-s (Dsum : sum N1+N2 N3 N1+N2+N3))

(wf-es-memo Dwe)

Dtg

Dld

%%

(evals-memo-miss Devals’)

(evals-met-miss Dem’)

(leq-s Dleq’)

(cln-evals-miss Dce’)

← sum-imp-leq Dsum (Dleq6 : leq N1+N2 N1+N2+N3)

← leq-reduces Dleq6

← evals-cps-imp-cln-evals

Devals Dem Dwfe Dcps0 Dcm0 Dsum0 Dwe0 Dtg0 Dld0

Devals2 Dem2 (Dleq2 : leq N4 N1+N2)

← can-sum (Dsum3 : sum N4 N3 N4+N3)

← leq-refl Dleq5

← sum-monotone

Dleq2 Dleq5 Dsum3 Dsum (Dleq4 : leq N4+N3 N1+N2+N3)

← leq-reduces Dleq4

← evals-cps-imp-cln-evals

Devals2 Dem2

(wf-evals Dld0 Dtg0 Dwe0)

Dcps Dcm Dsum3 Dwe Dtg Dld

Devals’ Dem’ (Dleq3 : leq N5 N4+N3) Dce’

← leq-trans Dleq3 Dleq4 (Dleq’ : leq N5 N1+N2+N3)

.

Fig. 19. An evaluation derivation where the outermost term is a memo hit.

Given a valid evaluation of Es (the evals and wf-evals arguments) and a change
propagation to be applied to the trace (the cps argument) along with a derivation that the
locations reached by Es are disjoint from those allocated by the final trace, return a clean
evaluation of Es. The remaining inputs and outputs (evals-met, cps-met, sum, leq) deal
with the metric required to show termination.

Figure 19 shows the case for an evaluation derivation where the outermost term is a
memo hit. The evaluation derivation includes a change-propagation derivation
(Dcps0). We therefore make two inductive calls, the first to eliminate Dcps0, and the
second to eliminate the input change propagation derivation (Dcps). The rest of the case
(the calls to sum-imp-leq, leq-reduces, can-sum, leq-refl, sum-monotone, and
leq-trans) involves the termination metric. Twelf has no built-in support for

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 285

mathematical reasoning, so the termination reasoning is given – rather painfully – in rela-
tional terms over unary natural numbers.

7 Implementation

The language and semantics proposed in this paper have been adapted to Standard ML
and C languages and implemented by extending these languages with needed language
primitives and run-time system support (Acar et al., 2009; Ley-Wild et al., 2008b, 2009;
Hammer et al., 2009, 2011). Both approaches specify carefully the oracle by limiting it to
return only certain computation and are able to prove stronger soundness results than we
do in this paper by proving also termination. The C-based approach also makes it possible
to integrate a form of garbage collection into change propagation efficiently.

To realize the semantics efficiently, the implementations use a graph representation of
traces that allow doing work proportional to re-evaluated expressions. In addition, function
calls are cached as a mapping from function names and arguments to their results. During
an evaluation, the oracle consults the function-call caches to determine whether a function
call about to be evaluated can be reused. The oracle determines that a function call can
be reused if the function and the arguments involved in the call are identical. In addition,
the oracle guarantees that a call is never used more than once in an evaluation. To deter-
mine equality, it suffices to consider tag or label equality, which can be performed very
efficiently. To ensure that function calls are not used multiple times, the implementations
rely on a total ordering of all function calls. Experimental evaluations (Ley-Wild et al.,
2008b; Acar et al., 2009; Hammer et al., 2009) show that the proposed semantics can
be implemented with modest overheads in complete runs where all data is new and yield
massive speedups in cases when the data changes incrementally.

8 Related works

The problem of adapting computations to small changes to their data has been studied
extensively in several communities. There are hundreds of papers on this problem in several
research communities, including the algorithms and programming-language communities.
Fortunately, there are several excellent surveys of work that present an in-depth reviews
of previous work, e.g., for the algorithms community (Chiang & Tamassia, 1992; Guibas,
2004; Demetrescu et al., 2005a, 2005b), and for (primarily) programming-languages com-
munity (Ramalingam & Reps, 1993). In this section, we review only the closely related
works and refer the reader to aforementioned surveys for more citations.

8.1 Incremental computation

The work on incremental computation aims to devise general-purpose, language-based
techniques for enabling programs to automatically respond to modifications to their data.
The most effective techniques are based on dependency graphs, memoization, and partial
evaluation, which we briefly review below.

Dependency-graph techniques record the dependencies among data in a computation,
so that a change-propagation algorithm can update the computation when the input is

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

286 U. A. Acar et al.

changed. Demers et al. (1981) and Reps (1982a, 1982b) introduced the idea of static
dependency graphs and presented a change-propagation algorithm for them. Hoover (1987)
generalized the approach outside the domain of attribute grammars. Yellin and Strom
(1991) used the dependency graph ideas within the INC language, and extended it by
having incremental computations within each of its array primitives.

The key limitation of static dependency graphs is that they do not permit the change-
propagation algorithm to update the dependency structure. This limitation restricts the
types of computations to which static-dependency graphs can be applied, making them
inapplicable in general-purpose computational models. For example, the INC language,
which uses static dependency graphs for incremental updates, does not permit recursion.
Static dependency graphs, however, can be effective in certain structured, syntax-directed
applications such as in incremental evaluation of attribute grammars (e.g., Demers et al.,
1981; Hedin, 1992).

The limitations of static dependency graphs motivated researchers to look into alterna-
tives. Pugh and Teitelbaum (1989) applied the classic idea of memoization (Bellman, 1957;
McCarthy, 1963; Michie, 1968) (also called function caching) to incremental computation.
Memoization is more general than static dependency graphs and is applicable to any purely
functional program. Since the work of Pugh and Teitelbaum (1989), others have investi-
gated applications of various forms of memoization to incremental computation (Abadi
et al., 1996; Liu et al., 1998; Heydon et al., 2000; Acar et al., 2003). The idea behind
memoization is to remember function calls and their results, and reuse them whenever
possible. In the context of incremental computation, memoization can improve efficiency
when re-executions of a program with similar inputs perform similar function calls. While
this is indeed the case in some cases, in many cases it is not: changes to the input can
prevent large parts of the computation from being reused. We have given an example of
this in Section 2; other examples are discussed elsewhere (Acar et al., 2009). Intuitively,
the problem with memoization is that all function calls that consume changed data and all
their ancestors in the function call tree need to be re-executed.

Other approaches to incremental computation are based on partial evaluation. Sundaresh
and Hudak’s (1991) approach requires the user to fix the partition of the input that the
program will be specialized on and partially evaluates the program with respect to this
partition, allowing data outside the partition to be changed incrementally. Field (1991)
and Field and Teitelbaum (1990) presented techniques for incremental computation in the
context of the lambda calculus. Their approach is similar to Sundaresh and Hudak’s (1991)
approach, but they present formal reduction systems that optimally use partially evaluated
results.

8.2 Dynamic algorithms

The algorithms community approached the problem of allowing computation to adapt
to incremental changes to data from a different perspective. Instead of seeking general-
purpose techniques that apply to a broad range of applications, researchers in the algo-
rithms community develop dynamic algorithms or dynamic data structures (e.g., Sleator
& Tarjan, 1985; Chiang & Tamassia, 1992; Eppstein et al., 1999) for solving specific
problems individually. Dynamic algorithms enable computing a desired property while

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 287

allowing the user to modify the input (e.g., inserting/deleting elements). For example, a
dynamic algorithm for computing a sorted order allows the user to insert/delete points
into/from the input set while keeping the output sorted.

Since a dynamic algorithm is carefully designed to take advantage of the structural
properties of the specific problem considered, it is often very efficient, and can add signif-
icant, e.g, linear-time, improvements over the static version. Previous research, however,
shows that dynamic algorithms can be quite complex and difficult to design, analyze, and
implement even for problems that are simple in the static case, where changes to data
are not allowed. A striking example is the two-dimensional convex-hull problem, whose
static version has been solved in the early days of computer science (e.g., Graham, 1972).
The dynamic (incremental) version of the same problem required many more decades of
research, ultimately culminating in an optimal (in the amortized sense) solution (Overmars
& van Leeuwen, 1981; Brodal & Jacob, 2002). The convex-hull problem is not an outlier;
other examples include minimum spanning trees (Frederickson, 1985; Eppstein et al.,
1997; Henzinger & King, 1997, 1999; Holm et al., 2001)) and dynamic trees (Sleator &
Tarjan, 1983), which continue to be studied (Sleator & Tarjan, 1983; Cohen & Tamassia,
1991; Alstrup et al., 1997; Frederickson, 1997; Tarjan & Werneck, 2007).

8.3 Self-adjusting computation

The term ‘incremental computation’ is often used to refer to techniques that aim at up-
dating computations under small, incremental changes to their data. We use term ‘self-
adjusting computation’ to refer to a specific technique (as proposed here) that uses a
combination of change propagation on dynamic dependence graphs and memoization to
solve the incremental-computation problem. Before we discuss previous work in more
detail, we would like to clarify our use of this term. We feel that ‘self-adjusting’ represents
the approach well and avoids the terminology confusion involving the term ‘incremen-
tal’, which is used to refer to different concepts in different communities. Specifically in
the programming languages community, the term ‘incremental’ is used to refer to small
changes to data. In the algorithms community, the same term refers to a class of algorithms
that only admits ‘additions’ (e.g., insertions) to data but allow no deletions. For algorithms
that allow both insertions and deletions, the algorithms community use the term ‘dynamic’,
which is a term that is often used to refer to the run-time (as opposed to the compilation
time) in programming languages. Thus, both terms ‘incremental’ and ‘dynamic’ mean
different things to the key communities interested in the broader problem of incremental
computation.

Research on self-adjusting computation started with the invention of DDGs and a change
propagation algorithm that can update the dependency structure dynamically as it exe-
cutes (Acar et al., 2006). DDGs can be constructed from any purely functional program and
can be kept up-to-date as data changes by a change-propagation algorithm that inserts and
deletes dependencies as necessary. The motivation behind the research on self-adjusting
computation has been to achieve the efficiency of dynamic algorithms without the high
design, analysis, and implementation complexity required to achieve that efficiency.

Although DDGs are general-purpose graphs, they are effective only for certain classes
of data changes (Section 2). This paper presents a semantics for self-adjusting computation

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

288 U. A. Acar et al.

based on a memoizing change propagation technique that can dramatically improve reuse
of computations; the paper is the journal version of a conference paper (Acar et al., 2007)
published earlier. The semantics presented here established the foundation for follow-up
work on self-adjusting computation and related topics. A paper proposed algorithms for
realizing the semantics efficiently and implemented it as a Standard ML library (Acar
et al., 2009). Earlier implementations of self-adjusting computation include the SML li-
brary (Acar et al., 2006) and an Haskell implementation by Carlsson (2002). Other work
generalized the approach to support imperative references (Acar et al., 2008). These results
then led to the development of the CEAL (Hammer et al., 2009, 2011) and Delta ML lan-
guages (Ley-Wild et al., 2008b), which provide direct language support for self-adjusting
computation.

Aforementioned realizations of the semantics presented here have led to follow-up work
on a relatively broad set of applications ranging from simpler computational
benchmarks (Acar et al., 2009) to more sophisticated applications in computational ge-
ometry and machine learning, where various important (also open) problems have been
solved (e.g., Acar et al., 2010; Sümer et al., 2011). The algorithmic results use stability
analysis (Acar, 2005; Ley-Wild et al., 2009), which offers an algorithmic cost model for
the technique presented in this paper. The applications show that the proposed approach
can provide asymptotically optimal updates in theory while also delivering significant
efficiency improvements in practice. The algorithmic results rely on a particular imple-
mentation of the oracle which enables analyzing the efficiency of change propagation (Ley-
Wild et al., 2009). Such a restricted oracle also allows proving slightly stronger theorems
on semantics, making it possible to reason also about termination.

Shankar and Bodik’s (2007) work on DITTO adapts self-adjusting computation tech-
niques as proposed here and implemented in future work (Acar et al., 2009) to the specific
problem of checking data structural invariants. They refine the general-purpose computa-
tion reuse model proposed here by developing heuristics that work well for the problem of
checking invariants for data structures written in the Java language.

Some earlier (Acar et al., 2004; Hammer et al., 2007) and more recent works (Burck-
hardt et al., 2011) realized that many parallel algorithms are amenable to self-adjusting
computation and developed techniques for taking advantage of both simultaneously.

8.4 Functional reactive programming

Functional reactive programming (Elliott & Hudak, 1997; Elliott, 1998; Wan & Hudak,
2000; Wan et al., 2001) aims to provide a functional, even declarative interface to devel-
oping reactive programs that can respond to interactive events, often called behaviors and
signals. A reactive program evaluates in time-steps, each of which returns a result and a
new program to be evaluated at the next time-step. Since a functional reactive program
returns a new program to be evaluated at the next step, it can be viewed as a kind of ‘self-
modifying’ code. In functional reactive programming terminology, ‘switch’ expressions
refer to expressions that provide this kind of code modification ability. Since each time-
step involves small updates to data, it seems possible for incremental computation, and
self-adjusting computation specifically, to be used to improve the efficiency of functional
reactive programming.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 289

Much previous works on functional reactive programming, however, do not employ
incremental computation techniques, focusing instead on taming the time and space con-
sumption of the ‘one-shot’, static approach. Previous work shows that, due to their expres-
sive power, implementing functional reactive programming can be efficiently challenging;
the terms ‘time leaks’ and ‘space leaks’ refer to two specific problems that arise when
trying bound the time and the space complexity of implementations. More recent work
took some steps in the direction of connecting functional programming and incremental
computation (Cooper & Krishnamurthi, 2006). Considering a language without switching,
Cooper and Krishnamurthi (2006) record dependencies between signals and behaviors and
the rest of the data and use a propagation algorithm to update the computation when
the values of the signals change. As also noted by Cooper and Krishnamurthi (2004), it
appears possible to encode switchless functional reactive programming in self-adjusting
computation. The idea behind such an encoding would be to use modifiables to represent
signals (time-varying values) and rely on the dependence-tracking and change-propagation
mechanisms of self-adjusting computation for automatic incremental updates. Understand-
ing whether incremental computation can be theoretically and practically effective for
functional reactive programs remains to be an interesting open problem.

9 Conclusion

We present a general semantics for integrating memoization and change propagation where
memoization is modeled as a nondeterministic oracle, and computation reuse is possible in
the presence of mutation. Mutations arise for two reasons. First, the semantics permits the
store to be modified between two runs while allowing computations to be reused between
two such runs – this models dynamic data changes. Second, the techniques for change
propagation mutate the store by selectively re-executing pieces of the first run to derive the
second run. The key idea behind the semantics is to enable the reuse of computations them-
selves by adapting reused computations to mutations via recursive applications of change
propagation. Our main theorem shows that the semantics is consistent with deterministic,
purely functional programming. By giving a general, oracle-based semantics for combin-
ing memoization and change propagation, we cover a variety of possible techniques for
implementing self-adjusting computation. By proving the semantics correct with minimal
assumptions, we identify the properties that correct implementations must satisfy.

References

Abadi, M., Lampson, B. W. & Lévy, J.-J. (1996) Analysis and caching of dependencies. In
International Conference on Functional Programming, pp. 83–91.

Acar, U. A. (May 2005) Self-Adjusting Computation. PhD thesis, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

Acar, U. A., Ahmed, A. & Blume, M. (2008) Imperative self-adjusting computation. In Proceedings
of the 25th Annual ACM Symposium on Principles of Programming Languages.

Acar, U. A., Blelloch, G. E., Blume, M., Harper, R., & Tangwongsan, K. (2009) An experimental
analysis of self-adjusting computation. ACM Trans. Prog. Lang. Sys. 32(1), 31–53.

Acar, U. A., Blelloch, G. E. & Harper, R. (2003) Selective memoization. In Proceedings of the 30th
Annual ACM Symposium on Principles of Programming Languages.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

290 U. A. Acar et al.

Acar, U. A., Blelloch, G. E. & Harper, R. (2006) Adaptive functional programming. ACM Trans.
Prog. Lang. Sys. 28(6), 990–1034.

Acar, U. A., Blelloch, G. E., Harper, R., Vittes, J. L. & Woo, M. (2004) Dynamizing static algorithms
with applications to dynamic trees and history independence. In ACM-SIAM Symposium on
Discrete Algorithms, pp. 531–540.

Acar, U. A., Blume, M. & Donham, J. (2007) A consistent semantics of self-adjusting computation.
In European Symposium on Programming.

Acar, U. A., Cotter, A., Hudson, B. & Türkoğlu, D. (2010) Dynamic well-spaced point sets. In
Symposium on Computational Geometry.

Alstrup, S., Holm, J., de Lichtenberg, K. & Thorup, M. (1997) Minimizing diameters of dynamic
trees. In Automata, Languages and Programming, Degano, P., Gorrieri, R. & Marchetti-
Spaccamela, A. (eds.), pp. 270–280.

Bellman, R. (1957) Dynamic Programming. Princeton University Press.
Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U. A., & Pasquini, R. (2011) Incoop: MapReduce for

incremental computations. In ACM Symposium on Cloud Computing.
Brodal, G. S. & Jacob, R. (2002) Dynamic planar convex hull. In Proceedings of the 43rd Annual

IEEE Symposium on Foundations of Computer Science, pp 617–626.
Burckhardt, S., Leijen, D., Sadowski, C., Yi, J. & Ball, T. (2011) Two for the price of one: A model

for parallel and incremental computation. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications.

Carlsson, M. (2002) Monads for incremental computing. In International Conference on Functional
Programming, pp. 26–35.

Chiang, Y.-J. & Tamassia, R. (1992) Dynamic algorithms in computational geometry. Proc. IEEE 80
(9), 1412–1434.

Cohen, R. F. & Tamassia, R. (1991) Dynamic expression trees and their applications. In Proceedings
of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 52–61.

Cooper, G. H. & Krishnamurthi, S. (April 2004) FrTime: Functional Reactive Programming in
PLT Scheme. Technical Report CS-03-20, Department of Computer Science, Brown University,
Providence, RI.

Cooper, G. H. & Krishnamurthi, S. (2006) Embedding dynamic dataflow in a call-by-value language.
In Proceedings of the 15th Annual European Symposium on Programming (ESOP).

Demers, A., Reps, T. & Teitelbaum, T. (1981) Incremental evaluation of attribute grammars with
application to syntax-directed editors. In Symposium on Principles of Programming Languages,
pp. 105–116.

Demetrescu, C., Finocchi, I., & Italiano, G. F. (2005a) Dynamic graphs. In Handbook on Data
Structures and Applications, Chap. 36: Boca Raton, FL: CRC Press.

Demetrescu, C., Finocchi, I. & Italiano, G. F. (2005b) Dynamic Trees. In Handbook on Data
Structures and Applications. Mehta, D. & Sahni, S. (eds), Chap. 35, CRC Press Series in Computer
and Information Science. Boca Raton, FL: CRC Press.

Elliott, C. (1998) Functional implementations of continuous modeled animation. Lect Notes Comput.
Sci. 1490, 284–299.

Elliott, C. & Hudak, P. (1997) Functional reactive animation. In Proceedings of the Second ACM
SIGPLAN International Conference on Functional Programming. Rochester, NY: ACM, pp. 263–
273.

Eppstein, D., Galil, Z. & Italiano, G. F. (1999) Dynamic graph algorithms. In Algorithms and Theory
of Computation Handbook, Atallah, M. J. (ed), Chap. 8. Boca Raton, FL: CRC Press.

Eppstein, D., Galil, Z., Italiano, G. F., & Nissenzweig, A. (1997) Sparsification – a technique for
speeding up dynamic graph algorithms. J. ACM 44(5), 669–696.

Field, J. (November 1991) Incremental Reduction in the Lambda Calculus and Related Reduction
Systems. PhD thesis, Department of Computer Science, Cornell University, Ithaca, NY.

Field, J. & Teitelbaum, T. (1990) Incremental reduction in the lambda calculus. In ACM Conference
LISP and Functional Programming, pp. 307–322.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

Consistent semantics of self-adjusting computation 291

Frederickson, G. N. (1985) Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput. 14, 781–798.

Frederickson, G. N. (1997) A data structure for dynamically maintaining rooted trees.
J. Algorithms 24(1), 37–65.

Graham, R. L. (1972) An efficient algorithm for determining the convex hull of a finete planar set.
Inf. Process. Lett. 1, 132–133.

Guibas, L. (2004) Modeling motion. In Handbook of Discrete and Computational Geometry,
Goodman, J. & O’Rourke, J. (eds.), 2nd ed.Boca Raton, FL: Chapman and Hall/CRC Press,
pp. 1117–1134.

Hammer, M. A., Acar, U. A. & Chen, Y. (2009) CEAL: A C-based language for self-
adjusting computation. In ACM SIGPLAN Conference on Programming Language Design and
Implementation.

Hammer, M., Acar, U. A., Rajagopalan, M. & Ghuloum, A. (2007) A proposal for parallel
self-adjusting computation. In DAMP ’07: Workshop on Declarative Aspects of Multicore
Programming.

Hammer, M., Neis, G., Chen, Y. & Acar, U. A. (2011) Self-adjusting stack machines. In ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

Harper, R., Honsell, F. & Plotkin, G. (January 1993) A framework for defining logics.
J. Assoc. Comput. Mach. 40(1),143–184.

Harper, R. & Licata, D. R. (2007) Mechanizing metatheory in a logical framework. J. Funct.
Program. 17(4–5), 613–673.

Hedin, G. (March 1992) Incremental Semantics Analysis. PhD thesis, Department of Computer
Science, Lund University, Lund, Sweden.

Henzinger, M. R. & King, V (1997) Maintaining minimum spanning trees in dynamic graphs. In
ICALP ’97: Proceedings of the 24th International Colloquium on Automata, Languages and
Programming. Berlin, Germany: Springer-Verlag, pp. 594–604.

Henzinger, M. R. & King, V. (1999) Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. J. ACM 46(4), 502–516.

Heydon, A., Levin, R. & Yu, Y. (2000) Caching function calls using precise dependencies.
In ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 311–320.

Holm, J., de Lichtenberg, K. & Thorup, M. (2001) Poly-logarithmic deterministic fully dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4),
723–760.

Hoover, R. (May 1987) Incremental Graph Evaluation. PhD thesis, Department of Computer
Science, Cornell University, Ithaca, NY.

Ley-Wild, R., Acar, U. A., & Fluet, M. (July 2008a) A Cost Semantics for Self-Adjusting
Computation. Technical Report CMU-CS-08-141, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

Ley-Wild, R., Acar, U. A. & Fluet, M. (2009) A cost semantics for self-adjusting computation. In
Proceedings of the 26th Annual ACM Symposium on Principles of Programming Languages.

Ley-Wild, R., Fluet, M. & Acar, U. A. (2008b) Compiling self-adjusting programs with
continuations. In International Conference on Functional Programming, Victoria, British
Columbia, Canada.

Liu, Y. A., Stoller, S. & Teitelbaum, T. (1998) Static caching for incremental computation. ACM
Trans. Program. Lang. Syst. 20(3), 546–585.

McCarthy, J. (1963) A basis for a mathematical theory of computation. In Computer Programming
and Formal Systems, Braffort, P. & Hirschberg, D. (eds), Amsterdam, Netherlands: North-Holland,
pp. 33–70.

Michie, D. (1968) “Memo” functions and machine learning. Nature 218, 19–22.
Overmars, M. H. & van Leeuwen, J. (1981) Maintenance of configurations in the plane.

J. Comput. Syst. Sci. 23, 166–204.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

292 U. A. Acar et al.

Pfenning, F. & Schürmann, C. (July 1999) System description: Twelf – A meta-logical framework for
deductive systems. In Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), Trento, Italy, Ganzinger, H. (ed), . LNAI 1632. Berlin, Germany: Springer-Verlag,
pp. 202–206.

Pugh, W. & Teitelbaum, T. (1989) Incremental computation via function caching. In 16th Symposium
on Principles of Programming Languages, pp. 315–328. New York, NY: ACM.

Ramalingam, G. & Reps, T. (1993) A categorized bibliography on incremental computation. In
Proceedings of the 20th Symposium on Principles of Programming Languages, pp. 502–510.

Reps, T. (August 1982a) Generating Language-Based Environments. PhD thesis, Department of
Computer Science, Cornell University, Ithaca, NY.

Reps, T. (1982b) Optimal-time incremental semantic analysis for syntax-directed editors. In
Proceedings of the 9th Annual Symposium on Principles of Programming Languages,
pp. 169–176.

Shankar, A. & Bodik, R. (2007) DITTO: Automatic incrementalization of data structure
invariant checks (in Java). In International Conference on Programming Language Design and
Implementation (PLDI).

Sleator, D. D. & Tarjan, R. E. (1983) A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3),
362–391.

Sleator, D. D. and Tarjan, R. E. (1985) Self-adjusting binary search trees. J. ACM 32(3), 652–686.
Sümer, Ö., Acar, U. A., Ihler, A. & Mettu, R. (2011) Adaptive exact inference in graphical models.

J. Mach. Learn. 8, 180–186.
Sundaresh, R. S. & Hudak, P. (1991) Incremental compilation via partial evaluation. In Conference

Record of the 18th Annual ACM Symposium on Principles of Programming Languages, pp. 1–13.
Tarjan, R. & Werneck, R. (2007) Dynamic trees in practice. In Proceedings of the 6th Workshop on

Experimental Algorithms (WEA 2007), pp. 80–93.
Wan, Z. & Hudak, P. (2000) Functional reactive programming from first principles. In Proceedings

of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation.
New York, NY: ACM, pp. 242–252.

Wan, Z., Taha, W., & Hudak, P. (2001) Real-time FRP. SIGPLAN Not. 36(10), 146–156.
Yellin, D. M. & Strom, R. E. (April 1991) INC: A language for incremental computations. ACM

Trans. Program. Lang. Syst. 13(2), 211–236.

https://doi.org/10.1017/S0956796813000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000099

