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ON THE NIWA-SHINTANI THETA-KERNEL LIFTING
OF MODULAR FORMS

BARRY A. CIPRA

Modular forms of half-integral weight are of intrinsic interest: many
of the functions of classical number theory transform under a matrix
group with half-integral weight. The aim of this paper is to refine some
results and techniques which have been introduced to study these func-
tions and the arithmetic information which they contain.

Our results will be most clear if we give a very brief history of the
subject. The general theory of modular forms of half-integral weight is
a fairly recent development. Although Hecke [4] did some work in the
area, in a sense the subject really begins with Shimura’s 1973 paper, “On
modular forms of half-integral weight” [11].

Shimura demonstrated an extraordinary ‘lifting’ property for modular
forms of half-integral weight. By considering Euler products associated
to eigenfunctions of Hecke operators, Shimura constructs a family of maps
taking cusp forms of half-integral weight to holomorphic forms of even,
integral weight, which is where the subject has been most studied and
best understood. This ‘lifting’, moreover, takes eigenfunctions to eigen-
functions.

While Shimura proves the lifted functions to be modular forms, he
does not completely determine the level at which they transform. However,
he makes the following conjecture: if the original function transforms at
level 4N, then the lifted form transforms at level 2N.

Shimura also proves that the lifted forms are in fact cusp forms, if
the half-integral weight is > 5/2. The remaining case, weight 3/2 (weight
1/2 does not come under consideration), is more complicated. Certain
forms, namely the ‘theta functions’, fail to lift to cusp forms. Shimura
here conjectures that everything in the ‘orthogonal complement’ (with re-
spect to the Petersson inner product) does lift to a cusp form.
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The first conjecture was largely answered by Niwa [8], using important
techniques introduced by Shintani [12]. Niwa established that, for weight
> 7/2, Shimura’s lifting can be obtained by taking the Petersson inner
product of the original cusp form against a suitably constructed ‘theta
kernel’ of two variables. Under this construction, the correct transforma-
tion at level 2NV is easily seen.

The second conjecture, concerning weight 3/2, has been affirmed by
various researchers, including the author in his Ph.D. dissertation (which
this paper is based upon). The techniques have been different: Flicker
[2] and Gelbart and Piatetski-Shapiro [3] have used the machinery of
representation theory; Kojima [7] gives a proof in the context of Dirichlet
series; this author gives a direct proof. It turns out that the behavior
of a lifted form at cusps is determined by the original cusp form’s inner
product against theta functions (Theorems 4.4 and 4.9).

Our goal in this paper is two-fold: to widen the applicability of Niwa’s
theta kernel to include the cases of weight 5/2 and 3/2, and then to use
these results to give a direct proof of Shimura’s second conjecture. Our
actual results are more general. We find that Niwa’s theta kernel applies
(with one exception) to all holomorphic modular forms of all positive,
half-integral weights, including theta functions of weight 1/2. (The ex-
ception is 6(z) itself!) Our proof of Shimura’s conjecture actually does
two cases: it prescribes values at cusps for lifts from weight 3/2, and pole-
terms at cusps for lifts from weight 1/2. These values and pole-terms are
equated by explicit formulae to the inner product of the initial form
against appropriate theta functions of its weight.

The structure of the paper is as follows:

In Section 1, we consider a general theory of theta kernels for SL
(2, Z), using Shintani’s presentation of the Weil representation. The cri-
tical ideas are that of a function f with two ‘spherical’ properties, and a
function o with two ‘permutation’ properties. We prove some important
growth estimates for theta kernels (Corollary 1.13). We illustrate the
theory with the simple case of a quadratic form in one variable: this gives
rise to the classical theta functions, and to some other technical results
which are needed later.

In Section 2, we introduce the particular theta kernel used by Niwa
to reproduce Shimura’s lifting. We also ‘invert’ this theta kernel, which
makes this formulation of the lifting more direct. We prove four main
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results: 1) The theta kernel is (with one exception) ‘rapidly decreasing’
at all cusps, so that its inner product is well-defined against any ‘slowly
growing’ modular form (Proposition 2.8—this uses the growth estimates
of Section 1). 2) When the second (integral-weight) variable is restricted
to its imaginary axis, the theta kernel can be re-expressed as a ‘Poincaré’
series—i.e., as a sum over coset representatives (Theorem 2.11). 3) The
inner-product lifting agrees with Shimura’s lifting, at least on the imagi-
nary axis (Theorem 2.12). 4) The inner-product lifting is holomorphic
(and thus agrees with Shimura’s lifting everywhere—Theorems 2.16 and
2.17).

The key issue is holomorphy. The definition of the inner product
looks hopelessly non-holomorphic, and indeed the theta-kernel is not holo-
morphic in either variable. Holomorphy of the inner product depends on
three ingredients: a differential equation (2.52) satisfied by the inner pro-
duct, periodicity of the inner product (so that we can begin separating
out solutions of the differential equation into holomorphic and non-holo-
morphic Fourier expansions), and certain growth estimates which the non-
holomorphic piece (were there any!) is certain to violate. In Niwa, simple
estimates suffice for weights > 7/2. These however fail at the lowest
weights. Our proof accounts for all weights by bringing in subtler esti-
mates. These are based on the aforementioned result that, on the imagi-
nary axis, Niwa’s inner product reproduces Shimura’s lift—for which the
behavior at infinity is clear. (To be precise, we should note a discrepancy
at weight 1/2: The lifts here are not holomorphic; rather they are equal
parts holomorphic and anti-holomorphic.)

Section 3 specifies the liftings of the theta functions of weights 1/2
and 3/2 and derives a formula (Theorem 3.4) for their behavior at cusps.

In Section 4, we prove Shimura’s conjecture for weight 3/2 and an
analogous result for weight 1/2. The proof treats both results simultane-
ously, but comes in two parts: a special case (¢ = 1) and the general case
(arbitrary, square-free £, where the proof amounts to reducing to the special
case). In the beginning of the proof, we also see why these results occur
only for weights 3/2 and 1/2. Essentially what happens is this: as one
approaches a cusp of the lifted form, the theta kernel degenerates into a
linear combination of theta functions. Thus if the original cusp form (of
weight 3/2) is orthogonal to all the appropriate theta functions, then its
lifting will be a cusp form. The converse is easily seen to be true also.
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The main results of the section are contained in Theorems 4.4 and 4.9,
where the value or pole term of the lifted form at a cusp is given explicitly
as an inner product of the original form against a linear combination of
theta functions.

Finally, in Section 5, we give some examples. We derive a classical
formula for the number of representations of a (square-free) number as
the sum of three squares; we identify two modular forms of weight 3/2
and low level; and we derive formulas for the Petersson ‘norm’ of some
theta functions. These examples have proved useful chiefly for checking
the accuracy of our main formulas.

I would like to thank my advisors Mike Razar and Steve Kudla of
The University of Maryland, for introducing me to this subject and for
their generous donation of time and knowledge. I would also like to
thank Prof. John Benedetto for his timely encouragement.

Notations
We follow the notation established by Shimura, Niwa, and Shintani

[11,8,12]. As usual, Z, R, and C denote the integers, reals, and complex
numbers. We write ¢ = e(z) = exp (2riz) where, typically, 2z =u 4+ ive H
= {z|Imz > 0}. We will also need a second complex variable, which we
denote by w = &€ + iy. When we take square roots, we make a cut along
the negative real axis and take the ‘positive’ square root.

In general, we denote an arbitrary matrix in SL(2, R) by ¢ = (Z 3),

while 7 = ? 3) denotes an arbitrary matrix in SL(2, Z). Our most im-

portant group is I'(IN) = {¥|c = 0 mod N}, where N is a positive integer.

We also use the subgroup I'., = {T'|c = 0}.
If ke Z, e GL*(2, R), and f is a function on H, define

(fleo)(2) = (det 0)"*(cz + d) *f(a2) .
When ke Z is odd, and 7 e I'|(4N), define
(Fle)2) = j(r, 2)*f(r2)

where
Jr, 2) = 6r2)/6(2) =e;*(%)<cz +dy

Here 6(z) = > >.e(n’2), e, =1 or i as d =1 or 3 mod 4, and (c/d) is the
quadratic residue symbol as defined in Shimura [11, p. 442—see also Ap-
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pendix A of this paper]. We define also the ‘inversion’ operator W(N)
following Serre-Stark [10]:

N-*(—iz)"*f(—1/Nz)  k = half-integer

fldWIN))(2) = { N-*2z-kf(—1/Nz) k = even-integer

Let k& be an integer or half-integer, and let N be a positive integer,
divisible by 4 if % is a half-integer. Let X be a character mod N. We
say that a function f is a modular form of weight k, level N, and character

X—and write fe M (N, X)—if and only if f|.7 = 2d)f for all 7 e I'(N).

Since (— 3 _(1)) e I'(N), we must assume X to be even for k& half- or even-

integral, and ¥ odd for £ odd—otherwise the space M, is trivial.

If fe M(N, X) is holomoi'phic on H and has a Fourier expansion at
every cusp (see [11]), we call f a holomorphic modular form and write f
e GN, %). If such an f vanishes at every cusp (i.e., the constant term in
every Fourier expansion is zero, so that f is ‘rapidly decreasing’ at cusps),
we call f a cusp form, and write fe S, (V, X).

If f, ge M (N, x), we define the Petersson inner product

&=

whenever the integral is well-defined (i.e., absolutely convergent). Here
d,z denotes the invariant area element dudv/v’.

U f@E@Ede

I'o(A)

Lastly, we shall have occasion to use Hermite polynomials, so let us
define the ones we will use. For 0 < ve Z, define

H(x) = (—1) exp (*/2) - ;L exp (—2%/2) .
xv
Thus Hyx) = 1, H(x) = x, and so forth.

§1. General theta kernels

We begin by summarizing Shintani’s presentation of the Weil repre-
sentation.

(1) Let @ be a rational symmetric matrix of signature (p,q), p + ¢
=n. For x,yec R", define the inner product

$x, 90 = %Qy .
For matrices ¢ = (Z 3) e SL(2, R) and Schwartz functions fe #(R"), we

define the Weil representation
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[a["’ze[gzﬁ {x, x)] flax) ife=0

[det Q]q/z[cl-n/z IRn e[a(x, x) — 2<2’cy> -+ d<ya y>] f(y)dy

(r(o, F)(x) =

if ¢=0. 1y

Since this is just a mixture of the Fourier transform, scaling, and multipli-
cation by functions of modulus one, there is an extension to functions
fe L (R"). The Weil representation is a projective unitary representation
of SL(2, R) in L*R™), in that

r(or, @) = c(o, D)r(o, Q)r(zr, Q)
with [c(e, )| = 1. More precisely, defining

J(o,2) =cz+ d

and

Vi c>0

(o) = {j0-ssnar c=0 (1.2)

Vit c<0

we have
(0, 7) = {(o0)/(D)eD)}P~ei(a, )17

where

c(o, ©) = VJHoz, D)V (o, TiW I, i) .

The Weil representation becomes a true (not projective) representation’ if
we pass to the two-fold covering of SL(2, R), the metaplectic group: Let

S5 B) = {(s, )]0 e SLE, R), t=+1; (0, ), ) = (o0, tteso, )} . 3

Then
ri(e, 1), Q)f = t*~%(0)* *r (o, Q)f

is a representation of S/’E(Z, R) in L*(R").

(2) Let L be a lattice in R” such that {x, x) ¢ 2Z for all xe L. (Thus
for x,yeL, <,y =3 x+y,x+ 3 —{xx> —{y,y)eZ) Let L* be
the dual lattice: L* = {xe R"|{x,y) e Z for all ye L}. Clearly L C L¥*,
and L*/L is a finite abelian group. Denote by v(L) the volume of a
fundamental parallelotope of L in R":

o(L) = f dx

R?/L
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Let fe #(R") and define, for h e L*/L,
o(f, h) =1;L flx+h).

We quote our first result from Shintani [12, p. 95]:

ProprosiTiOoN 1.1. Let 7 = (g 3) e SI(2,Z). Then
(1) or(r, @f, h) = ké:m c(h, k),6(f, k) (1.3)
where

5h,ake<9§~<h, k>> ife=0
o(h, k), =
det Q[v(L) e 3 e[;,(a <h4rh+r —2kh+r
C

r€L/cL
+ d(k, k>] if ¢=0 (1.4)

(il) Assume c to be even and nonzero, cL* C L, and c¢{(x, x) to be even
for all xe L*. Let {2, ---2,} be a Z-basis for L, and define D = det ({4,

2 j> ) . Then

s ()(5) <o

clhy B), = 0y, VT2 0 o] @0, 1y

Remarks. 1. D depends only on L (and @), not on the choice of basis.
2. Since e, = i, the actual difference between d > 0 and d < 0 in (1.5)
is the presence or absence of the term (—1/d)"; otherwise both are ¢}, (2¢/|d))"
(D/|d).

The group generated by those matrices satisfying the hypotheses of
(ii) above clearly form a congruence subgroup of the form I'(4N), for
some positive integer N. In our use of it, I'(4N) will always satisfy those

hypotheses.

For (g 3) e I'(4N), the map k — dk is (among other things) a perm-
utation of L*/L. Now suppose w: L*/L — C is a function satisfying

1) ok)=0 if &k k22Z

) w(dk) = Kd)ak) for 7 = (g‘ 3) e T(4N),
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where 2 is a character mod 4N. We say that o has the ‘first permutation
property’ for I'(4N) with character X. (It is easy to create such functions:
if y: L*/L — C is any function, nonzero only for % such that {(k, k) ¢ 2Z,
let

o(k) = W N) }_. 2(d)(dk).)

As an immediate consequence, we have

THEOREM 1.2. Suppose o has the first permutation property for I' (4N)
and . Define

of, ) = 33 oWCf, 1) = 35 olf(h)

Then, for 7 = (g cll’) e ['(4N)

2c
0T, Q)f, @) = y T~ 0 (M)J 'l( d ) ( d )D
{ed "(i sgn c)" ( (7)

taking the top (bottom) choice as d > 0 (d < 0).

(8) SL(2, R) is a locally compact group, so it carries a Haar measure
X X,
X, X,

dg = dx,dxdx,f|x,. Writing g = (g 2—1)@) f)(iﬁfg ig; g), we have

dg = dadxdgj|la]. U g = <81/2 Zﬂ;;ﬂ)(_gio; g it)r; g) then dg = (dudu/v?)

d¢. This last expression leads us to identify the upper half-plane H =
{u + ivjv > 0} with SL(2, R)/K, where

_ {k(¢) _ (_cps¢ sin ¢)‘_,r <0< n} ,

sing¢ cos¢/|

2Ad)6(f, w)  (1.6)

dg. There are various ways of expressing dg. If g = ( ), we can set

by the map
gK —»z=gi.

This is well defined, since ki =i for ke K. Under this map (

e uv-1/2>
goes to u -+ iv; we call this matrix o,.

0 v~
vE yui2
PropositioN 1.3. Let e SL(2, R), and g, = (O Ny ) for z =u +
we H. Define ¢(mod 2r) by e~ = J(z, 2)/|J(z, 2)|, and let
k(g) = < cosg sin ¢) . Then

—sing¢ cosg
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1) 70, = 0..k(¢)

2) r(z, @r(o., Q) = r(s.., Qr(k(¢), Q)

Proof. As actions on H, both sides of 1) take i to zz. Therefore the
two sides differ only by a ‘rotation’ matrix. Observe that both sides also
take the cusp at cot ¢ to the cusp at ioo: for the RHS this is clear, while
for the LHS it follows since, from the definition of 6, cot § = —(cu + d)/v.
Therefore the two sides differ only by 4I. Egquality now follows by con-
tinuity and connectedness, since I-¢, = g;,k(0) is obvious.

Statement 2) now follows by comparing c(o, ) for the matrices on
each side.

2
COROLLARY 1.4, For rz = (g 3) € SL(2, R), and te R, let r, = (g/ﬁ gt>

= (t t_l)r<t_]l t)' Let k(¢) be as before. Then

T0y2, = Uﬂ(rz) k(¢)
and

r(fn Q)r(gﬂz’ Q) = r(at?(rz)’ Q)r(k(¢), Q) .
Proof. This follows since J(z,, t*2)/|J(z,, £22)| = J(z, 2)/|J(z, 2)|.
(4) Let fe #(R") and let e Z. Assume that for all

k(¢)=< cos ¢ sin¢>’

—sin ¢ cos ¢

r(k(¢), Q)f = e(k(g))*~We "*~*f (1.7
(with ¢ defined by (1.2)). We say that such a function f has the ‘first
spherical property’ for weight /2.

Remarks. 1) By comparing both sides of (1.7) for ¢ = =, it is easy to
see that f is identically zero unless # = n mod 2. 2) The condition (1.7)
is really stating that f be an eigen-function for Kx{+1}, a maximal com-

pact subgroup of .S/'i(2, R), under the Weil representation r,, The char-

acters of this subgroup are of the form X, ((k(¢), ) = t"ve-##"", for me Z.

Thus if f has the first spherical property, and « = n mod 2, we have
(@), 0, QF = -1s(k@) 1 (kg), Qf = /e .

Let f have the first spherical property for weight £/2, and let w have
the first permutation property for I'(4N) with character X. Define
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0z, f, h) = v="0(r(o,, Q)f, h)  he L*/L (1.8)

and

0(z, f, w) = he;ﬂ wo(h)b(z, £, h) . (1.9

THEOREM 1.5. Let 7 = <‘cl 3) e SL(2, Z). Then

(cz + d)*0(rz,f, h) = &/ 1 ~#-®sene . ZL c(h, k),0(z, f, k) (1.10)

€L*/
with c(h, k), as in Proposition 1.1.

Proof. This follows easily from Propositions 1.1 and 1.3, and the
standard fact that Im (72) = Im(2)/|cz + dJ.

COROLLARY 1.6. Let 7 = (g 3) e I'(4N). Then

(7, 2002, f, 0) = 1(d)(z, f, ) (1.11)
where w(d) = (;}) """’”(%)”(%)((—1)«0, d).1(d)

with the Hilbert symbol (x,y). =

-1 if x,y <0
1 otherwise

COROLLARY 1.7. As special cases of Theorem 1.5 we have

(1) 6=z f, h) = v/ i@z |det QIul) 2, e(—<k h)ie, 1, k)

L*/L

@ 6(z+1Lfh) = e(% By )Gz, £, ). (1.12)

CoROLLARY 1.8. Let ¥ € SL(2, Z). Then
Ve ez + ) OT2 f, B)]ere = VT 00T OB, 0),£0)  (1.19)

Assume moreover that f(0) = 0. Then 60(z, [, h) is ‘rapidly decreasing’ at all
cusps. That is, for all 1€ SL(2, Z), and all m > 0, [v™(cz + d)**0(rz, f, h)|

—0 as v— oo.

Proof. The first equation is easily seen from Theorem 1.5. We post-
pone the proof of the second assertion to Corollary 1.13, where we give
a sharper version of the result.

(6) Which functions—if any—have the first spherical property? It
suffices to answer the question when @ is a diagonal matrix.
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THEOREM 1.9. Assume (x,y) = mx,y, + -+ + M, X, ¥, — My, 1 Xp.1Yp 1
— e = My XpiqVpig With m; >0 for all j. Let v = (v, -+, v,.,) be an
n-tuple of nonnegative integers such that

(p—q)+2(l/1+ +vp—”p+l_vp+q)=’c (1‘14)
and define
f = ”n: H,(2v/mm, x,) exp (—zm,x?) (1.15)

(The Hermite polynomials H, are defined in the Notations.) Then f, has
the first spherical property for weight x/2. Conuversely, any function with
the first spherical property for weight /2 is a sum (possibly infinite)

f=2caf (1.16)
over all n-tuples v satisfying (1.14).

Proof. Modifying Niwa’s argument [8, p. 150-151], we define the in-
tegral transform

1@ = [ [k ads 2=, 2)eC
where
k(x, 2) = exp (—n%l my(x} + 2ix;2; — lz“})) .
i=1 2

Following definitions, we see

Lk, Q@) = |det Q=[sin gl [ [ exp| - Sim{(1 21929 )w;

i=1 sin ¢

+ 2i(z, F y,sin @)z, — (—21— 2 7 iy} cos gsin 9) }| 9)dyda

]detQ|‘/2]s1n¢]-"’2j ) exp[ ﬂm1(1+Lcos¢)

sin ¢
— 2xim (=, F ylsin 9, + am,(-L2 F i3 cos gfsin ¢) |dx.f()dy
= |det @|*|sin ¢]—"/2_[ pﬁq <_ . sin sin ¢ rz¢> /2
m;

X exp [—zmj<y§- + 2iy,e*¢z; — —;-e*““‘z"})]f(y)dy

= [det Q|"*|sin g| " fm ”

sin ¢ )l/ze(k(¢))ileii¢/2
m;

X exp [—nmj<y§~ + 2iye*z; — —;-eﬂ“’zﬁ)]f(y)dy .
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The + convention has been to use the top sign for 1 <j<p and the
bottom sign for p <j < p + ¢q. Since

|det Q| = jj: my, we get I(r(k(g), Q)f)(2) = e(k(§))*~ e " I(f)(e***2)

where e*"z = (e¥z,, - .-, e"z,, e %2,,,, -+, €7 "2,,,). Now when fe ¥(R"),
I(f) is holomorphic in C* i.e.,

I(e) = 2 e - - 2
Thus

I(f)(e*2) = 3 c,etdtrt tvomvprismvpragn .. giosa

To ask that f have the first spherical property is thus to ask that I(f)
consist only of terms such that (p — @) + 20+ -+ - + v, — vy — + -+ —Vp.0)
= k. To complete the proof requires a simple computation showing that
I(f)(2) = c,2t - - - 225t (where ¢, = [[2:¢4/2[m,(—iv/am,) is of no parti-
cular importance to us).

Remarks. 1) When @ is not diagonal, one need only know the matrix
which diagonalizes it. (Indeed, we could have assumed m, = 1 in the proof
above, but it would not have simplified the proof.) 2) The first spherical
property is not restricted to Schwartz functions. The transform f— I(f)
can be seen to be a unitary map from L*(R") to a Hilbert space of entire
functions on C”. Thus any series of the form (1.16) which is convergent
in L%R"), will have the first spherical property. (Reference: Igusa, [6, p.
31-36].)

(6) We have the ingredients now to do a ‘simple’ example: the theta
functions for a 1 X 1 matrix.

Let n =1 and ‘xQy = 2xy, so that

[a['* e(abx®)f(ax) c=0
, = O e 2 2 . 1.17
(o, Q)ft) \/ % LQ e[___“x _Z:yﬁﬂ] fdy w0’ 7P

In particular,
(r(o., @)f)(x) = v e(ux’)f(v'"’x) .

According to Theorem 1.9, the only function with the first spherical pro-
perty for weight £/2 = v + 1/2, is the Hermite function
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f(x) = H,(2v/2r x) exp (— 2rx?)
o
(r(o., QF)(%) = v/*H,(2v2rvx)e(2x?) .

For 0<reZz, let L =rz, so that L* = Z/2r and v(L) = r.
ke{1/2r, 2/2r, - - -, 2r*/2r} ~ L*|L, Proposition 1.1 gives

0, .x2(abhk) c=0
h, k), = . :
o By =y 1 & e[l (a(h + rs) — 2k(h + rs) + de)] c£0
Vocri=t Le

61

(1.18)

Then for A,

(1.19)

Moreover, cL* C L if and only if 2r*|c, and c{x, x) is even for all x e L*
if and only if 4r*|c. Thus D = 2r* and I'(4N) = I'(4r*). As a function

w: L*|L — C with the first permutation property, we choose

1} if keZ

olk) = {«p(k) it ke Z

where + is a character mod r. One easily sees that, for any fe #(R),

0f, @) = 35 (m)f(m)

(c.f. Theorem 1.2). In our case we get a function of z:

0z, f,, ) = v-®*V(r(a,, Q)f,, w) = v 2 W(m)H,(2v/ 2rv m)e(m’z)  (1.20)

Notice that 6(z, f,, ¥) vanishes identically unless (—1) = (—1).

As a

consequence of Theorem 1.5 and its corollaries, we have the following:

TueoreEM 1.10. (1) Let (2, h, 1) = > peney e(m?2). Then
1) 6(—1/4r*z, h,r) = (—2i2)"* i} e(hk/r)o(z, k, 1)
k=1

. 1+0Ww" h=0
Q) 6Gv, h,r) = {O(v“‘/z) o 0<v< oo

(i1) Let 6, ,(z;1) = v > =__. H/(2v/2zvm)e(m?z). Then
M) (1, 200, (1z; 1) = (:dl)”e,,xz; ) rely4)

@) 0,.(—1/4z; 1) = i((—2i2)"*0,,(2; 1)
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(iil) Let + be a character mod r, with (—1) = (—1), v=20 or 1
Recall that (d) = y(d)—1/dy, an even character. Define

hy(2) = % _Zw; Jy(m)mre(m?z) . (1.24)
Then
(1) Jj(T, 2@ Phy(T2) = V(dDhy(z)  Tel(4r?)
)\/f—sgn(c) T le a
——== w(h) 25 |—(h + rs) =0
© (erdy o).~ Veor = A [Forr]
TeSL2, Z)
0 v=1, (1.25)
Thus
G, (41, ) v=20
® hye {83/2(47'2, Y1) y=1"

(4) If 4 is primitive mod r, then
h\lfl(2u+l)/2W(4r2) = ('—i)yr_l/2g(\!’)h¢ (1.26)

where g(v) = > r_ w(h)e(hr) (the Gaussian sum).
(B) If T and u are integers, with 0 < T, and + is primitive, mod r,

then
h(Tefdruz + Ddruz + -0 = S0 55 memyeanizi ) (L.2D)
where
§m) = 3 3% v(Rel(em + Tgh — ug)/Tr). (1.28)

Proof. (i) follows from Corollary 1.7 and easy estimates, while (ii) fol-
lows directly from Corollaries 1.6 and 1.7. The first two assertions of
(iii) follow from Corollaries 1.6 and 1.8; the third assertion summarizes
the first two. Assertions (4) and (5) are easily derived from Corollary 1.7
and Theorem 1.5, respectively.

Remarks. 1) The first two results, especially (i), are purely technical—
we shall refer to them exactly once later in the paper. 2) Except for the
explicit formula (1.25), the contents of (iii) appear in Shimura [11, p. 457],
with precisely the same notation. In particular, (5) is again a technical
statement which will be used once later in the paper.
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The formula (1.25) provides a characterization of those theta functions
of weight 1/2 which are cusp forms.

Cororrary 1.11. Let 4 be an even character mod r. Then h,e S,
(4r%, ) if and only if
> w(he(Ahor) = 0
h=1

for all A =1, ..., r, where § = 1 when r is odd, and § = 2 when r is even.

Proof. The value of h, at any cusp is given by (1.25). Since h,
transforms under I'y(4r?), it suffices to consider a finite set of cusps: those
for which c|4r®. Set 4r* = ac, and consider the cases a« = 45, « = 28 (248),
and 2fa.

When « = 48, we have

‘le e[%(h + rs)z] = Ell e[fa(R/r* + 2sh/r + )]

= e(Bah?lr’) 3 e(2pahs]r)

{0 if r42Ba
B {lcle(Ahz/Qr) if 28 = Ar’

This, with the observation that 2|A if 24r, resolves the first case.
When « = 2§ and 2/8, then 2|c, so 2fa, and we get

Siel g ror| = & ctpatriizr + shir + s

|

S

L elpa(h?/2r® + shir + s/2)] since s* = s mod 2

I
i

l
i Ma

CelBahl2r + (2h + r)s/20)]

0 if 2rfpa(@h + r) — ie.,, if 24r or rifa
~ lc|e(ARY2r) if 2|r and Ba = Ar '

When'2/a, we again have 2|c, so 2fa. Then
i [ h + rs)] - v " elaa(Rt/art + shj2r + 5'/4)]
= e(aah?/4r?) ch] {elaa(2th)2r + 48/4)] + elaa(2t — 1)R/2r + (2t — 1)/4]}

— elaakt/ar®) 3" {elaath|r] + e[a(thjr — hj2r)]}
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= e(aahi/4r®) 5" elaath|r{L + e[ haaf2r])

. {0 if rfaa or 2th
~ \lc|]e(AHYr)  if ea =rA and h=2H

Remark. A different characterization of those h,’s which are cusp
forms is given in Serre-Stark [10]: A, is a cusp form if and only if + is
not ‘totally even’. It is a straightforward, though lengthy, exercise in
Gaussian sums to prove the equivalence of the two characterizations
(directly, that is, without reference to theta functions or cusp forms).

(7) Returning to the general case, let O(Q) be the orthogonal group
of @: OQ) = {g|'gQg = Q}. Since det @ ~0, det g = +1 for ge O(Q).
Let SO(Q) denote the connected component of the identity in O(Q), con-
sisting of those matrices g with det g = 1.

We define a unitary representation of SO(Q) on L*R") by letting

(p(&f)(x) = f(g~'x). By definition of SO(Q), p(g) commutes with the Weil
representation:

p(g)(r(a, Q)f) = r(a, Qp()) .

We wish to state a sharper version of Corollary 1.8, for which we need
the following lemma:

LemMmA 1.12. Let L be a lattice, fe (R") and ge GL(n, R). Define
lgll = min {{2]|2 an eigenvalue for g}, and {g) = [][,min {|2], 1} (the product
taken over all eigenvalues of g, with multiplicities). Assume that det g =1,
and let « > 0. Then

O(ag)™) + O(@™™) gl <1
- 1.29
2, 118D {O(a'<"”">|[g||'"‘) 1< [egll (29

for any m, where O depends only on f, L, and m.
Proof. Since f is ‘rapidly decreasing’, we have estimates

o) [l <1

=) = {0<ux||-<m+">) 1< Jail”

Thus we need to estimate the number of points of agL lying inside the
unit ball; for the rest, we can estimate the sum by an integral: each term
is bounded by an average over a nearby fundamental parallelotope.

For |lwg| < 1, the number of points of gL inside the unit sphere is
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O(ag)-"), while the rest is O(a~" j ]~ ™ dx) = O(a-"). For |jag| > 1,

Ilzll>1
there are no points of agL inside the unit ball and

ST | flagx)| = O(ae‘" j |[x||'“’”">dx) — o(a—"f r‘””“’dr)
0£x€L Izl >1lagll r>llagll
= O~ ™*"|g|™™) .
CoRroLLARY 1.13. Let f have the first spherical property for weight r/2.

Then for any ge SO(Q), and 7 = <g 3) e SL(2, Z),

Ve (cz + d) 01z, p(@)f, h) = v i ~®- V% c(h, 0),£(0)
i v fixed
oe L,
+
Ow-") g fixed

U— o0

(1.30)

for any m, where O depends on f, L, T and either v (in the first case) or g
and m (@in the second). In particular, if f(0) = 0, then, for each g, 0 is
‘rapidly decreasing’ at all cusps of SL(2, Z).

Proof. Since p(g) commutes with the Weil representation, p(g)f also

has the first spherical property. Also, p(g)f(0) = f(0). From Theorem 1.5
and definitions, we have

LHS = v1--00 [e(h, 0),/(0) + c(, 0, T {r(a., Qp@}()
+ 3 clh By S (o, QP + B

0£KEL*/L

= v/ 1 -@-0sOc(h, 0), £(0) + O 2. Hrio., @p@)fix)
= v/ 1 -@-ossec(h, 0),f(0) + 0(0¢26L*|f(u1/2g-1x)|) = RHS .

Let K, be a maximal compact subgroup of SO(Q), and let ¢ be a
character of K,. Given ge #(R"), let

f(x) = L{ P(k)(p(k)g)(x)dR (1.31)
Q
<where dk is the Haar measure on K,, normalized so that dk = 1).
Kq
Then f has the property
p(Rf = ¢(B)f, kekK,. (1.32)

https://doi.org/10.1017/50027763000020468 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020468

66 BARRY A. CIPRA

We say that a function f has the ‘second spherical property’ with respect
to ¢, when f satisfies (1.32). (More precisely, f/ has the property with
respect to the group K, and the character ¢, but we shall be fixing K,;
in any event K, is implicitly defined as the domain of the character ¢.)

Let Iy, be a discrete subgroup of SO(Q) which leaves L invariant.
Then I'y permutes the elements of L*/L. Let I'} be the (normal) subgroup
of I', which fixes L*/L; this is obviously of finite index in I'y, since L*/L
is a finite group. Let X be a character of I'y which is trivial on I'} (i.e.,
a character on I'y/I'}), and let w,: L*¥/L — C be any function. Then

1
k) = s T1(New(Tk
() [Lg: I'¥] rerZ:q/r;}X( JoiTk)
has the property
o(Tk) = X(Nw(k) rely, keL*. (1.33)

We say that function o satisfying (1.33) has the ‘second permutation pro-
perty’ for I, with character X. (This definition holds for any character X
on I'y, but if X is not trivial on I'}, then 0 =0.)

§2. Niwa’s theta kernel

(1) We now specialize to the 3 X 3 matrix considered by Niwa and

Shintani. Let
—2
Q= l( 1 ) ,
N\_g

a matrix with signature (2,1). Clearly, det @ = —32/N®. Let
L=4NZ®NZ® Nz/4 .

Then v(L) = N®. Also, L* = Z® Z[2® Z/[16, {x, x) € Z|2N for x e L*,*D,=
det ({2;, 2,)) = —32N*® (see Proposition 1.1), and cL* € L when ¢ = 0'mod
4N, so I'(4N) satisfies the hypotheses of Proposition 1.1 (ii).

(2) As a quadratic form, @ is a discriminant, and is given by the
determinant of a matrix:

Q) = 'xQx = % (2 — dxx) = —8

X xz,/2t
N .

%2 x|

SL(2, R) imbeds in SO(Q): g(x) = x’ is given by
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x1 xé/2>: (xx xz/Z)z
(x;/z ) 8ype 18

More explicitly,

¢ b a? ab b*
< d) —12ac ad + bc Zbd) . 2.1
¢ ¢ cd d?

In fact, this imbedding is an isomorphism of SO(Q) with SL(2, R)/+ 1.
A natural choice for K,;, a maximal compact subgroup of SO(Q), is the

image of K from SL(2, R):

cos¢g sin ¢ cos® ¢ cos ¢ sin ¢ sin’ ¢
k(¢)=( : >ﬁ(_23m¢005¢ cos’ ¢ —sin’ ¢ 2sin  cos ¢)
—sin ¢ cos¢ sin® ¢ —sin ¢ cos ¢ cos® ¢
1+ cos24  sin 2¢ 1 — cos 2¢
2 2 2

= | —sin2¢ cos 2¢ sin 2¢
1—cos26 —sin24 14 cos2¢
2 2 2

with 0 < ¢ < 2z. Notice, since K, = K/+1, the characters on K, are of
the form k(¢) — e*™* for me Z, Thus, we shall say that a function has
the second spherical property for the weight 2m, rather than for the
character e,

(8) We shall identify those functions having both a first and second
spherical property.

THEOREM 2.1. Let m and A be integers. Then for every positive integer
u such that |m| < 2+ p, there is a unique (up to scalar multiplication)
function L, ,, such that

Fuie = Lns s, %, x3>Hp( v f,” (o + x3>) exp (:-1\—,25(2x§ + 2x§>) 2.2)

has the first spherical property for weight /2 = 2 + 1/2, and the second
spherical property for weight 2m. The only functions with both a first and
second spherical property (for weights k/2 and 2m) are linear combinations
of the form

Z apfm,l,p(x) .

£220,|m| -2
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The function L, ;, is defined (up to scalar multiple) by

Lm,lm(x) = 2i :“ ezmi¢L1,p(k(¢)—lx)d¢

T
where L, (x) = H,(v8x/N(x, — x;)H,(v8x/N x,) for any choice of v, and v,
such that v, + v, — p = 2. In particular, we may take

Lz,a,o = (x; — ix, — x)* .

Proof. Observe that

1 /10 —1
Q=‘T( 1 )T with T:J%( 01 o).
1 ~1 0 —1

In the diagonalized basis, the functions with the first spherical property
are linear combination of functions

H,(2Vxy)H, (27 7y ) H 2V y;) exp (— (3} + i + 52) (2.3)
with, v, + v, — ¢ = 2, where y = Tx. Also in this basis, the image of K is

cosg sin g cos 2¢ sin24 0
( . )—+ —sin 2¢ cos24 O 0<g¢<2r.
—sin ¢ cos ¢ 0 0 1

As shown in (1.31), we can produce a function with the second spherical
property for 2m, without losing the first spherical property, by integrating

,21_ " eanis L (247 (y, cos 26 — 3, sin 26))H,(2v/7 (3, sin 2 + ¥, cos 26))dg .
T 0
(2.4)

It is an interesting property of Hermite polynomials, provable from the
recurrence relations, that this integral depends only on m and the sum
v; + v, up to a scalar multiple which does depend on the choice of v, and
v, (and may equal 0).

It is clear from inspection that the integral must equal 0 if m is a
half-integer or if |m| > v, + v,. The main result now follows by changing
back to the original basis for @, while the particular case follows from
the Hermite identity

(e — i) = 2 (A~ He ) 25)

#=0
i.e.
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(x, — iz, — %) = (§N”)/ z (Z)(—i)"H;,<—‘/—]3‘lxz>H1_,,(-“/%E(x, — x,,)). (2.6)

For the rest of this paper, we shall consider a specific function f:
f(x) = (2, — ix, — x,)* exp(—-%-@xf + x5+ 2x§)> 2.7

which has the first spherical property for weight £/2 = 2 + 1/2, and the
second property for weight 22. If we let L(x) = x, — ix, — x,, it is easily
seen that

f) = Lixy exp (=% L)F + 7Q() 2.8)
and thus
(0., QF)(x) = v** exp (iuQ(x))f(v vx)
= V/** ¥ [(x)* exp (— ilgr—v[L(x) |2) exp (rizQ(x)) . 2.9

(4) We shall now introduce a function o having the first and second
permutation properties.

ProposiTION 2.2, Let X be an even character mod 4N, and define 2,
=X—1/ ). Let ' = Z® NZ® NZ[4 (so that LC L’ c L*) and let I,

= (2 1/2)['0(2N)(1/2 2>. Define w: L*|L — C by
) ok)=0 if kel
2) o) = (k) if k= (ky,kyk)eL .

Then o has the first permutation property for I'(4N) with character 3, and
the second permutation property for I'g with character X:.

Proof. The first permutation property is obvious, given the simple
calculation that <k, k) e€2Z for keL’. As for the second permutation
property, it is a matter of observing that

a’ 4ab 16%*
(2 )(“ b><1/2 ) = (“ 4b> —|ac/2 ad + be 8bd

leaves L and L’ invariant, when 7 = (g 3) e I'(2N), and that 7,(a%, +
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4abk, + 16b*k,) = 1¥(d)y (k) for (R, ks, ky) € L’. (Note that, when X has mod-
ulus 4N, x* has modulus 2N.)

Remarks. 1) The largest group leaving L invariant is <2 1 /2>SL(2, Z)
(1/ 2 2>, which may help explain why we use a conjugate to I'(2N),
rather than some subgroup of SL(2, Z). 2) If I'y = (2 1 /Z)FO(ZN)<1/ é 2),

then I'} = (2 1 /2>F(2N )(1/ 2 2), where I'(2N) is the principal congruence

subgroup of level N.
(5) Let w = & + iy be a complex number with » > 0. Recall how the
upper half-plane imbeds in SL(2, R): specifically,

2771/2 25/771/2
U4w=<0 1/2771/2).

(The presence of the ‘4’ is explained below.) Define the theta kernel of
weight £/2 (£ = 22 4+ 1):

0z, w) = () ~v™" 2 2(x){r(,, @p(o.)f}) (2.10)

where

L' = Z® NZ® NZ/4, and f(x) = (x, — ix, — x,)} exp (~ %’/E @2 + 2 + 2x§))

THEOREM 2.3. Let 0 be the theta kernel of weight r/2 (k = 22 + 1).
Then 1) 6e M, (4N, x(NJ )) as a function of z
2) 0e M, (2N, 3*) as a function of w

Proof. In the notation of Corollary 1.6, 6(z, w) = (49)*0(z, p(o..)f, ®),
with o defined in Proposition 2.2. The first transformation thus follows
immediately from the corollary, since D = —32N°® and ¢ = 1. The trans-
formation in w is based on Corollary 1.4 and definitions. Everything works
because f has the first and second spherical properties, and » has the first
and second permutation properties. (Corollary 1.4 and the definition of
I', in Proposition 2.2 explain the ‘4’ in o,,.)

We can be more explicit as to the transformation in w:

ProrosiTioN 2.4. Let A(x, w) = (1/p)(1/4 x, — wx, + 4wx,), and D(x) =

(N/2)Q(x) = 2! — 4x,x,, For ¢ = (g 3) e SL, R), let
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a’ 4ab 1656
1
P Eac ad + bc 8bd ) @2.11)
[ 1 ¢’ i cd d*
16 4

Then
0o ™)z, ) = () 0" 3, ()G, wp exp| — 52 | A6, w|-e@DEN)
(2.12)

Proof. 1t is easy to check that A(x, w) = (p(o,,)L)(x), where L(x)=ux,
— ix, — X, and the identity

2% + x5 + 2x; = 2|L(x)]? — D(x) .

Since ¢ is the image of ¢, = (2 1 /2>o(1/ 2 2) in SO(Q) (see Proposition

2.2), and D(6x) = D(x), the transformation follows from Corollary 1.4 and
a formal computation.

The theta kernel 6(z, w) is essentially the function 6(z, ¢.,) in Niwa.
(The one difference: we include the factor (47)-* with the theta kernel;
Niwa does not.) Actually, 6 is not the ‘right’ kernel. As in Niwa, it is
necessary to invert both variables, z and w.

ProrosrtioN 2.5. Let |,,W(4N) act on the variable z, and |,,W(2N) act
on w. Define

0* = 6|, W4N) |, W2N) . (2.13)
Then

1) 6*e M, (4N, X) as a function of z
2) 6% e M, (2N, 13 as a function of w .

Moreover,

0%z, w) = B2N) v (4™ 23 (410w, @P(ou)f} (%) (2.14)

where 3,(m) = > ¥, .(he(mh/AN), and L = Z|4 ® Z|2 ® Z[4, the dual lat-
tice to Ly = NZ® NZ D NZ. Alternatively,

0%(2, w) = 2- @O N -Gy A2 ST (x) A (x, w)
r€ZOZDZ

X exp [ ZN:)-M’(x, w)[2]e(2(x§ — X,%,) (2.15)
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where

H(x, w) = L (x, — 4Nwx, + 4Nw'x,) .
7

Proof. Statements 1) and 2) are standard results for modular forms
(see Theorem 2.3). We proceed with the derivation of the formula (2.14)
0., WHAN) = (4N)~**(—iz)~**6(—1/4Nz, w) (definition of W)
= (4AN)~*4(—1i2)~**(4n)~* > w(h)6(—1/ANz, p(o.,)f, h) (definition of 6)
L¥L
= (AN)~4(—i2)~"(49)~*/ T ~'(4Nz)"*(32N?)- />
X > o(h) 3 e(—<h, B))I(ANz, plo..)f, k) (Corollary 1.7)
L¥L L¥L
= (2N)"VH4N)"~1i}dn)~* 3 @(k)I(4Nz, p(o.)f, k)
L*/L

where

a(k) = 3 o(h)e(—<h, k)

L¥]L

Here w(h) = 3(h,) for h = (hy, hy, h)e L' = Z® NZ D NZ/4, and w(h) =0
for heL'. Moreover, —<{h, k) = 4hk/Nmod Z for hel’, ke L*. Thus
a(k) = 3(16k;) for ke L*. (Recall that k,c Z/16)) We have so far derived

01z WAN) = @N)™V(4N)"#(49) 0" 3 1,(16k){r (0,2, QP(0,)f}E) -

The second inversion is a property of the function f:

(7P, )N WEN) = @NY(—2Nw)( N[ZI;)"p@“_lm))f

= () 7p((1g ~%)oma-ri@))1

using Corollary 1.4., where e-* = w/is. Now the second spherical property
for f implies a continuation:

=7p((yp 7o)

4
The matrix( _2>, which imbeds in SO(Q) as -1 , acts on
1/2 14

the lattice in a simple way, which results in the formula (2.14). Finally,
(2.15) follows from (2.14) and definitions.

Remarks. We have followed Niwa in first defining 6, in part because
the character 3, is easier to work with than the Gaussian sum ¥,. However,
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6* could have been defined directly, in the following way: let

_1 —2
Q‘—5<—2 ' )

and f, = (x, — ix, — x,)" exp (— (x/2)(2x? 4+ x% + 2x2)). Since this is just the
original @ and f with N set equal to 4, it is clear that f has the first and
second spherical properties for the weights #/2 and 24. Now let

L=4NZD2ZDZ
L'=Z®2Z0Z
L* = Z® Z® Z|AN

and define w: L*/L — C by

0 k¢ L

o) = { .
(k) k= (k,kyk)ecL

It is easily checked that the group satisfying the hypotheses of Proposition
1.1 (i1) is I'(4N); o obviously has the first permutation property for I'(4N)
with character X, and it is easily checked that o has the second permuta-
1/v/2N

tion property for I', = (“/ZN 1 J?N)F (2N )( J?N) with character

72

3% The reader may verify that, up to a constant multiple (depending on
N and 2),

0*(z, w) = v=*(2Np)~* EZL] 11(x){r(o,, @IP(0:5u)fi}(%)
THEOREM 2.6. Let x =22+ 1> 3, and let 1,7 € SL(2, Z). Then

0(0(1_,;)/4771-1) v < 772

(CZ -+ d)—:/Z(c/w -+ d/)—zzo(fz, T/w) = {O(U_(,;_a)/«t-my)zm-x) 7]2 <v

(2.16)

for any m, where O is independent of z and w. The same estimates hold
for 6%. When r = 1 and X is not the principal character, the estimates (2.16)
again hold for 0 and 6*. When k = 1 and X is the principal character (mod

4N), then the same estimates (2.16) hold for all T ¢ (1 _1>I’0(4N). Le.,
6 is ‘rapidly decreasing’ at all cusps not I'y(4N)-equivalent to 0, 6* is ‘rapidly
decreasing’ at all cusps not I' (4N )-equivalent to ico.) For 7T € (1 - 1)F0(4N ),

the estimate is
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O 2
(cz + d)-"0(12, T'w) = V" $(AN)BZN?)-" + { ) VST (2.17)
O(vl/z—myfm) 772 <v

Proof. The first part of the theorem follows from Lemma 1.12 and
Corollary 1.13, on noting that

lowll = llomll = <oy = {oa> = O™
with O depending on]y on 7€ SL(2, R). When « = 1, Corollary 1.13 gives
v ez 4+ d) 0Tz, W)|ero = 7’Sg“<”>L§L ¥(h)e(h, 0),
where

o(h, 0), = (32N~ [c| -2 3 e[z‘z ot r>]

relL/cL

= (B2N®-c|** 3] e[w 2 (ry — 4(h, + rl)rS)]
réZrer L Ne

= @V fel S e( MM 55 e ¢ (b, + 4Ns)s -
81,8 . C

s2=1 c ,88=1

Since y,(h,) = 0 when (h,,4N) > 1, we need only evaluate c(h,0), for
(hy, 4N) = 1. In this case

lc] if (¢, 4N) =1

0 if (c,dAN) > 1"

lel

2 e[_T“ (hy + 4Ns,)sa] — {

s1,83=1

But up to I'(4N)-equivalence, there is only one cusp for which (¢, 4N) = 1,
the cusp at 0, corresponding to ¥ = (1 _1). We have c(h, 0), = (32N*%)-"*

for 7 = (1 “1>, and thus v-"2""0(—1/z, W)|,...= v i (32N?)-' éi 2(h).

The last sum is either 0 or ¢(4N), proving the theorem.

(6) The utility of the theta kernel is that it allows us to pass bet-
ween forms of half-integral weight and forms of integral weight, via the
Petersson inner product.

ProrosiTioN 2.7. Let Ge M, (4N, X) and assume that

O(w) = j vG(2)0%(z, w) d,z (2.18)

T'o(4N)\H

is well defined (i.e., assume that it is absolutely convergent). Then @ e
M, (2N, %), where £ = 22 + 1. Conversely, if ® ¢ M,,(2N, X*) and
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G(z) = J P OW)I* (2, w)dw (2.19)

To(eNI\H
is an absolutely convergent integral, then G e M, (4N, X).
Proof. This is immediate from Proposition 2.5.

Remark. We are not asserting that 6* gives any kind of isomorphism
—i.e.,

Kz, 2) = f 0% (2, WO, W)dgw

To(4N\H

K (w, w) = J V02, Iz, w)dez
o4 N\

are not, in general, self-reproducing kernels. (The first integral is not

even absolutely convergent.)

The question is: When do these integrals converge, and what are the
growth properties of the resulting functions? In order to answer this,
we introduce some notation. For a discrete subgroup I' C SL(2, Z), of
finite index, with character o, and for a weight &, let

P = PiI', o) = {Ge M(I', o)|(G,7)(2) = O(v™) v — oo,
Let also for all 7 e SL(2, Z), uniformly in u}
Pr- = |JP, P=|JP, and & = )P

ia<m

(Thus forms in a P-space show polynomial growth—or decay—at all cusps,
while forms in the space % are ‘rapidly decreasing’—essentially, they are
cusp forms.)

ProposITION 2.8. Let £ = 24+ 1 > 3. Then (2.18) is absolutely con-
vergent for all Ge P,,(4N, 1), and (2.19) is absolutely convergent for all
@ e P;;*~(2N, »*). We have

0%: Pm(4N, x) — Ppsxtni-2(9N, ¥*) via (2.18)
0*: PZ(@2N, ¥ — Pm*4N, X) for m < —2 via (2.19)

Proof. This follows easily from Theorem 2.6 and the location of the
standard fundamental domain for SL(2, Z). Let Ge P",(4N, X). Then

@) = [ erGE0 e w)de

To4NN\H

VG NR)OF T |7 )z, w)doz

—
r€SL(2,Z)\I'o(4N) ISL(Z,Z)\II
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vz o0
— O(f v:/zvmv(x-x)ﬂnuz dv/vt + I v:/zvmv-(:-3)/4—h772h—1dv/v2>
72

1
,72 oo
— 0(771—2 J‘l v(l-l)/2+m—1dv + 7721;—1 J‘vzv2/2+m—h—ldv>

— 0(771—1(772((1—1)/2+m) — 1) _— 0271,—-17}2(1/2+m—h))
— O(vzm + 771—1 + 772'm,) — 0(7727:1 + 771—]() .

Likewise, if @ ¢ PR(2N, X%, then

@@ = [ PO)0*|i)e, w)dw

I'o(2N

7A@ YWNO* .ol LNz, w)dyw

7" €8L(2,Z)\I'0(2N) J‘SL(2.Z)\H

1%} 0
— O(Jl 77217)mv—:/4-—h+3/47]2h—xd)7/772 + J\ﬁ7721)7mv(1-;)/47?1-1d77/772)

— 0(0_((1—1)/2+h) J‘lﬁvumwn-zdv + oy J‘;vhm_ldv)

— O(v—((1—1)/2+n>(v(1+m+zh—1)/z _ 1) + U‘UZU(“"’)/Z)

(but we must have 2 + m < 0 for the second integral to converge)
— O(vm/z . v—((z-—l)/2+h) + Um/z) — O(vm/Z)

since & may be taken arbitrarily large.
The case £ = 1 is complicated by the fact that f(0) = 0. The reader
may convince himself of the following:

ProrositioN 2.9. Let £ = 1. If X is not the principal character mod
4N, then the conclusions of Proposition 2.8 hold in this case also. If X is the
principal character, then the conclusions still hold, provided we place one
restriction on the functions G:

f]G(zndv/v <C

for some constant C (depending on G, and not on u).

(7) As a simple example of a lifting via the theta kernel 6*, we con-
sider an Eisenstein series in the case that X, is a primitive character
mod 4N.

ProrosiTioN 2.10. Let £ = 22 + 1 > 3, and define

Eples) = Eple, s, 4N, D= | 3 o200 c PN, 7) (.20
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E,w,25) = Byw,25,2N,0) = 3 @ 2D e poN ). @21

7€ I AT o(2]) (cw + d)
Assume that X, = X(—1/ )* is primitive mod 4N. Then
f V2B, (2, )0%(z, w)dyz = C(s)Ey(w, 25) (2.22)
I'o(4N\H

where

- (A+$)

€ = 2-en-emsn( E TG 4 9g)LG + 25, 7)

with

g(t) = ZN 1(R)e(h/AN) and L(t, o) = 3, w;(;) ,

n=1

Proof. We shall go as far as we can before assuming X; to be primi-
tive. Using the expression (2.15) for #* and the usual unfolding trick
with Eisenstein series, we have

N o0 1 S
f vE, (2, $)0%(2, w)dyz = cl<4n)“f f vErners 5 (@) A (x, wy
T'o(4N)\H 0 [ VASVACYA

X exp [ 4_1\7;2 ]e(—é(xi — %,%,))dudv/v?

with C, = 2-@+hN-G2+3/h(—j) The integral over u picks up only those
terms for which x! — xx, = 0. We continue

= C(4y9)- J “sxrzlxaxl(-—xl)ﬂ’(x, w)* exp ( ;1_1\7;:) | A (x, w)[z)dv/v
- m \ AT A'(x, w)’
- CX(Z.N_J ’(49)- S B R e B S TO+ )

—of ® NN (=)
= o 2) " AR

When x} = x,x;, and not all three are zero, we may write x, = um?, x, =
—pmn, x; = pn?, with p square-free, and (m, n) == (0, 0). The correspondence:
(m, n, p) — (x,, x,, %) is 2-1, so that, formally,

Now
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A(x,w) = —vl—(x1 — 4Nwx, + 4N*w'x;,)
= %—({4m2 + 4Nwpmn + 4N*w*un?)
= %(m 4+ 2Nnw)*.

The equality continues as

a1 Y (__ mz)
= Clp=*— ’ %1 u © aN ,
477 2 {/42:;]‘:[ free m,n ((‘u/v)(m __l_ 2an)2)‘ 77 (m + nw)

= Z 1 ’ il(—ﬂmz) / Y )28
to<ulT tree 2% mn (m + 2Nnw)* \|m + 2Nnw|

)

with C} = Cy(x/4N?)-**94-*['(2A + s). We assume now that X, is primitive.
Then ¥, = g(X,)7,, and the double sum separates:

= Cfg("‘)<o<2§. free%)(mzﬂ/ (m —ngnlzf)nw)” ( |m + gan]Z )25)

=gy M5 D

0<p=[] free /1“2’ 20 M2 [Mls
¥* d) 28
X ( ,,L(im<__’7ﬁ#> )
o @t & \[ow + df
c=oc=2)0d=1
— Clgly2 3 B-m). 2d) Im (T
g(1,) ,,LZ=:1 mi*®  rera\roem  (cw -+ d)

= C(8)E,(w, 2s, 2N, x?), as desired.

(8) In this section we prove two key results: First, that, on the
imaginary axis in w, 6* can be written as a ‘Poincaré’ series, i.e., as a
sum over coset representatives of I',, in I'(4N). This leads to the second
result, which is a direct calculation of the Mellin transform of a lifted
form. This calculation shows that, at least on the imaginary axis, the
theta kernel reproduces the Shimura lift (up to an explicit, multiplicative
constant). In the next section we show that, for x > 3, the theta-kernel
lifting of a holomorphic form is holomorphic, so that the identification
with the Shimura lift is complete. For £ = 1, there is no Shimura lift,
and the theta kernel lifting is not holomorphic. Instead, it is ‘equal parts’
holomorphic and anti-holomorphic, i.e., of the form &(w) + &(—w).
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THEOREM 2.11.
. 2 v/2 =
0%z, ip) = C 3 ( 2 )<£> 7> o d)
v=0 \ Y T

reroroayy (Im 7;2)‘"”/2]'(7’, Z)‘—

X i (m)m*= - H(2+/2x Im 72 n) exp (27rinz7’2 — j-m—2—77‘2—> (2.23)
4Im 7z

Mmyn=—co

with C(—1)*2-4 N1/,
Proof. The spherical function [ ‘evolved’ out of the Hermite poly-
nomials via (2.6). It is straightforward to verify that
. . Sn. -i/2 2 2 .
0 i = (S0 ) 5 ()o@ ) @29

where

6,.(2) = v > H(2v/2zNvx,) exp (2riNzx) (2.25)

ZLg=—oco

et = v 5 (2 B (5 )

L1,T3= —c© 47}

2
X exp [——Qniuxlx3 — ZK;;Z — 47:Nv772x§] . (2.26)

(The notation here is identical with that in Niwa.) Using Theorem 1.10,
we have an inversion

0, (—1/4N2) = N*0, (—1/4z; 1) = /(—2iz)"*N**0, (z; 1) (2.27)

where

0,.(2;1) = v > H(2v/2nvx,) exp (2mizxl) (2.28)

is just 6, (2) for N = 1. In particular, quoting Theorem 1.10,

—1

6, .(2; 1) = ("d )’j(r, 2@y, (12:1), TeTl4). (2.29)

As for 6,,, Poisson summation on x, gives

87 \erh/e . < _ N
0,.(2, 47) = ( N-) @) ) v Y pe)(E + )
X eXp (4_]:7;7;5 %2 + %, |2) . (2.30)

It is straightforward to verify the inversion
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A-v+1)/2
52,;_,(—1/4]\72, 47}) = (,81%) (27r)“’2(—iz)‘—"(477)‘“”“v*“"

X 20 t(x)(x; + 4NxZ)'~* exp ( —|x, + 4Nxsz|2) (2.31)

16N2 v

Now

voA f: Ta(x)(x, + 4NxZ)** exp

P (16N2 pla 4Nx“zlz>

A-y
- %31 ,nf:wx*(md)<mcz+md) exp(lﬁN” I02+d|2)
c=00am)
c=0=)d=1
= 7 3{&.1)“” S (mymi- ( —am? )
rer°§"0(4m (d)( v m;mXI(m)m exp mﬁfg . (2.32)

Since

Xn(d)(j - d )H - zl(d)(v—l—)“"j(r, 2y e-h(m 72y~

<

I

d
2@ )i, 2o @mray
equation (2.29) gives
2@ ZE) 0,051 = 2i0, A Am 120,05 D . (239
The upshot of all this is a rather long formula:

871. (a+1)/2 . .
8, (—1/4N2), ,(—1/4 Nz, 47) — (W) o (— i2) i (2r)

X N (it 50 d)i(r, 2)(Im 72y -70, (1z; 1)

7€ o \I"0(4N)
X i n(mym*-» exp (—xm?*{16N** Im 72) . (2.34)

m=-»

Thus
01, WAN)(z, in) = (4N)-*(—iz)~*6(— 1/4Nz, ir)
= 2o (2 )em)mN@p) e 5 (as above)
=0 4

Finally, the statement of the theorem is derived by applying, in straight-

forward fashion, the inversion operator |, W(2N), and writing out 6, ,(¥z; 1)
via its definition, (2.28).
We won’t use it, but it is interesting to note that the Hermite
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polynomials disappear if one ‘inverts’ the theta function ) y,(m)m?*-*
-exp (—am?*/16N*p*Im r2). The result is as follows:

COROLLARY.

0L WAN)z, in) = () 3,  HdWImTz
rertoamy  j(¥, 2

X i %(m)pm — 2in) exp 2rin’rz — & Im 7z’m?) (2.35)

where C' = (—i)12-+-1N¥2-44,

THEOREM 2.12. Let G(2) = } 7, a(n)e(nz) € G, (4N, X), with the stipula-
tion that a(0) = 0 when £ = 1 and X is the principal character. Define

O(w) = J v2G(2)0*(z, w)d,z .

To(4N\H

Then

B(ioo) = AOCD) > fmm= 2= 1) (2.36)

m=1

with CyA) = P2-BND=6Mg=1["(3). When 2 =0,
: _ 1/4 & X(m)
I(ieo) = 4N"a(0) 33 2. . (2.37)
m=1
In either case,
[ 7@ — 0Geondy = cED-TOLE ~ 2+ 11) 3 4D (239
with
2 if1=0

1 if2>0

Thus, for Ge S, (4N, %), @ is identical with a constant multiple (C,(2)) of
the Shimura lifting of G, on the imaginary axis.

C](z) — (_ 1)1 2—31+2N1/2+1/4 X { (2.39)

Proof: TUsing the result of Theorem 2.11, we have

D(iy) = j vIG(2)0%(z, in) dyz

T'o(4N)\H
1 2 2 b 1 <! 2 2-2 &
= e ()G 7, [rre@e
X m*~*. H(24/2rvn) exp (—2nin2,§ — ﬂgﬁz—)doz
v
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n=-—0co

X exp (—4zn)- i} X(m)m*=* exp (— ny*m?/4v)dv/v

= o3 (H)en [ [«0ro + 3 am)Hom exp (2]
=0 \ y 0 nE0
X (aly)™ 35 T(mmi= exp (—2'mi(oly))dyly (2:40)

with C’' = 2C(8z)* = (—1)*2-*+2N#/**142xr)"2, Tt is easy to see that, as 5 —
oo, the only non-negligible term is that one involving a(0):

0(ico) = a@)C 3 ( 2 w8 [y 5 nmmi-

X exp (—2x*m*y)dyly . (2.41)
For 2> 0, we ‘invert’ the theta function (Poisson summation):
Valnid fi X,(m)m*-» exp (— 2rn*m?y?)
= (@riy 2y 3 G H. V(W ) exp (—mej32Ny) (242)
Thus
0(ico) = aO)C” 33 (* JrHO [y 3 pmH )
v=0 4N
X exp (—m’[32N*y))dyly (2.43)

with C” = C'(2ri)~*(2r)-"*(4N)~! = (*2-%N**-¥z-1 We can now actually
sum over v:

5 prom ()= () o

ok

SO

0(i00) = aOC” 3 7m)( o) exp (—m'[32Ny)dyly

4Ny*

= a(0)C* f: j;l ’V"’Zf’) yle-vdyly (2.44)

with C* = C"(8N) = {#2-#N@/»i-&9z-1 The integral gives I'(2), and C*I'(1)
= Cy(2), as desired.
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For 2 =0, we can dispense with the inversion, and evaluate directly
from (2.41):

D(ico) = a(0)C’ r y ig 1(m) exp (— 2x*miy?)dy/y

= a0)C'2 "= T(1f2) 3 l‘%”)_
= AN"'a(0) 3, i(n’f_) (2.45)

since I'(1/2) = z'%. Note that the sum must be taken in the ‘principal
value’ sense, > o, = lim,_.. > ¥  and diverges when X is the principal
character. That stands to reason: we have already explained that we
must assume o(0) = 0 when X is principal. We now have

0in) — 0o0) = ' 32 (2 )2m) [ 3 alw)H(om) exp (= miyi2)aly) =

X 32 ti(mmi=> exp (—2am(g/yY)dyly (2.46)
Now
[" -ty 5 mtmmi= exp (= 2mioly)dy
= y'(2a)em" Xj: xy(mym = C=1+D J: perITI esrdulp
= y@e)e= L — 2+ Lr(S T (2.47)
Thus

r’ 7 {B(iy) — BlicoYdy = C'L(s — 2 + 1, %) z (j )(2n)—~(2n2)<~—s—1>/2

X r(s_Jf;——) f "y 3 a(m)H,(ym) exp (—ny(2)dyly . (2.48)

Now
I: ¥ ;0 a(n)H,(yn) exp (— n*y*/2)dyly

= (990 [" ) + H(—yerrdyly

n=1

0 if v is odd
2(2 @) j: y“’(—l)”(—d%:T e‘“ﬂ)dy if v is even
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0

0
= = a(n?) § = v \ouonpe (2.49)
{(Z R e
Thus
Jm 773“1(@(1:7]) —_ Q(zoo))d;] =CLs—21+1, xl)(i _q(_rzz)_) 2 (l2 )
0 1 n veven \ Y
r s+1—v & s —vy
X ( 22y+1/27r)’+1< 2 )(s —Dels =) (2.50)
Using the identity I'¢/2)I'((t + 1)/2) = 2'-'z'I'(f), we get
[ 7-4@n) — 0GooNdy = ¢'Ls — 2+ 1,153 4 32 ()
0 1 n v even Y
 Lle = —1---(s —v) (2.51)

@r)
with C” = 2C'(2r)~"* = (— 124N+, From ['(s — v)(s — 1)---(s — v)

= I'(s) and §n<f) = 21“‘><{; ﬁ i 8, we get the result.

Remark. The constant C,(1), which equates Niwa’s lifting with Shi-
mura’s (at least on the imaginary axis), is different from the constant given
in Niwa and quoted in Kojima. The error in Niwa results from the omis-
sion of i* in his version of (2.27).

(9) In this section we consider the holomorphy of the Niwa lifting.
Our proof of holomorphy (for %2 > 3) is similar to Niwa’s in being based
on a partial differential equation for @, but different in that Theorem 2.12
provides us with stronger, exponential, growth estimates, which eliminate
the non-holomorphic solution to the PDE.

Shintani showed that, if fe #(R"), then F(o, g) = r(o, Q@)p(g)f satisfied
a partial differential equation.

CF = (CZ + n(% - 1>>F

where C, and C, are Casimir operators for ¢ and g, respectively. A nor-
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malization is specified indirectly, and must be worked out. In the present
case, if we parametrize the variables by ¢ = ¢,k(6) and g = ¢,k(¢4), then

Cl — 4[v2<722_ + 82 ) — v aZ ]
ou* o oudl

&= |7+ 5) ~ s |

The following is an easy consequence:

ProposiTiON 2.13. Assume that fe P(R®) has the first spherical pro-
perty for weight /2, and the second for 2m. Let L be a set of points such
that N.(r), the number of points in L with norm < r,is polynomially bounded
in r (N(r) = O@"), for some M), and let P(x) be any function of at most
polynomial growth. Define

Oz, w) = v 3, P(o{r(o., Q)p(ou)f =) .

Then
0" 02 . K 0 . 0 k(&
A%+ 2=l v )+ 35 e
ow Tav) T2 T ) T e\ (2 w)
of 0 0° . ( d . d ) 3]
= |-+ T g 2min( % —i % —1) — 2oz w).
[77<a§2 + 8772>+ M 2 la77 + m(m — 1) 1 (2, w)
THEOREM 2.14. Suppose G € P, (4N, X) is holomorphic on H.
Let

D(w) = f VG202, w)dz .

I'o(4N)\H

Then @ satisfies the PDE
(77 ai) - zi)% 6=0. (2.52)
Proof. First we note that
owy=[ ~vr S G wde

SL(2,Z)\H ac T'o(4N)\SL(2,Z)

where f,(2) = (cz + d)**f(xz). Observe that G, is still holomorphic on H,
and that 6% still satisfies the conditions of Proposition 2.13, with m = 2,
£ =24 + 1. That proposition translates to
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2 & j)@_J </2 G
(ﬂ owow At ow o Sch,zmsrv «61‘0(41%\:31:(2,2) ()

X [772 owaw +4 na—)ﬁ*(z w)Jdoz

— I /2 Z G, l(4y e i/cvwaj)ﬂfldoz

2 dzNdz
— (w36 [4 _a u‘] grdzNdz (o
I 2 v 0207 i 0z —21 (2:53)

Now fix the usual fundamental domain: SL(2, Z)\H = D = {z]]z] > 1, |Re 2|
< 1/2}. We use Stokes’ Theorem in the form

J e L = [ ne EE (157 -5 )

where 4 = 4(3°/020z), d/on is differentiation along the inward-directed nor-
mal, and d¢ is arc length. Thus

j Nae. a(m) d,z_/_\z_d_z_ — J. A(v;/zGa)aig HdZ /\C.i%
0 —2i

—21
[ (w6 25— gy 207G Yay
aD n an
Since G is holomorphic,
(va ) = ‘(<f_':__§_>x/zGa> _ 'c_iv‘/ﬁ"Ga ,
0z 2t 4

SO

I vx/zGa<4 8202‘7>gz/\d§ — ’“J ~Qf(v"2“G,,)?i?d~M
v D 0z —2

020Z —21
a f (v‘/"Ga@— - ﬁﬁ@’fﬁa)-)dg
aD on on

Plugging this into (2.53) we get
(0 2~ 2o 5], Lo dens
w a D az ——21

Jwow ow
+ J (U'/ZG,, @ . ga; a(vrIZG,,) )dﬂ]
aD an

an
— Z [_if v”/z_lGnﬁ—fd.? + J. (v"’zGa @A o ﬁ_@(v'/ZGa) )dl]
- 2 Jip aD on on
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-5 oo o)
a a
+f v‘”(Ga aa”ﬂ 0*9§7>d3] (2.54)
aD n

We break the boundary 9D into the usual four segments. The integrals
along the vertical segments are esaily seen to cancel, since

GIiz+ 1) = 2. G.0%(2)

a€ I'o(4N)\SL(2,Z) aZ To(4N)\SL(2,Z)

and since dv/on = 0 on vertical lines. For the circular segments we have

Ga aa;k — G *
on an
and
gi G _ _ g% 0G.
on “ on

where « = oz'<(1) _(1)) Thus the second integral in (2.54) vanishes by

cancellation. We are left with
—ij et ST Gaﬁ_;"<du + ﬁldz) (2.55)
2 Jip, P on

over the circular segment oD, We parametrize this arc by u = cost,
v = sin#, and note that dv/on = sint, df = dt. But then du + (dv/on)dé
= 0.

Remark. To apply Stokes’ Theorem, we need >, v"? G.0* to vanish
at v = oco. In Shintani and Niwa, this is guaranteed by taking G to be
a cusp form. But in fact it is guaranteed by the fact (Theorem 2.6) that
0* is a ‘cusp form’ (with the usual proviso when £ = 1 and X is principal).

Prorosition 2.15. Let @ be given as in Theorem 2.14. Then @ has a
Fourier expansion

O(w) = _Z_m b.(pe(nw)

with

b.(p) = B, + C, th‘“ exp (4nnt)dt
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for some constants B, and C,.

Proof. From proposition 2.7, we know @ is a modular form, so in
particular @(w + 1) = @®(w). Thus @ has a Fourier series of the form given,
for some functions b,(y). Since dp/dw = —i/2 and 9y/6w = i/2, we see

00/ = 3 -;'—b,z(we(nw)

n=—oo
so

Fojowow = T+ O i) = L] SE60) + 2inbio)|etnun)
— 3 (250 — bl ) Jetro)

Thus

T 700 = (L) — angp,+ L =0
”awawnléif —ZZn—ﬂ:nﬂn_{-E‘ne(nw)_

by Theorem 2.14. We therefore have
by () = (4an — 22/n)b.(n)

which has the general solution given by the proposition.

Our next objective is to show that, in the proposition above, C, = 0
for all n, and B, = 0 for n << 0. There is one exception, of course: when
2 = 0 (weight 1/2), C, can be non-zero for n < 0.

THEOREM 2.16. Let @ be given as in Theorem 2.14. Then

S Bye(nw) 2> 0
O(w) = {""’ (2.56)

2. B.(e(nw) + e(—nw)) 2=0
n=0

for some coefficients B,. In particular, for 2> 0, @ is holomorphic.

Proof. By Proposition 2.15, &(w) = 3,=. a,(p)e(né), with
a,(y) = B, exp (—2rny) + C, exp (—2zny) Iﬂ t~* exp (dxnt)dt .
1

By the Parseval relation,

[oerds = 3 lamr. (@57
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By Proposition 2.8, @ is of (at most) polynomial growth in 7. Therefore,
from (2.57), each a,(y) must be at most polynomial in 7.
In the case 1 =0, we have

B0+C()7] n=0

a.(n) = { B} exp (—2xny) + C; exp (2zny) n+0"

Thus, for a, to be polynomial in 7, we must have B], =0 for n <0 and
C! =0 for n>0. Thus

Ow) = B, + Cip + 2 (Ble(nw) + C”,e( — ni0)) .

However, in view of the definition of 6* for 1 = 0, we have d(w) = O(— ),
while from Theorem 2.12 we see that C, = 0 (i.e., there is no ‘pole’ at ico.)
The result follows.

In the case 1> 0, observe that

exp (—27n7) I " -7 exp (4xnt)dt = Olexp (25 [n]7)) - (2.58)
Thus C, = 0 for n > 0, and for n <0
B,=-0C, f t~* exp (4xnt)dt ,
S0
a_,(n) = —C_, exp (2zny) f: t - exp (—4xnt)dt.
Restricting to the imaginary axis, we have
Oip) = 3 [Bn exp (—2rny) — C_, exp (2zny) j: §- exp(——47rnt)dt]. (2.59)

n=0

However, from Theorem 2.12, we know
O(in) = 3, b, exp (—2nny) .
n=0

The theorem now rests on the following lemma:

Lemma. Let {m;} be a sequence of real numbers, increasing without
bound. Then, for 2> 0,

5 [pi exp (— 2tmey) — a, exp (2xmy) f " % exp (——47rmit)dt] =0
i=1 7
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holds if and only if B, = a;, = 0 for all i.

Proof. Let I be the first integer where 8 = f; and « = a; are not
both 0, and let M = m;. Multiplying by exp (2zMpy) gives

0 = B — aexp (4zMy) r t-% exp (— 4z Mt)dt 4 O(e-)
7
where 7 is some positive constant. Now simple estimates show
Ciop~** < exp (4n M) r t~*exp (—4aMt)dt < Cpp™® (p— o).
7

The inequality on the right gives
0=p8—a0@™) + O ™) 75— oo

which proves 8 = 0. The inequality on the left then shows « = 0.
Theorems 2.12 and 2.16 imply that the lifting via the theta kernel is
essentially (up to C,(2)) identical with the Shimura lift. We shall state
the relationship exactly, but to do so warrants some notation.
Let t be a square-free, positive integer. For G(2) = 3 ., a(n)e(nz)
G.,(4N, ), with £ = 21 + 1 = 3, define the ‘Shimura lLft’

SUGNw) = 3 Adre(nw)
by
21 A(mn=* = L(s — 2+ 1,7) i a(tn?)n-* (2.60)

where X, = 2(—1/ )t/ ) (and A,(0) is the unique value which makes S,(G)
into a modular form of weight 22).

Define 6%(z, w) by replacing in 6*(z, w) every occurrence of N by N,
and %, by X,.. Define the ‘Niwa lift’

N(G)w) = f VRG(t2)0% (2, w)dyz (2.61)

I'o(4Nt)\H
(It is easily checked that this is well-defined.)
' TuroreM 2.17. Let the notation be as above. Then

1) N(G)w) = CNS(G)(w) with C(2) = (—1)2-¥2@N)*+1"4  (2.62)

2) a0 }E Fm)ym=+ = $#2-2(Nt)=*" 7' A (0) (2.63)
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Proof. For t =1 this is just a restatement of Theorem 2.12 in light
of the fact that the Niwa lifting is holomorphic. For general ¢, we use
the reduction N(G)(w) = N(G)w) and S,(G)(tw) = S(G)w), where G,(2)
= (3(t2). The correct constants come as before. (Keep in mind that the
Niwa lifting depends on the level and character assigned to the form being
lifted—which for G, is 4Nt and %,.)

Remarks. 1) Niwa showed that S,(G) ¢ G,/(2N, x*), the key question
being the level 2N. The proof is as follows: we know N/(G) transforms
under the group I'(2Nt) (Proposition 2.7), so S,(G)(w) = N(G)(w/t) trans-

forms under the group I'\(2N, ) = {((cl (l;)lc = 0(2N), b = O(t)}. But, by

construction, S,(G) transforms under [I'.., and between them I'(2N, ) and
I'.. generate I'(2N).

2) Interestingly, a ‘direct’ proof doesn’t work. That is, one might
expect 03(z, w/t) to transform at level 2V in w. It doesn’t:

0F(z, w/t) = const. vt 3 F(0)A(x, w)
Z®ZDZ

x exp [ 5 14/ wF|e(eat — w)

with A'(x, w) = 1/7p(x, — 4Nwx, + 4N*w'x;), is not, for general ¢, invariant
even for w — w + 1, unless £|4N. It is only when this kernel is integrated
against old forms—G(tz)—in I'((4N¢) that the transformation for w —>w + 1
appears.

3) Equation (2.63) can be considerably simplified, using functional
equations for the L-series. One derives

A0) = 9(2921;(1 — ) 2.64)

which was conjectured by Cohen [13, p. 194].

§3. The lifts of theta functions

In this section, we use Theorem 2.12 to calculate explicitly the lifts
of the theta functions of weights 1/2 and 3/2. We find that the theta
functions of weight 3/2 lift to Eisenstein series of weight 2, while theta
functions of weight 1/2 lift to integrals of Eisenstein series of weight 2.
In some cases these liftings may be identified also with functions of the
form log ||, where 7 is the Dedekind eta function. We then use our knowl-
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edge of Eisenstein series to compute behavior at various cusps. In the
last section we shall return to these examples to derive explicit formulae
for the inner products of theta functions.
We recall our notation: « is a primitive character modr and 2 = 0
or 1, satisfying 4(—1) = (—1). We have
h(z) = -;— i w(m)mie(m’z) .

m=—o0

ProposiTioN 3.1 Let G(z) = h,(tu’2) = > v, a(n)e(nz), where t is a
square-free positive integer. Then

1) GeGin(AN, %) if 4tutr|4N and X(m) — 1p(m)(_;_1,)‘(i)

m
for (m,4N) = 1.
_fo if n+ tu'm®
2) aln) = {«lr(m)ml if n=tu'm? for some m .
3) X.(m) = ¥(m) for (m,4N) =1,
4) i:let(n)n"’ =L(s—1+1,%) Z&a(tnz)n‘x
= 3 WAy 3, Ymymo(m)udm) 3.1)
where o(m) = .s]Z é.

d|Z41:v’ HA)(d) :;1 W(m)o(me(udmw) 2 =1
5 SOw) =13 p(d)«jr(d)niu( j "+ j ”m) (3.2)

| x (2 Wma(mye(udmo)da) 2= 0.
6) S(G =0 ifr+t.

Proof. 1) follows from Theorem 1.10 and standard facts for modular
forms. 2) follows from definitions, as does 3). We derive 4) by noting
that

Lis—2+1,%) = (m,§)=1 W(m)m= -4 = dlzﬂ:v wd)(d) mi;l w(m)(dm)= ¢4
Thus -
;Az(n)n‘“ = 2 Md)(d) mz:;«if(mn)(dm)—<s-z+1>nz(un)—s

oo

= 2, U @dd" >, Y(mn)(mn)'m”(udmn)*

d|4N m,n=1
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which easily gives the result. As for 5), the case 2 = 1 is obvious from
4). For 1 =0, it is a kind of cheat, since there is no Shimura lift at this
weight. We are hereby defining S, for weight 1/2 by an extension of
Theorem 2.17 to that weight:

N(@(w) = N(G)io) + COS(G)(tw)  with C(0) = 8EN)". (3.3)

(Note. There is an extra factor of 2 in the case 1 = 0; see Theorem 2.12).
Now 5) follows from Theorem 2.16 (and by verifying the integration).
Finally, 6) is obvious from 2).

CorOLLARY 3.2. Let
E@w) = 3 w(d)i(d) 3 vm)a(m)e(udmw), (3.4)

with other notations as before. Then, for (‘é g)e SL(2, Z),

) (s60|(4 Do = (514 B 2=

 im[3(560) (¢ D] =selel (¢ D)oo 10

We shall now evaluate the RHS in Corollary 8.2 at various cusps. We
begin by identifying the function E as a linear combination of Eisenstein
series.

ProposiTionN 3.3. Let E be as above, and, following Hecke [5], define
the Eisenstein series

1
2, 4y, @y, r) = lim / . 3.5)
2( 1 2 ) 2or0 mea:;(r) (ml + zmz)2[m1 + zmqlzs ( )

me=ag(r

(The indices a,, a, are integers (modr), and ze H; the RHS defines an
analytic function for Re(s) > 0, which continues to the entire s-plane.)
Then

Ew) = = ( 7 & 2 Hani(d) Z aZ. W) Go(w, ruda, a,, r'ud)

(0)p(4N)
(4xi)(4N)(w — ) (3.6)

(where ¢ is the Euler ¢-function.).
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Proof. Hecke derived the Fourier expansion

G(w, a;, a,,1) = _'.2(%2;)— + 5( - ) Z, 1/m;

me=az(r)
4
—r—’ﬁ >} | Imleasm/r)e(mm.wir) 3.7
mlsalu('r)

where

3(x) = 0 xeZ
1 xeZ2.

When r =1, the result (3.6) can be easily verified from (3.7). We
assume now that r > 1, so that + is nontrivial. If we take a character
sum

> W@)ia)Guw, ay, gy 1)

ay,az=1

it is clear that the first two terms on the RHS of (3.7) disappear; as for
the third, we note that, since + is primitive,

X, Wadelamir) = g(P)w(m) .

We thus find
2 HaH@)Cw, ay 0 1) = =2 g(@) 53 y(mm) m] e(mm,olr)
= — 878 51 5% ymm)me(mm,uwir)
- §’L§§ﬂ % Wmome(muw]r) .
Thus
E(w) = S HAVA) Y] Wa@)Cirudio, ay @) . (3

T’ («lf)

To complete the result, we need the following early verified identity: if
R is a positive integer, then

GARz, a,, a, 1) = i Gz, a,R, a, + kr, Rr) . 3.9
s

We now have
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E(w) = ~ ( 1Ir) %_.' war(ad) Z,M Ya)(ay) Z Gz, ruda,, a, + kr, r’ud)
and this sum rearranges to give the stated result.
To establish the behavior of E(w) at the cusps of I'y(2N), it suffices

(é g) at a set of I'(2N)-inequivalent cusps. We observe
2

that every cusp p/q is I'W(2N)-equivalent to a cusp of the form 1/C.

(@ %)

THEOREM 3.4. Let Ce Z, and define o, B Z by Clru = «/p with («, 8)

=1. Then
~rg(¥) ‘!’(“)$® 1— 0% if (0. 4N) = 1
At o [ AL v
0 otherwise . (3.10)

In particular, E vanishes at any cusp 1/C where ryC.

Proof. We use two straightforward results for Eisenstein series:

: (A B) — G,w, Aa, + Ca,, Ba, + Da,, 1) (3.11)
2A\C D
and
0 if a, == 0(r)
G2 ; 9 1 29 - . 3.12
(ic0, Gy, @y, T) , ;127 if a4, = 0(r) . (3.12)
me=az(r) My

(The first is derived from (3.5), the second from (3.7).) From (3.6) we get

1 0\, —rt
(6 1)6) = g2 T Dy

r  r2ud

X 37 37 wa)(a)Gylioo, ruda, + Ca,, a,, r*ud) . (3.13)

ai1=1 az=1

Now by (3.12), only those terms with ruda, + Ca, = 0(r*ud) will contribute,
each giving >/ _ ., 1/m%  To select those terms we use the standard ruse

d g e[(ruda, + Cak/rud] — {(1’

With this extra factor in (3.13), the sum over a, is just
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2 Wa)e(aikir) = g(uyik)

and so the sum over k is just

riud _ . rud 7

k};l W(k)e(Ca.k(riud) = 3. > W(k)e(Calrh + k)[r*ud)

h=1 k=1

l

}Zl W(k)e(Ca.k/r'ud) ;V:‘: e(Ca,h[rud)

Il

e@v( % Yrud
rud
using the convention (a/b) = 0 if bfa. Putting this back together gives

E](é Dico) =~ = payy@ 3 wade(CB) s ame. @19)

rud m=az(r2ud)

The statement of the theorem follows by a straightforward sequence of
calculations. (But that E vanishes when r{C is clear already from the
term (@) (Ca,/rud).)

Remarks. We have seen earlier that the Niwa lifting is not defined
for 2 =0, ¥ = 1, if a(0) = 0, because the integral is not absolutely con-
vergent. Hewever, the lifting defined by Proposition 4.1 is perfectly re-
spectable even in this case. One sees that 6(z) = >.~.. e(n’2) ‘lifts’ to

> #D 1og |y(du)|

draw
where v(w) = e(w/24) [[.1(1 — e(nw)) is the Dedekind eta function.
It is easy to see that this lifting transforms at level 2N. On differences
of theta functions, everything agrees:
N(0(z) — 0(w2))(w) = C(0)S,(6(2) — 0(u"2))(w)

— gN s HMd) 2ud2) | i N
N log| Wdz | TN

§4, Behavior at the cusps

In this section we consider the behavior of lifted forms at the cusps.
We let Ge S, (4N, x) for £ > 3, or Ge G,,(4N, ¥), and let

ow) = | vRGR)I%(2, w)dez .

To(4N)\H
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We shall show the following:

If k >5, @ is a cusp form. (Shimura’s result)

If £ = 3, the value of @ at a cusp is given as the inner product of G
against a linear combination of theta functions of weight 3/2. From this
will follow Shimura’s conjecture, that the orthogonal complement to the
space of theta functions always lifts to cusp forms.

If # = 1, the ‘pole term’ of @ at a cusp is given as the inner product
of G against a linear combination of theta functions of weight 1/2.

1. We being by stating a precise formulation of Shimura’s conjecture.

Let f, g€ S.,(4N, X). We say that f and g are orthogonal when f
Fo4NH

v f(2)g(2)d,z = 0. If U is a subspace of S,,(4N, X), we say that f is ortho-
gonal to U if f is orthogonal to every ge U. We write “ ] ” for “ortho-
gonal”.

Let t be a square-free positive integer, and define U, as the subspace

of S,,(4N, %) spanned by functions of the form h,(td*z), with d an integer.
That is,

U = {h,,(td%)[ 4tdrt| AN, 1 = 1;,(7, ”)} . (4.1)

(See Section 3).
Recall that S,(G) = > 7., A n)e(nw), where > v, A(n)n~* = L(s, 1,)
X > a(tn?)/n® with %, = Z(—t/ ). Then Shimura’s conjecture asserts

S,(G) is a cusp form if and only if G | U,.

In view of the relation S,(G)(w) = S(G)w) (G(z) = G(tz)), it is not hard
to show that Shimura’s conjecture is true for all ¢ if and only if it is true
for t = 1. However, since we are after explicit formulae, it will be neces-
sary to do the general case.

2. Because a character is easier to deal with than a Gaussian sum,
we shall consider the behavior at cusps of the function

U(w) = O, WEN) = f VRF(20(z, w)dyz “4.2)

To(4N)\H

where F = G|,,W(4N). We shall study lim,... (¥}« ")(ip) for 2> 0, and
lim, .., (1/in(¥ )y~ ")(in)) for 2 = 0, for enough matrices a € SL(2, Z) to esta-
blish the behavior of ¥ (and thus @) at all cusps of I'(2N)\H. The fol-
lowing lemma will prove useful:
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LemMmA 4.1. Suppose ¢ contains every prime factor of 2N. Then, for
(c,d) =1, the cusp —djc is I'(2N)-equivalent to 1/c¢’ for some ¢ which
also contains every prime factor of 2N.

Proof. Since (¢, d) = 1, let a, 8 solve —da + ¢f = 1. Since ¢ contains
all prime factors of 2N, («, 2NB) = 1. Let 7, 6 solve ad — 2N73 = 1. The

matrix (2]0\‘”, ‘g) € I'(2N) does the trick:

a(—dl)+ 5 _ —datcf _ 1 where ¢ = ¢5 — 2N7d.

ONT(—djc) + 6 —2Nrd +cs ¢’

Remark. ¢ contains precisely the same factor of 2N as c.
From Proposition 2.4, we have the following:

@ ha)w) = j P F(2)0,(2, w)dyz (4.3)

To(4N)\H

where

0.2 w) = () 0" 3 2(e)AG, ) exp | T 4G w|eEDEN)  @.a)

with
AR, w) = %(—}l—a‘cl — wx, + 4w29%3> , D(x) = D(x) = x2 — 4x,x,,
L'=Z®NZD®NZ/4, and % = ax
where

a’ 4ab 1662
lczc ad + bc 8bd

. b
- |2 o2
Q : when « c d
e lcd a:
16 4

The cusp in question here is the rational point —d/c. We shall study
lim,_., 0,(z,iy) for 2> 0 and lim,_. (—1/ip0.(z,iy)) for 2 =0. Of course
arguments must be made for bringing the limit inside the integral. (A
lot depends on F being a cusp form for k& > 3; for instance, although
lim, ... 0.(2,i9) =0 for all « when 2> 1, we have already seen that
Eisenstein series lift to Eisenstein series, which are not cusp forms.) These
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arguments—which are largely tedious estimates—are isolated in Appendix

B.
It will be convenient to have an ‘inversion’ formula for inner products

against theta functions.

ProposiTiON 4.2. Let N = r’pq, and let X, mod 4N be induced by the
primitive character +» mod r. Let Ge G,,(4N, %) and let F = G|, ,,W(4N).
Then

/2 H (n2) - (— ir)lq‘ﬂ /2 T ()
[ v F@hRpde = g vPG@h,@Ddz . (45)
To(NNH N=# To(ANNH

Proof. This is a straightforward application of Theorem 1.10 (iii),
part (4).

3. We begin with the case ¢ = 1.
From (4.4) it is easy to see that

2
m@m:@wwz@mﬂim—@@—m]
xeL’! 4ﬂ

8ni . . 47rv( 1 ., 2A2>] .
X exp | ——ux,&, — | ——— & + 169°%2 ) |e(2X3/N) .
p[le 167 7' ) [e(z23/N)
Because of the 7’#; in the exponential, one expects those terms with £,
# 0 to contribute negligibly to the sum. The analysis of Appendix B
shows this to be the case. We have

2
0.z, in) = (U)o 5 p)( L d— i) exp | = R sie(eRN) + ¢ (4.6)
i M 4Ny

where & = ¢(z, ) is such that

o ) 2>0
j wwumam%p:f” g — o0 .
To(4N)\H

o1 2=0
The same analysis shows that, for non-negligibility, the sum may have
at most one power of 5 in the denominator of its polynomial term. (The
inversion which brings the 7* to the numerator of the exponential takes
up exactly one power of 5; anything more will cause the sum to vanish
as 7 — .) Thus we see immediately that ¥ is a cusp form as soon as
2> 1—i.e., for £ > 5:

TueoreM 4.3. For £ > 5, and any square-free t, S(G) e S;,(2N, 1?).
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Proof. For t = 1, we have just proved it. For other £, we cite the
relation S,(G)(tw) = S(G,)(w), where G(z) = G(tz) € S,.(4N¢, X,).

In the remainder of this section and the next, we continue only with
the cases 2 =0, 1 (weights 1/2 and 3/2). Since we want the pole term
for 4 =0, and the constant term for 2 = 1. we study

3133 [@)10.(2, in)] .

For this function, the term (1/49)%, in (4.6) is seen to be negligible for the
same reasons as above, so that

> ay1/2
(—igf=6z, ip) = (— DV 37 g (n)&s exp(— Ty —ﬁ)e(za‘célN) +e. (47)
4:177 £3=0 4N 772

The condition £, = 0 has important consequences which we now ex-

plore.

By definition, £, = 0 if and only if ¢%x, + 4edx, + 16d%x, = 0. Let x,
= Ny,, x; = Ny,/4, so that y,, y, € Z. Then £, = 0 if and only if ¢*x, + 4Ncdy,
+ 4Nd*y, = 0. Now if 4N/}¢*, then (x,, 4N) > 1, in which case X(x,) = 0,
so that (iy)*-'0,(z,iy) = e. That is, for 2 =1 (12 = 0),

¥ vanishes (has no pole) at any cusp —djc (c,d) = 1, where 4N fc

Assume now that 4N|c¢. Writing 4N = 4y’ with ¢ square-free, we
must have ¢ = 2urc, for some ¢, and thus, by Lemma 4.1, we may assume
= —1. We see immediately

%, = 0 if and only if zcix, — 2urc,y, + 3, = 0.

Clearly the RHS has a solution y, for any choice of x,, y,. As a conven-

ience, let us also write x, = dy, = —y,. Now
d’ —4bd 16b*
~ |—Led ad+bc —8ab
@dl=at= 2
J_—cz —lac a?
16 4

Hence, when £, = 0, we have

xl (l2 —4bd 5(‘21
X, - ———21—cd ad 4+ bc) (a‘cz) )
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In the present case (d = —1) this inverts to give

%, = (a — bc)y, — 4Nby,

) \ (4.8)
Xy = prcy, + p'cy, .

We see immediately that 7,(x;) = 7.(—y,) = (— D (a — be)w(%,). Let us factor
1 = mn so that ¢, = me, with (c,, n) = 1. This is clearly unique, given c;
also, conversely, given a factorization u = mn, there is (more than one)
¢, such that ¢, = mc, with (¢, n) = 1. Then

%, = m’nz(c,y, + ny.) Y Y. €Z.
Fix ¥, %, as a solution to ¢,y, + ny, = 1, and set
g = (@ — bc)y, — 4Nby, . 4.9

Let 2(k) = kg for ke Z. Now ZX,(k) is a value taken on by &, when Z%,
takes the value m’nck. If %{(k) is another such value for X, a simple
argument shows that £{(k) = £,(k) + pn for some integer p. Furthermore,
each integer p gives such a value. Thus when %, = m’nck, &, runs over
all integers congruent to kg modulo n. We may now write

(—iy 0.z, in) = <—1>*—";§”—7 (= 1)@ — be)
Ui

X i > L(h)(minck) exp <__ mffl,z,,) .
k=—o0 h=kg(n) 4N772
e(z(m’ntk)’IN) + ¢
_ i(f’f,’?g)ﬂl(a —bo) (v‘,"’i S 2 (k) exp (~ @@:»
4 k=—o0 77 h=lkg(n) 77

X Rle(m’tkz) + ¢ . (4.10)

Consider for the moment the inner sum

v nvh?
; v, Talh) exp ANy
vl/2 4m?2nr .
=" 2, ulkg+ng) > e(hiv/8Ny)
N a= h=kg+ng(4N)
iz A . .
=——> kg +nq) >, e(hiv/8Ny).
ny g¢=1 h=kg+ngq(4N)

Now concentrate on the sum
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v1/2

UL s> ewiv/sNy) (K = kg + ng)
7) K(4N)

= (—8NiZ)'* > ) e(—h*/44N)Z) (Z = in*/8Nv)

h=K (4N,
= (4N)"*(—2iZ)"'"9(—1/4(4N)'Z, K, 4N)
— (4N)2 3" o(HK/ANYI(Z, H, 4N)
H=1
using the theta series of Theorem 1.10 (i). From the estimates of that
theorem, we see this equals

(4N)"" + O("[y) .

The error again disappears with 7 — co, when integrated against a form
F which is bounded at the cusps. Thus

* \A-1 =N i m*nr \? _
(_1'77) 0«:(27 7'77) = n(4N)T/2H( 4 )Xl(a bC)

oo 4N
X kZ ( 1;‘(1(kg + qn))k‘e(kzmzrz) +e. (4.11)
“Zo\&
Now g = (a — bc)y, — 4Nby, with 1 = ¢,3, + n¥y,. Therefore 3,(kg + ng) =
k(@ — be)y, + ng). Since (a — be, N) = 1, we may factor y,(a — bc) out
of the character sum. This leaves

(i e, i) = — e (MR 55 (5083 + o) Re(temic2) 0

where a(l/c) = ico, ¢ = 2m’nrc,, and ¢y, + ny, = 1. Thus, at the cusp 1/c
with ¢ = 2m®nrc,, (¢, n) = 1, the constant (pole) term of ¥ is

() e~ (ioo) = f;(fNi)ﬂ( TN [ o VP @R (@.19)
where
H@ = 5 (35 n00+ g)kets,  an=1m. (@19

Now suppose ¥; mod 4N is induced by the primitive character +» mod
r. If rfn, then H(z) = 0, because, as is shown in Appendix A, the inside
character sum is zero. In particular, if r2tN, then ¥ is a cusp form (is
bounded at all cusps).
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On the other hand, if r|n, then (1/Q) XY, 7:(k + gn) is a character
mod n, induced by v, where @ = > 3¥, 7.(1 + gn). We have

H{z) = 2Qv(c) 2 (@ (d)d hy(d’2) (4.15)

where h,(2) = 1/2 > 7 _.. v(R)k'e(k*z). The constant (pole) term of + at 1/c
is thus

_lQ‘l_’ (c...?)_ _’Ii’?f_ ! 2 /2 2. 725\
nN' ( 4 > %ﬂ(d)w(d)d .[m(um\y U F(@)hy(miedz)doz

_— _}Q\T’(CZ) _I’mznri ’ 1522+1
1Qule) (= ) gw) 33 wdydds

% f VG, (32)dyz  (4.16)
TI'o(4N)\H
using the inversion formula (4.5). This can be simplified to equal

Qﬂg?(—‘l’)(—i)“ww—w S w(d(d)s)d f URGE@AF2)dz . (41T)
n=rdé T'o(4N)\H

We summarize these results in the following theorem:

THEOREM 4.4. Let N = m®n*t be some factorization of N, with t square-
free, and let ¢ = 2m’nrc, with (c,, n) = 1. Suppose X, mod 4N is induced
by the primitive character + mod r, and let @ = > ¥, 7:.(1 + qn). Then,
for =1 A =0),

(1) ¥ automatically vanishes (has no pole) at all cusps not of the form
—d/c with ¢ as above

(2) Every cusp —d|c’ with ¢’ as above is I'(2N)-equivalent to a cusp
of the form 1/c with ¢ as above. ¥ has similar behavior at equivalent cusps.

(8) At the cusp 1/c, the constant (pole) term of ¥ is

(@] (e D)6 = sy (") v F@He2r

with

H@) = 3 (S0t + am)ee), o5, =10) .

=—00

4) If rin, then ¥ vanishes (has no pole) at 1llc. In particular, if
r*fN, then ¥ is a cusp form (is bounded).
(5) If r|n, then the constant (pole) term of ¥ at 1jc is
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Q\F(C2)g(W) (_i)1+1N1/2—3/4 Z y(d)\p(d)a‘/d v‘/ZG(z)ﬁ;(S@doz.
44r n=rds To(4NNH
CoROLLARY 4.5. Let Ge S,,(4N, X). Then S(G) is a cusp form if and
only if G | U,

Proof. One direction is clear from the theorem. It remains to prove
the converse: if ¥ is a cusp form, then G(2) is orthogonal to all h,(5%2)
with 6*7*| N. To show this, assume ér*| N and let n = dr. At the cusp
1/2m*nz, we have, by (4.17)

0= 3 WdWDd* [ rGER(A D) -

To(4N)\

Since (1) = p(1) = 1, we have

f VRGP = 3 /.e(d)w(d)d’zf VG (d2)dyz .

To(4N\H 02 dg';a To(4N\H

Now every d’ on the RHS is smaller than 4. By induction the RHS van-

ishes, the initial case 6 = 1 obviously vanishing. Hence the LHS is zero.
4. Let now ¢ be a square-free positive integer. Recall the notation

of Theorem 2.17:

N(G)w) = f VRG(E2)05(z, w)dyz (4.18)

I'o(4Nt)\H

where 6F is formed from 6* by replacing every N by Nt, and X, by ¥, =
Xt/ ). Recall that N(G)(w) = C(D)S(G)(tw), where C,1) = (—1)y2-%+?
-(NEy2+14 for 2 > 0 and C,(0) = 8(Nt)*. We now define

¥ (w) = N(G) L. WE2Nt)(w) . (4.19)
On the one hand, ¥ (w) = C, ()t *S.(G)|,; W2N)(w), while on the other hand,

T (w) = f U G(E2) ], WANL))(OF |, . W(ANE) |,, W (2NE)) (2, w)d,z

To(4Nt\H

- f VAN F(2))04(z, w)dyz (4.20)
I'o(4Nt)\H

where F = G|.,W(4N) is as before, and ¢* is § with every N replaced by Nt,
and X, replaced by X,:

(2, ) = (49)20 32 7,(x) A, ) exp (er® | ACx, w)F )e(zD(@/NY) - (421)
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with X, = X/ ), L, = Z® NiZ® NtZ/4, and A and D as before. Since §*
is a purely formal change from 6, we may use directly the results of the
previous section:

ProposiTION 4.6. Let Nt = m’n’t be some factorization of Nt, with
square-free, and let ¢ = 2m*n’cc, with (c,, n) = 1. Suppose ¥, mod 4Nt is
induced by the primitive character « mod r. Then for A =1 (1 = 0),

(1) 7, vanishes (is bounded) at all cusps not of the form —djc with
¢ as above.

(2) Every cusp —d/c’ with ¢’ as above is I'(2Nt)-equivalent (and there-
fore I'(2N)-equivalent) to a cusp of the form 1ljc with ¢ as above. ¥ has
similar behavior at equivalent cusps.

(8) At the cusp 1/2m’nzc,, (¢, n) = 1, the constant (pole) term of ¥, is

(1 0))(ioo) —u (,mim,)‘ J v F(2)Hy(m%2)dyz
2 To(dNO\H

P la . —u
<("7) Tale 1 n(aNey 2\ 4

with

H) = 3 (3 20 + an)Feta),  o3,= 1.

=—o0

(4) If rin, then ¥ vanishes (has no pole) at 1llc. In particular, if
r’yNt, then ¥, is a cusp form (is bounded).

Now the last statement really says something new, because if ¢ con-
tains a prime not already in 4N, then r also contains that prime, since
r is the conductor of ¥, which consists in part of the Legendre symbol
(p/ ) for any p|t. In that event, since ¢ is square-free r*/N¢{, and ¥, is
a cusp form (bounded form) by the proposition. Also, if 2/N but 2|,
then 8|r and r*/Nt, so that ¥, is again a cusp (bounded) form. We have
proved:

THEOREM 4.7. Let Ge S,.(4N, X). If tYN, then S(G) is a cusp form.

CoroLLARY 4.8. Let Ge S,,(4N, ). Suppose t/N. Then S(G) is a
cusp form if and only if G | U..

Proof. U, is empty.

Remark. Similar statements can be made for S (G) being bounded,
when G e G,,(4N, 2).

In the remainder, we shall assume that ¢{|N and r{n. Let @ = > ¥}
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%£1 + gn). Then 1/Q >3¥¢ 3.(k + gn) is a character mod n, induced by the
primitive character ¥ mod r. Then

Hyz) = 2Q(cy) 2 m(d)H(d)d*hy(d’2) . (4.22)

The constant (pole) term of ¥, at 1/c is thus

— i@ty (cy) ( m'nz ! RR (A mEedE)
n(Ni ( ) 2. Hd)y(d)d f g F@hs(micdZ)doz . (4.23)

Our immediate goal is to “unfold” I'y(4Nt)\H back to I'(4N)\H. Towards
this we use the disjoint coset decomposition

I'4N) = U I'aNor, 1, =< 1 0).
=1 4Nj 1

(This relies on our assumption ¢|N.) Thus

j VR (med2)dz = 3 j (Im 7 2 F(7 2)hy(micd’T 2)dez .
T'o(4Nt)\H j=1J I'o(4N)\H
(4.24)
Now (Im7,2)”* = v?/|4Njz + 1f, and F(7,2) = (4Njz 4+ 1)?F(2). The hard
work comes in reducing h;:
hy(m*td® ;2) = hy(m*rd*2[4Njz + 1)
= hy(tm*cd*(z[t)[Am*r*d*6*zj(z[t) + 1)

writing Nt = m’n’z with n = rdé

= h(tZ[4r*0%Z + 1) Z = m*rd*z/t . (4.25)
Since ¢ is square-free, we may write ¢t = tt,, with ¢,|d and (¢, 6) = 1. Let
d = t,6,, and continue the equality:

= hy(tZo[Ar"t01jZy + 1)  Z, = m*zd’2ft,
= (4Njz + D)"(=1)'r ;2 Z} k¢ (R)e(k*Zy[t,)

k=—co

using Theorem 1.10 (iii) part (5), where
&) = 33 3 Thel(gh + tgh — ridijgtr)
Altogether we have

f v R(2)hy(micd2)dy2
To(4N\H

— (=Dt vPFE) 3 <]ZI &(k))k‘e(kZZo/t‘,)doz. (4.26)

2rt“‘ To4NN\H
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We now consider the sum over j:

]Z:;fj(k ZO: ozzll‘!_’(h)e«gk + togh — ug°-),’t0r) (u — rtﬁf])

or

(,nq

3 55 ek + tamtr) 3 e(—tigilty .

Since (%, §) = 1, the last sum is nonzero only when ¢,|g% Since ¢ is square-
free, this is equivalent to f,|g, in which case the sum gives a factor of ¢:

¢t

80 = 1 3 33 F(Mel(gh + tgh)lr)

= 18P z w(gte(ghiry = (= 1ty ()7 (k) (4.27)
using g(Y)g(r) = (—1)Yr. We now have

f vER(h(mied2)dyz = (t) & f wPE(2)h, (m cd’ )doz . (4.28)
To(4Nt)\H té t

T'o(4N)\H 0

If (¢, r) > 1, ¥(t,) = 0, and we needn’t bother with the integral. Assume
now (¢, 7) = 1. Then, since (¢, ) = 1 also, the factor m?*zd?/f; is an integer,
and we have a factorization

R S
0“1 0 1 0

The inversion formula (4.5) now shows the integral above equals

AV 1+3/2 22+1 o
(CIEWE Yy R | CERGR.  (29

We have arrived at the following theorem:

THEOREM 4.9. Let Nt = m’n’t be a factorization of Nt, with t square-
free, and let ¢ = 2m’nzc, with (c,, n) = 1. Suppose X, mod 4Nt is induced
by the primitive character \» mod r, and let Q = > :¥i%,(1 + gn). Assume
t|N, and r|n. Then the constant (pole) term of ¥, at 1/c is

((ip)‘“‘qftguc (1)>>(lOO) = (_i)l+lgg(cz)g(\!f)Nz/2—8/4t(x-2>/4

X 3 AW d)F(t)5d! j oy UGN (4.30)

where the sum is taken over all triples of positive integers (d, 9, t,) such that
L\t (&, 0) = 1, and n = rtdi/t,.
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Proof. This is a simple calculation based on (4.22) and (4.29).

CoOROLLARY 4.10 (Shimura’s Conjecture). Let G € S,,(4N, ¥). Then S(G)
is a cusp form if and only if G | U,.

Proof. Recall that U, is spanned by all 4,(t6°2) such that - is a primi-
tive character, mod r, inducing X, and ¢*r?|N. In (4.30) above, note that,
if t3*r*fN, then (¢, r) > 1, so that () = 0. Thus the only inner products
appearing on the RHS of (4.30) are exactly those h,’s spanning U..

So G | U, implies S,(G) is a cusp form. The converse also holds, by
an induction argument identical to the case ¢ = 1.

COROLLARY 4.11 (weight 1/2 analogue). Let G e G{,(4N, X). (G{, means
a(0) = 0 if X is principal). Then S/(G) is bounded on H if and only if
G | U, (Here U, = {h,(td*2)| 4td’r*|4N, % = ¥(t/ )}.)
§5. Examples

One important property of the Shimura lift S, is that it commutes
with the action of Hecke operators. We shall state this precisely.
Let

G(z) = j“j a(n)e(nz) € G.,(4N, 1) and O(w) = i A(n)e(nw) € G, ¢).
Let p be a prime. Define

T(p)G = TG = glob(n)e(m) and T(p)? = Tiy(p)P = go B(n)e(nw)
by
b(n) = {a(nzf) if p|4N .
a(np’) + P~ (p)a(n) 4 p* X(p)a(n/p®)  if p{4N
A(np)  if p|N
A(np) + ¢(p)p*'A(n/p)  if pyN.
(Here A(x) = a(x) =0 if x2 Z)

B(n) = {

ProrosiTioNn 5.1. S,(T(p”)G) = T(p)S.(G), for all primes p and all
square-free t.

Proof. A straightforward verification based on the result
Afn) = > x(d)da(¥(n/d)) .
ain

Even more significant is the result of Shimura:
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THEOREM 5.2. Suppose G = > v, a(n)e(nz) € G, (4N, X) is an eigenform
for all Hecke operators T(p®). Then for any square-free positive integers t,
7, we have a(()SQ) = a(r)S,(G).

ExamprLe 1). The space G,,(4,1) is 1-dimensional, spanned by
0'(z) = ﬁo r(n)g"” =1 + 6q + 12¢* + 8¢* + 6¢* + - - .

Being the only function in the space, #°® is necessarily a common Hecke
eigenform. The Shimura lifting sends

6° — A(0) + 6g + 69" + - -- € Gx(2, 1).
The latter is also one-dimensional, spanned by Gy(z, 0,0, 2) — G,(z, 0, 1, 2)

(see Section 4; alternatively, the lift of §* can be identified as (1/4)T(2)6*.)
We find A,(0) = 1/4. Since ry(1) = 6, Theorem 5.2 gives us, for square-

free t,
() = YDA _ 944 ). 5.1
0] 4,0) (0) (5.1)
Now Theorem 2.17 shows, for 1 =1
A0) = 9O 5 5 (m)/m (5.2)
2nt m=1

where X, = (—¢/ ). It is not difficult to prove that

i} @i Y tm)ime ¢ =1,2(4)
33 aumyfm? = " 5.3)

(4t)‘/2i<21‘“ _ (%)2) b} (?) / m t=3(4).

Putting together the last three equations, we derive the well-known result

_%f(t)wmi( )/m t=1,24)

—t
-1\ m
ri() = 0 t = 17(8) (¢ square-free) (5.4)

—255 ®'" 21 <%> / m  t=3@8).

Alternatively, we may use (2.64) and derive ry(t) = 12L(0, ¥,).

ExamMpPLE 2). Dimensions for spaces of modular forms have been
calculated by Cohen and Oesterlé [1]. For weight 3/2, the first cusp forms
appear at level 28:
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dim S,(28, 1) = dim 83,2(28, (l)) ~1.

Clearly, there are no theta functions in these spaces. (The first theta
function appears in S,.(86,(3/ )).) Thus, by Corollary 4.10 (Shimura’s
conjecture), these functions lift to cusp forms:

(28, *) s S,(14, 1)

On the other hand, multiplication by 6(z) (resp. 8(72)) sends S,(28, 1) (resp.
S:2(28, (7] ))) to Syx(28,1): Now S)(14, 1) is 1-dimensional, spanned by

#2) = (ADAATAU)™ =g — ¢ — 2 + ¢ + - (55)
where
4D =q[lA—aP (g =e);
5,(28,1) is 2-dimensional, spanned by ¢(z) and ¢(22).
Suppose now G(2) = a(l)g + a(2)g* + - - - € 8,,(28, 1).

Then S(G) = a(l)q + a(¥)q* + - - - = a(l)¢(2), (5.6)

and
G(2)0(2) = a(D)q + (a(2) + 2a(1))g* + (a(3) + 2a(2)q’ + (a(4) + 2a(3))q*- - -
= ad(2) + pd(22) 5.7

for some « and 8. We claim first of all that a(1) # 0. For suppose a(l)
= 0; then G(2)0(2) = B¢(2z), so that a(2) = B, a(3) = —28, and a(4) = 38, from
which we conclude that S,(G) = 389* + - --, # 0, which contradicts (5.6).

We may therefore assume a(1) = 1. Then (5.6) shows that a(4) = —1.
Plugging these values into (5.7) and equating coefficients of ¢, ¢% ¢° ¢,
gives four equations in four unknowns (a(2), a(3), «, §); the unique solution
ise=18=2a2) = —1,a(3) = 0. Thus

G(z) = 9B + 26(22) _

e) qg—q"— ¢+ ---spans S,,(28,1).

A similar analysis shows

__¢(z)—2¢(22)_ _Qn? _ 9n3 ot _7__
G(2) = e q— 3¢ —2¢° — q' + - -spans 33/2(28,( ))

ExaMPLE 3). Our last example is to compute the Petersson inner
product
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[ OO
I (4r2)\H

for theta functions of weight 1/2 and 3/2, using Theorems 4.4 and 3.4.
We shall need the following result, which we state without proof.

ProposiTiON 5.3. Let ¥ = @,,W(2N) be modular forms of weight 22

and level 2N. Then
[ ] (1 D)oo = ()l eo] (e D]ee 68

Now let @(w) = Ny(h,) be the Niwa lift of h,(z). Taking c = 2r,
Proposition 5.3 above and Theorem 4.4 (5) combine to give

|- mann| (1 9)]aeo

= 1 ("i)HlQ\T’(l)g(‘]f) 1-3/2 2 TN
B E[“ﬁ‘r—r / IF0(4r2)\H v hw(z)hw(Z)doz]

— (—p2urng) [ vk @hEde 5.9)

To(4r2)\H

where
1 if r is even
T |2 if ris odd

On the other hand, by Corollary 3.2 and Theorem 3.4,

(e

(this since @ = 4ZT; Wl + qr) = 4,.2/5) .
g=1

|r-sin)

A2, Do = e

Finally, by Theorem 2.17 (and Equation (3.3)),

N(G) = C(DS(G)
gr'r 21=0

ith Cd) =
w1 () {_1/2’.3/2 1=1

} — (_1)1,.21»1/223—41 .
(This form for C,(1) holds only for 2 = 0, 1!) Putting all this together gives

2
T (1—p?) k=1
3 a2

f VR ()T (2)dez = . (5.10)
To(4r2)\H

or?
B 1—p? £=3
op LA =P
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As a special case, let ¥(m) = (m/p) for an odd prime p. Then

i;-(pz -1 p=14 k=1

Bizi; 1 p=30) (=3

f vk (2hy(2)doz = (.11)
To(4p2)\H

These formulae are in agreement with the results of Petersson [9]. The
derivation of course is different.

Appendix A. Characters and character sums

We present here some results concerning characters which are used
elsewhere in the paper. The results are elementary, but worth writing
down.

1) The quadratic residue symbol

We wish to define precisely our use of the “quadratic residue symbol”
(c/d). We follow Shimura’s definition.

Let ¢ = ﬁ p; and d = ﬁ q; Wwhere p,q,e{—1,0,1}
i=0 j=0

and all other p,, ¢, are positive primes. Define, multiplicatively,

where
W (Z)=0 it pa>1
q
2 (!?_)=1
©) 1
1 ifp>0
> (7)1 5229
@ —1 {~1 if p <0
4) if ge{—-1,0,1,2}
p) ~{ 1 if x* = p mod ¢ has 2 solutions
E -1 = p mod g has 0 solutions
®) (L)zo if p= —1mod 4
2q
6 (,&>:(,,4p__> if p=1mod 4
© 29 p+ 2q
for pe{p;|/i=0,1, ---,m} and ge{q;1j=0,1, -, n}.
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This definition has the advantage of presenting (c/d) as an obviously
well-defined symbol. However, it obscures the character qualities of the
object. Let us state what these are:

(1) If 0 < d is odd, then X(c) = (c/d) is a character mod d.

(2) If 7 is square-free, then X(d) = (z/d) is a character mod ¢, where

t =|z] if 6|z implies § = 1 mod 4
t = 4|z| otherwise

(8) If r is the square-free part of ¢, then X(d) = (c¢/d) is the character
induced by (z/d). That is, (c/d) = (z/d) whenever (d, ¢) = 1.

Note that in our use of the quadratic residue symbol, (¢/2) = 0 when-
ever ¢ contains a prime factor congruent to —1 mod 4.

2) Primitive and induced characters

A character » mod r induces the character X mod M when r is a proper
divisor of M and +(m) = %(m) for (m, M) = 1. The character ¥ mod r is
primitive if it is induced by no other character. (In this paper, ¢ nearly
always refers to a primitive character mod r.)

If Xmod M is induced by + mod r, and f is any function on Z, then,
formally at least,

5 Hm)f(m) = 3 pdyild) 3 bm)f(dm)

where g is the Mobius function. (This formula is generally true-— need
not be primitive.)

3) A character sum
ProrositioN A. 1. Let X be a character mod M, induced by the primitive
character 4 mod r. Let n|M, and define

S(k) = qf Wk + qn) .

Then

() If rin, S(k) = 0 for all k;

(2) If r|n, S(k) is, up to a nonzero multiplicative constant, the char-
acter mod n induced by . That constant is @ = -, 2(1 + gn).

Proof. Since n|M and X is mod M, S(k) is defined modulo n, and
the sum may be taken over any complete residue system mod M. Now
(k,n) > 1 implies X(k + gn) = 0 for all g, hence S(k) = 0 for (k, n) > 1.
Assume (%, n) = 1. Then there is some ¥/, ¥’ = k mod n, with (¢, M) = 1.
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(By Dirichlet’s Theorem, k’ may be a large prime.) We have
S(k) = S(k) —_—qm%ﬂ R 4+ qn) = >, Wk + Kqn)

qmod M

= (k) :Z]:l X(1 4+ gn) .

When r|n, X(1 + gn) takes only the two values 1 and 0, and is 1 at least
once (at ¢ = 0), so @ = >, X(1 + gn) # 0, establishing (2). Conversely, if
@ + 0, then up to this nonzero multiplicative constant, S(k) is a character
mod 7, inducing ¥ and therefore induced by . Thus r|n, establishing (1).

Appendix B. Error Estimates

We wish to present in detail the estimates showing that only %, =0
contributes in the limit 7 — oo in Section 4 and that the other errors
incurred in that section also are negligible.

We first show that the integral over I'((4N)\H may be approximated
by an integral over a certain compact region.

ProposiTION B.1. Let & = {z] |z| > 1, |Re 2| < 1/2} be the usual fun-
damental domain for SL(2, Z), and let F,= F N {z|Imz < y*}. Let

[(NM\H=D= U 1F

rE€SL(2,Z)\T"o(4N)

and let

D, =Ur#,.
Suppose F e G, (4N, 3(N/ )) (with F|W(4N)(ioe) =0 if £ =1 and X = 1).
Then

,,,,, OQ) if F & S.,(4N, 7(N/ ))
o(l) if FeS.,4N, 2N/ )’
(B.1)

Proof. See the proof of Proposition 2.8. Generally, if Fe P? then
the error estimate is O(»*™).

Remark. The error O(1) for Fe Gy, becomes an error o(1) when we

divide by » to get the pole term.

PropositioN B. 2. Consider the decomposition

01(2’ "77) = Z + Z

£3=0 £37#0
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(Equation (4.4) makes clear the notation on the right.) Then
>0 = Oe~rpu~17?) veD, (B.2)

£3#0
for some positive constant .

Proof. Observe the general estimate

16,0z, i) < 3 i;’ | AR, in) ] exp ["‘%%1;7’“ + 1675)]

2rv Az]

X exp[ - % (B. 3)

Now

| A%, in)] = \(i & — 4»7&) — iz,
4y

< - L&+ 4nl&) + 1%
4y
When %, = 0, we have
A%, ip)] < C)y[xal(l + f*lle + 167 2| 1|>

where C depends only on the lattice L’. For “large” 5 (such as 5 > 1/4),
we have

(A} < Copf | & A + 974 %] 4 972 (%) B.4)
From (B. 3) and (B. 4), we get the estimate

2. < G Zz [Zo Zo + 7 Zo Zz + 7% Zx‘Zo] (B. 5)

23#0 £ Z2 Z1 Z2 i1

where

2

= Oe*"*(1 + (o)==
= 0" veD,. (B. 6)

(One may take « to be 64x/N times the smallest value of &, and ¢ to be
half of «.)

5. = Sl exp (- Nzx1>=0(1+(v/772)“”*"/2) (B.7)
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2= Dlarexp (= 22) = 0 + v, (B.8)

Combining (B. 6,7, 8) in (B. 5) gives an estimate
Z — O[e—a"vvzvllz((v/vz)—1/20-1/2 _|_ 77-/t(l)/77';)_1/zv—(/1+1)/2 + 77'21(0/772)"(“1)/20_1/2)]

£3#0
” — O[e—a"vnﬂ(vv-l/z + vt—xv-(zn)/z + vl-xv—(zn)/z)]
= Ole~"rtpu-*#(1 + (vy) )]

= Ole-*""""pv~'7] for ve D,.

ProrosiTiON B. 3.

o) if Fe s,,,(4N, z(.l\_’))

ID vPF(2) > diz = (B.9)

#4570 o(y) if Fe G1/2(4N ’ 7—(<E))

Proof. We use the estimate (B.2). For cusp forms the result is obvi-
ous: small values of v may be ignored, and the exponential factor e-**»*
takes care of the rest. In the second case, we must concern ourselves
with small values of v, say in the range ' > v > % In this range
Diseo = O(pu~""?). But since O(v~?) is the estimate for modular forms of
weight 1/2, we have

L VER(2)00w- ) dyz = O(1) .

Therefore, the integral over a vanishingly small piece of D will be o(1).
The inclusion of 7 into the estimate O(v-'?) gives the desired result.

Remark. Again, the lower estimate in (B. 9) becomes o(1) upon divi-
sion by 7.

ProposrTioN B.4. The discrepancy between (4.10) and (4. 11) is O(y™"),
and

y~! N v?|F(2)|dyz = o(1) . (B. 10)

Proof. The derivation between (4.10) and (4.11) notes an error O(v'*?[y).
This occurs within the theta function (4.10), which is easily seen to have no
constant term. (When k& = 0, 7,(h) = 0). Without the expression in paren-
theses, (4. 10) has the estimates O(e~**(1 + v~'?)), for some positive «; with
the estimate O(v'”[y) we get an overall estimate O(yp~'e *(v'? + 1)). This

https://doi.org/10.1017/50027763000020468 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020468

MODULAR FORMS 117

clearly weakens to O(~'). As for the estimate (B. 12), it holds since the
integral is absolutely convergent even when D, is replaced by D.

ProrosiTioNn B.5. Let H(z) be as in (4.14). Then

[ vrP@Hmdz = [ vrF@Hm =)z + o) .

Dy

Proof. The integral at left is absolutely convergent.
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