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Abstract
In numerical linear stability investigations, the rates of change of the kinetic and thermal energy of the perturbation
flow are often used to identify the dominant mechanisms by which kinetic or thermal energy is exchanged between
the basic and the perturbation flow. Extending the conventional energy analysis for a single-phase Boussinesq fluid,
the energy budgets of arbitrary infinitesimal perturbations to the basic two-phase liquid–gas flow are derived for an
axisymmetric thermocapillary bridge when the material parameters in both phases depend on the temperature. This
allows identifying individual transport terms and assessing their contributions to the instability if the basic flow and
the critical mode are evaluated at criticality. The full closed-form energy budgets of linear modes have been derived
for thermocapillary two-phase flow taking into account the temperature dependence of all thermophysical param-
eters. The influence of different approximations to the temperature dependence on the linear stability boundary of
the axisymmetric flow in thermocapillary liquid bridges is tested regarding their accuracy. The general mechanism
of symmetry breaking turns out to be very robust.

1. Introduction

Thermocapillary flow in axisymmetric liquid bridges which are heated differentially represents one of
the most popular paradigms of thermocapillary flow [8]. It originated from the desire to better understand
the formation of striations in crystals grown by the floating-zone method [18]. One intriguing aspect
is the spontaneous breaking of the steady axisymmetric flow and the relevant physical mechanisms
at work. The onset of the three-dimensional flow in high-Prandtl-number liquids is characterised by
a thermocapillary Reynolds number Re ∼�Td/μ2 which scales linearly with the length of the liquid
bridge d and the temperature difference �T applied between the supporting rods or, equivalently, with
the total variation of the surface tension. Since the length d under normal gravity is limited by the
Rayleigh–Plateau instability causing a mechanical breaking of the bridge, driving the system into a
three-dimensional flow state can require a relatively large temperature difference �T , in particular if
the dynamic viscosity μ is large. Hence, the temperature dependence of the material properties, like the
dynamic viscosity, may not be negligible. For that reason, a temperature-dependent viscosity has been
taken into account in stability analyses [7] and numerical simulations [22, 23]. However, most numerical
results have been obtained for constant material properties [4, 9, 12, 14, 15, 16, 29].
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Figure 1. Sketch of the thermocapillary liquid bridge held in place between the hot rod at temperature
T̄ +�T/2 and the cold rod at temperature T̄ −�T/2. The flow is driven by (i) the thermocapillary
effect, (ii) buoyancy forces in the gravity field g and (iii) a gas flow with a given inlet velocity wG,in.
Afs and Aout denote the liquid–gas interface and the outlet section, respectively. Polar coordinates are
indicated.

Since the work of Reynolds [19], Orr [17] and, for thermocapillary flows, Smith [25], the balance of
kinetic and thermal perturbation energies of the (infinitesimal) perturbation flow has proven a valuable
tool to determine the total amount and the spatial distribution of the energy production and dissipation.
Knowledge of these properties can be key to understanding the physical mechanisms of linear instability
of the flow. For instance, the thermocapillary instability for low-Prandtl-number liquids is caused by the
lift-up mechanism in the free surface shear layer [10, 33], similar to the vortex-ring instability [34], while
the temperature field is passive with respect to the instability. The temperature field is only required to
drive the basic flow. For large Prandtl numbers, on the other hand, the temperature field is important and
the flow instability arises in form of a pair of azimuthally propagating hydrothermal waves [33], similar
as for plane layers [26]. The hydrothermal waves draw their energy from temperature gradients of the
basic flow in the bulk. The strong internal temperature gradients arise due to the basic recirculation,
driven by thermocapillary forces, which transports hot fluid from the free surface over the cold wall
deep into the bulk.

Uncertainties in the computation of the critical Reynolds number are mainly caused by (a) discreti-
sation errors, (b) neglect of the temperature dependence of the material properties and (c) simplifying
assumptions about the ambient conditions like the assumption of Newtons’s law of heat transfer. As
numerical capabilities have improved, the discretisation errors can be well controlled. Moreover, it has
become feasible to take into account temperature-dependent material properties as well as the flow in the
ambient atmosphere. Due to its usefulness for the understanding of the physical instability mechanics as
well as for a check of the energy preservation of the numerically computed critical mode, we establish
the Reynold–Orr equations governing the temporal evolution of the kinetic and thermal energy budgets
of the critical perturbation mode of the linear theory for an axisymmetric liquid bridge surrounded by a
gas. The energy balances obtained take into account the temperature dependence of all thermophysical
material properties and are valid both in the liquid and in the gas phase, of which the latter is confined
to a concentric tube surrounding the liquid bridge.

2. Geometrical configuration

The flow in a liquid droplet suspended between two coaxial cylindrical rods is considered, assuming
that the physical properties of the liquid and gas phases are temperature-dependent (Figure 1). The two
rods are kept at constant temperatures with Thot = T̄ +�T/2 (hot rod) and Tcold = T̄ −�T/2 (cold rod),
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where T̄ = (Thot + Tcold)/2 denotes the arithmetic mean temperature which is assumed as reference tem-
perature. The liquid bridge is surrounded by a gas confined to a coaxial cylindrical tube, intended to
prevent uncontrollable circulations from the ambience in experiments. The flow is driven (i) by thermo-
capillary forces acting on the interface due to a variable surface tension σ (T), (ii) buoyancy forces in the
presence of the acceleration of gravity which is assumed to be directed in the negative axial direction
(Figure 1) and (iii) by an externally imposed gas flow (wG,in in Figure 1), assumed to be axisymmetric
and non-swirling. The external gas flow affects the flow in the liquid phase via viscous shear stresses
acting on the liquid–gas interface and by the thermal coupling between liquid and gas.

On all solid walls of the support rods and the tube, we assume no-slip boundary conditions. On the
surfaces of the rods, the temperatures Thot and Tcold are imposed as indicated by colour in Figure 1,
while the cylindrical tube is assumed adiabatic. Gas may enter the system with a given axial velocity
profile wG,in(r) and a given temperature, also satisfying outflow conditions at the outlet (denoted Aout in
Figure 1). Alternatively, the gas tube may be closed (wG,in ≡ wG,out ≡ 0) and confined by either adiabatic
or conductive walls. The thermocapillary flow is driven along the interface Afs by the thermocapillary
effect which creates the tangential stress [11]

∇‖σ (T) = ∂σ

∂T
∇‖T = ∂

∂T

[
σ (T̄) − γ (T − T̄) + δ(T − T̄)2 + . . .

]∇‖T

= [−γ + 2δ(T − T̄) + . . .
]∇‖T , (2.1)

where ∇‖ denotes the tangential Nabla operator. For the overwhelming majority of liquids, the surface
tension decreases with temperature (γ > 0). Therefore, the thermocapillary effect will typically generate
a flow which is directed along the interface away from the hot rod (low surface tension) and towards
the cold rod (high surface tension). The usual approximation is to neglect quadratic terms in the Taylor
expansion of the surface tension leading to ∇‖σ (T) ≈ −γ∇‖T . We note that the present analysis is inde-
pendent of the exact functional dependence of σ (T). While the Taylor coefficients γ , δ, etc. in (2.1)
crucially affect the flow fields by coupling the velocity and temperature fields on the interface, they do
not explicitly appear in the energy budgets of a given linear instability mode.

3. Governing equations

The general flow problem is governed by the Navier–Stokes and energy equations in both the liquid and
the gas phase. We consider the strong conservative forms

∂tρ + ∇ · (ρÛ
)= 0, (3.1a)

∂t

(
ρÛ
)+ ∇ · (ρÛÛ

)= −∇P̂ + ρg + ∇ · T , (3.1b)

∂t

(
ρcpT̂

)+ ∇ · (ρcpT̂Û
)= ∇ · (λ∇T̂

)
, (3.1c)

where Û, P̂ and T̂ are the velocity, pressure and temperature fields. Henceforth, the hat ( ˆ ) indicates
the total flow fields, including a basic flow and a perturbation. Equations (3.1a)–(3.1c) describe the
transport in both the liquid and the gas phase. As long as the formulation for both phases is the same,
we do not distinguish between them. We assume the fluids are Newtonian with stress tensor

T =μ
[
∇Û + (∇Û

)T]− 2

3
μ
(∇ · Û

)
I, (3.2)

where I is the identity matrix. The temperature-dependent density, dynamic viscosity, thermal conduc-
tivity and specific heat at constant pressure are denoted ρ(T̂), μ(T̂), λ(T̂) and cp(T̂), respectively. Since
the density is treated as temperature-dependent, the velocity field is not solenoidal. The formulation
used for the temperature equation (3.1c) neglects the pressure work and the viscous dissipation. These
assumptions are justified, respectively, if the conditions

χ
T̄

�T
≤ 0.1 and χPr ≤ 0.1 with χ = β̄gd

c̄p

(3.3)
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are satisfied, where Pr = μ̄c̄p/λ̄ is the Prandtl number and β = −ρ−1(∂ρ/∂T)p is the thermal expansion
coefficient [3]. The overbar indicates reference values at the reference temperature T̄ . Similarly, we
disregard the pressure contribution to the enthalpy in (3.1c) assuming p/ρ	 |cpT|. In Section 6, we
verify the conditions (3.3) for two different cases, confirming the validity of (3.1c).

For equations (3.1a)–(3.1c) and for the assumed steady axisymmetric boundary conditions a steady
axisymmetric basic flow (u0, T0, p0, h0) exists. The axisymmetric shape function h0(z) marks the radial
coordinate of the location of the liquid–gas interphase in the axisymmetric steady flow which is assumed
to be pinned to the sharp circular edges of the supporting rods. The shape h0(z) is determined by the
flow-induced normal stresses and the Laplace pressure, which also depends on the full surface tension
σ (T̂) and the hydrostatic pressure difference.

Here we are not concerned with computing the basic flow. We assume it has been obtained numer-
ically, taking into account the full temperature dependence of the material properties. Therefore, the
exact form of the boundary conditions and forcing terms for the basic flow does not enter the present
problem. Furthermore, we assume a linear stability analysis has been carried out by solving the asso-
ciated eigenvalue problem (see e.g. Stojanović et al. [27]) such that the neutrally stable linear mode
(u, T , p, h) is available as well. We consider the formal decomposition

Û = u0(r, z) + u(r, ϕ, z, t), (3.4a)
T̂ = T0(r, z) + T(r, ϕ, z, t), (3.4b)
P̂ = p0(r, z) + p(r, ϕ, z, t), (3.4c)
Ĥ = h0(z) + h(ϕ, z, t), (3.4d)

of the total flow (ˆ) into the basic state (index 0) and a perturbation (u, T , p, h). All flow fields are
described using cylindrical coordinates (r, ϕ, z) and associated velocity components (u, v, w) such that
u = uer + veϕ + wez, where e denotes a unit vector.

The neutral mode is typically obtained by a linearisation of the governing equations which requires the
perturbation quantities to be asymptotically small. We do not explicitly introduce a smallness parameter
ε, but keep in mind that the perturbation quantities (u, T , p, h) are all of the order of O(ε) in the sense
of the linearisation required for the linear stability analysis. For convenience, we shall not express the
perturbation quantities by normal modes. This is easily accomplished a posteriori.

In order to keep the effort required in deriving the energy budgets for the neutral mode at a meaningful
level, we make the ad hoc assumption that the perturbation flow does not affect the interfacial shape. This
is motivated by the experimental observations that the interfacial deformations due to the supercritical
three-dimensional flow are very small under typical laboratory conditions [36]. We note, however, that
this simplification precludes surface waves from the range of critical modes. With the assumption h = 0,
the outward pointing unit vector normal to the free surface is

n = 1

N

(
er − h0zez

)
, (3.5)

with the normalising denominator N =√1 + h2
0z, where we use the notation h0z = dh0/dz. Likewise, we

define h0zz = d2h0/dz2.
Let us assume the basic flow has been computed from the axisymmetric steady version of (3.1a)–

(3.1c). Furthermore, we assume the perturbation flow has been computed by solving (3.1a)–(3.1c)
linearised about the basic state. Within a postprocessing step, we are then interested in the temporal
evolution of the kinetic and thermal perturbation energy densities

εkin(x, t) = 1

2
ρ(T0)u2, (3.6a)

εtherm(x, t) = 1

2
ρ(T0)cp(T0)T2, (3.6b)

in the liquid and the gas phase. These energy densities must be considered measures of the perturbation
flow in the sense of Joseph [5]. With the perturbations being of O(ε), the above energy densities are
of O(ε2). The aim is to express ∂tεkin(x, t) and ∂tεtherm(x, t) by a sum of contributions which describe

https://doi.org/10.1017/S0956792523000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000189


European Journal of Applied Mathematics 271

individual transport processes and can be interpreted in physical terms. While the local rates of change
of the energy densities (3.6a) and (3.6b) are generally non-zero and depend on x, the total change rates
obtained by integration over the volume occupied by the respective fluid must vanish, if the perturbation
flow field represents a critical or a neutral mode for which the growth rate vanishes.

In the following, we assume that the fluid properties depend solely on the temperature and not on
the pressure. This simplifying assumption is commonly made by the manufacturers of batch liquids
employed for silicone oil liquid bridges [24] and for liquids in general far from their phase-change crit-
ical points. To take into account the temperature dependence of the material parameters, we assume
the parameters, as well as their first and second derivatives ρ ′(T̂), μ′(T̂), λ′(T̂), c′

p(T̂) and ρ ′′(T̂), μ′′(T̂),
λ′′(T̂), c′′

p(T̂), respectively, are available in closed-form expressions as functions of the temperature T̂ . The
functional dependence on T̂ could be established, for instance, by fitting discrete data by suitable ansatz
functions (polynomials, exponentials, etc.) or spline functions. With this information available, all mate-
rial parameters can be expanded about the local temperature T0(r, z) of the basic flow and up to second
order

ρ
(
T̂
)= ρ(T0 + T) ≈ ρ(T0) + ∂Tρ|T0

T + 1

2
∂2

Tρ
∣∣

T0
T2 := ρ0 + ρ ′

0T + 1

2
ρ ′′

0 T2, (3.7a)

μ
(
T̂
)=μ(T0 + T) ≈μ(T0) + ∂Tμ|T0

T + 1

2
∂2

Tμ
∣∣

T0
T2 :=μ0 +μ′

0T + 1

2
μ′′

0T2, (3.7b)

λ
(
T̂
)= λ(T0 + T) ≈ λ(T0) + ∂Tλ|T0

T + 1

2
∂2

Tλ
∣∣

T0
T2 := λ0 + λ′

0T + 1

2
λ′′

0T2, (3.7c)

cp

(
T̂
)= cp(T0 + T) ≈ cp(T0) + ∂Tcp

∣∣
T0

T + 1

2
∂2

Tcp

∣∣
T0

T2 := cp0 + c′
p0T + 1

2
c′′

p0T2. (3.7d)

The Taylor coefficients (ρ0,μ0, λ0, cp0), (ρ ′
0,μ

′
0, λ′

0, c′
p0) and (ρ ′′

0 ,μ′′
0, λ′′

0, c′′
p0) are scalar fields which

depend continuously on the basic temperature T0. Note all the above thermophysical properties and
coefficients depend on the phase.

Before deriving the rates of change of the kinetic energies, it is useful to consider the continuity
equation. Inserting expansions (3.7a)–(3.7d) into the continuity equation (3.1a) and neglecting quadratic
terms yields

∂t(ρ
′
0T) + ∇ · (ρ0u0) + ∇ · (ρ0u) + ∇ · (ρ ′

0Tu0) = 0. (3.8)

As this equation involves different orders of magnitude, the terms of each order of magnitude in this
equation must vanish separately,

O
(
ε0
)
: ∇ · (ρ0u0) = 0, (3.9a)

O
(
ε1
)
: ρ ′

0∂tT + ∇ · (ρ0u) + ∇ · (ρ ′
0Tu0) = 0. (3.9b)

The terms of order O(ε0) arise in the equations for the basic flow and thus do not enter the equations of
order O(ε1) for the perturbation flow. Equation (3.9b), on the other hand, balances the terms of O(ε1)
and thus represents the continuity equation in linear order entering the linear stability analysis.

4. Thermal energy budget

The basic flow (u0, T0, p0, h0) is assumed stationary and of order O(ε0). Since the perturbation flow is of
order O(ε1), it has no effect on the energy budget of the basic flow which is also O(ε0). Nevertheless, the
rates of change of the perturbation energies (3.6a) and (3.6b), which are of order O(ε2), contain terms
which describe an energy exchange with the basic flow.

To derive the local thermal energy budget, we first derive the linear equation governing the evolution
of the perturbation temperature. To that end, the flow decomposition (3.4a)–(3.4d) is inserted into the
temperature equation (3.1c) to obtain

∂t(ρcpT0) + ∂t(ρcpT) + ∇ · [ρcp(T0 + T)(u0 + u)
]= ∇ · (λ∇T0) + ∇ · (λ∇T), (4.1)
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which contains both the basic state and the perturbation flow. Neglecting terms of order O(ε2) yields

∂t(ρcpT0) + ∂t(ρcpT) + ∇ · (ρcpT0u0) + ∇ · (ρcpT0u) + ∇ · (ρcpTu0) = ∇ · (λ∇T0) + ∇ · (λ∇T). (4.2)

Inserting the Taylor expansions (3.7a)–(3.7d) of ρ, cp and λ we obtain, after linearisation,

T0 ∂T(ρcp)
∣∣

T0
∂tT + ρ0cp0∂tT + ∇ · (ρ0cp0T0u0) + ∇ · (ρ ′

0cp0T0u0T) + ∇ · (ρ0c
′
p0T0u0T) (4.3)

+ ∇ · (ρ0cp0Tu0) + ∇ · (ρ0cp0T0u) = ∇ · (λ0∇T0) + ∇ · (λ′
0T∇T0) + ∇ · (λ0∇T),

where the coefficients, like λ0 = λ(T0), are functions of the basic state temperature field T0. Separating
the orders of magnitude, the terms of order O(ε0) enter the basic state equation for T0

∇ · (ρ0cp0T0u0) = ∇ · (λ0∇T0), (4.4)

while the terms of order O(ε1)[
T0(ρ ′

0cp0 + ρ0c′
p0) + ρ0cp0

]
∂tT + ∇ · (ρ ′

0cp0T0u0T) + ∇ · (ρ0c
′
p0T0u0T)

+ ∇ · (ρ0cp0Tu0) + ∇ · (ρ0cp0T0u) = ∇ · (λ′
0T∇T0) + ∇ · (λ0∇T) (4.5)

constitute the linear perturbation equation for T .
To obtain the rate of change of the thermal energy density (3.6b), equation (4.5) is multiplied by T

to yield

ρ0cp0T∂tT︸ ︷︷ ︸
T1

= −(ρ ′
0cp0 + ρ0c′

p0)T0T∂tT︸ ︷︷ ︸
T2

− T∇ · (ρ ′
0cp0T0u0T)︸ ︷︷ ︸
T3

− T∇ · (ρ0c
′
p0T0u0T)︸ ︷︷ ︸

T4

− T∇ · (ρ0cp0Tu0)︸ ︷︷ ︸
T5

− T∇ · (ρ0cp0T0u)︸ ︷︷ ︸
T6

+ T∇ · (λ′
0T∇T0)︸ ︷︷ ︸

T7

+ T∇ · (λ0∇T)︸ ︷︷ ︸
T8

. (4.6)

As far as the transport mechanisms are concerned, we recognise that the term T1 represents the rate
of change of thermal perturbation energy density ∂tεtherm. Moreover, the term T2 describes an addi-
tional rate of change of thermal perturbation energy density due to the dependence of ρ and cp on the
temperature T0.

The remaining divergence terms describe the rates of change of thermal perturbation energy den-
sity due to the divergence of thermal perturbation energy flux densities. These thermal perturbation
energy flux densities are caused by the basic state velocity u0 and the thermal energy densities given
by (ρ ′

0T0)cp0T in T3, (c′
p0T0)ρ0T in T4 and ρ0cp0T in T5, where the first and second terms are due to

the variation with T0 of ρ and cp, respectively. The term T6 is due to the thermal perturbation energy
flux density which is caused by the transport of basic state thermal energy ρ0cp0T0 by the perturbation
velocity u.

Finally, the term T8 describes the dissipation of thermal energy due to Fourier’s diffusive perturbation
heat flux −λ0∇T , and T7 is due to the diffusive heat flux caused by gradients of the basic temperature
in combination with the temperature dependence of λ which is not taken care of in the O(ε0) equations
for the basic state.

To arrive at the total, that is integral, thermal energy budget for each fluid phase, the rate of change of
the thermal energy density (4.6) must be integrated over the volume Vi occupied by the respective phase
(liquid or gas), where the subscript i ∈ [L, G] indicates the phase. Moreover, we define the coefficient

αi =
{

1 i = L,

−1 i = G.
(4.7)

Since the integration is rather technical, the derivation of the integral thermal energy budget is made in
Appendix A. As a result, we obtain the total rate of change of thermal energy ∂tET = ∂t

∫
Vi
εtherm dV in

the phase i

∂tET = −Dth + J + Hfs + KG,th +�ρ +�cp +�λ − ∂tE
′
T , (4.8)
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with the abbreviations

Dth =
∫

Vi

λ0(∇T)2 dV , (4.9a)

J =
2∑

j=1

Jj = −
∫

Vi

ρ0T
[
u∂r(cp0T0) + w∂z(cp0T0)

]
dV , (4.9b)

Hfs = αi

∫
Afs

λ0T∇T · n dS, (4.9c)

KG,th = −1 − αi

4

∫
Aout

ρ0cp0T2w0 dS, (4.9d)

�ρ =
∫

Vi

ρ ′
0cp0T0u0 · ∇T2 dV − 1

2

∫
Vi

(
ρ ′2

0

ρ0

− ρ ′′
0

)
cp0T2u0 · ∇T2

0 dV

− 1 − αi

2

∫
Aout

ρ ′
0cp0T0T

2w0 dS, (4.9e)

�cp = 1

2

∫
Vi

ρ0c′
p0T0u0 · ∇T2 dV − 1

2

∫
Vi

ρ0c′
p0T2u0 · ∇T0 dV

− 1 − αi

2

∫
Aout

ρ0c′
p0T0T

2w0 dS, (4.9f)

�λ = αi

∫
Afs

λ′
0T

2∇T0 · n dS − 1

2

∫
Vi

λ′
0∇T0 · ∇T2 dV , (4.9g)

∂tE
′
T = 1

2

∫
Vi

T0ρ0c′
p0∂tT

2 dV , (4.9h)

where the index i has been suppressed for the thermophysical properties of the two phases.
The terms (4.9a)–(4.9c) are well known from the energy budget for constant material properties (see

e.g. Nienhuser and Kuhlmann [16]). The surface integrals in (4.9d)–(4.9f) represent rates of change of
thermal energy of the gas phase (αi = −1) due to convective heat fluxes through the outlet boundary Aout

of the gas container. These fluxes vanish if the gas container is closed (w0|Aout = 0) or if the temperature
is prescribed at the outlet (T|Aout = 0). Since we assume the gas enters the container with a prescribed
(basic state) temperature, no perturbation energy is introduced through the inlet. The terms�ρ ,�cp and
�λ arise due to the temperature dependence of the material parameters. They vanish, respectively, if
ρ = const., cp = const. or λ= const. Similar to the thermal perturbation energy density (3.6b), the term
(4.9h) also depends on the temporal evolution of the perturbation temperature.

5. Kinetic energy budget

The rate of change of the kinetic energy density ∂tεkin is derived by linearising the momentum equa-
tion with respect to the perturbation quantities followed by a scalar multiplication of the linearised
momentum equation with the perturbation velocity u. Inserting (3.4a) and (3.4c) in (3.1b), we obtain

∂t(ρu0) + ∂t(ρu) + ∇ · [ρ(u0 + u)(u0 + u)] = −∇p0 − ∇p + ρ0g + ρ ′
0Tg (5.1)

+ ∇ · {μ [∇u0 + (∇u0)T
] }− 2

3
∇ · [μ(∇ · u0)I] + ∇ · {μ [∇u + (∇u)T

] }− 2

3
∇ · [μ(∇ · u)I] .

Linearising this equation with respect to the perturbation quantities by neglecting terms of O(ε2) yields

∂t(ρu0) + ∂t(ρu) + ∇ · (ρu0u0) + ∇ · [ρ(u0u + uu0)] = −∇p0 − ∇p + ρ0g + ρ ′
0Tg (5.2)

+ ∇ · {μ [∇u0 + (∇u0)T
] }− 2

3
∇ · [μ(∇ · u0)I] + ∇ · {μ [∇u + (∇u)T

] }− 2

3
∇ · [μ(∇ · u)I] .
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Now the Taylor expansion of the material parameters (3.7a)–(3.7d) is inserted in (5.2) to obtain, after
linearisation,

u0 ∂Tρ|T0
∂tT + ρ0∂tu + ∇ · (ρ0u0u0) + ∇ · (ρ ′

0Tu0u0) + ∇ · [ρ0(u0u + uu0)] (5.3)

= −∇p0 − ∇p + ∇ · {μ0

[∇u0 + (∇u0)T
] }− 2

3
∇ · [μ0(∇ · u0)I] + ∇ · {μ′

0T
[∇u0 + (∇u0)T

] }
+ ρ0g + ρ ′

0Tg − 2

3
∇ · [μ′

0T(∇ · u0)I
]+ ∇ · {μ0

[∇u + (∇u)T
] }− 2

3
∇ · [μ0(∇ · u)I] .

Separating again the orders of magnitude yields the basic state momentum equation at O(ε0)

∇ · (ρ0u0u0) = −∇p0 + ρ0g + ∇ · {μ0

[∇u0 + (∇u0)T
] }− 2

3
∇ · [μ0(∇ · u0)I] , (5.4)

and the momentum perturbation equation at O(ε1)

u0ρ
′
0∂tT + ρ0∂tu + ∇ · (ρ ′

0Tu0u0) + ∇ · [ρ0(u0u + uu0)] (5.5)

= −∇p + ρ ′
0Tg + ∇ · {μ′

0T
[∇u0 + (∇u0)

T
] }− 2

3
∇ · [μ′

0T(∇ · u0)I
]

+ ∇ · {μ0

[∇u + (∇u)T
] }− 2

3
∇ · [μ0(∇ · u)I] .

Finally, the scalar product between the momentum perturbation equation (5.5) is taken with the
perturbation velocity field u, yielding

ρ0u · ∂tu︸ ︷︷ ︸
K1

= −ρ ′
0u0 · u∂tT︸ ︷︷ ︸

K2

− u · {∇ · [ρ0(u0u + uu0)]}︸ ︷︷ ︸
K3

− u · [∇ · (ρ ′
0Tu0u0)

]︸ ︷︷ ︸
K4

− u · ∇p︸ ︷︷ ︸
K5

+ ρ ′
0Tu · g︸ ︷︷ ︸

K6

+ u · {∇ · {μ0

[∇u + (∇u)T
] }}

︸ ︷︷ ︸
K7

− 2

3
u · {∇ · [μ0(∇ · u)I]

}
︸ ︷︷ ︸

K8

+ u · {∇ · {μ′
0T
[∇u0 + (∇u0)

T
] }}

︸ ︷︷ ︸
K9

− 2

3
u · {∇ · [μ′

0T(∇ · u0)I
] }

︸ ︷︷ ︸
K10

. (5.6)

Equation (5.6) represents the balance of kinetic energy density at order O(ε2). The first term K1 is
recognised as the rate of change of the kinetic energy density of the perturbation flow ∂tεkin. The physical
processes leading to the change of energy density appear on the right-hand side of (5.6). Similar to the
thermal budget, the term K2 describes a rate of change of the kinetic perturbation energy density due to
the temperature dependence of the density. This term is conservative in the sense that it vanishes when
integrated over the volume, as explained in Appendix B.

The terms K3 and K4 describe the rate of change of kinetic perturbation energy density due to the
divergence of kinetic perturbation energy flux densities. These fluxes arise due to the transfer of momen-
tum between the basic and the perturbation flow (K3) and due to the second-order density dependence
on the temperature (K4), after evaluation of the divergence (∇ρ ′

0 = ρ ′′
0 ∇T). The term K5 describes the

work per volume and time done by pressure forces which is enabled by the weak compressibility of
the perturbation flow due to spatial variation of ρ. The term K6 represents the work done by buoyancy
forces. It also arises in the framework of the Oberbeck–Boussinesq approximation.

The remaining terms K7 to K10 describe the rate of change of kinetic perturbation energy density due
to viscous dissipation of the perturbation flow (K7), corrected by the effects due to the spatial variation
of the density (K8), the spatial variation of the dynamic viscosity (K9) and the spatial variation of both,
density and dynamic viscosity (K10).

As for the thermal energy budget, the integral kinetic energy budget is detailed in Appendix B.
Integration over the volume occupied by the liquid and the gas separately yields the total rate of change
of kinetic energy ∂tEkin = ∂t

∫
Vi
εkin dV in the phase i

∂tEkin = −Dkin + Mr + Mϕ + Mz + I + B + KG +�ρ +�μ +�ρμ, (5.7)
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where we introduced the abbreviations

Dkin =
∫

Vi

μ0(∇u):(∇u) dV + αi

∫
Afs

μ0(h0h0zzw
2 − v2) dϕ dz, (5.8a)

Mr = αi

∫
Afs

μ0h0h0zu (∂rw − ∂zu) dϕ dz, (5.8b)

Mϕ = αi

∫
Afs

μ0h0v

(
∂rv − v

h0

− h0z∂zv

)
dϕ dz, (5.8c)

Mz = αi

∫
Afs

μ0h0w (∂rw + h0zzw − h0z∂zw) dϕ dz, (5.8d)

I =
5∑

j=1

Ij = −
∫

Vi

ρ0

(
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

)
dV , (5.8e)

B = −
∫

Vi

ρ ′
0Tgw dV , (5.8f)

KG = −1 − αi

4

∫
Aout

ρ0w2w0 dS, (5.8g)

�ρ = −
∫

Vi

ρ ′
0Tu · (u0 · ∇u0) dV +

∫
Vi

ζ

(
p − 1

3
μ0ζ

)
dV , (5.8h)

�μ =
∫

Vi

μ′
0u · [S + (∇u)T] · ∇T0 dV +

∫
Vi

(μ′
0 +μ′′

0T0)u · [S0 + (∇u0)
T] · ∇T dV

−
∫

Vi

μ′
0T(∇u0):(∇u) dV + αi

∫
Afs

μ′
0wT

(
N2∂rw0 − N2h0z∂zw0 − h2

0zh0zzw0

)
dϕ dz, (5.8i)

�ρμ = −
∫

Vi

μ′
0ζ0

(
1

3
Tζ + u · ∇T

)
dV −

∫
Vi

(
μ′

0ζ +μ′′
0T
)

u · ∇T0 dV , (5.8j)

and

ζ0 = ∇ · u0 = −ρ
′
0

ρ0

u0 · ∇T0, (5.9a)

ζ = ∇ · u = − 1

ρ0

[
ρ ′

0u · ∇T0 + ρ ′
0∂tT + ∇ · (ρ ′

0u0T)
]

, (5.9b)

S0 = ∇u0 + (∇u0)
T, (5.9c)

S = ∇u + (∇u)T. (5.9d)

As before, the index i indicating the phase (liquid or gas) has been suppressed for the thermophysical
properties.

The terms (5.8a)–(5.8e) are the known terms for an incompressible flow and constant material prop-
erties [16]. Dkin denotes the viscous dissipation, I the kinetic energy production including effects like,
for example, the lift-up process, and Mr, Mϕ and Mz represent the work per time done by thermocapil-
lary forces on the interface Afs in the radial, azimuthal and axial direction, respectively. The well-known
buoyancy production term B also enters the kinetic energy budget within the Boussinesq approximation.
KG represents the advection with the basic flow of perturbation kinetic energy through the outlet of the
gas Aout. It vanishes for a closed container holding the gas (w0|Aout = 0). Note we assume that no pertur-
bation momentum is introduced by advection through the inlet of the gas. The new terms (5.8h)–(5.8j)
arise due to the temperature dependence of the material parameters. �ρ and �μ vanish, if ρ = const. or
μ= const., respectively, while �ρμ vanishes if either ρ = const. or μ= const.
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6. Discussion

The orders of magnitude of the terms arising in the energy budgets (4.8) and (5.7) depend on the physic-
ochemical properties of the two fluids as well as on their variability. To estimate the effect of fully
temperature-dependent (FTD) properties on the linear stability boundary, we compare the results com-
puted with those obtained using the Oberbeck–Boussinesq approximation (OB) in which all material
parameters are assumed constant except for the density in the buoyancy term ρg of (3.1b), which is
considered up to first order in T̂ − T̄ .

By considering a Taylor expansion up to first order around the reference values, Gray and Giorgini [3]
found that a deviation of 5% of the thermophysical parameters from the value at the reference temper-
ature is an acceptable tolerance to use the OB approximation. Here we make the same assumption, but
keep the higher-order terms of the Taylor expansion. The condition that the absolute relative deviation
of any quantity f ∈ {ρ, λ, cp,μ} from its value at the reference temperature is less than or equal to the
threshold value ξ/2 = 0.05 leads to∣∣∣∣∣ f (T̂) − f (T̄)

f (T̄)

∣∣∣∣∣=
∣∣∣∣ f ′(T̄)

f (T̄)
(T̂ − T̄) + 1

2

f ′′(T̄)

f (T̄)
(T̂ − T̄)2 + . . .

∣∣∣∣≤ ξ

2
, (6.1)

where T̂ can be any temperature arising in the system, bounded by T̄ ±�T/2. Assuming f (T̂) is a
monotonic function and using the algebraic mean temperature T̄ as the reference temperature (as in Gray
and Giorgini [3]), we consider the extreme case when T̂ − T̄ = ±�T/2. Then we get the restriction of
the maximum tolerable relative deviation from the reference value

ψf := max

∣∣∣∣± f ′(T̄)

f (T̄)
�T + 1

4

f ′′(T̄)

f (T̄)
�T2 ± . . .

∣∣∣∣≤ ξ . (6.2)

In lowest order and for ξ = 0.1, we recover the criterion of Gray and Giorgini [3]. If the series is truncated
at second order, we obtain (�T > 0)

ψf =ψ I
f +ψ II

f =
∣∣∣∣ f ′(T̄)

f (T̄)

∣∣∣∣�T + 1

4

∣∣∣∣ f ′′(T̄)

f (T̄)

∣∣∣∣�T2 ≤ ξ . (6.3)

Therefore, if the second-order contribution ψ II
f is significant, the criterion of Gray and Giorgini [3] is

tightened.
If, instead of the OB approximation, a linearised model for a quantity f is used, it makes sense to

ensure that the relative deviation of the quantity f due to its second-order variation from the linear
model is sufficiently small. Assuming a threshold of ξ/2 = 0.05 as in Gray and Giorgini [3], this leads
to the condition ∣∣∣∣∣∣

f (T̂) −
[
f (T̄) + f ′(T̄)(T̂ − T̄)

]
f (T̄) + f ′(T̄)(T̂ − T̄)

∣∣∣∣∣∣=
1

2

∣∣∣∣∣ f
′′(T̄)(T̂ − T̄)2 + . . .

f (T̄) + f ′(T̄)(T̂ − T̄)

∣∣∣∣∣≤ ξ

2
. (6.4)

Assuming a monotonic variation with T̂ , by setting T̂ − T̄ = ±�T/2 as above, and by neglecting cubic
terms, we obtain

1

4

∣∣∣∣ f ′′(T̄)�T2

f (T̄) ± f ′(T̄)�T

∣∣∣∣= 1

4

∣∣∣∣ [f ′′(T̄)/f (T̄)]�T2

1 ± [f ′(T̄)/f (T̄)]�T

∣∣∣∣= ψ II
f∣∣1 ± [f ′(T̄)/f (T̄)]�T

∣∣ ≤ ξ , (6.5)

Maximising the left-hand side, we get the condition

ψ II
f∣∣1 −ψ I

f

∣∣ ≤ ξ . (6.6)

It is well known that in experiments on thermocapillary liquid bridges even the first-order bound
ψ I ≤ 0.1 provided by Gray and Giorgini [3] can be violated by the viscosity (f =μ). Therefore, the
dependence of the liquid viscosity on the temperature has already been taken into account up to first order
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Table 1. Thermophysical reference quantities of 2-cSt silicone oil and air at 25◦C

Property Dimension KF96L-2cs Air
density ρ̄ [kg/m3] 873.25 1.1837
dynamic viscosity μ̄ [Pa s] 1.7465 × 10−3 1.8460 × 10−5

thermal conductivity λ̄ [W/(mK)] 0.10904 2.6374 × 10−2

specific heat c̄p [J/(kgK)] 1800.8 1005.7
surface tension σ̄ [N/m] 18.3 × 10−3

surface tension coefficient γ [N/(mK)] 7 × 10−5

in the stability analysis of Kozhoukharova et al. [7] (PrL = μ̄Lc̄pL/λ̄L = 4). In their numerical simulations
for PrL ∈ [1, 5] Melnikov et al. [13] found a significant impact of the linear temperature dependence of
the viscosity on the linear stability boundary.

Since the functional dependence of the thermophysical properties on the temperature is not restricted
in our investigation, also the effect of a higher-order temperature dependence is of interest. It is difficult,
however, to quantify the effect of the FTD approach on the stability boundary without specifying the
fluids, owing to the wide range of different fluids employed for liquid bridges. Therefore, we focus on
two different cases: a high- and a low-Prandtl-number liquid bridge being heated from above.

6.1 High-Prandtl-number instability

Linear stability analyses have been carried out for the following setting. The length and radius of the
liquid bridge are d = 1.65 mm and R = d/�, respectively, where � = 0.66 is the aspect ratio. The liquid
is 2-cSt silicone oil (KF96L-2cs, Shin-Etsu Chemical, Co., Ltd., Japan) which has a Prandtl number of
PrL = 28.84 at the arithmetic mean (reference) temperature T̄ = 25◦C. The discrete data of ρL, λL and
cpL for 2-cSt silicone oil provided by Shin-Etsu [24] have been fitted by least-squares to polynomials
of second order. A low polynomial order is used to avoid non-physical oscillations. Since the manufac-
turer does not specify the temperature dependence of the surface tension, we have to stick to the linear
dependence provided in Romanò et al. [20] (see Table 1). The function μL(T̂) is constructed from the
exponential temperature dependence of the kinematic viscosity as in Ueno et al. [31] and by a quadratic
fit of the density. The volume ratio of the liquid is kept constant at V = VL/πR2d = 0.9. The liquid bridge
is placed in a wide test chamber filled with air and confined by no-penetration (wG ≡ 0) adiabatic walls.
The temperature dependence of the properties of the gas is based on explicit formulae of VDI Heat Atlas
[32]. The reference values of all physical properties are given in Table 1 for both working fluids. The
geometry of the test chamber (subscript tc) is defined through the radius ratio η= Rtc/R = 4, and the
total height of the gas space is dtc = 3.65 mm within which the liquid bridge is positioned coaxially and
vertically centred. Further details on the numerical methods and the explicit temperature dependence of
the fluid properties will be provided in Stojanović et al. [28].

Fixing T̄ = 25◦C, the condition (6.3) can be rewritten in terms of maximum allowable temperature
differences for the OB approximation. Truncating (6.2) after the first and second order, we define the
temperature thresholds (symmetric about T̄), respectively, as

�T I
OB := ξ

∣∣∣∣∣ f̄

f̄ ′

∣∣∣∣∣ and �T II
OB := 2

√
|f̄ ′|2 + ξ |f̄ ′′||f̄ | − |f̄ ′|

|f̄ ′′| , (6.7)

where f̄ = f (T̄), f̄ ′ = f ′(T̄) and f̄ ′′ = f ′′(T̄). Similarly, the temperature limit of validity for a model
accounting for linearly temperature-dependent (LTD) properties can be derived by solving (6.6) for
�T to yield
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Table 2. Maximum allowable temperature differences �T I
OB, �T II

OB and �TLTD based on a
tolerance of ξ = 0.1 and a reference temperature of T̄ = 25◦C for different thermophysical
parameters. �T I

OB and �T II
OB represent the validity thresholds for the applied temperature

difference when using the OB approximation and assuming a first-order (up to linear) or,
respectively, a second-order (up to quadratic) dependence of the thermophysical quantity on
the temperature. �TLTD is the validity threshold when using the linear temperature model
(LTD). All temperature differences are given in Kelvin for 2-cSt silicone oil (L) and air (G)

f i �T I
OB �T II

OB �TLTD i �T I
OB �T II

OB �TLTD

ρ L 91.9 89.3 395.7 G 29.8 28.5 106.8
λ L 38.4 38.4 365.5 G 35.1 34.7 218.3
cp L 121.8 121.6 1096 G 1601 578.0 706.9
μ L 4.8 4.6 20.2 G 37.9 37.4 213.8

�TLTD :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2ξ
|f̄ ′|
|f̄ ′′| + 2

√
ξ

|f̄ |
|f̄ ′′| + ξ 2

|f̄ ′|2

|f̄ ′′|2
, ψ I

f < 1,

2ξ
|f̄ ′|
|f̄ ′′| − 2

√
−ξ |f̄ |

|f̄ ′′| + ξ 2
|f̄ ′|2

|f̄ ′′|2
, ψ I

f > 1.

(6.8)

The temperature differences �T I
OB, �T II

OB and �TLTD are assigned to each thermophysical property of
each phase, and they are given in Table 2 for ξ = 0.1. The most severe restriction of�T for the validity
of the OB approximation is imposed by the condition ψ I

μL +ψ II
μL < 0.1, not allowing �T to exceed

�T II
OB = 4.6 K. Furthermore, temperature differences greater than 20.2 K would violate condition (6.6)

on the viscosity of the liquid. In this case, assuming a linear dependence μL(T̂) ∼ (T̂ − T̄) would not
be sufficient to accurately describe the flow inside the liquid bridge. Besides, the criteria ψ II

f on cpL and
cpG get violated for�T > 121.6 K and�T > 578 K, respectively. The latter condition is unrealistic and
could only be realised by a phase change.

In addition, a minimum temperature difference�Tmin = 10χ T̄ can be obtained from the first condition
of (3.3), which is required to justify the omission of the pressure work in (3.1c). For the present liquid and
gas, this condition certainly holds true at T̄ = 25◦C, since the minimum required temperature differences
are negligibly small with�Tmin,L = 2 × 10−6 K and�Tmin,G = 10−5 K, respectively. The second condition
of (3.3) does not involve �T , but rather turns into a condition for the length of the liquid bridge, which
is d ≤ 585 m in the present case. Thus, neglecting viscous dissipation in (3.1c) is also reasonable for
liquid bridges, which confirms the validity of (3.1c).

In Table 3, we compare the critical temperature differences of the linear stability analyses for different
approximations of the governing equations. The linear stability boundary for the onset of hydrothermal
waves obtained by the present FTD approach is taken as a reference. It is compared with the result
obtained using the OB approximation. To demonstrate the effect of the temperature dependence on the
stability boundary of a single thermophysical property, we also combine the OB approximation with the
temperature dependence of only one property at a time, keeping the remaining thermophysical properties
at their reference values. For instance, within the approximation ‘OB + ρ(T̂)’ the temperature depen-
dence of the fluid densities is taken into account in all the governing equations (3.1a)–(3.1c). From
Table 3, it is seen that critical Reynolds number Rec = Mac/PrL = γ d�Tcρ̄L/μ̄

2
L for the OB approx-

imation deviates strongly (by εc = 24.7%) from the reference result (FTD). The main reason is that
the relatively large change of the liquid viscosity in the range T̄ ±�Tc/2 is not taken care of by the
OB approximation, resulting in strongly violated conditions with ψ I

μL = 1.16 and ψ I
μL +ψ II

μL = 1.59.
Given the exponential behaviour of μL(T̂), also condition (6.6) gets violated for �Tc = 55.5 K with
ψ II
μ
/|1 −ψ I

μ
| = 2.8. Other than that, the OB approximation slightly fails to satisfy the conditions for

ψ I
λL = 0.14, ψ I

λG = 0.16, ψ I
ρG = 0.19 and ψ I

μG = 0.15. This explains why the critical Reynolds number
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Table 3. Critical temperature difference �Tc and critical Reynolds number Rec =
γ ρ̄L�Tcd/μ̄2

L for a slender liquid bridge with � = 0.66 and V = 0.9 made of 2-cSt
silicone oil (see text). Results are given for different approximations. For all models,
the critical wave number is mc = 3. The relative deviation εc = (Rec − ReFTD

c )/ReFTD
c

is given in [%]

Approximation �Tc [K] Rec εc [%]
FTD 44.49 1471 0
OB 55.50 1835 24.7
OB + ρ(T̂) 54.63 1806 22.8
OB + λ(T̂) 54.33 1797 22.1
OB + cp(T̂) 54.28 1795 22.0
OB +μ(T̂) 45.60 1509 2.5

(a) (b)

Figure 2. Temperature and velocity distributions of the basic state for �T = 44.49 K along the free
surface (a) and across the midplane at z = 0 mm (b). Solid lines: FTD approach. Dashed lines: OB
approximation. In (a), ut0 = t · u0 denotes the tangential velocity, where t is the unit vector tangent to the
interface. The vertical black dashed line in (b) represents the position of the interface h0(z = 0).

for the case ‘OB +μ(T̂)’ is the best approximation to the reference value ReFTD
c . The small deviation

of 2.5% from FTD is due to the remaining approximations made. In contrast, the relative error in Rec

of εc ≈ 22% with respect to the FTD model is very large if, instead, the model accounts for the full
temperature dependence of only ρ, λ or cp at a time.

The question arises as to why the critical Reynolds number using the OB approximation is larger than
the one for the FTD approach. Inspecting both basic flows in Figure 2, it seems that the dimensional
basic flow fields for�T = 44.49 K do not differ much. The main differences concern the higher plateau
temperature (full red line in Figure 2(a)) and the faster surface velocity (full blue line in Figure 2(a),
in particular for z> 0) for the FTD model as compared to the OB approximation. These deviations are
caused by a liquid viscosity μ[T0(r, z)] which is reduced in the hotter regions with T0(r, z)> T̄ from the
constant reference viscosity μ̄L in the OB approximation. The relative local viscosity deviation in the
liquid (subscript L)

�μL = μL[T0(r, z)] − μ̄L

μ̄L
. (6.9)

is illustrated by colour in Figure 3(a). In the FTD model, the local viscosity is more than 60% larger than
nominal near the cold wall, whereas near the hot wall and the free surface it is up to 30% smaller than
nominal. The reduced viscosity near the hot wall and along the free surface provides less resistance to
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(a) (b)

Figure 3. Basic state (a) and critical mode (b) for�T = 44.49 K using the FTD model. (a) Local devi-
ation of the viscosity�μL = [μL(r, z) − μ̄L]/μ̄L (colour) and streamlines (full white lines) in the liquid.
The dashed white lines show streamlines obtained with the OB approximation. (b) Critical velocity field
(arrows) and critical temperature field (colour) for mc = 3 in the (r, z) plane in which the local ther-
mal production j1 + j2 = −ρ0Tu · ∇(cp0T0) takes one of its maxima (white crosses in (a, b) located at
(r, z) = (1.73, 0.28) mm) in the bulk. Black lines indicate isotherms of the basic state.

the flow such that the basic vortex for the FTD model is stronger than for the OB approximation. This is
confirmed by the equidistant streamlines in Figure 3(a), where the full/dashed white lines correspond to
the FTD/OB model obtained for the same temperature difference. From Figure 3(b), the critical mode
arises in the region where the basic temperature gradients are large, and extends further into the region
μL < μ̄L of lower viscosity. This is confirmed by the loci of maximum thermal production (white crosses
in Figure 3) in a region of slightly reduced viscosity μL < μ̄L.

These properties favour the instability by two mechanisms: (a) The stronger basic vortex leads to
larger internal temperature gradients in the upper half of the liquid bridge. Therefore, the hydrothermal
wave can extract more energy from the basic temperature field than in the case of the OB model. (b)
The perturbation vortices which created the temperature perturbations of the hydrothermal wave arise
in a region of reduced viscosity and experience less resistance. For these reasons, the critical Reynolds
number for the FTD model is significantly lower than for the OB approximation.

To study the instability mechanism itself, we investigate the budget of the thermal perturbation energy
which is crucial for the present hydrothermal wave instability and typical for high-Prandtl-number liq-
uids [25, 27, 33]. Figure 4 shows the main contributions to the integral thermal energy budget of the
critical mode for the liquid phase (a) and for the gas phase (b). The tilde indicates that the quantities have
been normalised by the dissipation term Dth, as usual. The integral rates of change of thermal energy
by the most important transfer processes are almost identical among the FTD method (red) and the OB
approximation (blue). This is consistent with the integral contributions �̃ρ , �̃cp and �̃λ to the thermal
energy budget being very small in the present FTD approximation (Table 4). They are thus negligi-
ble. Within the OB approximation, they vanish by definition. Therefore, the temperature dependence
of the material parameters does not alter the general instability mechanism discussed, for example, in
Stojanović et al. [27]. Note the close agreement of the energy budgets between the FTD and OB mod-
els on the stability boundary does not preclude different critical Reynolds numbers, as the terms in the
energy budgets are only relative (normalised) quantities.

6.2 Low-Prandtl-number instability

For low-Prandtl-number liquids, the instability mechanism is inertial and the critical mode is stationary
[33]. In that case, the kinetic energy budget of the perturbation flow is relevant for the instability. As an
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Table 4. Minor contributions to the thermal energy budgets of the critical mode for the
FTD approach

i �̃ρ �̃λ �̃cp ∂tẼ′
T

L 1.5 × 10−4 −3.1 × 10−4 −1.2 × 10−4 −1.8 × 10−8

G −1.4 × 10−3 4.0 × 10−3 3.6 × 10−5 −2.2 × 10−11

(a) (b)

Figure 4. Main contributions to the thermal energy budget of the critical mode in the liquid phase
(a) and the gas phase (b). Results are given for the OB approximation (blue) and FTD approach (red).
J1 and J2 are defined in (4.9b).

example, we consider a liquid bridge made of molten tin and use the reference temperature T̄ = 250◦C
which is slightly above the melting temperature Tm = 231.97◦C [21]. Thus, the Prandtl number is PrL =
0.0185. The functional dependence of the thermophysical properties of molten tin on the temperature is
taken from Gancarz et al. [1] and Savchenko et al. [21], either through explicitly given correlations or
by fitting quadratic polynomials to tabulated data. Since buoyancy plays a lesser role for low-Prandtl-
number liquids [16], we assume weightlessness conditions. Moreover, we select� = V = 1 which allows
for a comparison of the critical parameters with data from the literature. The length of the liquid bridge,
the chamber geometry, the boundary conditions, and the gas are the same as for the high-Prandtl-number
liquid bridge from Section 6.1.

The main contributions, normalised by Dkin, to the kinetic energy budgets of the critical modes are
shown in Figure 5 for both approximations FTD (red) and OB (blue). The tilde sign is here employed to
denote the terms of the kinetic energy budget normalised by Dkin. Both methods yield almost the same
result, which is consistent with the kinetic energy budget obtained by Wanschura et al. [33]. This is
consistent with Table 5 , where the obtained critical temperature differences safely fall into the validity
range of the OB approximation given in Table 6. Note that increasing the reference temperature to
T̄ = 500◦C leads to an extension of the validity range as the variability of the viscosity decreases for
higher reference temperatures. Owing to the extremely small dynamic surface deformations, the radial
Marangoni production terms M̃r, M̃r,G < 10−4 are negligible. The production due to buoyancy B̃ vanishes
by definition and, for the closed chamber considered, K̃G = 0. It is clear from Figure 5(a) that most
kinetic energy is produced by the inertial process described by Ĩ4 with the work done by Marangoni
forces (mainly M̃ϕ) being very small. As can be seen from Figure 5(b), practically no inertial energy
production takes place in the gas phase (Ĩ1,G, . . . , Ĩ5,G < 10−2). The perturbation flow in the gas is driven
by axial (M̃z,G) and mainly azimuthal thermocapillary forces (M̃ϕ,G), but the produced kinetic energy is
readily dissipated (D̃kin,G). Thus, in the present two-phase system, the gas phase only plays a passive
role for the instability mechanism. This also holds true for high-Prandl-number liquids [27]. Owing
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Table 5. Critical temperature differences and Reynolds numbers for the first instability in
a liquid bridge made from tin at T̄ = 250◦C with PrL = 0.0185, � = 1 and V = 1. For the
other parameters, see the text. Results are given for different approximations. The critical
Reynolds number of Wanschura et al. [33] was obtained by linear interpolation of their data
for different PrL (their table 3)

Approximation �Tc [K] Rec

FTD 7.06 2033
constant properties (OB) 7.15 2057
[33] 2038

Table 6. Validity ranges �T ≤�T I
OB(T̄) and �T ≤�T II

OB(T̄) of the OB approximation for
each thermophysical property of molten tin at T̄ = 250◦C and at T̄ = 500◦C, respectively,
using ξ = 0.1. All temperature differences are given in K

f �T I
OB(250◦C) �T II

OB(250◦C) �T I
OB(500◦C) �T II

OB(500◦C)
ρL 1074 1074 1049 1049
λL 100.8 100.8 125.8 125.8
cpL 311.7 242.1 1223 574.4
μL 30.3 28.8 66.2 62.2

(a) (b)

Figure 5. Main contributions to the kinetic energy budgets of the critical modes assuming constant
properties (OB approximation) and fully temperature-dependent fluid properties (FTD). (a) Liquid
phase. (b) Gas phase. I1 to I5 are defined in (5.8e).

to the small critical temperature difference �Tc, the new contributions (5.8h)–(5.8j) remain negligibly
small.

7. Conclusions

Variable material properties are important in high-Prandtl-number liquid bridges, because the temper-
ature difference is typically large such that the viscosity can vary over a wide range. This variation
is particularly important for very small-scale liquid bridges for which the critical temperature dif-
ference �Tc ∼ d−1 must be even larger. In that case, there is some ambiguity (through the reference
temperature) in defining the Reynolds, Prandtl and Marangoni numbers, and the critical Reynolds
numbers for different approximations of the governing equations may deviate significantly. The
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dependence of the critical Marangoni number on the choice of the reference temperature has already
been noted by Melnikov et al. [13] who demonstrated that using the cold wall temperature as the refer-
ence temperature, T̄ = Tcold, leads to a significant reduction of the critical Marangoni number (depending
on the amount of variation of the viscosity) as compared to when the mean temperature is used as a ref-
erence. While using T̄ = Tcold is convenient from an experimental point of view, because�Tc is initially
unknown and the reference Prandtl number does not depend on the (varying) temperature difference, it
is not so well suited to correlate the critical Marangoni numbers for different experimental realisations
with different critical temperature differences.

Another aspect is the use of the OB approximation beyond its strict range of validity. Even when using
the algebraic mean temperature to define the reference material parameters [7], the critical Reynolds
number can still significantly depend on the approximation made. It was shown that in the high-Prandtl-
number case considered, higher-order variations of the liquid’s viscosity need to be taken into account
beyond a certain value for�T . On the other hand, it is more than sufficient to assume a linear dependence
of ρ and λ on T̂ for silicone oil and for air near room temperature. Moreover, the temperature dependence
of cpL and cpG is negligible. Finally, we note that the free surface temperature depends on the thermal
conditions in the gas phase. For instance, a weak forced axial gas flow can strongly affect the critical
conditions [2, 6, 30, 35, 37].

In the future, it would be interesting to investigate the linear stability of very small-scale liquid bridges
under extreme temperature gradients. In this case, the model needs to be extended by including the effects
of evaporation to correctly describe the physics close to the liquid’s boiling temperature.

Competing interests. None.
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Appendix A: Integral thermal energy budget

The integral version of the rate of change of thermal energy is obtained by integrating all terms of (4.6),
T1 through T8, over the volume Vi.

T1

Integrating T1 over the volume yields∫
Vi

T1 dV =
∫

Vi

ρ0cp0T∂tT dV = 1

2

∫
Vi

ρ0cp0∂tT
2 dV := ∂tET . (A1)

T2

The term T2 can be written as

T2 = 1

2
(ρ ′

0cp0 + ρ0c′
p0)T0∂tT

2. (A2)

https://doi.org/10.1017/S0956792523000189 Published online by Cambridge University Press

https://doi.org/10.1063/1.5002135
http://www.techscience.com/fdmp/v6n1/24474
https://doi.org/10.1007/s12217-018-9614-9
http://www.sciencedirect.com/science/article/pii/S0017931018303521
http://www.sciencedirect.com/science/article/pii/S0017931018303521
https://doi.org/10.1017/S0956792523000189


European Journal of Applied Mathematics 285

Since the first term on the r.h.s. of (A2) is compensated by the same term but with the opposite sign in
T6, we are left with ∫

Vi

T2’ dV = 1

2

∫
Vi

T0ρ0c′
p0∂t(T

2) dV := ∂tE
′
T , (A3)

where T2’ represents T2 except for the cancelled term.

T3

With

T3 = T∇ · (ρ ′
0cp0T0u0T) = ∇ · (ρ ′

0cp0T0u0T2
)− ρ ′

0cp0T0u0T · ∇T (A4)

the volume integral yields∫
Vi

T3 dV =
∫
∂Vi

ρ ′
0cp0T0T2u0 · n dS −

∫
Vi

ρ ′
0cp0T0Tu0 · ∇T dV . (A5)

Taking advantage of the coefficient αi defined in (4.7), we obtain∫
Vi

T3 dV = 1 − αi

2

∫
Aout

ρ ′
0cp0T0T2w0 dS − 1

2

∫
Vi

ρ ′
0cp0T0u0 · ∇T2 dV . (A6)

Note that the velocity and temperature perturbations vanish at the chamber inlet owing to the prescribed
velocity and temperature profile for the basic state.

T4

Integrating

T4 = T∇ · (ρ0c′
p0T0u0T) = ∇ · (ρ0c′

p0T0u0T2
)− ρ0c′

p0T0u0T · ∇T (A7)

over the volume yields∫
Vi

T4 dV =
∫
∂Vi

ρ0c′
p0T0T2u0 · n dS −

∫
Vi

ρ0c
′
p0T0Tu0 · ∇T dV

= 1 − αi

2

∫
Aout

ρ0c
′
p0T0T2w0 dS − 1

2

∫
Vi

ρ0c
′
p0T0u0 · ∇T2 dV . (A8)

T5

The term T5 can either be written as

T5 = T∇ · (ρ0cp0Tu0) = ∇ · (ρ0cp0T2u0) − ρ0cp0Tu0 · ∇T

= ∇ · (ρ0cp0T2u0) − ρ0Tu0 · ∇(cp0T) + ρ0T2u0 · ∇cp0 (A9)

or as

T∇ · (ρ0cp0Tu0) = cp0T2∇ · (ρ0u0)︸ ︷︷ ︸
=0

+ρ0Tu0 · ∇(cp0T), (A10)

where the first term on the r.h.s. vanishes because of (3.9a). Combining (A9) and (A10) leads to

2T∇ · (ρ0cp0Tu0) = ∇ · (ρ0cp0T2u0) + ρ0T2u0 · ∇cp0. (A11)

Making use of the chain rule yields

T∇ · (ρ0cp0Tu0) = 1

2
∇ · (ρ0cp0T2u0) + 1

2
ρ0c′

p0T2u0 · ∇T0. (A12)
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Finally, by integrating over the volume, we obtain∫
Vi

T5 dV = 1

2

∫
∂Vi

ρ0cp0T2u0 · n dS + 1

2

∫
Vi

ρ0c′
p0T2u0 · ∇T0 dV

= 1 − αi

4

∫
Aout

ρ0cp0T2w0 dS + 1

2

∫
Vi

ρ0c′
p0T2u0 · ∇T0 dV

= −KG,th + 1

2

∫
Vi

ρ0c′
p0T2u0 · ∇T0 dV . (A13)

T6

Transforming the term T6 to

T6 = T∇ · (ρ0cp0T0u) = ρ0Tu · ∇(cp0T0) + cp0T0T∇ · (ρ0u) (A14)

and inserting (3.9b) into (A14) gives us

T∇ · (ρ0cp0T0u) = ρ0Tu · ∇(cp0T0) − cp0T0T∇ · (ρ ′
0Tu0) − cp0ρ

′
0T0T∂tT

= ρ0T
[
u∂r(cp0T0) + w∂z(cp0T0)

]− cp0T0T∇ · (ρ ′
0Tu0)

− 1

2
cp0ρ

′
0T0∂tT

2, (A15)

where the last term in (A15) cancels with the same term but with the opposite sign in (A1). Integrating
over the volume, we remain with∫

Vi

T6’ dV =
∫

Vi

ρ0T
[
u∂r(cp0T0) + w∂z(cp0T0)

]
dV −

∫
Vi

cp0T0T∇ · (ρ ′
0Tu0) dV

= −J −
∫

Vi

cp0T0T∇ · (ρ ′
0Tu0) dV

= −J −
∫

Vi

cp0ρ
′′
0 T0T2u0 · ∇T0 dV −

∫
Vi

cp0ρ
′
0T0T2∇ · u0 dV

−
∫

Vi

cp0ρ
′
0T0Tu0 · ∇T dV , (A16)

where T6’ represents T6 except for the cancelled term. Using (3.9a), we finally find∫
Vi

T6’ dV = −J +
∫

Vi

(
ρ0

′2

ρ0

− ρ ′′
0

)
cp0T0T2u0 · ∇T0 dV − 1

2

∫
Vi

ρ ′
0cp0T0u0 · ∇T2 dV . (A17)

T7

Integrating

T7 = T∇ · (λ′
0T∇T0) = ∇ · (λ′

0T
2∇T0) − λ′

0T∇T0 · ∇T (A18)

over the volume yields∫
Vi

T7 dV = αi

∫
As

λ′
0T

2∇T0 · n dS − 1

2

∫
Vi

λ′
0∇T0 · ∇T2 dV . (A19)

T8

Finally, integrating

T8 = T∇ · (λ0∇T) = ∇ · (λ0T∇T) − λ0(∇T)2 (A20)
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over the volume, we obtain∫
Vi

T8 dV = αi

∫
Afs

λ0T∇T · n dS −
∫

Vi

λ0(∇T)2 dV := Hfs − Dth. (A21)

Appendix B: Integral kinetic energy budget

As done for the thermal energy budget, the ten terms identified in the rate of change of the kinetic energy
density (5.6) are integrated over the volume one by one.

K1

Integrating the term

K1 = ρ0u∂tu = 1

2
ρ0∂tu2 (B1)

over the volume Vi yields ∫
Vi

K1 dV = 1

2

∫
Vi

ρ0∂tu2 dV := ∂tEkin. (B2)

K2

The term

K2 = ρ ′
0u0 · u∂tT (B3)

cancels with the first term on the r.h.s. of (B6).

K3

Using the Einstein notation (l, m, n) for expanding the terms in braces of K3, we get

∇ · [ρ0(u0u + uu0)]

= ∂m(ρ0u0lum + ρ0ulu0m) = ∂m(ρ0u0lum) + ∂m(ρ0ulu0m)

= u0l∂m(ρ0um) + ρ0um∂mu0l + ul∂m(ρ0u0m) + ρ0u0m∂mul

= u0∇ · (ρ0u) + ρ0u · ∇u0 + u ∇ · (ρ0u0)︸ ︷︷ ︸
=0

+ρ0u0 · ∇u, (B4)

where the second-last term vanishes due to the continuity equation (3.9a) at O(ε0). Inserting (3.9b) into
(B4) leads to

∇ · [ρ0(u0u + uu0)] = −ρ ′
0u0∂tT − u0∇ · (ρ ′

0Tu0) + ρ0u · ∇u0 + ρ0u0 · ∇u. (B5)

Scalar multiplication with u yields

K3 = u · {∇ · [ρ0(u0u + uu0)]} = −ρ ′
0u0 · u∂tT − (u · u0)∇ · (ρ ′

0Tu0) (B6)
+ ρ0u · (u · ∇u0) + ρ0u · (u0 · ∇u),
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where the first term on the r.h.s. is compensated with K2. Furthermore, the second term on the r.h.s.
cancels with the last term in (B13) for K4. It remains

K3’ = ρ0u · (u0 · ∇u) + ρ0u · (u · ∇u0)

= 1

2
ρ0u0 · ∇u2 + ρ0u · (u · ∇u0)

= 1

2
∇ · (ρ0u0u2) − 1

2
u2 ∇ · (ρ0u0)︸ ︷︷ ︸

=0

+ρ0u · (u · ∇u0), (B7)

where K3’ represents K3 without the cancelled terms. The second term in K3’ vanishes due to the
continuity equation in O(ε0). Expressing

∇u0 =
⎛
⎝∂ru0 0 ∂zu0

0 u0/r 0
∂rw0 0 ∂zw0

⎞
⎠ (B8)

through the components of basic velocity field, we obtain

K3’ = 1

2
∇ · (ρ0u0u2) + ρ0

(
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

)
. (B9)

By integration over the volume, we get∫
Vi

K3’ dV = 1

2

∫
∂Vi

ρ0u2u0 · n dS

+
∫

Vi

ρ0

(
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

)
dV . (B10)

Finally, using αi from (4.7), we arrive at∫
Vi

K3’ dV = 1 − αi

4

∫
Aout

ρ0w
2w0 dS

+
∫

Vi

ρ0

(
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

)
dV

:= −KG −
5∑

j=1

Ij := −KG − I. (B11)

K4

We use the index notation for expanding the part in square brackets of K4

∇ · (ρ ′
0Tu0u0) = ∂m(ρ ′

0Tu0lu0m) = u0l∂m(ρ ′
0Tu0m) + ρ ′

0Tu0m∂mu0l

= u0∇ · (ρ ′
0Tu0) + ρ ′

0Tu0 · ∇u0. (B12)

After taking the dot product with u, we obtain

u · [∇ · (ρ ′
0Tu0u0)

]= ρ ′
0Tu · (u0 · ∇u0) + (u · u0)∇ · (ρ ′

0Tu0). (B13)

As aforementioned, the last term in (B13) compensates with one of the terms of K3 in (B6). Using
u0 · ∇u0 in components

u0 · ∇u0 =
⎛
⎜⎝
∂ru0 0 ∂zu0

0
u0

r
0

∂rw0 0 ∂zw0

⎞
⎟⎠ ·
⎛
⎝u0

0
w0

⎞
⎠=

⎛
⎝ u0∂ru0 + w0∂zu0

0
w0∂zw0 + u0∂rw0

⎞
⎠ , (B14)
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and integrating over the volume yields∫
Vi

K4’ dV =
∫

Vi

ρ ′
0Tu · (u0 · ∇u0) dV

=
∫

Vi

ρ ′
0u0 (u∂ru0 + w∂rw0) dV +

∫
Vi

ρ ′
0w0 (u∂zu0 + w∂zw0) dV . (B15)

K5

The term K5 can be written as

K5 = u · ∇p = ∇ · (pu) − p∇ · u. (B16)

Using the continuity equation in O(ε) (3.9b), we can express

∇ · u = − 1

ρ0

[
u · ∇ρ0 + ρ ′

0∂tT + ∇ · (ρ ′
0u0T)

]
= − 1

ρ0

[
ρ ′

0u · ∇T0 + ρ ′
0∂tT + ∇ · (ρ ′

0u0T)
]

:= ζ , (B17)

where the abbreviation ζ indicates the deviations from a solenoidal perturbation flow, which is primarily
determined by the temperature dependence of ρ. Inserting (B17) in (B16) gives∫

Vi

K5 dV =
∫
∂Vi

pu · n dS︸ ︷︷ ︸
=0

−
∫

Vi

ζp dV . (B18)

Note that the integrand in the first integral of (B18) vanishes at the chamber outlet because of the van-
ishing pressure perturbation. It also vanishes on the walls, at the inlet and along the axis because of the
vanishing normal velocity perturbation.

K6

Integrating

K6 = ρ ′
0Tu · g = −ρ ′

0Tgw (B19)

over the volume yields ∫
Vi

K6 dV = −
∫

Vi

ρ ′
0Tgw dV := B. (B20)

K7

Considering the terms in the braces of K7

∇ · {μ0

[∇u + (∇u)T
]} =μ0∇ · [∇u + (∇u)T

]+ [∇u + (∇u)T
] · ∇μ0 (B21)

and using the index notation, the first term on the r.h.s. of (B21) can be written as

∇ · [∇u + (∇u)T
]= ∂l (∂lum + ∂mul)= ∂l∂lum + ∂m∂lul =�u + ∇(∇ · u). (B22)

Thus, (B21) turns into

∇ · {μ0

[∇u + (∇u)T
]} =μ0�u +μ0∇(∇ · u) + [∇u + (∇u)T

] · ∇μ0. (B23)
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Scalar multiplication of (B23) with the perturbation velocity field u, we can express the term K7 as

K7 = u · {∇ · {μ0

[∇u + (∇u)T
] }}

=μ0u ·�u︸ ︷︷ ︸
K7a

+μ0u · ∇(∇ · u)︸ ︷︷ ︸
K7b

+ u · [∇u + (∇u)T
] · ∇μ0︸ ︷︷ ︸

K7c

. (B24)

The three terms K7a, K7b and K7c are considered separately. Using the index notation, the integral over
the term K7a can be written as∫

Vi

K7a dV =
∫

Vi

μ0ul∂m∂mul dV

= αi

∫
Afs

μ0ulnm∂mul dS︸ ︷︷ ︸
:=M

−
∫

Vi

μ0(∂mul)
2 dV +

∫
Vi

ul(∂mμ0)(∂mul) dV

= −
∫

Vi

μ0(∂mul)
2 dV + M +

∫
Vi

ul(∂mul)(∂mμ0) dV

= −
∫

Vi

μ0(∂mul)
2 dV + Mr + Mϕ + Mz

− αi

∫
Afs

μ0(h0w2h0zz − v2) dϕ dz +
∫

Vi

μ′
0u · (∇u)T · ∇T0 dV . (B25)

Identifying the terms that characterise the kinetic energy dissipation Dkin and the energy transfer due to
thermocapillary stresses in r-, ϕ- and z-direction (see Mr, Mϕ , and Mz, respectively), we obtain

∫
Vi

K7a dV = −Dkin + Mr + Mϕ + Mz + 1

2

∫
Vi

μ′
0 · (∇u2) · ∇T0 dV , (B26)

with

Dkin =
∫

Vi

μ0(∂lum)2 dV + αi

∫
Afs

μ0(h0h0zzw
2 − v2) dϕ dz, (B27)

which reads in component notation

Dkin =
∫

Vi

μ0

[
(∂ru)2 +

(
1

r
∂ϕu − v

r

)2

+ (∂zu)2 + (∂rv)2 +
(

1

r
∂ϕv + u

r

)2

+(∂zv)2 + (∂rw)2 + (∂ϕw)2

r2
+ (∂zw)2

]
dV + αi

∫
Afs

μ0(h0w2h0zz − v2) dϕ dz. (B28)

The integral production terms of kinetic energy by thermocapillary stresses are

Mr = αi

∫
Afs

μ0h0u(∂rw − ∂zu)h0z dϕ dz, (B29a)

Mϕ = αi

∫
Afs

μ0h0v

(
∂rv − v

h0

− h0z∂zv

)
dϕ dz, (B29b)

Mz = αi

∫
Afs

μ0h0w (∂rw + wh0zz − h0z∂zw) dϕ dz. (B29c)
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Expanding the term K7b and integrating over the volume results in∫
Vi

K7b dV =
∫

Vi

μ0ul∂l∂nun dV =
∫

Vi

μ0∂l(ul∂nun) dV −
∫

Vi

μ0(∂nun)(∂lul) dV

=
∫
∂Vi

μ0(∂nun)(nlul) dS︸ ︷︷ ︸
=0

−
∫

Vi

μ′
0(∂nun)ul∂lT0 dV

−
∫

Vi

μ0(∂nun)(∂lul). (B30)

Note that the first integral on the r.h.s. vanishes, because the normal vector n is perpendicular to the
velocity vector u along the interface such that n · u = 0. Using (B17), we find∫

Vi

K7b dV = −
∫

Vi

μ0ζ
2 dV −

∫
Vi

μ′
0ζu · ∇T0 dV . (B31)

Finally, expanding the term K7c and integrating over the volume we get∫
Vi

K7c dV =
∫

Vi

u · [∇u + (∇u)T
] · ∇μ0 dV =

∫
Vi

μ′
0u · S · ∇T0 dV , (B32)

where the stress tensor of the perturbation velocity field reads

S = ∇u + (∇u)T =

⎛
⎜⎜⎜⎜⎝

2∂ru
1

r
∂ϕu − v

r
+ ∂rv ∂zu + ∂rw

1

r
∂ϕu − v

r
+ ∂rv

2

r
∂ϕv + 2u

r
∂zv + 1

r
∂ϕw

∂zu + ∂rw ∂zv + 1

r
∂ϕw 2∂zw

⎞
⎟⎟⎟⎟⎠ . (B33)

K8

The l-th component of ∇ · [μ0(∇ · u)I] reads{
∇ · [μ0(∇ · u)I]

}
l
= ∂m(μ0∂nun)δml, (B34)

where δml = δlm is the symmetric Kronecker delta. Taking the scalar product with u, we obtain

u · {∇ · [μ0(∇ · u)I]
}= ul∂m(μ0∂nun)δml

= ∂m(μ0ulδlm∂nun) −μ0∂nun∂m(ulδlm)

= ∂m(μ0um∂nun) −μ0(∂nun)(∂mum)

= ∇ · [μ0(∇ · u)u] −μ0(∇ · u)2. (B35)

Integrating the term K8 over the volume, we find∫
Vi

K8 dV = 2

3

∫
∂Vi

μ0(∇ · u)(u · n) dS︸ ︷︷ ︸
=0

−2

3

∫
Vi

μ0ζ
2 dV . (B36)

The first term vanishes for the same arguments as in (B30) during the treatment of K7b.

K9

Similarly to (B23), for the terms in braces of K9 we have

∇ · {μ′
0T
[∇u0 + (∇u0)

T
] }=μ′

0T�u0 +μ′
0T∇(∇ · u0) + [∇u0 + (∇u0)

T
] · ∇(μ′

0T). (B37)
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Scalar multiplication with u yields

u · {∇ · {μ′
0T
[∇u0 + (∇u0)

T
] }}=μ′

0Tu ·�u0︸ ︷︷ ︸
K9a

+μ′
0Tu · ∇(∇ · u0)︸ ︷︷ ︸

K9b

(B38)

+ u · [∇u0 + (∇u0)T
] · ∇(μ′

0T)︸ ︷︷ ︸
K9c

.

The three terms K9a, K9b and K9c are treated separately. The term K9a can be written as∫
Vi

K9a dV =
∫

Vi

μ′
0Tul∂m∂mu0l dV = αi

∫
Afs

μ′
0Tulnm∂mu0l dS −

∫
Vi

(∂mu0l)(∂mμ
′
0Tul) dV

= αi

∫
Afs

μ′
0Tulnm∂mu0l dS −

∫
Vi

μ′
0T(∂mu0l)(∂mul) dV +

∫
Vi

ul(∂mu0l)(∂mμ
′
0T) dV

= αi

∫
Afs

μ′
0Tulnm∂mu0l dS −

∫
Vi

μ′
0T(∂mu0l)(∂mul) dV

+
∫

Vi

ul(∂mu0l)(μ
′
0 +μ′′

0T)∂mT dV . (B39)

Expressing the tensor ∂mu0l in cylindrical coordinates yields

∂mu0l = (er∂r + ez∂z) (u0er + w0ez)

= er(∂ru0er + ∂rw0ez) + eϕ
r

u0eϕ + ez(∂zu0er + ∂zw0ez). (B40)

This is projected onto nm = N−1(er − h0zez) to obtain

nm∂mu0l = 1

N
(∂ru0er + ∂rw0ez) − h0z

N
(∂zu0er + ∂zw0ez). (B41)

Further projection onto ul yields

ulnm∂mu0l = 1

N
(u∂ru0 + w∂rw0 − h0zu∂zu0 − h0zw∂zw0). (B42)

On the liquid–gas interface, we can use the relations

u = h0zw, (B43a)
∂ru = h0z∂rw, (B43b)

∂zu = h0zzw + h0z∂zw, (B43c)
u0 = h0zw0, (B43d)

∂ru0 = h0z∂rw0, (B43e)
∂zu0 = h0zzw0 + h0z∂zw0, (B43f)

to obtain

ulnm∂mu0l = w

N
(N2∂rw0 − N2h0z∂zw0 − h2

0zh0zzw0). (B44)

Combining the above relations, the integral over the term K9a reads∫
Vi

K9a dV = αi

∫
Afs

μ′
0Tw(N2∂rw0 − N2h0z∂zw0 − h2

0zh0zzw0) dϕ dz (B45)

−
∫

Vi

μ′
0T(∇u0):(∇u) dV +

∫
Vi

(μ′
0 +μ′′

0T0)u · [(∇u0)
T · ∇T] dV .
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We now focus on the term K9b. Its integral over the volume is expressed as∫
Vi

K9b dV =
∫

Vi

μ′
0Tul∂l∂nu0n dV =

∫
Vi

μ′
0T∂l(ul∂nu0n) dV −

∫
Vi

μ′
0T(∂nu0n)( ∂lul︸︷︷︸

=ζ

) dV

=
∫
∂Vi

μ′
0T(∂nu0n)(ulnl) dS︸ ︷︷ ︸

=0

−
∫

Vi

(∂nu0n)ul∂l(μ
′
0T) dV −

∫
Vi

μ′
0Tζ (∂nu0n) dV

= −
∫

Vi

(∂nu0n)(μ′
0ul∂lT +μ′′

0Tul∂lT0) dV −
∫

Vi

μ′
0Tζ (∂nu0n) dV . (B46)

Considering the O(ε0) continuity equation, one can recast the divergence of u0 as

∇ · u0 = − 1

ρ0

u0 · ∇ρ0 = −ρ
′
0

ρ0

u0 · ∇T0 := ζ0. (B47)

Analogous to (B17), we define ζ0 to be an indicator for the deviation of the basic state velocity field
from being solenoidal. Thus, the integral over K9b is obtained as∫

Vi

K9b dV = −
∫

Vi

ζ0(μ′
0u · ∇T +μ′′

0Tu · ∇T0) dV −
∫

Vi

μ′
0Tζ0ζ dV . (B48)

Finally, the term K9c reads

u · [∇u0 + (∇u0)
T
] · ∇(μ′

0T) = (μ′
0 +μ′′

0T)u · [∇u0 + (∇u0)
T
] · ∇T . (B49)

Integrating over the volume, we obtain∫
Vi

K9c dV =
∫

Vi

(μ′
0 +μ′′

0T)u · S0 · ∇T dV , (B50)

with

S0 = ∇u0 + (∇u0)
T =
⎛
⎝ 2∂ru0 0 ∂zu0 + ∂rw0

0 2u0/r 0
∂zu0 + ∂rw0 0 2∂zw0

⎞
⎠ . (B51)

K10

Similarly to (B35), the term K10 can be expressed as

u · {∇ · [μ′
0T(∇ · u0)I

] }= ∇ · [μ′
0T(∇ · u0)u

]−μ′
0T(∇ · u)(∇ · u0). (B52)

Integrating over the volume yields∫
Vi

K10 dV = 2

3

∫
∂Vi

μ′
0T(∇ · u0)(u · n) dS︸ ︷︷ ︸

=0

−2

3

∫
Vi

μ′
0Tζ ζ0 dV . (B53)
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