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From particle lifting in atmospheric boundary layers to dust ingestion in jet engines, the
transport and deposition of inertial particles in wall-bounded turbulent flows are prevalent
in both nature and industry. Due to triboelectrification during collisions, solid particles
often acquire significant charges. However, the impacts of the resulting electrostatic
interaction on the particle dynamics remain less understood. In this study, we present four-
way coupled simulations to investigate the deposition of charged particles onto a grounded
metal substrate through a fully developed turbulent boundary layer. Our numerical method
tracks the dynamics of individual particles under the influence of turbulence, electrostatic
forces and collisions. We first report a more pronounced near-wall accumulation and an
increased wall-normal particle velocity due to particle charging. In addition, contrary to
predictions from the classic Eulerian model, the wall-normal transport rate of inertial
particles is significantly enhanced by electrostatic forces. A statistical approach is then
applied to quantify the contributions from turbophoresis, biased sampling and electrostatic
forces. For charged particles, a sharper gradient in wall-normal particle fluctuation velocity
is observed, which substantially enhances turbophoresis and serves as the primary driving
force of near-wall particle accumulation. Furthermore, charged particles are found to
sample upward-moving fluids less frequently than neutral particles, thereby weakening
the biased-sampling effect that typically pushes particles away from the wall. Finally,
the wall-normal electric field is shown to depend on the competition between particle–
wall and particle–particle electrostatic interactions, which helps to identify the dominant
electrostatic force across a wide range of scenarios.
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1. Introduction
The transport of charged inertial particles in wall-bounded turbulent flows occurs across
a wide range of natural and industrial processes. Common examples include electrified
dust storms (Zheng et al. 2004; Zhang & Zhou 2020), gas–solid fluidised beds (Pei
et al. 2016), dust ingestion in jet engines (Shinozaki et al. 2013; Diaz-Lopez & Ni 2025)
and powder delivery systems (Grosshans & Papalexandris 2016). In these processes,
solid particles easily accumulate electrical charges through frequent particle–particle or
particle–wall collisions (Grosshans & Papalexandris 2017; Lacks & Shinbrot 2019). The
resulting electrostatic forces could drastically influence the particle dynamics, including
enhancing dust emission in atmospheric boundary layers (Kok & Renno 2008; Esposito
et al. 2016), accelerating particle transport in pipe flows (Guha 2008; Yao & Capecelatro
2021), initiating particle aggregation and deposition growth (Lee et al. 2015; Sippola et al.
2018; Ruan et al. 2022; Gorman et al. 2024) and inducing turbulent modulations (Cui
et al. 2024). Moreover, the electric field generated by tribocharged particles may exceed
the breakdown limit and trigger electrical discharges, posing potential risks to equipment
and personnel safety (Eckhoff 2003; Di Renzo & Urzay 2018). Therefore, investigating the
dynamics of charged particles is crucial for revealing the role of electrostatic interactions
and advancing our knowledge of the widespread electrostatic phenomena in particle-laden
flows.

The transport of neutral inertial particles in wall-bounded flows has been extensively
studied and essential physical processes have been revealed (Soldati & Marchioli 2009;
Brandt & Coletti 2022). The presence of a wall creates a significant gradient of turbulence
intensity in the wall-normal direction, driving inertial particles to preferentially migrate
towards the wall, which is known as the turbophoresis effect (Caporaloni et al. 1975;
Reeks 1983). Both numerical and experimental studies have shown that the near-wall
particle transport is dominated by buffer-layer coherent structures (Ninto & Garcia 1996;
Marchioli & Soldati 2002). In particular, quasi-streamwise vortices generate sweeps and
ejections. Inertial particles brought towards the wall by sweeps are trapped in the viscous
layer until they are re-entrained into the outer layer by ejections. As ejection-induced
re-entrainment is less efficient, inertial particles tend to accumulate near the wall, leading
to the high local concentration. Moreover, the response of inertial particles to the near-wall
coherent structures depends on the viscous Stokes number St+, which is defined as the
ratio of the particle relaxation time to the viscous time scale, and the strongest near-wall
particle accumulation is observed for St+ = 10−50 (Sardina et al. 2012). After reaching
equilibrium, particles oversample fluid motions departing from the wall to balance the
turbophoresis drift towards the wall (Picciotto et al. 2005; Picano et al. 2009; Johnson et al.
2020). In addition, near-wall particles are also found to form elongated streaky structures,
corresponding to the low-speed fluid streaks accompanying quasi-streamwise vortices
(Rouson & Eaton 2001). The dimension of such particle streaks goes up to 500–1000
wall units in the streamwise direction and they are spaced by around 100 wall units in
the spanwise direction (Sardina et al. 2012; Fong et al. 2019). With the increase of the
Reynolds number, the scale separation between the small-scale and large-scale structures
becomes more significant (Hutchins & Marusic 2007), and large-scale structures located
in the outer layer are expected to also contribute to particle transport and accumulation. As
a result, while the dynamics of particles with an intermediate St+ still correlates with the
near-wall vortices, particles with much larger inertia are predominantly driven by large-
scale quasi-streamwise vortices whose time scale is comparable to the particle relaxation
time, resulting in the formation of multiscale particle streaks in high-Reynolds-number
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Figure 1. Dimensionless deposition velocity k+ for neutral particles as a function of the particle Stokes number
St+ in previous works. Experimental data are plotted as scatters (�: Friedlander & Johnstone 1957, �: Sehmel
1968, ◦: Liu & Agarwal 1974,+: Bernardini 2014,×: Fong et al. 2019,�: Forsyth et al. 2019), while the model
prediction by Guha (2008) is shown as the blue solid line.

wall-bounded turbulence (Wang & Richter 2019; Berk & Coletti 2020; Jie et al. 2022;
Motoori et al. 2022; Berk & Coletti 2023).

As a result of the complex particle–turbulence interaction, the particle deposition
velocity at the walls, which is the primary focus of this study, varies significantly
with changes in particle inertia. Figure 1 presents the dimensionless deposition velocity
from previous experimental data for neutral particles, along with the prediction based
on the model of Guha (2008) represented by the blue solid line. The dimensionless
deposition velocity k+ = k/uτ C0 is defined as the flux of particles deposited onto the
wall, k, normalised by the average particle concentration C0 and the friction velocity uτ .
Here, St+ is the particle Stokes number defined based on the viscous scales. The
experimental data exhibit considerable scatter, spanning several orders of magnitude,
which was hypothesised to result from differences in particle charges across experiments.
Furthermore, data points within the inertial-particle regime (highlighted by the red
window in figure 1) are sparse. However, particles within this regime are highly relevant
to problems such as dust ingestion and sandstorms, which will be further investigated in
this study.

Once particles are charged, the resulting electrostatic interaction makes inertial-particle
behaviour more complex. Most existing studies on the dynamics of charged particles in
turbulence are conducted in homogeneous isotropic turbulence (HIT). In HIT, the absence
of walls means that particle charging only results in the particle–particle (PP) Coulomb
force. Under this condition, the significance of the Coulomb force has been quantified
using both velocity- and energy-based dimensionless parameters in previous studies. The
velocity-based parameter is determined by comparing the electrical migration velocity
with the turbulent drift velocity (Lu et al. 2010b; Lu & Shaw 2015; Di Renzo & Urzay
2018), while the energy-based parameter compares the electric potential energy with the
particle kinetic energy (Lu et al. 2010a; Boutsikakis et al. 2023; Ruan et al. 2024). When
electrostatic effects dominate, both the clustering and relative motion of charged particles
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are significantly altered (Karnik & Shrimpton 2012; Yao & Capecelatro 2018; Ruan et al.
2021; Boutsikakis et al. 2022).

In wall-bounded domains, the electrostatic effects become more complicated because,
in addition to the PP electrostatic interaction mentioned above, the particle–wall (PW)
electrostatic interaction also plays a role. In Guha (2008), the Eulerian model is extended
to account for charged particles under two key assumptions: (i) the particle velocity is
modulated solely by the image force and (ii) the particle concentration remains unchanged.
Using the image charge model, a charged particle near a conducting wall is subject to the
Coulomb force from its own image with the opposing charge at the symmetric location
about the wall. The PW interaction is thus attractive, pushing particles towards the wall
and increasing the particle deposition velocity. However, the electrostatic force is only
found to enhance particle deposition for weak-inertia particles with St+ � 10, while the
deposition of moderate- and large-inertia particles is almost unaffected. The electrostatic-
enhanced deposition of small-inertia particles is also confirmed by later direct numerical
simulations, where a comprehensive numerical framework is proposed to calculate both PP
and PW interactions acting on each particle (Yao & Capecelatro 2021). Meanwhile, when
studying the wall-normal accumulation of identically charged particles, Di Renzo et al.
(2019) suggest that it is the collective self-induced electric force (i.e. the PP repulsion)
that drives particles towards the wall. And in the later work by Zhang et al. (2023a)
that studies the behaviour of bidispersed oppositely charged particles, the PP attraction
between different particle groups was found to be essential in determining the wall-normal
particle distribution compared with the monodispersed case.

Despite these recent advances, several questions still remain unresolved. First, while the
classic Eulerian framework by Guha (2008) suggests that electrostatic forces only enhance
the deposition of small-inertia particles, recent findings by Zhang et al. (2023a) indicate
that the dynamics of large-inertia particles could also be significantly affected. This raises
the question of whether, and how, electrostatic forces promote the transport and deposition
of large-inertia particles. In addition, although both PW and PP electrostatic interactions
have been found to drive charged particles towards the wall, the relative importance of
these two interactions under different conditions has not been thoroughly discussed, and
it remains unclear how they each contribute to the overall electrostatic force acting on
charged particles. Hence, both assumptions that Guha (2008) has adopted to account for
the influence of the electrostatic forces require further examination.

To address the above questions, we perform four-way coupled simulations in this study.
The paper is structured as follows. The simulation conditions and the numerical methods
are described in § 2. In § 3.1, we first present the effects of electrostatic forces on the wall-
normal distribution and the mean velocity of charged particles, followed by a discussion on
the wall-normal particle deposition velocity. A statistical approach is introduced in § 3.2 to
quantify the contributions of turbophoresis, biased sampling and electrostatic forces to the
wall-normal particle distribution. Section 3.3 then provides a detailed explanation of how
turbophoresis and biased sampling are modulated. Finally, the competition between PW
and PP electrostatic interactions in determining the wall-normal electric field is elucidated
in § 3.4.

2. Numerical methods

2.1. Particle parameters
Appropriate parameters for solid particles should be selected to ensure that the particle
dynamics falls within the regime relevant to real applications. The aerodynamic response
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Parameters Values Units

Gas velocity, U 93 m s−1

Gas temperature, T 1500 K
Gas pressure, p 14 bar
Gas dynamic viscosity, μ f 5.55× 10−5 Pa · s
Chord length, b 0.218 m
Surface roughness on blades, εs 6× 10−6 m
Reynolds number, Re 1.2× 106 −
Friction factor, f 0.012 −
Friction velocity, uτ 3.59 m s−1

Ash particle density, ρp 1980 kg m3

Ash particle diameter, dp 0.1− 100 µm

Table 1. Parameters for dust ingestion problem.

10–1 100 101 102
10–2

100

102

104

St+

dp (µm)

Jet engine

Mild storm

Severe storm

Figure 2. Dependence of particle Stokes number St+ on particle size dp in different applications. Horizontal
dashed lines denote St+ = 32 and St+ = 133.

of solid particles to wall-bounded turbulent flows is usually characterised by the viscous
Stokes number, defined as the ratio of the particle relaxation time τp(= ρpd2

p/18ρ f ν f ) to
the viscous time scale τν

St+ = τp

τν

= ρp

18ρ f

(
dp

ν f /uτ

)2

. (2.1)

Here, ρp and dp are the particle density and diameter, ρ f and ν f are the fluid density and
kinematic viscosityand uτ denotes the friction velocity.

For the deposition of ash particles in jet engines, typical parameters are chosen based
on previous works (Taylor 1990; Lawson & Thole 2011, 2012; Shinozaki et al. 2013;
Sacco et al. 2018) and are listed in table 1. The friction factor f = 0.012 is determined
by the Reynolds number Re= ρ f Ub/μ f and the relative roughness εs/Dh , where the
εs is the absolute surface roughness, hydraulic diameter Dh is assumed to be comparable
to the chord length b. The friction velocity can thus be estimated as uτ =U

√
f/8=

3.59 m s−1. Using the ash particle density ρp = 1980 kg m−3 and the ash particle diameter
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Figure 3. Snapshot of the simulation system. The colour bar represents the magnitude of the fluid velocity
|u f |. Particles are plotted as grey spheres with exaggerated sizes. For clarity, only a small portion of particles
near the bottom wall is shown.

dp = 0.1−100 µm results in a Stokes number range of St+ = 10−2−104 (red line in
figure 2).

Additionally, for the transport of dust particles in atmospheric boundary layers, the
particle Stokes number can be estimated from field measurement data by Zhang & Zhou
(2023). The friction velocity is uτ = 0.54 m s−1 for a mild sandstorm and uτ = 0.64 m s−1

for a severe one. Most dust particles lie within the size range 8−200 µm. Assuming a
typical dust particle density of ρp = 2500 kg m−3, St+ ranges from O(101) to O(104)
(blue lines in figure 2).

Consequently, we choose two typical Stokes numbers, St+ = 32 and St+ = 133 (dashed
lines in figure 2), which are relevant to both applications. Here, moderate-inertia particles
with St+ = 32 are more responsive to near-wall coherent structures, while large-inertia
particles with St+ = 133 exhibit more ballistic behaviour (Jie et al. 2022).

Furthermore, the surface charging density of tribocharged particles is approximately
σc ∼ 10−5 C m−2 (Lee et al. 2015). For typical dust particles with sizes in the tens of
microns, the particle charge is around 10−15−10−14 C. As a result, the particle charge q
in the simulations is set around this level, which is comparable to values used in previous
studies (Zhang et al. 2023a; Ruan et al. 2024). In addition, since our focus is on the effects
of electrostatic force, other significant forces, such as gravity and lift force (Marchioli et al.
2007; Berk & Coletti 2020; Gao et al. 2024), are not included in this study.

2.2. Simulation system
As shown in figure 3, the simulation system is a particle-laden turbulent channel flow
between two infinite parallel walls, and the simulation parameters are listed in table 2.
The dimension of the computation domain is Lx × L y × Lz = 4πδ × 2δ× 2πδ with
δ = 0.01 m being the half-channel height. The periodic boundary condition is applied to
both the streamwise (x) and spanwise (z) directions, while the no-slip boundary condition
is applied to the wall-normal direction (y). The constant bulk velocity of the fluid phase is
Ub = 4.2 m s−1, and the friction Reynolds number is Reτ = uτ δ/ν f = 180, with uτ and ν f
being the friction velocity and the fluid kinematic viscosity, respectively. The grid number
is Nx × Ny × Nz = 1283. The grid is uniform in both x and z directions, and the non-
uniform wall-normal grid is defined by the hyperbolic tangent function with the stretching
factor S = 1.9 (Marchioli et al. 2008). This leads to a grid spacing of 	x+ = 17.67,
	z+ = 8.84 and 	y+ = 0.49−5.58. The grid resolution has been assessed in Appendix
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Parameters Values Units

Fluid phase
Fluid density, ρ f 1.2 kg m3

Fluid kinetic viscosity, ν f 1.5× 10−5 m2s−1

Bulk velocity, Ub 4.2 m s−1

Friction velocity, uτ 0.27 m s−1

Friction Reynolds number, Reτ 180 −
Particle phase
Particle diameter, dp 20 µm
Particle density, ρp 5400, 22500 kg m3

Particle charge, q {0, 0.5, 1} × 10−14 C
Particle number, Np 5× 104 −
Domain-averaged particle volume fraction, α 1.33× 10−6 −

Table 2. Simulation parameters.

A, and is shown to be sufficient for the fluid flow investigated in this study. Hereinafter,
variables normalised by the wall units (i.e. the friction velocity uτ , the viscous length
scales δν = ν f /uτ and the viscous time scale τν = ν f /u2

τ ) are presented with the
superscript +.

The total number of particles in the domain is Np = 5× 104, and the particles are
assumed to be heavy and small. The particle diameter is fixed at dp = 20 µm (d+p = 0.36),
so the domain-averaged particle volume fraction is a constant (α = 1.33× 10−6) and falls
within the dilute regime. The particle Stokes number is controlled by adjusting the particle
density.

2.3. Fluid phase
In this study, the volume-filtered Eulerian–Lagrangian framework is employed to simulate
particle-laden turbulent channel flow. The incompressible fluid motion is solved using the
open-source solver NGA2 (Desjardins et al. 2008; Capecelatro & Desjardins 2013). A
brief derivation of the volume-filtered governing equation for the fluid phase, starting
from the standard point-wise equations, is provided in Appendix B1. The associated
model closure problem is further discussed in Appendix B2. Finally, the volume-filtered
governing equations of the fluid phase used in this study are given by

∂α

∂t
+∇ · (αu f )= 0, (2.2a)

∂(αu f )

∂t
+∇ · (αu f ⊗ u f )=∇ · τ + fF + fP . (2.2b)

Here, α and u f are the fluid volume fraction and the flow velocity. The fluid stress is
τ =−p/ρ f I+ ν f [(∇u f +∇u f

T )− 2(∇ · u f )I/3] with p, ρ f , ν f being the pressure,
density and kinematic viscosity of the fluid phase, respectively, I is the identity tensor,
fF is the streamwise forcing term that maintains a constant mass flow rate and fP is the
momentum exchange term due to inter-phase coupling.

The volume-filtered Navier–Stokes equations are solved on a staggered grid with
second-order spatial accuracy for both the convective and the viscous term, and are
advanced using the second-order semi-implicit Crank–Nicolson scheme (Pierce 2001).
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The pressure Poisson equation is solved by a multigrid solver using the preconditioned
conjugate gradient method (Falgout & Yang 2002).

2.4. Particle phase
The suspended particles are treated as spheres and their movements are simulated using
the Lagrangian approach. Both particle translation and rotation are updated considering
the exerted forces/torques as

mi
dvi

dt
= FF

i + FC
i + FE

i , (2.3a)

Ii
dΩ i

dt
=TF

i +TC
i . (2.3b)

Here, mi = πρpd3
p,i/6 and I =mi d2

p,i/10 are the mass and the momentum of inertia of
particle i , vi is the particle velocity, Ω i is the rotation rate and Fi and Ti denote the
acted force and torque. The superscripts F , C and E refer to fluid force/torque, collision
force/torque and electrostatic force, respectively.

In this study, gravity is intentionally neglected. The presence of wall-normal gravity
would introduce an additional vertical migration velocity, increasing particle flux towards
the bottom wall and decreasing it towards the top wall (Marchioli et al. 2007; Berk &
Coletti 2020). In contrast, as will be shown below, both the turbophoresis effect and the
electrostatic force tend to enhance particle deposition towards both walls. Consequently,
incorporating gravity could break the symmetry of the system, with the steady-state
statistics being governed by a complex interplay between gravity, electrostatics and
particle-turbulence interactions. This added complexity could make it more challenging
to isolate and clarify the specific role of electrostatic forces. For this reason, we have
intentionally neglected gravity, ensuring that any changes in the particle dynamics between
neutral and charged cases can be solely attributed to the influence of electrostatic forces.

2.4.1. Particle–fluid interaction
The particles considered in this study are significantly heavier than the fluid (ρp/ρ f ∼
O(103)), and their size is small compared with the viscous length (dp/δν = 0.36). Given
that the length scales of near-wall turbulent structures are at least tens of δν , the solid
particles can be treated as point particles.

For an individual particle i , the full fluid force can be obtained by integrating the fluid
stress over the particle surface. As the volume-filtered framework is used, the fluid force
can be decomposed into the contribution from the resolved and unsolved stress as

FF
i =

∫
Si

τ · ndy=
∫
Si

(τ + τ ′) · ndy=
∫
Vi

∇ · τdy+
∫
Si

τ ′ · ndy. (2.4)

If the particle size is much smaller than the filter size, as in this study, ∇ · τ varies little
at the particle scale and can be taken out of the integral. The fluid force then becomes

FF
i =

∫
Vi

∇ · τdy+
∫
Si

τ ′ · ndy≈∇ · τVi +
∫
Si

τ ′ · ndy. (2.5)

Here, Vi is the volume of particle i . The fluid force due to the residual stress,
∫
Si

τ ′ · ndy,
needs to be modelled. As discussed in Appendix B, the eddy viscosity at the unresolved
scale, νt , is much smaller than the fluid molecular viscosity, ν f , indicating that the
unresolved flow around the particle is essentially laminar. Based on these considerations,
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the fluid force is modelled using the Maxey–Riley equation (Maxey & Riley 1983). Since
the fluid drag is the dominant fluid force, other fluid forces are neglected. A detailed
comparison of the fluid drag with other forces, such as lift force and short-range lubrication
force, is provided in Appendix C. The resolved fluid force, ∇ · τVi , is also negligible
compared with fluid drag for two reasons. First, the filter size δF is much larger than the
particle size dp, resulting in a small divergence of the filtered stress. Second, the particle
size dp is small, leading to an even smaller volume V . Preliminary tests show that the ratio
of the resolved fluid force to the drag force, |∇ · τV|/Fd , is only 0.036 for St+ = 32 and
0.001 for St+ = 133. Consequently, we only consider fluid drag in this study, and the fluid
force and torque are given as

FF
i =−3πμ f dp,i

(
vi − u f (xi )

)
f I , (2.6a)

TF
i =−πμ f d3

p,i

(
Ω i − 1

2
ω(xi )

)
. (2.6b)

Here, μ f is the fluid dynamic viscosity, u f (xi ) and ω(xi ) are the fluid velocity and
vorticity interpolated at the particle location using trilinear interpolation. The influence
of the order of the interpolation scheme has been discussed in Appendix D. In two-
way coupled simulations, the accurate calculation of fluid drag requires the undisturbed
fluid velocity ũ f (xp) at the particle location, because the feedback force from the
target particle itself perturbs surrounding fluid flow. As a result, the local fluid velocity,
u f (xp)(
= ũ f (xp)), is effectively disturbed (or ‘contaminated’), leading to an
underestimated slip velocity and, consequently, a reduced drag force. To address this
issue, various correction schemes have been proposed for both point-particle (Gualtieri
et al. 2015; Horwitz & Mani 2020) and finite-size particle simulations (Balachandar &
Liu 2023) to recover the undisturbed fluid velocity ũ f (x p) and ensure physically accurate
results. In this work, however, because of the large size ratio between the Gaussian filter
length and the particle size δF/dp = 8, the error in drag force caused by self-induced
disturbance is less significant, so the correction scheme is not applied. Detailed discussions
on the correction scheme of the undisturbed fluid velocity and its influences are given in
Appendix E. To account for the effect of fluid inertia, the drag force is corrected using the
Schiller–Naumann correction factor, f I , which writes

f I = 1+ 0.15Re0.687
p . (2.7)

Here, the particle Reynolds number is defined as Rep = |vi − u f (xi )|dp,i/ν f .
To consider the flow modulation caused by the particle phase, both the fluid volume

fraction α and the momentum transfer term fP in (2.2) are computed as follows:

α(Xi )= 1− 1
Vcell,i

Np∑
j=1

G F (|Xi − x j |)Vp, j , (2.8a)

fP(Xi )=− 1
ρ f Vcell,i

Np∑
j=1

G F (|Xi − x j |)FF
j . (2.8b)

Here, Xi is the location of the i th grid cell, Vp, j = πd3
p, j/6 is the volume of the j th

particle and G F is the fluid Gaussian filter that distributes the Lagrangian quantities
(i.e. Vp, j and FF

j ) to the Cartesian mesh. The characteristic fluid filtering length δF ,
defined as the full width of the fluid Gaussian filter G F at the half-height, is chosen as
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δF = 8dp = 2.88δν so that the turbulent structures are sufficiently resolved (Capecelatro
et al. 2014).

2.4.2. Particle–particle collision
If the centre-to-centre distance between a pair of particles i and j is smaller than the sum
of their radii (|xi − x j |< (dp,i + dp, j )/2), these particles are in contact, and the collision
forces and torque are considered. The contact force from particle j to i is given by

FC
i← j = Fnn+ Ft t, (2.9)

where n= (x j − xi )/|x j − xi | is the unit vector pointing from the centroid of particle i
to that of particle j , and the tangent unit vector t= vrel,t/|vrel,t | follows the tangential
relative velocity vrel,t at the contact point. The contact force components are given by

Fn =−knδn, (2.10a)

Ft =−μt |Fn|. (2.10b)

The normal force Fn follows the Hertzian contact theory and accounts for the elastic
repulsion between contact particles. The normal overlap is δn = (dp,i + dp, j )/2− |xi −
x j |, and the normal elastic stiffness can be expressed as kn = 4E

√
Rδn/3. Here,

R = (1/ri + 1/r j )
−1 is the effective radius, and E = ((1− ν2

p,i/Ei )+ (1− ν2
p, j/E j ))

−1

is the effective elastic modulus and ri , Ei and νp,i are the radius, Young’s modulus and
the Poisson ratio of particle i , respectively. The tangent force Ft is determined from the
static friction model with the friction coefficient μt = 0.3 chosen based on experimental
measurements (Thornton & Yin 1991). The associated torque is then determined as

TC
i← j = rC,i j × (Ft t). (2.11)

Here, rC,i j points from the centre of particle i to the contact point between i and j .
Once the collision force and torque from each contact neighbour j is computed, the total
collision force and torque in (2.3) can be obtained as FC

i =
∑

j FC
i← j and TC

i =
∑

j TC
i← j .

Note that the collision interactions between a particle and a wall can be computed similarly
by treating the wall as a particle at rest with infinite radius and mass.

2.5. Validation of neutral particle-laden simulations
Several cases presented in figure 14 of Johnson et al. (2020) are selected as benchmark
results to validate our solvers for the particle-laden turbulent flows. The key parameters
for these cases are summarised in table 3.

In the reference, a standard two-way coupled Eulerian–Lagrangian framework is
employed to simulate the turbophoresis of small inertial particles in a turbulent channel
flow. The channel flow is resolved using a grid number of 172× 86× 128, and the friction
Reynolds number is Reτ = 150. Neutral solid particles are subject to fluid drag force, while
interparticle collisions are modelled using a hard-sphere model. A restitution coefficient
of e= 1.0 is used, indicating that collisions are purely elastic. The effects of two-way
coupling are also accounted for.

In our simulation, both the domain size and the Reynolds number are chosen to
match those in the reference, while the grid resolution of 1283 is consistent with that
introduced in § 2.2. In the reference, simulations were conducted for four different Stokes
numbers (St+ = 1, 32, 128, 512). However, we validate the results only for St+ = 32
and 128, as these values are more relevant to the particle inertia discussed in this
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Dataset figure 14 (Johnson et al. 2020) Our simulation

Fluid phase
Domain size, Lx × L y × Lz 4πδ× 2δ × 2πδ 4πδ× 2δ× 2πδ

Grid number, Nx × Ny × Nz 172× 86× 128 1283

Friction Reynolds number, Reτ 150 150

Particle phase
Particle diameter, d+p 0.5 0.5
Particle Stokes number, St+ 32 128 32 128
Particle volume fraction, α 3× 10−6−1× 10−4 3× 10−6−1× 10−4

Fluid force Drag Drag
Collision model Hard sphere Soft sphere
Restitution coefficient, e 1.0 1.0
Interphase coupling Two-way coupled Two-way coupled

Table 3. Parameters in validation cases.

100 101

y+
102

100

101

102(a) (b)

100

101

102

C
/
C

0

1 × 10–5

3 × 10–5

1 × 10–4

αp
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y+
102

C
/
C

0

αp
3 × 10–6

1 × 10–5

3 × 10–5

Figure 4. Steady wall-normal particle concentration C/C0 for particles with (a) St+ = 32 and (b) St+ = 128.
Circles (◦) denote profiles obtained from Johnson et al. (2020), while plus signs (+) represent simulation results
using the methods introduced in this study.

study. The particle diameter is fixed at dp = 0.5δν , and the particle densities are set to
ρp = 2765 kg m−3 (St+ = 32) and 11 059 kg m−3 (St+ = 128) to achieve the desired
Stokes number. The numbers of particles in the simulations vary according to different
particle volume fractions: Np = 24429 (α p = 3× 10−6), Np = 81 430 (α p = 1× 10−5),
Np = 2 44 290 (α p = 3× 10−5), Np = 8 14 300 (α p = 1× 10−4). The drag force is
computed as described in § 2.4.1, while the normal collision force is resolved using the
soft-sphere Hertzian contact model (§ 2.4.2), assuming that collisions are elastic. Finally,
interphase coupling is incorporated following the approach mentioned in § 2.4.1.

Figure 4 compares the wall-normal particle concentration profiles in the steady state.
The vertical dashed line (y+ = 0.5) marks the location where particles collide with the
wall. The profiles corresponding to different St+ and α p show reasonable agreement,
demonstrating the reliability of both the fluid and particle solvers.
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2.6. Electrostatic interaction

2.6.1. Particle–particle–particle–mesh method
The particle–particle–particle–mesh method (P3M) is employed to calculate the Eulerian
electric field and to resolve the electrostatic interaction acting on charged particles (Yao &
Capecelatro 2018; Hockney & Eastwood 2021). The particle charges are assumed as point
charges located at particle centres, and the electrostatic force acting on particle i is

FE
i = qi E(xi ), (2.12)

where qi is the particle charge and E(xi ) is the electric field at the particle location xi . The
idea of P3M is to split the electrostatic field into two parts

E(xi )=EM(xi )+EC (xi ). (2.13)

Here, EM(xi ) is the long-range contribution that can be efficiently obtained from the
Eulerian electric field, while EC (xi ) is the short-range correction that only needs to be
included when other particles are within a critical distance rcut to the target particle.

To find the long-range contribution EM(xi ), the point charges q j carried by discrete
particles located at x j are first filtered and sent to the Cartesian mesh. The resulting
volumetric charge density ρM on the mesh is

ρM(Xi )= 1
Vcell,i

∑
j

q j G E (|Xi − x j |), (2.14)

where the electric Gaussian filter is

G E (r)= β3

π3/2 e−β2|r|2 . (2.15)

The width of the Gaussian filter at the half-height is related to β by δE = 2
√

2 ln 2/β.
The electric Poisson equation (2.16a) is discretised to the second-order spatial accuracy,
and is solved for the electric potential φM using the same method as that for the pressure
Poisson equation in § 2.3. The electric field (EM ) is then determined by (2.16b) with the
fourth-order central differencing scheme. Finally, the electric field at the particle locations
(EM(xi )) is further interpolated using the fourth-order Lagrange interpolation

∇2φM =−ρM

ε0
, (2.16a)

EM =−∇φM . (2.16b)

For a particle j at x j that is close to the target particle i at xi , the filtered field
contribution using (2.14) to (2.16b) is

EM,i j = q j ri j

4πε0|ri j |3
[

1− erfc
(
β|ri j |

)− 2β|ri j |√
π

exp
(
−β2|ri j |2

)]
, (2.17)

where ri j = xi − x j is the vector pointing from x j to xi , and erfc is the complimentary
error function. Meanwhile, the exact contribution should be

Eexact,i j = q j ri j

4πε0|ri j |3 . (2.18)
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Figure 5. Schematic of the P3M validation: (a) positive/negative (red/blue) point charges carried by particles,
(b) the normalised charging density ρM/(q Np/L3) and (c) the normalised electric potential φM/(q Np/4π L)

in a thin slice. (d) Dependence of the relative error εr (2.20) of P3M method on the parameter β. (e) Dirichlet
boundary conditions at the wall (φw = 0) and the added image particles.

To eliminate the error due to filtering, the short-range correction is added if the
interparticle distance is within the cutoff distance rcut as

EC (xi )=
∑
j 
=i

|ri j |<rcut

(
Eexact,i j −EM,i j

)

=
∑
j 
=i

|ri j |<rcut

q j ri j

4πε0|ri j |3
[

erfc
(
β|ri j |

)+ 2β|ri j |√
π

exp
(
−β2|ri j |2

)]
.

(2.19)

To validate the accuracy of the P3M method, the electrostatic forces calculated from
both the P3M method and the standard Ewald summation (Deserno & Holm 1998) are
compared. Details about the Ewald summation are introduced in Appendix F. In the test
case, Np = 5000 particles are randomly placed in a triply periodic domain with the side
length L = 2π . Half of the particles carry a nominal positive charge q = 1 while the others
carry a nominal negative charge q =−1 (figure 5a–c). When implementing P3M, the
Cartesian grid number is set to 1283. The cutoff distance is fixed at rcut = 0.2 for the
following reasons. First, rcut needs to be sufficiently large to ensure the convergence of
short-range corrections for all particles. At the same time, rcut cannot be too large, as
this would significantly increase computational cost. In the test case, for a fixed β, rcut
is gradually increased, and the normal of the residual electrostatic force, |FE − FE,Ewald |
(the numerator in (2.20)), is calculated. As rcut increases, the residual force continues to
decrease and approaches a minimum at around rcut = 0.2. Based on this result, rcut = 0.2
is selected for the test, which ensures both force convergence and computational efficiency.
The value of β is then swept to change the electric filter length δE . The P3M results are
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denoted by FE
i , and the relative error εr is calculated by

εr = |F
E − FE,Ewald |
|FE,Ewald | = [

∑Np
i=1(FE

i − FE,Ewald
i )2/Np]1/2

[∑Np
i=1(FE,Ewald

i )2/Np]1/2
. (2.20)

The dependence of εr on β is shown in figure 5(d). The relative error reaches the minimum
εr = 0.88 % at β = 6.0, thus verifying the reliability of the P3M method.

2.6.2. Electrical boundary conditions
In the channel, both the top and bottom boundaries are assumed to be grounded conductive
walls. When solving the electric Poisson equation (2.16a), periodic boundary conditions
are applied in the streamwise (x) and the spanwise (z) directions, and zero-Dirichlet
boundary conditions are added at both walls (y =±δ)

φw = 0. (2.21)

Note that (2.21) only ensures an appropriate electrical boundary condition on the mesh.
When charged particles are close to the wall, the length scale of the local electric field
is usually much smaller than the cell size and cannot be fully resolved. Therefore, image
particles are added to consider such near-wall effects (Liu et al. 2010; Yao & Capecelatro
2021). If the distance between a particle i and the wall is smaller than rcut , its image is
added at the symmetric location x(I m)

i about the wall with opposite polarity q(I m)
i =−qi .

When summing the short-range correction force in (2.19), the contribution of all the image
particles within rcut is also added (figure 5e)

E(I m)
C (xi )=

∑
|r(I m)

i j |<rcut

q(I m)
j r(I m)

i j

4πε0|r(I m)
i j |3

[
erfc

(
β|r(I m)

i j |
)
+ 2β|r(I m)

i j |√
π

exp
(
−β2|r(I m)

i j |2
)]

.

(2.22)
Here, r(I m)

i j points from the image of particle j to the target particle i . Therefore, the near-
wall correction can be taken as a special case of the short-range correction (2.19) due to
all the images.

Furthermore, to avoid over-filtering the electric field, the electric filter length is chosen
to be δE = 5δν in the simulations. The cutoff distance rcut = 36δν is set larger than δE so
that the short-range correction is converged.

We now note that, using P3M, the accuracy of the PW electrostatic force is inherently
equivalent to that of the PP electrostatic force. When evaluating the electric field E(xi )

at the particle locations in a wall-bounded domain, the conducting wall can influence
both the long-range contribution, EM (xi ), and the short-range correction, EC (xi ). First,
the electric Poisson equation is solved using periodic boundary conditions in the x and z
directions, and a zero-Dirichlet boundary condition (φw = 0) at the walls. Since the same
Poisson solver is employed with an identical tolerance of εtol = 10−6, the accuracy of the
electric field on the mesh, EM , in the wall-bounded case is comparable to that in the triply
periodic case. The electric field at particle locations is then interpolated using the same
fourth-order Lagrangian interpolation, ensuring that the long-range contribution, EM(xi ),
remains equally accurate in the channel. For the short-range contribution from image
particles, the short-range correction for image particles (2.22) has the same functional
form as that for real particles (2.19). The only difference lies in the positions and charges
of the image particles. Therefore, when summing the short-range corrections within the
same cutoff distance, rcut , contributions from both real and image particles are calculated
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Figure 6. Normalised wall-normal particle concentration C/C0 for both neutral and charged particles with
(a) St+ = 32 and (b) St+ = 133. Scatters are simulation results and dashed lines are predictions using (3.3).
Colours from light to dark represent results for q = 0 C, 5× 10−15 C and 1× 10−14 C.

together. This approach guarantees that the accuracy of EC (xi ) is preserved. Consequently,
the accuracy of P3M in a wall-bounded domain is of the same order as in a triply periodic
domain.

3. Results and discussions

3.1. Wall-normal transport and deposition velocity of charged particles
In each case, particles are released into a fully developed turbulent flow with random
initial positions and zero velocity. The particle spatial distribution then starts to evolve
from the initially random state towards a steady state that is characterised by a high
concentration near the wall. To quantify the temporal evolution of the particle phase, the
Shannon entropy S is used to describe the non-uniformity of the wall-normal particle
distribution (Picano et al. 2009; Sardina et al. 2012). It takes approximately (1−2)× 104τν

for the particle distribution to transition from the initial random distribution to a steady
state, where S is independent of time (not shown). Statistics are then taken over another
5× 103τν and presented below. However, for the case with moderate inertia (St+ = 32)
and the highest charge (q = 1× 10−14 C), a steady state was not reached after a simulation
period exceeding 2× 104τν . This case is thus excluded from the current discussion of
steady-state statistics.

We start with the distribution of charged particles in the wall-normal direction. Figure 6
compares the normalised wall-normal particle concentration C/C0 between neutral and
charged particles. The local particle concentration C(y) is equal to the number of particles
in each wall-normal bin divided by the bin volume, and the average concentration is
C0 = Np/(Lx L y Lz). In figure 6, the simulation results are represented by scatters, while
the dashed lines are model predictions based on (3.3) that will be further detailed in § 3.2.
In the neutral cases, particles driven by turbophoresis migrate from the outer layer towards
the wall, leading to the increase of C(y) as y+ decreases. Compared with the more inertial
particles with St+ = 133, particles with St+ = 32 show more pronounced accumulation
(C(y+ = 1)/C0 ∼ 102) in the neutral case as these particles are more responsive to
near-wall coherent structures.

Once particles are charged, the image force further attracts particles towards the walls
leading to more significant accumulation. As shown in figure 6(a), most particles with
St+ = 32 and q = 5× 10−15 C remain concentrated in the innermost bin within the
viscous layer, while their concentration in both the buffer layer and the outer layer is
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Figure 7. Normalised mean velocity for (a) approaching particles with St+ = 32, (b) departing particles with
St+ = 32, (c) approaching particles with St+ = 133 and (d) departing particles with St+ = 133. Colours from
light to dark represent results for q = 0 C, 5× 10−15 C and 1× 10−14 C.

drastically reduced. A similar trend is observed for particles with St+ = 133, although
to a lesser extent due to their larger inertia. For St+ = 133, the normalised concentration
at the innermost cell increases from C/C0 = 33 in the neutral case to C/C0 = 101 for
q = 5× 10−15 C and C/C0 = 118 for q = 1× 10−14 C.

Apart from particle concentration, the mean approaching/departing velocity of particles
is also of interest, as it describes how quickly particles located at a given y+ move towards
or away from the wall. Here, we define the direction pointing away from the wall as the
positive direction, so the mean approaching and departing velocities normalised by uτ are
computed as 〈v+py |vpy < 0〉 and 〈v+py |vpy > 0〉, respectively.

Figures 7(a) and 7(c) shows the approaching velocity for St+ = 32 and St+ = 133.
When particles are close to the channel centre, the electrostatic forces pointing towards
both walls cancel out, so the approaching velocity for charged particles collapses with that
of neutral ones. As particles get closer to the walls, they are accelerated by the electrostatic
force towards the closer wall, and the approaching velocity becomes higher than the neutral
cases. The increase of the approaching velocity becomes more significant as y+ decreases,
indicating the more significant role played by the electrostatic force in the near-wall region.

However, the approaching velocity at the walls (the leftmost points in figures 7a and 7c)
is smaller than the neutral velocity for both St+. This can be attributed to several reasons.
First, the two-way coupling effect caused by the concentrated particles near the wall
could effectively weaken local flows, thereby reducing the wall-normal particle velocity.
Although the domain-averaged particle volume fraction is as low as α ∼ O(10−6),
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the near-wall particle volume fraction is more than two orders of magnitude higher
(figure 6), which is sufficient to modulate the near-wall local flows (Elghobashi 1994;
Balachandar & Eaton 2010). Besides, after bouncing off the wall, particles must overcome
the electrostatic force to become re-entrained into the outer layer. Consequently, more
charged particles are trapped in the viscous layer and adjust to the low fluid velocity.
Meanwhile, high-speed particles are energetic enough to escape and become re-entrained.
This biased sampling of high-speed particles leads to the increase in the mean departing
velocity in figures 7(b) and 7(d).

With both particle concentration and wall-normal velocity, we can define the wall-
normal particle flux k, which measures the number of particles crossing a wall-parallel
plane per unit time per unit area. The wall-normal particle flux towards (−) and away
from the wall (+) can be given by

k(−)(y)= 〈vpy |vpy < 0〉(y) ·C(y) · P(vpy < 0|y), (3.1a)

k(+)(y)= 〈vpy |vpy > 0〉(y) ·C(y) · P(vpy > 0|y). (3.1b)

Here, P(vpy < 0|y) and P(vpy > 0|y) are the proportions of particles moving towards and
away from the walls at y. Note that, after normalising the particle flux k as

k+,(−) = k(−)

uτ C0
, and k+,(+) = k(+)

uτ C0
, (3.2)

the dimensionless particle flux k+ has the same physical meaning as the dimensionless
deposition velocity defined in other works (Guha 2008; Fong et al. 2019).

Figure 8 displays profiles of k+ for different St+ and q. For neutral particles, one
notices that the dimensionless flux k+ is not constant and shows a similar trend along
the y direction for both St+ = 32 and St+ = 133. This trend is consistent with the particle
transport mechanisms described in previous works (Soldati & Marchioli 2009; Chen et al.
2022). Particles in the buffer layer (5 � y+ � 30) are swept by quasi-streamwise vortices
and obtain a net drift velocity towards the near-wall region, which accounts for the rise of
k+ in the buffer layer. Then particles trapped near the wall could either deposit at the wall
after decelerating in the viscous layer, or be re-entrained to the outer layer by ejections,
both of which will reduce k+ in the viscous layer (y+ � 5). Compared with St+ = 32,
particles with St+ = 133 are more inertial and undergo a weaker deceleration, so k+ is less
decreased in the viscous layer. When particles are charged, the electrostatic force becomes
more dominant as particles get closer to walls, so k keeps increasing as y+ decreases. As
most of the charged particles are concentrated near the wall (figure 6), a sharp increase in
the near-wall flux and a decrease in the far-field flux are observed.

To make a direct comparison with the classic model prediction, it is necessary to define
the deposition velocity of the particles. In previous experimental investigations, deposition
velocity was obtained by directly measuring the total number (or mass) of droplets or
particles deposited onto the wall in each test (Friedlander & Johnstone 1957; Liu &
Agarwal 1974). However, in this study, the process of particle sticking and deposition onto
the wall is not included. Therefore, a specific wall-normal location y+ must be selected,
and the dimensionless deposition velocity k+d is defined as the local particle flux k+(y+).

For neutral particles, the deposition velocity at y+ = 1 is chosen (black dashed lines in
figure 8) for two reasons. First, dust particles typically have a finite size comparable to the
viscous length, making the deposition velocity at y+ ∼ 1, just before particles bounce off,
more relevant. Additionally, k+ plateaus near y+ = 1, which represents the maximum rate
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Figure 8. Dimensionless particle flux k+ for (a) St+ = 32 and (b) St+ = 133. Circles (◦) and plus signs
(+) represent approaching and departing fluxes. The horizontal black dashed lines indicate neutral deposition
velocity k+d . Colours from light to dark represent results for q = 0 C, 5× 10−15 C and 1× 10−14 C.

at which turbulence transports particles towards the wall before they are slowed down in
the viscous layer.

For charged particles, the electrostatic-enhanced accumulation occurs in the innermost
cells before particles bounce off. Since the particle size used in the simulation is small, the
deposition velocity at the innermost cell is chosen as k+d . If a larger particle size is used,
the flux profiles of charged particles are expected to shift towards larger y+, leading to a
different deposition velocity. Despite these variations, the change in deposition velocity
k+d due to particle charging is expected to remain consistent.

The deposition velocities k+d from simulations are then compared with the predictions
using the one-dimensional Eulerian model by Guha (2008) in figure 9. In the reference, the
particle charge is measured by the charging parameter ξ = q/qmax with the max particle
charge qmax depending on the particle size. Plugging in the parameters from table 2 then
leads to ξ = 0.16 for q = 5× 10−15 C and ξ = 0.31 for q = 1× 10−14 C. In the neutral
case, the deposition velocities for both St+ are close to the model prediction. However, a
discrepancy arises in the charged case. While Guha’s model predicts little difference in the
deposition velocity of charged particles with St+ � 10, our simulation results suggest that
this may not be the case. Therefore, the physical mechanisms that enhance the deposition
velocity of charged particles in the current simulations need to be further examined in the
following sections.

3.2. Driving mechanisms of wall-normal particle accumulation
In the previous section, it has been demonstrated that the electrostatic force increases
the deposition velocity for particles with St+ = 32 and St+ = 133. While both particle
concentration (figure 6) and wall-normal velocities (figure 7) are affected, the change
in particle concentration is more significant, which makes a predominant contribution
to the increased deposition velocity. This finding also confirms that the assumption of
an unchanged concentration profile for charged particles in Guha’s model is invalid. In
this section, we focus on the changes in particle concentration under the influence of
electrostatic forces.

To quantify the contributions of different physical mechanics to the wall-normal particle
distribution, the statistical approach proposed by Johnson et al. (2020) is employed here.
This one-dimensional model was originally developed for neutral particles, and has been
recently extended to include charged particles (Di Renzo et al. 2019; Zhang et al. 2023a).
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Figure 9. Comparison of deposition velocity k+d between the current work (scatters) and the model prediction
by Guha (2008) (solid lines). Solid lines from light to dark are results from the charging parameter ξ = 0, 0.05,
0.1, 0.5, 0.75, and 1. Colours from light to dark represent results for q = 0 C (ξ = 0), 5× 10−15 C (ξ = 0.16)
and 1× 10−14 C (ξ = 0.31).

For completeness, key aspects of the model are introduced in Appendix G, with further
details available in the cited references. When the particle phase reaches equilibrium, the
steady concentration profile can be given by

C(y)= C′exp(Iturb + Ibias + Ielec). (3.3)

Three different integrals are defined in the exponent of (3.3)

Iturb =−
∫ y

0

d ln 〈v2
py |η〉

dη
dη, (3.4a)

Ibias = 1
τp

∫ y

0

〈 f I (u f y − vpy)|η〉
〈v2

py |η〉
dη, (3.4b)

Ielec = q

m

∫ y

0

〈Ey|η〉
〈v2

py |η〉
dη. (3.4c)

Here, vpy is the wall-normal particle velocity, u f y is the wall-normal fluid velocity at the
particle location, f I is the Schiller–Naumann correction factor for the drag force and Ey
is the wall-normal electric field at the particle location.

The unknown coefficient C′ in (3.3) can be determined as follows. In the steady state,
we first compute the mean profiles of the wall-normal particle kinetic energy 〈v2

py〉(y),
the wall-normal drag force 〈 f I (u f y − vpy)〉(y) and the wall-normal electric field 〈Ey〉(y).
Then for each cell centre location y, the integrals Iturb(y), Ibias(y), Ielec(y) are obtained
by integrating the corresponding terms from the innermost cell to the current cell at y
following (3.4). Because of particle mass conservation, the mean particle concentration
C0 across the channel can be related to the concentration profile C(y) by

C0 = 1
δ

∫ δ

0
C(y)dy = C′

δ

∫ δ

0
exp (Iturb(y)+ Ibias(y)+ Ielec(y)) dy. (3.5)

In (3.5), both C0 and δ are constants. By integrating the exponential of the sum of the
integrals, the unknown coefficient C′ can be determined.
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Figure 10. Comparison of different integrals for particles with (a) St+ = 32 and (b) St+ = 133. Colours from
light to dark represent results for q = 0 C, 5× 10−15 C and 1× 10−14 C.

Since knowledge of both the particle phase and the fluid phase is required, (3.3) is not
capable of predicting the steady concentration profile a priori unless additional model
closures are included (Zhang et al. 2023b). However, these integrals provide insights into
the essential roles played by different mechanisms. The first integral Iturb depends on the
gradient of the wall-normal particle kinetic energy and is referred to as the turbophoresis
effect. Since 〈v2

py〉 increases as y increases, Iturb is always negative. According to (3.3),
the negative Iturb reduces C(y) as y increases, which means turbophoresis drives particles
towards the walls. The second integral Ibias quantifies the slip velocity experienced
by particles, and is referred to as the biased-sampling effect. In a steady state, inertial
particles tend to oversample fluids moving away from the wall, leading to a positive slip
velocity that pushes particles away from the walls. The last integral Ielec depends on the
electrostatic force acting on the charged particles. As will be shown below, the average
wall-normal electric field points towards the wall (negative), which consistently attracts
particles towards the wall, further contributing to the deposition of charged particles.

The wall-normal profiles of the integrals for both neutral and charged particles are
displayed in figure 10. By taking the integrals into (3.4) and determining the coefficient
C′ from (3.5), the predicted concentration profiles are plotted in figure 6 as dashed lines,
which show good agreement with the simulation results. Equation (3.3) is thus justified
and the relative importance of various mechanisms can be directly quantified by comparing
the values of the integrals. As shown in figure 10, in the neutral case, the magnitude of
Iturb is more than one order of magnitude larger than that of Ibias . Therefore, neutral
particles are primarily driven by turbophoresis and exhibit significant accumulation near
the wall, while the biased-sampling effect plays a secondary role in pushing particles away
and counteracts the turbophoresis effect.

When particles are charged, the electrostatic force influences particle distribution in
multiple ways. First, the wall-normal electrostatic force appears in the electric integral
term Ielec, which points towards the wall and directly enhances particle accumulation
(3.4c). Since the magnitude of Ielec depends on the charge-to-mass ratio (q/m) of
particles, the direct influence of Ielec is more important for particles with St+ = 32
(figure 10a) than for those with St+ = 133 (figure 10b). Furthermore, the turbophoresis
term Iturb and the biased-sampling term Ibias are also altered for charged particles,
indicating that the electrostatic force has more complex and indirect effects on particle
concentration. Notably, an increase in Iturb and a decrease in Ibias both contribute to
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Figure 11. Dimensionless r.m.s. of wall-normal particle velocity v+py,rms for (a) St+ = 32 and (b) St+ = 133.
Dashed lines are dimensionless r.m.s. of wall-normal fluid velocity u+f y,rms sampled at particle locations.
Colours from light to dark represent results for q = 0 C, 5× 10−15 C and 1× 10−14 C.

a higher near-wall concentration. In the following sections, we will discuss the indirect
electrostatic effects through Iturb and Ibias and the direct electrostatic effects through Ielec.

3.3. Turbophoresis and biased sampling of charged particles
To understand how the electrostatic force modulates turbophoresis, the root-mean-square
(r.m.s.) of the wall-normal particle velocity (vpy,rms = 〈v2

py〉1/2) normalised by uτ is
presented in figure 11. The comparison with neutral results shows that the changes in
vpy,rms due to the electrostatic force are qualitatively similar to the changes observed in
the mean wall-normal particle velocities, as seen in figure 7. As discussed above, charged
particles located outside the innermost cell exhibit higher mean wall-normal velocities
because of electrostatic forces (figure 7). This increased wall-normal velocity facilitates
the transport of particles from the more energetic outer layer to the less energetic near-
wall wall. Since inertial particles retain a memory of their path history, an increased r.m.s.
velocity outside the innermost cell is observed compared with the neutral results.

In contrast, a significant drop in v+py,rms is seen in the innermost cell for charged
particles, creating a sharp gradient of v+py,rms near the wall. This decrease can be attributed
to two main reasons. (i) Two-way coupling effect: the high particle concentration near
the wall reduces the local turbulent intensity, leading to a corresponding decrease in
particle kinetic energy. This is evidenced by the decrease in the fluid r.m.s. velocity
u+f y,rms sampled at particle locations and shown in figure 11 as dashed lines. (ii) Longer
residence time in the viscous layer: charged particles trapped in the viscous layer require
more energetic ejections to overcome the electrostatic attraction and be re-entrained into
the outer layer. This leads to a longer residence time in the viscous layer. Consequently,
charged particles interact with the near-wall low-speed fluid for a longer period and their
r.m.s. velocity is effectively damped. For particles with St+ = 32, the r.m.s. velocity
becomes one order of magnitude smaller than that of neutral particles, while for particles
with St+ = 133 that tend to retain their original r.m.s. velocity for a longer period, v+py,rms
is still reduced by half. This change can also be understood from an energy perspective:
due to electric potential energy, particles transfer turbulent kinetic energy from the outer
layer to the near-wall region, where it is eventually dissipated through fluid drag.

Such a non-trivial change in the r.m.s. velocity profile can significantly influence the
turbophoresis effect. As expressed by (3.4a), Iturb depends on the relative change of the
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Figure 12. Joint PDF of the streamwise and the wall-normal fluid velocity fluctuations, u′f x and u′f y , at the
particle locations for (a) St+ = 32 and (b) St+ = 133 within the range 5 � y+ � 30. Contours from inside out
represent a value of 0.01, 0.05 and 0.2, respectively. Colours from light to dark represent results for q = 0 C,
5× 10−15 C and 1× 10−14 C.

wall-normal kinetic energy

d ln 〈v2
py〉

dy
= 1
〈v2

py〉
d〈v2

py〉
dy

. (3.6)

Thus, the reduced r.m.s. velocity close to the wall and the enhanced r.m.s. velocity
slightly away from the wall leads to a sharp gradient of r.m.s. velocity near the wall and
a significant increase in Iturb, as shown in figure 10. In contrast, the one-dimensional
Eulerian model did not account for the complex changes in particle r.m.s. velocity profile
due to the electrostatic force and the particle–fluid coupling effects. It instead relies on the
local fluid properties to relate the unknown particle r.m.s. velocity profile to the prescribed
fluid r.m.s. velocity profile (Guha 2008). As a result, the one-dimensional Eulerian model
is unable to predict the modulation of turbophoresis. It is important to emphasise that this
substantial rise in Iturb is the primary factor behind the increased concentration of charged
particles at the wall, which in turn results in a higher deposition velocity.

We now turn to how the electrostatic force modulates the biased-sampling effect. The
biased-sampling effect is closely related to the interaction between inertial particles and
the near-wall coherent structures. Therefore, we employ the quadrant analysis to quantify
how particles sample different fluid structures in the buffer layer. In this analysis, the
fluctuations of the streamwise and the wall-normal fluid velocities sampled at the particle
locations are denoted by u′f x and u′f y . Four quadrants can be defined based on the signs
of u′f x and u′f y . In particular, ejection events correspond to outward motion of low-speed
fluid (u′f x < 0, u′f y > 0), while sweep events (Q4) correspond to inward motion of high-
speed fluid (u′f x > 0, u′f y < 0).

Figure 12 shows the joint probability density functions (PDF) of the particle-sampled
fluid velocity fluctuations at 5 � y+ � 30. For both St+ = 32 and St+ = 133, neutral
particles show a tendency to sample Q2 and Q4 more frequently than Q1 and Q3. This
confirms that ejections (Q2) and sweeps (Q4) play a dominant role in transporting particles
near the wall. In figure 12(a), contours of the joint PDF of charged particles (St+ = 32,
q = 5× 10−15 C) are less smooth because of the lower particle concentration within the
range 5 � y+ � 30 (figure 6a). Despite the reduced particle concentration, the general
shape of the contours in the charged case remains similar to those of neutral particles.
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St+ = 32 St+ = 133
Q2 Q4 Q2 Q4

q = 0 C 35.73 % 32.59 % 29.57 % 38.49 %
q = 5× 10−15 C 33.95 % 34.47 % 29.36 % 38.79 %
q = 1× 10−14 C – – 29.23 % 38.90 %

Table 4. Proportion of particles sampling Q2 and Q4 within the range 5 � y+ � 30.

However, two differences are also observed: the portion of particles in Q2 decreases, while
the portion of particles in Q4 increases. This trend is better highlighted by comparing
the proportions of particles sampling Q2 and Q4, as summarised in table 4. As a result,
charged particles sample less upward fluid velocities than neutral particles, which explains
the consistent decrease of Ibias with the increase of q for St+ = 32 in figure 10(a). The
same trend is also observed for St+ = 133 particles. However, since St+ = 133 particles
are more inertial, the change in figure 12(b) is less significant, leading to a smaller change
in Ibias (figure 10b).

It is noteworthy that the observed trend of sampling less upward flows is similar to
the phenomenon of preferential sweeping in the gravitational settling of heavy particles
in turbulence. It is known that heavy particles settling in HIT may tend to sample
the downward-velocity region of vortices, aligning with the direction of gravity. This
behaviour leads to an enhanced average settling velocity of inertial particles (Wang &
Maxey 1993; Bec et al. 2014). Similarly, in wall-bounded turbulence, an analogous
enhancement in settling velocity has been reported. Particles subject to a constant force
directed towards the wall preferentially sample flow regions that are also moving towards
the wall as they pass through the buffer layer, which effectively increases particles’ settling
velocity (Chen et al. 2022). Given that fluid sweeps are typically more intense and spatially
concentrated than ejections, the bias introduced by the electrostatic force is even stronger
compared with that in HIT. In the current study, the electrostatic force acting on charged
particles plays a similar role to gravity in these previous studies. The particles are driven
towards the wall by the electrostatic attraction, leading them to preferentially sample fluid
motions that also move towards the wall. This leads to a reduction in upward-flow sampling
(ejections) and an increase in downward-flow sampling (sweeps), thereby making a
secondary contribution to the accumulation of particles near the wall. Furthermore, the
electrostatic force is not uniform across the entire channel but becomes stronger closer
to the wall, making its influence on biased sampling an increasingly important factor to
consider.

In addition, in HIT, the gravitational settling velocity of heavy particles can be either
enhanced or reduced, depending on the ratio of gravitational settling velocity to turbulence
intensity. Accordingly, we expect to observe different regimes based on the relative
importance of the wall-pointing electrostatic force compared with turbulent fluctuations.
In this study, due to the low particle charge and concentration, the particle-induced electric
field remains weak. As a result, the wall-pointing electrical migration velocity is small
relative to turbulent fluctuations, which lies within the regime of preferential sweeping
that leads to enhanced deposition. However, if the electrical migration velocity becomes
more significant, such as in the presence of a strong external field or with highly charged
particles, this enhancement may change. For instance, when the electrical migration
velocity greatly exceeds turbulent fluctuations, particle behaviour may decouple from
near-wall coherent structures, and the deposition enhancement is suppressed. However,
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Figure 13. Averaged wall-normal electric field 〈Ey〉 for particles with (a) St+ = 32 and (b) St+ = 133. Scatters
with light to dark grey correspond to a particle charge of q = 1 × 10−15 C, and 2 × 10−15 C. Contributions
from the PW and PP electrostatic interactions are shown as blue dashed lines and red dash-dotted lines,
respectively.

when the electrical migration velocity becomes comparable to turbulent fluctuations,
it remains unclear whether particles will experience a slowdown due to the loitering
effect, as reported in previous works in HIT. This presents an interesting topic for future
investigations.

3.4. Wall-normal electric field
In this section, we discuss the profile of the wall-normal electric field Ey , which directly
affects particle concentration through Ielec. Moreover, Ey also serves as a direct indicator
of the significance of the electrostatic force on particle behaviour.

As suggested in Guha (2008), a particle i with charge qi near a grounded conducting
wall experiences the electrostatic force due to the induced charge on the wall, which equals
the Coulomb force from its image located at the symmetric location about the wall with
the opposite charge−qi . If the PW distance is yw, the wall-normal electric field due to the
PW interaction can be computed by

E (I m)
y =− qi

4πε0(2yw,i )2 =−
qi

16πε0 y2
w,i

. (3.7)

The average wall-normal electric field 〈Ey〉 for particles with St+ = 32 and q = 5×
10−15 C is then compared with E (I m)

y in figure 13(a). One notices that E (I m)
y collapses

with the simulation results only within the intermediate range of 2 � y+ � 10, while
significant deviations occur in both the near-wall and far-field regions. These deviations
indicate that the PW interaction alone cannot account for all the electrostatic forces
acting on particles, highlighting the need to include the electric field generated by the
PP electrostatic interaction. Thus, we derive the electric field due to the PP interaction,
E(pp), starting from Gauss law

∇ ·E(pp) = ρc

ε0
= qC

ε0
. (3.8)

Here, the volumetric charging density ρc equals the product of the particle charge q and
the particle concentration C . Taking the ensemble average of (3.8) leads to

d〈E (pp)
y 〉

dy
= q〈C〉

ε0
. (3.9)
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Note that in (3.9) the electric field components in periodic directions become zero after
ensemble averaging, i.e. 〈E (pp)

x 〉 = 〈E (pp)
z 〉 = 0. Integrating (3.9) from a certain location y

to the centreline δ then yields

〈E (pp)
y 〉(δ)− 〈E (pp)

y 〉(y)= q

ε0

∫ η=δ

η=y
〈C〉(η)dη. (3.10)

Considering the symmetry of the system, the wall-normal electric field at the centreline is
zero, i.e. 〈E (pp)

y 〉(δ)= 0. Therefore, the PP electric field is

〈E (pp)
y 〉(y)=− q

ε0

∫ η=δ

η=y
〈C〉(η)dη. (3.11)

In (3.11), 〈E (pp)
y 〉(y) is negative, indicating the PP electrostatic force always points

towards the wall. Specifically, for a target particle located at y, the net PP electrostatic force
equals the Coulomb repulsion from all the particles located between y to the centreline δ,
which pushes the target particle towards the wall. The PP electric field 〈E (pp)

y 〉(y) is then
plotted in figure 13(a) as a red dash-dotted line, which agrees with the simulation results
in the far-field region (y+ � 20).

We therefore propose three distinct regions of the wall-normal electric field, as
illustrated in figure 13(a). In the far-field region at large y+, the contribution from the
PW interaction is negligible compared with the PP interaction. Particles in this region are
primarily driven towards the wall by PP Coulomb repulsion. As y+ decreases, 〈E (I m)

y 〉(y)

levels off as the integral in (3.11) saturates, while the PW interaction continues to rise and
eventually becomes dominant. Consequently, the PW interaction prevails as the primary
electrostatic force in the intermediate region. Finally, when the particle approaches the
wall, the repulsion from the concentrated particles counteracts the PW attraction, resulting
in 〈Ey〉(y) being lower than that predicted by (3.7).

Interestingly, not all three regions exist in all cases, as shown in figure 13(b) for charged
particles with St+ = 133. The transition between the intermediate and the far-field regions
depends on the relative importance of the PW and the PP interactions

q

16πε0 y2
w︸ ︷︷ ︸

PW interaction

, and
1
ε0

∫ η=δ

η=y
[q × 〈C〉(η)]dη︸ ︷︷ ︸

PP interaction

. (3.12)

As shown in figure 6(b), the particle concentration C(y) for St+ = 133 is high in the
outer flow, leading to a more pronounced PP interaction. Consequently, the PP interaction
dominates nearly up to the wall. In such cases, relying solely on the image charge force
would significantly underestimate the magnitude of the electrostatic force.

In the end, discussing the relative importance of the PW and the PP electrostatic
interactions across a broader range of scenarios is essential for developing a more complete
understanding of the electrostatic effects arising from particle charging. In this study, the
particles are monodispersed and identically charged, meaning that the net charge between
y and δ in (3.11) is always non-zero, resulting in a net repulsive force. The significance
of this repulsion depends on the net charge distribution within the channel. With a much
lower particle concentration, the PP interaction is expected to be less influential, allowing
the PW interaction to dominate at larger y+. In addition, for monodispersed particles
carrying both positive and negative charges, as is common in triboelectrification, the PP
interaction becomes negligible because the integral of the net charge in (3.11) equals
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zero. However, in more complex systems with bidispersed oppositely charged particles,
the concentration profiles for different particle groups will differ. Even if the overall
system is neutral, there will be a separation between the centres of positive and negative
centres. Consequently, the PP interaction will migrate light particles accumulated near
the wall outward, while attracting heavy particles dispersed in the outer layer towards the
wall, as reported by Zhang et al. (2023a). Finally, beyond the channel flow investigated
here, the transport of charged particles in turbulent boundary layers, such as sandstorms
and pollutants dispersion in the atmosphere, is also widespread. In these systems, where
there is only one wall, the PP interaction can still be evaluated by adjusting the upper
limit

〈E (pp)
y 〉(y)= 〈E (pp)

y 〉(yRe f )− 1
ε0

∫ η=yRef

η=y
q〈C〉(η)dη. (3.13)

Here, 〈E (pp)
y 〉(yRe f ) is the electric field at a reference point yRe f . Thus, the PP interaction

may still play a role as long as the net charge integral is significant.

4. Conclusions
This work utilises four-way coupled simulations to address an important question: How
does particle charging affect the deposition velocity of particles onto an electrically
grounded conductor through a turbulence boundary layer, particularly in the context of
charged particle deposition in gas turbines? In this study, we developed a canonical
case involving charged particles transported in a fully developed turbulent channel flow.
Contrary to previous model predictions, which suggested no change in deposition velocity
when particles are inertial and dominated by the turbophoresis effect, we found that
electrostatic forces actually increase the deposition velocity.

Since the increase in the deposition velocity of charged particles primarily results
from the enhanced near-wall accumulation, the wall-normal profile of charged particles is
further examined. By employing a statistical approach in the particle phase space (y, vpy),
three mechanisms affecting the concentration profiles can be quantified in the form of
integrals: turbophoresis (Iturb), biased sampling (Ibias) and electrostatic forces (Ielec). It
was found that the electrostatic force creates a sharper gradient in the wall-normal particle
r.m.s. velocity, which significantly increases Iturb. As a result, the enhanced turbophoresis
effect is identified as the main driver of the more extreme particle accumulation near
the wall. In addition, charged particles are found to sample upward-flow regions less
frequently than neutral particles, which reduces the biased-sampling effect Ibias . This
change occurs because charged particles subject to the wall-pointing electrostatic force
tend to sample the downward-moving fluids as they pass through coherent structures in the
buffer layer. This behaviour is analogous to the preferential sweeping effect observed in
the settling of heavy particles in turbulence. Finally, the profile of the wall-normal electric
field is discussed. It is found that both the PW interaction and the PP interaction contribute
to the electrostatic force acting on charged particles. Depending on the conditions, the
relative importance of the PW and PP interactions results in distinct electric field profiles.
Consequently, when the net charge carried by suspended particles is significant, relying
solely on the classic image charge model may lead to a significant underestimation of the
electrostatic effects.

According to the original framework of Guha (2008), the deposition velocity
incorporates contributions from both the wall-normal particle concentration and velocity.
To predict the deposition velocity for charged particles, it is assumed (i) that the particle
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velocity is modulated solely by the image force, and (ii) that the particle concentration
remains unchanged. Upon carefully analysing our simulation results, these assumptions
are found to be invalid. First, the wall-normal electrostatic force comprises contributions
from both PP and PW interactions, whereas the classic model only accounts for the latter.
In certain cases, such as figure 13(b), this omission leads to a significant underestimation
of the magnitude of the electrostatic force. Second, as shown in figure 6, electrostatic
forces drastically modulate particle concentration, which is the primary contributor to the
increased deposition in this study. This critical effect is entirely absent in the classic model.
Given that the one-dimensional Eulerian model has been widely used across various
communities, it is crucial to highlight these limitations to ensure proper interpretation
and application.

Regarding the physical process itself, several findings about its highly coupled nature
are also presented. First, and most counterintuitively, the influence of electrostatic force is
affected by particle–turbulence interaction. Since the PP electrostatic force depends on the
concentration profile (3.11), the spatial distribution of particles determines the dominant
electrostatic force, as illustrated by the distinct electric field profiles shown in figure 13.
Consequently, a careful comparison of the relative importance of PP and PW electrostatic
interactions is necessary. In contrast, many earlier studies often assumed the dominance
of the image force without question. Second, turbophoresis, the primary mechanism that
shapes the particle profile (figure 10), is found to be highly sensitive to the wall-normal
r.m.s. velocity of the particles (v+p,rms). Even a subtle change in v+p,rms (figure 11) can
lead to a drastic change in the particle concentration profile. Therefore, in future studies,
any factor that might affect v+p,rms should be treated carefully, such as electrostatic forces,
two-way coupling, and PP collisions. Moreover, although the current system is dilute, the
effects of two-way coupling and interparticle collisions should still be accounted for, as
the non-uniform particle concentration may locally transition into the two-way or four-way
coupled regime.

Finally, it would also be valuable to discuss the potential influences of various
parameters, such as the turbulence Reynolds number and particle inertia, on the findings
of this study. The motivation for this work is to investigate the dust ingestion problem in jet
engines. Due to the small characteristic length scales of the internal flow and the higher
fluid viscosity at elevated operating temperatures Lawson & Thole (2011), the friction
Reynolds number is not expected to be extremely high. For example, the diameter of the
cooling hole is given as 1.69× 10−3 m in Lawson & Thole (2011) and 4.6× 10−3 m in
Lawson & Thole (2010). By choosing the radius of the hole as the half-channel width δ,
and considering the friction velocity uτ = 3.59 m s−1, the fluid density ρ f = 3.32 kg m−3

and the fluid viscosity μ f = 5.55× 10−5 Pa · s in § 2.1, the friction Reynolds number lies
within the range of 180 to 490. Thus, the chosen Reτ is within the parameter space for
internal deposition. For external deposition, the Reynolds number may be even higher
because of the high speed and large length scales. However, the key physics that drives
particle deposition, i.e. particle inertia and electrostatics, will remain valid. Therefore, we
choose Reτ = 180 to keep the flow configurations similar to those in our experimental
investigations on the transport and deposition of charged inertial particles in a vertical
turbulent channel, where Reτ ≈ 200. As discussed by Johnson et al. (2020), the transport
mechanisms (turbophoresis and biased sampling) of neutral particles appear consistent
across multiple Reynolds numbers. Consequently, the modulation of particle deposition
velocity by electrostatic forces is also expected to remain consistent, allowing the findings
of this study to be extended to high Reynolds numbers that are more representative of
realistic flow conditions.
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Although inertial particles are discussed in this study, how electrostatic force affects
the deposition of tracer-like particles is also relevant in many applications. For inertialess
particles, the contributions of turbophoresis and biased sampling are no longer present,
meaning that the enhancement of particle deposition arises only from the direct effect of
Ielec. In this case, the wall-normal electrostatic force becomes the primary mechanism that
enhances deposition, which depends on the particle charging conditions. In a system where
tracer particles carry both positive and negative charges, the PP electrostatic force (E (pp)

y )
is zero, and the dominant force is the image force (E (I m)

y ) due to the PW electrostatic force.
According to Yao & Capecelatro (2021), under these conditions, tracers follow local fluid
motions faithfully when away from the wall, but detach from the local flow and accelerate
towards the wall as they approach the near-wall region, where the image force becomes
significant. As a result, the influence of PW interaction is limited to the near-wall region.
If tracers are identically charged, in addition to the image forces, the PP electrostatic
repulsion (E (pp)

y ) contributes significantly to the far field (figure 13). Consequently, tracer
trajectories may detach from local streamlines even when they are still far from the wall.
Meanwhile, as the electrostatic force grows increasingly significant near the wall, the
particle slip velocity will show a continuous increase as particles approach the wall. In
addition to the driving mechanism, the resistance to tracer deposition is also of interest. For
inertial particles, biased sampling serves as the primary mechanism that pushes particles
away from the wall. However, this mechanism is absent for tracers. Consequently, the
resistance to tracer deposition is also expected to arise from the electrostatic force. For
identically charged tracers, as particles accumulate near the wall, the mutual repulsion
between them also grows. If the wall is not grounded or is made of dielectric material, the
local electric potential continues to rise, which effectively repels new incoming particles.
As a result, a balance is established between the wall-approaching attraction and the
near-wall repulsion, leading to a steady state. However, if (i) the particles carry opposite
charges, eliminating mutual repulsion, or (ii) the wall is conducting and grounded, causing
the mutual repulsion to be largely suppressed by the image force effect, the electric
potential near the wall will remain close to zero. Consequently, there is no resisting force to
prevent particle deposition. In this case, a steady state cannot be achieved, and all particles
will eventually migrate towards the wall and become captured.
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1-2620. This work was also partially supported by an Early Stage Innovation grant from NASA’s Space
Technology Research Grants Program under Grant NO. 80NSSC21K0222.
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Appendix A. Assessment of grid resolution
In the main text, a Cartesian grid with a resolution of 1283 is used. The grid is uniform
in both the x and z directions, and stretched in the y direction with a stretching factor
of S = 1.9. To assess grid sensitivity, we simulated test cases on a refined grid with a
resolution of 2563 and the same stretching factor. The grid information is summarised in
table 5.

Two different Stokes numbers (St+ = 32/133) are used in the tests while the particle
charge is set to zero. The fluid velocity profiles for the two grid resolutions are shown
in figure 14, while particle concentration and velocity profiles are compared in figure 15.
Most fluid and particle statistics remain unchanged when the mesh is refined. The wall-
normal particle r.m.s. velocity (figure 15c) shows a slight increase near the channel centre
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Grid Resolution Lx × L y × Lz S 	x+ 	y+ 	z+

Original 1283 4π × 2× 2π 1.9 17.67 0.49− 5.58 8.84
Refined 2563 4π × 2× 2π 1.9 8.84 0.24− 2.78 4.42

Table 5. Summary of grid assessment.
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Figure 14. Mean streamwise fluid velocity in the case with (a) St+ = 32 and (c) St+ = 133. Root mean square
of fluid fluctuation velocity in x , y, z directions for (b) St+ = 32 and (d) St+ = 133. Crosses (x) represent
results using the original grid mesh (1283), and circles (◦) denote results using a refined mesh (2563).

on the refined mesh. However, this does not lead to any significant modulation in particle
concentration, as observed in figure 15(a). Therefore, the grid resolution of 1283 used in
the main text is deemed sufficient.

Appendix B. Volume-filtered Eulerian–Lagrangian framework
This section presents a brief derivation of the governing equations of the volume-filtered
Eulerian–Lagrangian (VFEL) framework employed in this work. During the derivation,
certain simplifications are made to obtain the final form presented in the main text.
Justifications for these simplifications are also provided below. Further details about the
VFEL framework can be found in Capecelatro & Desjardins (2013) and Anderson &
Jackson (1967).
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Figure 15. Comparison of (a) normalised wall-normal particle concentration C/C0, (b) mean streamwise
particle velocity and (c) r.m.s. of wall-normal particle fluctuation velocity. Crosses (x) represent results using
the original grid mesh (1283), and circles (◦) denote results using a refined mesh (2563).

B.1 Governing equations of fluid motion
In the standard point-wise Eulerian–Lagrangian approach, the governing equations of the
fluid phase without body forces are

∂ρ f

∂t
+∇ · (ρ f u f )= 0, (B1a)

∂(ρ f u f )

∂t
+∇ · (ρ f u f ⊗ u f )=∇ · τ . (B1b)

Here, ρ f and u f are the density and velocity of the fluid. The fluid stress is given by

τ =−pI+μ f

[
(∇u f +∇u f

T )− 2
3
(∇ · u f )I

]
, (B2)

where p and μ f are the fluid pressure and dynamic viscosity. A Gaussian filter G F is then
defined as

G F (r)= 1√
2πσ

exp
(
− r2

2σ 2

)
. (B3)

The filter length δF , defined as the width of G F (r) at the half-height, can be related to σ

as δF = 2
√

2 ln 2σ . The fluid volume fraction can then be defined as

α f (x, t)=
∫
V f

G F (|x− y|)dy, (B4)

where V f means the integral is taken over all points y occupied by the fluid phase.
Applying the Gaussian filter to any point property a(x, t) of the fluid then yields

α f a(x, t)=
∫
V f

a(x, t)G F (|x− y|)dy, (B5)

where a(x, t) is the volume-filtered property. The associated residual can be written as
a′(x, t)= a(x, t)− a(x, t).

We now derive the volume-filtered motion equations. By assuming that the shortest
distance from x to the boundaries of the system is much larger than the filter size,
Anderson & Jackson (1967) derived the volume filtering of the temporal derivative,
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divergence and gradient of a point property as∫
V f

∂a(y, t)

∂t
G F (|x− y|)dy= ∂

∂t
(α f a(x, t))+

Np∑
i=1

∫
Si

n · ui a(y, t)G F (|x− y|)dy,

(B6a)∫
V f

∇ · a(y, t)G F (|x− y|)dy=∇ · (α f a(x, t))−
Np∑
i=1

∫
Si

n · a(y, t)G F (|x− y|)dy,

(B6b)∫
V f

∇a(y, t)G F (|x− y|)dy=∇(α f a(x, t))−
Np∑
i=1

∫
Si

n⊗ a(y, t)G F (|x− y|)dy.

(B6c)

Here, Si represents the spherical surface of particle i , n is the outward unit vector on the
particle surface and ui denotes the velocity of the solid matter at point y on Si . Since there
is no mass transfer between the solid and fluid phases, ui is equal to the fluid velocity at
the particle surface.

For a constant-density fluid, multiplying (B1a) by G F and integrating over V f , followed
by the application of (B6a) and (B6b), yields the volume-filtered continuity equation

∂α f

∂t
+∇ · (α f u f )= 0. (B7)

Similarly, volume filtering the left-hand side of (B1b) and again applying (B6a) and (B6b)
results in

∂

∂t
(α f ρ f u f )+∇ · (α f ρ f u f ⊗ u f )+∇ · (α f ρ f u′f ⊗ u′f ), (B8)

where the residual Reynolds stress is

Fu =∇ · (α f ρ f u′f ⊗ u′f ). (B9)

The volume filtering of the right-hand side of (B1b) can be obtained by substituting
a= τ in (B6b), which reads∫

V f

∇ · τ (y, t)G F (|x− y|)dy=∇ · (α f τ )−
Np∑
i=1

∫
Si

n · τ (y, t)G F (|x− y|)dy, (B10)

where the filtered stress is written as

τ = τ ∗ + τμ =−pI+μ f

[
(∇u f +∇u f

T )− 2
3
(∇ · u f )I

]
+ τμ. (B11)

Here, τ ∗ is the nominal stress evaluated using the filtered velocity field u f . The residual
stress τμ is defined as the differences between τ and τ∗

τμ =μ f

[
(∇u f +∇uT

f )− (∇u f +∇u f
T )− 2

3
(∇ · u f −∇ · u f )I

]
. (B12)

Note that, if the fluid dynamic viscosity is modulated by the particle phase, as is typical in
dense particulate flows, the modulation of μ f would introduce an additional contribution
to τμ. However, in this study, the particle phase is dilute, so μ f is treated as constant.
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The second term on the right-hand side of (B10) can be decomposed into the
contributions from the volume-filtered stress (τ ) and the residual stress (τ ′). Because the
filter size is large compared with the particle diameter (δF = 8dp), the filtered stress τ
varies little at the particle scale, so it can be taken out of the integral. As a result, the
contribution from the volume-filtered stress can be simplified as

Np∑
i=1

∫
Si

n · τ (y, t)G F (|x− y|)dy≈ τ ·∇α f . (B13)

The right-hand side of (B10) can then be reorganised as

∇ · (α f τ )− τ ·∇α f −
Np∑
i=1

∫
Si

n · τ ′(y, t)G F (|x− y|)dy

=∇ · τ −
⎛⎝αp∇ · τ +

Np∑
i=1

∫
Si

n · τ ′(y, t)G F (|x− y|)dy

⎞⎠ , (B14)

where αp = 1− α f is the filtered particle volume fraction. We now show that, the last two
terms in (B14) are related to the interphase force coupling. For an individual particle i , the
fluid force can be simplified as

FF
i =

∫
Si

τ · ndy=
∫
Si

(τ + τ ′) · ndy=
∫
Vi

∇ · τdy+
∫
Si

τ ′ · ndy≈∇ · τVi +
∫
Si

τ ′ · ndy.

(B15)
As the particle size is much smaller than the filter size, τ varies little at the particle scale
and is again taken out of the integral in the last step in (B15). Here, Vi is the volume of
particle i . The momentum transfer term can be obtained by summing the filtered fluid
force over all particles

FP =
Np∑
i=1

G F (|x− y|)FF
i = αp∇ · τ +

Np∑
i=1

∫
Si

n · τ ′(y, t)G F (|x− y|)dy. (B16)

Finally, combining (B8), (B10), (B11), (B14) and (B16) yields the volume-filtered fluid
momentum equation

∂

∂t
(α f ρ f u f )+∇ · (α f ρ f u f ⊗ u f )=∇ · τ ∗ +∇ · τμ −Fu −FP . (B17)

B.2 Model closurea
The closures of two terms, i.e. Fu and τμ, are required. We first evaluate the importance of
the residual Reynolds stress Fu in this study. The Reynolds stress is usually closed using
a turbulent viscosity model

Fu = ρ f νt (∇u f + uT
f ). (B18)

Here, the turbulent eddy viscosity is written as

νt = 2(CS	)2|S|, (B19)

where CS is the Smagorinsky coefficient, Δ is the filter width. The strain rate of the filtered
fluid velocity is Si j = (∂ui/∂x j + ∂u j/∂xi )/2, and S = (2Si j Si j )

1/2
. A dynamic subgrid
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Figure 16. Ratio of plane-averaged eddy viscosity 〈νt 〉 to the molecular viscosity ν f in the case with
St+ = 32 and q = 0 C.

model (Germano et al. 1991; Lilly 1992) is employed to estimate the value of νt , and the
Smagorinsky coefficient can be determined as

C2
S =

Li j Mi j

2Mpq Mpq
, (B20)

where

Li j =−ûi u j + ûi û j , (B21a)

Mi j = (2δF )2 |̂S |̂Si j − δ2
F
̂|S|Si j . (B21b)

Here, the properties filtered by the Gaussian filter with a filter length δF are denoted by
an overline (·). A second coarser filter with a filter length of 2δF is then defined and the
associated filtered properties are shown with a hat (̂·).

Figure 16 shows the ratio of the mean eddy viscosity, 〈νt 〉, to the molecular viscosity,
ν f , along the wall-normal direction. The mean eddy viscosity is computed by averaging
νt (x, t) over the wall-parallel (x-z) plane and time. Profiles of 〈νt 〉/ν f for other cases
are not shown, as they show no noticeable differences compared with figure 16. The
ratio remains significantly smaller than unity throughout the channel, with a peak value
of 〈νt 〉max/ν f = 8.5× 10−2. This suggests that the unresolved Reynolds stress, Fu , is
negligible compared with the resolved stress, τ∗, and is thus omitted in this study.

The insignificant Reynolds stress can be attributed to the fact that the filter size,
δF , is small compared with the size of near-wall coherent structures. In this study,
there is a significant scale separation between the particle size (dp = 0.36δν) and the
turbulent coherent structures. For example, the core size of quasi-streamwise vortices in
the x − z plane is typically around O(10)δν and even longer in the streamwise direction
(Marchioli & Soldati 2002). Consequently, even though the filter size is relatively large
compared with the particle diameter (δF = 8dp), the near-wall coherent structures remain
resolved.

We now address the closure of τμ. As expressed in (B12), τμ arises from the filtering
of the velocity gradient. In previous studies, τμ was often modelled by introducing an
effective viscosity μ∗, which depends on the particle volume fraction, as seen in both
dilute and dense particulate flows (Zhang & Prosperetti 1997; Patankar & Joseph 2001).
To leading order, the relative change in viscosity scales with αp. In this work, given the
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low particle concentration, the change of μ∗ is expected to be small. As a result, τμ is also
omitted. Finally, by omitting both Fu and τμ, (B17) becomes

∂

∂t
(α f u f )+∇ · (α f u f ⊗ u f )= 1

ρ f
(∇ · τ ∗ −FP). (B22)

Equations (B7) and (B22) are in fact equivalent to (2.2) without the forcing term. For
simplicity, the symbols representing volume filtering are omitted in the main text.

Appendix C. Importance of the lift force and the lubrication force
In this study, both the lift force and the lubrication force are omitted due to their negligible
impacts under the given simulation conditions. The reasons and justifications are provided
below.

C.1 Lift force
The extended expression of Saffman lift force is used to evaluate the importance of lift
force in this study. The magnitude of the lift force is

Fl = 9J

π
μ f (dp/2)2uslip(G/ν f )

1/2. (C1)

Here, J is a coefficient to be determined, μ f and ν f are the dynamic and kinematic
viscosity of the fluid, dp is the particle diameter, uslip is the particle slip velocity in the
streamwise direction and G is the fluid shear rate. The magnitude of drag force can be
written as Fd = 3πμ f dpvsli p, where vsli p is the particle slip velocity in the wall-normal
direction. The ratio between the force magnitudes can then be written as

Fl

Fd
= 3J

4π2 Re1/2
G

uslip

vsli p
, (C2)

where ReG =Gd2
p/ν f is the particle shear Reynolds number. In this study, the fluid

shear rate is estimated using the inner scales as G = 1/τν = u2
τ /ν f , which leads to

ReG = 0.13. The particle Reynolds number is calculated as Rep = vsli pdp/ν f � 1. Based
on the values of both Rep and ReG , the coefficient J is determined to be J � 2.172
using the fitting equation proposed by Mei (1992). Moreover, the velocity ratio uslip/vsli p
ranges approximately from 2 to 5 in the simulations. Finally, the force ratio is computed
as Fl/Fd � 0.118− 0.295, which suggests that the influence of the lift force is minor
compared with the drag force. We therefore neglect the lift force in this study.

C.2 Short-range lubrication force
In this study, the lubrication force is negligible because of the large particle-to-air density
ratio (ρp/ρ f ∼ O(103)). In other multiphase flow systems, such as bubble flows (ρp/ρ f ∼
O(10−3)) or colloidal systems (ρp/ρ f ∼ O(1)), the lubrication force will be substantial
and must be considered.

To confirm this argument, the influence of lubrication force can be estimated as follows.
For a pair of particles (i and j) approaching each other, the lubrication force has been
derived by Marshall (2011), which is given as

Flub =
3πμ f r2

p

2h

(
−dh

dt

)
, (C3)
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where h = |xi − x j | − (dp,i + dp, j )/2 is the gap between the surfaces of the two particles,
and (−dh/dt) is the radial approaching velocity. As two particles approach each other,
they need to squeeze out the fluid film in between in order to collide, and the associated
energy barrier is

Elub =
∫ hmax

hmin

Flubdh. (C4)

Here, hmax is the initial separation distance below which the short-range lubrication
effect becomes important, and hmin represents the minimum separation distance between
colliding particles. According to Barnocky & Davis (1989), the fluid density and viscosity
within the contact region can increase substantially due to the high pressure in the gap,
exhibiting solid-like behaviour and thereby imposing a lower limit on hmin . In addition,
surface roughness further constrains hmin due to the presence of finite-size asperities on
the particle surfaces. Here, we set hmax = 0.01rp and hmin = 5× 10−5rp with rp being
the particle radius, which yields collision outcomes that show reasonable agreement with
experimental data (Yang & Hunt 2006; Marshall 2011). By taking the initial approaching
velocity vini t � |dh/dt | out of the integral, the upper limit of the energy barrier
becomes

Elub = 3
2
πμ f r2

pvini t ln
(

hmax

hmin

)
. (C5)

Meanwhile, the driving force of an interparticle collision is the relative kinetic energy
Ekin = Mv2

ini t/2, where M =m/2 is the effective mass of a two-particle system. Finally,
the significance of lubrication is quantified by the energy ratio

Elub

Ekin
= 9μ f

ρpdpvini t
ln

(
hmax

hmin

)
. (C6)

In our simulations, vini t is calculated as the mean radial relative velocity between a
pair of approaching particles with a gap h ∈ [0.009rp, 0.011rp]. The resulting values
are vini t/uτ = 0.268 for St+ = 32 and vini t/uτ = 3.382 for St+ = 133. Plugging in the
simulation parameters then yields Elub/Ekin = 0.110 for St+ = 32 and Elub/Ekin = 0.002
for St+ = 133. The small energy ratios suggest that the lubrication force has a weak effect
on interparticle motions during collisions. Therefore, the lubrication force is omitted in
the simulations.

Appendix D. Influence of interpolation scheme
The order of the interpolation scheme can indeed influence the accuracy of high-order
derivatives of velocity. However, in this study, we only consider the drag force, which
does not require higher-order derivatives of velocity at the particle position. Since the
calculation of drag force depends solely on the interpolation of fluid velocity, the second-
order trilinear interpolation is sufficient. To check the effect of interpolation order, the
same test case (St+ = 32, q = 0 C) was run using three different interpolation schemes:
second-order trilinear interpolation (Trilinear), fourth-order Lagrangian interpolation
(Lag4) and eighth-order Lagrangian interpolation (Lag8). Comparisons of the steady-
state statistics are presented in figure 17. As no significant differences were observed
among the results obtained with different interpolation schemes, the accuracy of trilinear
interpolation is considered adequate for this study.
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Figure 17. Comparison of (a) normalised wall-normal particle concentration C/C0, (b) mean streamwise
particle velocity and (c) r.m.s. of wall-normal particle fluctuation velocity using different interpolation schemes
for the case with St+ = 32 and q = 0 C.

Appendix E. Undisturbed fluid velocity in drag force calculation
In this section, we discuss the error caused by self-induced disturbance in drag force in
two-way coupled simulations. By definition, the Stokes drag on a target particle at x p is
evaluated based on the slip velocity (ũ f (x p)− vp), where ũ f (x p) is the undisturbed fluid
velocity at the particle location. However, in two-way coupled simulations, the feedback
force from the target particle itself perturbs surrounding fluid flow. As a result, the local
fluid velocity, u f (x p)(
= ũ f (x p)), is disturbed, leading to an underestimated slip velocity
and, consequently, a reduced drag force.

The error in drag force depends on the ratio of the particle size to the length scale of
the projection scheme used to map particle disturbances onto the grid mesh. In standard
Eulerian–Lagrangian simulations, where particle feedback forces are typically distributed
to nearby grid points, the error scales as O(dp/	x), where 	x is the grid spacing
(Horwitz & Mani 2016). In this study, however, we distribute the particle volume fraction
and the feedback force using a Gaussian filter G F (r) with a filter length δF = 8dp ((2.8a)
and (2.8b)). As the projection length scale becomes no smaller than δF , the upper limit of
the error is expected to depend on the new size ratio dp/δ f .

Regarding the VFEL framework used in the present study, Ireland & Desjardins (2017)
discussed the corrections of both fluid volume fraction (ζα f = α̃ f − α f ) and fluid velocity
(ζu f = ũ f − u f ). By considering the case of the steady Stokes flow around a particle, the
corrections can be given by

ζα f = α̃ f − α f = erf
(

1√
2σ̂c

)
−
√

2/π

σ̂c
exp

(
− 1

2σ̂ 2
c

)
, (E1a)

ζu f

U
=

(
1√
2σ̂c

)
exp

(
− 1

2σ̂ 2
c

)
1− erf

(
1√
2σ̂c

)
+
√

2/π

σ̂c
exp

(
− 1

2σ̂ 2
c

) . (E1b)

Here, σ̂c = (δ f /dp)/
√

2 ln 2, and U is the slip velocity in the Stokes flow problem. We
would like to note that, in cases with high particle volume fraction, the drag force model
typically accounts for the local fluid volume fraction (α f = 1− αp). Consequently, the
self-induced disturbance of fluid volume fraction (ζα f ) could also influence the drag force
in two-way coupled simulations. However, in the present work, the mean particle volume
fraction is low (α p ∼ 10−6), so the drag force model does not include corrections for the
influence of α f . Furthermore, the particle Reynolds number in the current study satisfies
Rep � 1. As a result, although the velocity correction is derived based on Stokes flow,
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Figure 18. Comparison of (a) normalised wall-normal particle concentration C/C0, (b) mean streamwise
particle velocity v+px and (c) r.m.s. of wall-normal particle velocity v+py,rms between cases without (w/o) and
with (w) the velocity correction.

it provides a reasonable first-order approximation of the velocity correction. Using the
filter length δ f = 8dp then yields ζα f = 8.42× 10−3 and ζu f /U = 1.16× 10−1. This
indicates that the error in the drag force due to self-induced velocity disturbance is
secondary. To further verify this statement, we apply the fluid velocity correction scheme
proposed in Ireland & Desjardins (2017) with ζ̂u f = ζu f /U = 1.16× 10−1, which reads

ũ f =
u f − vp ζ̂u f

1− ζ̂u f

, (E2)

to two test cases with different Stokes numbers (St+ = 32/133) and zero particle charge.
Figure 18 compares typical particle statistics between cases with and without the

velocity correction. The r.m.s. of the wall-normal particle velocity, shown in figure 18(c),
exhibits a slight increase when the velocity correction scheme is applied. The increase in
v+py,rms for St+ = 133 is also found to be larger than that for St+ = 32. These changes are
reasonable, as the fluid drag force calculated using the undisturbed fluid velocity is larger,
making inertial particles more responsive to background turbulence fluctuations and,
therefore, more energetic. Moreover, particles with larger inertia (St+ = 133) generally
experience more significant slip velocities, making their statistics more sensitive to
velocity correction compared with those with moderate inertia St+ = 32. However, both
the wall-normal concentration (figure 18a) and the mean streamwise particle velocity
(figure 18b) show no noticeable differences. We thus conclude that errors in drag force
calculation do not significantly affect particle transport under current conditions, so the
main conclusions of this work remain valid.

Appendix F. Validation of the electrostatic computation
To validate the PP electrostatic force, we consider the Coulomb force acting on Np = 5000
particles in the three-dimensional periodic box with a side length of L = 2π . Half of the
particles carry a nominal positive charge q = 1, while the others carry a nominal negative
charge q =−1. For this charge-neutral system, the exact Coulomb force acting on particle
i can be computed by the standard Ewald summation (Deserno & Holm 1998) as

FE,Ewald
i = F(r)

i + F(k)
i + F(d)

i , (F1)

where the contribution from the real space F(r)
i , the Fourier space F(k)

i and the dipole
correction F(d)

i are given as
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Parameters Values

Domain size, L 2π

Particle number, Np 5000
Particle charge, q ±1
Accuracy parameter, αrC π

Cutoff distance in real space, rC π

Cutoff wavenumber in Fourier space, kC 6
Error in real space, ε(r) 1.65× 10−5

Error in Fourier space, ε(k) 2.06× 10−5

Table 6. Dimensionless parameters for Ewald summation.

F(r)
i =

qi

4πε0

∑
j

q j

′∑
m∈Z3

(
2α√
π

exp
(
−α2|r i j +mL|2

)
+erfc(α|r i j +mL|)

|r i j +mL|
)

r i j +mL

|r i j +mL|2 , (F2)

F(k)
i =

qi

4πε0L3

∑
j

q j

∑
k 
=0

4πk
k2 exp

(
− k2

4α2

)
sin (k · r i j ), (F3)

F(d)
i =−

qi

ε0(1+ 2ε′)L3

∑
j

q j x j . (F4)

Here, α is the Ewald parameter, erfc is the complementary error function, and ε′ = 1 is the
relative dielectric constant of the surrounding medium.

Table 6 lists the parameters used in Ewald summation. The dimensionless product αrC
is set to π to ensure high accuracy in both real and Fourier spaces. The cutoff radius
(rC) and wavenumber (kC) in real and Fourier spaces, respectively, are then determined by
rC = (αrC)L/π1/2 N 1/6

p and kC = 1.8(αrC)2/rC to balance the computation cost of F(r)
i

and F(k)
i (Fincham 1994). Due to the high accuracy of Ewald summation, FE,Ewald

i is
used as the reference electrostatic force acting on the particles. In § 2.6.1, the P3M method
is also employed to compute the electrostatic force under the same conditions. The relative
error, εr , is then evaluated using (2.20). With the minimum εr < 1 % (figure 5d), the P3M
method is considered accurate for computing the PP electrostatic force.

Appendix G. Derivation of the wall-normal particle concentration profile
In this appendix, the wall-normal particle concentration profile is derived following
Johnson et al. (2020). Define f (y, vpy; t) as the probability density function of particles
in the phase space (y, vpy) at time t , where y is the wall-normal particle location and vpy
is the wall-normal particle velocity. By definition, the wall-normal particle concentration
profile C(y; t) can be directly determined from f (y, vpy; t) as

C(y; t)=C0

∫ ∞
−∞

f (y, vpy; t)dvpy, (G1)

where C0 is the domain-averaged particle concentration. The governing equation of f in
the phase space is
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∂ f

∂t
+ ∂

(
vpy · f

)
∂y

+ ∂
(
apy · f

)
∂vpy

= ḟC . (G2)

Here, apy = dvpy/dt is the wall-normal particle acceleration. ḟC is the change of f due to
collisions. Two simplifications can be made here: (i) as particles are assumed to be elastic
in this study, both particle mass and momentum are conserved in each collision, which
leads to ḟC = 0; (ii) when the particle field reaches equilibrium, f is time-independent,
i.e. ∂ f /∂t = 0. By multiplying the simplified (G2) by vpy and C0, and then integrating
from vpy =−∞ to vpy =∞, the momentum conservation equation can be written as

d
dy

(
〈v2

py |y〉C
)
− 〈apy |y〉C = 0. (G3)

Here, the notation 〈∗|y〉 denotes the ensemble average of quantities conditioned at the
wall-normal location y. For a particle located at y, its wall-normal acceleration due to
drag and electrostatic force is

apy = f I
(
u f y − vpy

)
τp

+ q Ey

m
, (G4)

where u f y and Ey are the wall-normal components of the fluid velocity and the electric
field. Plugging (G4) into (G3) and integrating along the wall-normal direction then yields
the wall-normal particle concentration profile

C(y)= C′exp(−
∫ y

0

d ln 〈v2
py |η〉

dη
dη+ 1

τp

∫ y

0

〈 f I (u f y − vpy)|η〉
〈v2

py |η〉
dη

+ q

m

∫ y

0

〈Ey |η〉
〈v2

py |η〉
dη),

(G5)

where C′ is an unknown coefficient that can be determined from particle mass
conservation.
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