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1. Summary. This paper continues the work begun in [1]
and examines the loss of power when using tests based on the
assumption that the variable being sampled has a ""complete'
normal distribution, when in fact, sampling is from a symmet-
rically truncated distribution. The hypothesis considered here
is the one-sided test for the variance of a normal distribution.
Some tables have been computed and they show that appreciable
losses in size occur. Some loss occurs in the power too, but
this decreases with the alternative value of the variance and
the degree of truncation.

2. Introduction. Let a normal distribution be symmetric-
ally truncated at terminus points ''a'' standard deviations from
the mean, i.e., its density g(x) is given by

(2.4) gx) == exp [-3(x- W’/ 0°] for [x-u| < a

0 otherwise,

where ¢ is given by

-

2
_ 4 a -t¢/2
T Jen [a © dt

In this paper, we confine attention to symmetric truncation
only, and assume that the parameter value p is known. (The
case of the parameter o¢“ assumed known is discussed in [1].)

(2.2)

0|~

The motivation for concern with truncation is the following.
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Very often a statistician is confronted with a hypothesis testing
problem concerning the variance of a population. He all too
often proceeds using the assumption that he is samp-ling from a
population which is normally distributed, when in fact he is
sampling from a population whose density function is given by
(2.1). Obviously, this "assumption error' gives rise to errors
in the performance characteristics of any test that he will use.
In this paper we examine the influence of truncation on the size
and power of the tests used when the "assumption error" is
made.

3. Distribution of sums of squares. Let a sample of n
independent observations be taken on X, where X has the dis-
tribution function (2.1). The sampling distributions of
S=S,= 2121X21 can be derived for small values of n by
convolution, but unfortunately no general form is available.
We indicate the derivation for values of n up to 4, and for this
purpose we take, without loss of generality, p =0, o =1, and
let g, denote the density function of the distribution of S.

Case n=1. Let S=X2. Then from (2.1), it is easy to
see that ’

(3. 1) gi(s) = %T}—; e_S/Z, 0<s< az.

Case n=2. Let S=X+ 7Y, where X and Y are distributed
independently, each with density (3.1). By the convolution
formula the density of S, say gy(s), is given by

© 2
gz(s) = _[w gi(s—x)gi(x)dx, 0<s< 2a.

ince X i < x < a” an s-X if s-a” < x < s,
Since g, (x) # 0 if 0 < ? and g,(s-x) # 0 if s-a <

it follows that the integrand is not zero whenever
max(s - az, 0) < x < (min(s, az). Splitting up the range of
integration, we find that

3.2 * c -s/2
(3.2) g2(5)=“£'e , i£05s<a2,
g (s) =
2
ok ¢ -s/2 . -1 2a% 2 2
g (s) =—e sin  (—— - 1), if a < s < 2a .
2 ™ s = =
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Case n=3. Herelet S=X+ Y, where X and Y are
distributed independently, X having density function (3. 2), and
Y the density (3.1). Then if g3(s) denotes the density of S,

0 ) 2
g3(s) = /:_00 gi(s - x)gz(x)dx, for 0 < s < 3a .

2
Since gi(svx) # 0if s~a < x< s, and gz(x) # 0 if
0 < x< Zaz, it follows that the integrand is not zero if

2 2
max(0, s - a2 ) < x < min(s, 22 ). Examining figure 3.1, it
is clear that

g3(S) =
° ( ) *(x)d if 0 < 2
_[) g4swx gZ(X)X: i <s<a,
s ( % d s ( sk d
/ 5 gis=x) gZ(X)x+/2 gis-x) gz(x) X,
s-a a ‘ . 2 2
if a < s < 2a,
2
2a %k . 2 2
/s az gi(s - x) gz (x)dx, if 22 < s < 3a.

On doing the necessary integration, one finds that

g4(s) =

—i se-S/2 'f0<s<a2
Tz : : <e

3
J—g—? e-s/2(3a - 24{s), if a2 <s< Zaz,
2

c3 e—s/Z {6a tan-i 3a2- S 4s ta -1 (32"~ s) Js }
2 2ads - 2al o Js - 2a%(s + a2)”’

if Za2 <s< 3az.

Case n=4. Using 2 similar procedure to the above {and
consulting figure 3.2) one can verify that

g4(5) =

4

c -s/2 ' if0<s<a2,
T se -
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4 2 Z r———z-l
= e-s/2 {s sinn1 Z2a_-s 2s sindﬁ[La_ + 4avs - a _},

s s

2
if a §S<2a2'

4 2 . 2 2
= e”s/2 {6a2 - bads - Za2 - 2s s‘m_1 Ja~ - (s-a )(s-2a )

s
- ZaJs - a2+ Z\E avs - Za2 }

2
c4 -s/2 s { 1 6a tan_i 3a - x
tom2 © /2 2 s -x 2aVx% - 2a2
a

2
-1 (327 - x)\x
- 4\/‘;( tan ‘/; n Za&(x+ az)

}dx, if Zaz < s < 3a2,

4 2 2
c e—s/Z/Ba 1 {6a tan_i 32 - x
2 - x - 222
27 s—az Js - x 2a jx - 2a
1 (3a2 - x)Wx
Nx - 2a2(x + a2)

}dx, if 3a2 < s < 4a2.

-4Jx% tan

The functions ¢,(s) = /s gn(t)dt, n =1, 2, 3 and 4, have been
tabulated by the author, on the IBM 650, located at the Statistic-
al Techniques Research Group, Princeton University. The
author wishes to thank Dr. R. S. Pinkham for his generous help
with the programming.

4. Tests of hypotheses under truncation. In this section,
we will examine the effect of truncation on size and power of
tests of hypotheses that deal with the variances of populations.

Let a sample of size n be taken from a population, whose
distribution is N(O, 0'2). Then a uniformly most powerful (UMP)
test of size o for the one sided hypothesis problem

2 2 2
(4.1) H:o =1 Alt: o =0'1> 1
is given by:
(4.2) Reject Hif S =3° X2 > ¢ ° t H otherwi
. = M S
ejec i N =1 X5 ¢a,n’ accep otherwise,

2
where Y is the point exceeded with probability a using the
a,n

’
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Chi-Squared distribution with n degrees of freedom. Now if
sampling from N_(0, 0’2), where N, (0, 0'2) is the density
function (2.1) with =0, and the test procedure (4.2) is used,
the preassigned size of this 'usual' test is really not obtained.
The actual size is given by

(4. 3) @' =Pr(S > 4?2 )
n a,n

where here S, is the random variable with density function
gn(s) of the last section.

Further, the usual power function of the procedure (4. 2) is
given by

2 2 2 2
P (¢7) Pr(Sn > ¢a,n]s~¢n¢r )

(4. 4) %zn 5

Pr(Sn> >z { Sn~ ul.tn).

Now if the sampling is from a truncated distribution, N,(0, 0'2),
the 'actual' power function of the 'usual' size a test is given by

2 2 2
Ple, a) Pr(Sn > L]Ja’nf s][1~ gn(s, )

(4.5) o 2

a,n
Pr(Sn >—5 ] sn~ gn(s, 1) = gn(s)).

Denote the difference of (4. 4) and (4. 5) by
(4. 6) L(o‘z, a) = Pu(c'z) - P(c'z, a).

2 2
Fore =1, L equals a - a', while for all other values of o ,
L is the "loss of power!' if the usual procedure is followed even
though sampling is from a truncated distribution. Values of

Pu(crz), P(O’Z, a) and the loss in power expressed as percentage

of Pu(c'z) for different values ¢% and terminus points 'a' are

given in table I fore =.05, n=1, 2, 3, and 4.

Now, let us turn to the situation where sampling is from

N,(O, ¢2). By the Neyman-Pearson Fundamental Lemma, the
UMP test of (4. 1) of size «a is:
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2
Reject H if Z:Xi > Ka(a,n), or maxlxi[ > aj; .
(4.7)
accept H otherwise;

where Ka(a, n) is the point exceeded with probability a using
the distribution whose density is gn(s). Table II gives the
significance points for the test (4. 7) for different n, ¢ and a.
That is, if sampling from a 'truncated' normal distribution,
(4.7) gives the 'correct' test for problem (4.1) and table II
gives the correct significance points for this problem.

5. Conclusions. Examination of table I, shows that by far
the most serious losses occur in the size of the test rather than
in its power. For example, if the truncation occurs as much as
two and a half standard deviations away from the mean, and
n = 4, the significance level is only two percent if the usual &
point is used. However, this increases if the truncation is
three standard deviations away from the mean, and indeed the
size approaches the 5% level, as the degree of truncation
increases.

It is interesting to note that, although the losses in power
are almost negligible as n increases, they do increase as n
increases. This of course is explained by the fact that the
distributions of sums of squares of variables from the truncated
normal have mean and variance less than that of the distribution
of X(x?;)’ that is, the distribution moves to the left as n increases,
and gives less probability to tails on the right, and hence larger
L.
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TABLE II

Upper 100« % points of gp(s).

. o 1 2 3 4
a
1.0 .753 1.126 1.545 1.926
1.5| 1.503 2.252 3. 045 3.799
.10 |2.0| 2.168 3. 429 4. 489 5.574
2.5| 2.537 4.204 5.594 6. 865
3.0 2.667 4.510 6.091 7.553
w | 2.706 4. 605 6.251 7.779
1.0 . 862 1.349 1.755 2.073
1.5| 1.823 2. 635 3.521 4.318
.05 |2.0| 2.818 4.014 5.266 6. 449
2.5| 3.489 5.222 6. 641 8. 054
3.0/ 3.759 5.796 7.495 9.063
w | 3.841 5.991 7.815 9.488
1.0 .932 1.484 1.929 2.268
1.5] 2.020 3.008 3.927 4.716
.025 |2.0] 3.298 4.884 5.978 7.225
2.5| 4.346 6. 029 7.609 9.052
3.0/ 4.851 6.996 8.745 10. 369
w | 5.074 7.378 9.348 11.143
1.0 , 972 1. 657 2.140 2.547
1.5 2.153 3.435 4.381 5.218
.04 2.0 3.631 5.330 6.808 8. 329
2.5| 5.823 6.953 8. 820 10. 482
3.0| 6.215 8. 355 10. 200 12.018
w | 6.635 9.210 11. 345 13.277
1.0 . 986 1.755 2.287 2.733
1.5 2.201 3. 697 4.701 5.496
.005|2.0| 3.833 5.848 7.358 - 9.426
2.5| 5.660 7.696 9.675 141.587
3.0| 7.106 9.1458 11.269 13.203
w | 7.879 10.597 12.838 14. 860
234
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FIG. 3.1
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FIG. 3.2
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