RADIOCARBON DATING OF BURIED TREES AND CLIMATE CHANGE IN WEST-CENTRAL OKLAHOMA

OWEN K. DAVIS,1 DAI KAIMEI,2 JEFFREY S. DEAN,3 JIM PARKS3 and ROBERT M. KALIN4

ABSTRACT. Eleven radiocarbon dates and tree-ring analyses of 3 juniper logs demonstrate the potential for 14C analysis of buried logs in the American Midwest. Three junipers (cf. Juniperus virginiana) were recovered from 9.20, 10.50, and 10.60 m in the fill of Carnegie Canyon, west-central Oklahoma. Their 14C ages are calibrated between 3300 and 2800 yr ago. A negative correlation of tree rings and Δ14C (p = 0.013) supports the findings of Schmidt and Gruhle (1988), who demonstrate the association of global cooling with reduced solar activity.

INTRODUCTION

Perhaps the strongest evidence for a causal connection between solar variability and climate change is that of Schmidt and Gruhle (1988), who demonstrate that narrow tree rings (an indicator of, e.g., cooling) are associated with high Δ14C values (an inactive Sun) in buried logs of southern Germany. To our knowledge, no other dendroclimatic analysis has demonstrated a direct correspondence of climatic change and positive 14C anomalies. Such an association is not unlikely, however, because a direct association between tree-ring data and the 22-yr sunspot cycle (an index of solar activity) has been demonstrated by Meko, Stockton and Blasing (1985) for the American Midwest. Additional studies have shown a correspondence of climate change and 14C anomalies using other climatic proxies (de Vries 1958; Eddy 1967, 1977; Jirikowic, Kalin and Davis 1993; Davis 1992, 1994).

A possibility for replicating Schmidt and Gruhle’s (1988) findings exists in the American Midwest. More than 63 buried logs (mostly juniper, cf. Juniperus virginiana) were exposed by scouring and headwall cutting at Carnegie Canyon, 4 km east of Carnegie, Oklahoma (Lintz and Hall 1983; Hall and Lintz 1984). Boreholes through the late-Holocene fill indicate that the buried canyon is up to 120 m wide and 30 m deep (Hall and Lintz 1984). Eight standard 14C dates for logs buried from 7.5–11 m have calibrated ages of 3380–2780 yr BP (Table 1).

These ages predate and overlap a major Δ14C anomaly (the “Hallstattzeit disaster”, 2800 cal BP) investigated by Schmidt and Gruhle (1988). Our goal has been to reinvestigate the Carnegie Canyon deposit, attempting to find tree-ring series that span the Hallstattzeit disaster. By comparing tree-ring widths and Δ14C values for the Carnegie Canyon junipers, we hope to evaluate Schmidt and Gruhle’s (1988) results.

METHODS

Sections of the Carnegie Canyon logs were deposited at the University of Arizona Laboratory of Tree-Ring Research and elsewhere (Lintz and Hall 1983). Eight well-preserved, undated cross-sections were surfaced and the rings counted along two radii per section. The rings were clearly annual, and false rings were readily identified. Numerical analyses demonstrated that crossdating was possible among specimens.

Three of the longest series were 14C dated (Table 2). To obtain sufficient carbon, adjacent 9-ring segments (14 rings for 2 samples) were dated. Three dates were obtained for CAR181 and CAR070, 5

1Department of Geosciences, The University of Arizona Tucson, Arizona 85721 USA
2Department of Physics, Nanjing University, Nanjing, China
3Laboratory of Tree-Ring Research, The University of Arizona, Tucson, Arizona 85721 USA
4Department of Civil Engineering, The Queen’s University of Belfast, Belfast BT9 1NN Northern Ireland

for CAR 271. Each wood sample was cut into matchstick-sized pieces, ground to powder with a Wiley mill, then ultrasonically cleaned and Soxhlet-extracted in toluene and ethanol. After bleaching and rinsing, the extracted white cellulose was converted to carbon dioxide, lithium carbide, acetylene, and finally synthesized to benzene. The benzene samples were measured at the Laboratory of Isotope Geochemistry, University of Arizona, using an upgraded Packard Tri-Carb® 460C liquid scintillation counter.

RESULTS

The ages of the three dated logs were precisely determined by wiggle-matching (cf. Long, Andrenset and Klein 1987) the $\Delta^{14}C$ anomalies of the logs’ dates with the master chronology of global $\Delta^{14}C$ anomalies (file UWTEN93.14C, distributed with the CALIB 3.0 program [Stuiver and Reimer 1993]). The oldest counted ring for the three logs is 2816 yr. Thus, we were unable to evaluate the climatic effects of the Hallstattzeit (= Homeric; see Davis 1992, 1994) ^{14}C anomaly.
The dearth of Hallstattzeit-age logs may, in itself, result from climate change, because aggradation begins throughout the Midwest soon after 3000 BP (Hall and Lintz 1984; May 1992). Rapid burial associated with Hallstattzeit climatic change may have preserved the Carnegie Canyon logs but prevented further growth in the valley floor.

The tree-ring indices (Fig. 1) show a negative correlation with the overall trend and the fluctuations of the 14C curve. We statistically compared 10-yr averages of tree-ring indices with decadal Δ^{14}C values in the file UWTEN93.14C (Stuiver and Reimer 1993). The r^2 value for the comparison is 0.14, $p = 0.013$ (Fig. 2). We do not consider this a robust finding because only two trees were included in the analysis. A chronology based on several overlapping tree series should be developed.

CONCLUSION

The negative association of tree-ring widths and 14C anomalies is consistent with Schmidt and Gruhle’s (1988) association of climate change with solar activity. Even though the series did not span the major Hallstattzeit anomaly, a negative association between tree rings and Δ^{14}C is demonstrated. The solar modulation of 14C production and of climate is a potentially powerful tool in Quaternary science. Further investigation, using tree-ring series of the appropriate age, is warranted.

This analysis also demonstrates the potential for 14C analysis of buried logs in Carnegie Canyon, in particular, and the American Midwest, in general. Buried logs have been a primary source of material for the 14C calibration curve.
Tree Ring Indices vs. Delta 14C for Carnegie Canyon Logs
CAR271 and CAR181
R-squared = 0.1367, p = 0.013

ACKNOWLEDGMENTS

We express our gratitude to Prof. Austin Long, Dr. Chris Eastoe, Charles Tucek and Zhou Mingfu for their help. This research was supported by the Chinese NSF, the University of Arizona Radiocarbon Laboratory and Laboratory of Tree-Ring Research.

REFERENCES
