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Multiple Solutions for
Nonlinear Periodic Problems
Sophia Th. Kyritsi and Nikolaos S. Papageorgiou

Abstract. We consider a nonlinear periodic problem driven by a nonlinear nonhomogeneous differ-
ential operator and a Carathéodory reaction term f (t, x) that exhibits a (p − 1)-superlinear growth
in x ∈ R near±∞ and near zero. A special case of the differential operator is the scalar p-Laplacian.
Using a combination of variational methods based on the critical point theory with Morse theory (crit-
ical groups), we show that the problem has three nontrivial solutions, two of which have constant sign
(one positive, the other negative).

1 Introduction

The aim of this paper is to study the existence of multiple nontrivial solutions for the
following nonlinear periodic problem:

−
(
α
(

t, u ′(t)
)) ′

= f
(

t, u(t)
)

a.e. on T = [0, b],(1.1)

u(0) = u(b), u ′(0) = u ′(b).

Here α : T × R → R is a continuous map such that for all t ∈ T, α(t, · ) is
strictly monotone and C1 on R \ {0}. A special case of the differential operator in
(1.1), is the scalar p-Laplacian. The reaction term f (t, x) is a Carathéodory function
(i.e., t → f (t, x) is measurable and x → f (t, x) is continuous), and we assume
that f (t, · ) exhibits a (p − 1)-superlinear growth near ±∞ and near 0, 1 < p <
∞. However, to express this (p − 1)-superlinearity at ±∞, we do not employ the
Ambrosetti–Rabinowitz condition (AR-condition), which is normally used in such
cases, but instead we use a less restrictive hypothesis.

Multiplicity results for nonlinear Sturm–Liouville and periodic problems were
proved by Aizicovici, Papageorgiou, and Staicu [1]; Ben Naoum and De Coster [2];
De Coster [5]; del Pino, Manásevich, and Murúa [6]; Gasiński and Papageorgiou [8];
Manásevich, Njoku, and Zanolin [10]; Njoku and Zanolin [12]; Papageorgiou and
Papageorgiou [14]; Papageorgiou and Papalini [15], and Yang [16]. In all of these
papers, the differential operator is the scalar p-Laplacian, and the reaction term is
either (p − 1)-linear or (p − 1)-sublinear near ±∞. It appears that the question
of the existence of multiple solutions for “(p − 1)-superlinear” periodic problems
has not previously been addressed. We also emphasize that in contrast to the scalar
p-Laplacian, the differential operator here needs not be homogeneous.
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2 Mathematical Background and Hypotheses

Our approach combines variational methods based on the critical point theory with
Morse theory (critical groups).

Let X be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we denote the du-
ality brackets for the pair (X∗,X). Let ϕ ∈ C1(X). We say that ϕ satisfies the Cerami
condition (C-condition) if the following is true: “Every sequence {xn}n≥1 ⊆ X such
that {ϕ(xn)}n≥1 ⊆ R is bounded and (1+‖xn‖)ϕ ′(xn)→ 0 in X∗ as n→∞ admits a
strongly convergent subsequence.” Using this notion, we can have the following min-
imax characterization of certain critical values of ϕ, known in the literature as the
mountain pass theorem.

Theorem 2.1 If X is a Banach space and ϕ ∈ C1(X) satisfies the C-condition, and for
x0, x1 ∈ X, r > 0, ‖x0 − x1‖ > r, we have

max{ϕ(x0), ϕ(x1)} < inf
[
ϕ(x) : ‖x − x0‖ = r

]
= ηr

and c = infγ∈Γ max0≤t≤1 ϕ
(
γ(t)

)
, where

Γ = {γ ∈ C([0, 1],X) : γ(0) = x0, γ(1) = x1},

then c ≥ ηr and c is a critical value of ϕ.

For ϕ ∈ C1(X) and c ∈ R we set ϕc = {x ∈ X : ϕ(x) ≤ c} and Kϕ = {x ∈ X :
ϕ ′(x) = 0}.

Let Y2 ⊆ Y1 ⊆ X. Then for every integer k ≥ 0, let Hk(Y1,Y2) denote the kth-
singular relative homology group for the pair (Y1,Y2) with the coefficients in Z. The
critical groups of ϕ at an isolated critical point x0 ∈ X with c = ϕ(x0) are defined by
Ck(ϕ, x0) = Hk

(
ϕc ∩U , ϕc ∩U \ {x0}

)
for all k ≥ 0, where U is a neighborhood of

x0 such that Kϕ∩ϕc∩U = {x0}. The excision property of singular homology implies
that this definition is independent of the particular choice of the neighborhood U .
Suppose that ϕ ∈ C1(X) satisfies the C-condition and −∞ < infϕ(Kϕ). Let c <
infϕ(Kϕ). The critical groups of ϕ at infinity, are defined by Ck(ϕ,∞) = Hk(X, ϕc)
for all k ≥ 0. The deformation theorem implies that this definition is independent
of the choice of c. Suppose Kϕ is finite. We set M(t, x) =

∑
k≥0 rank Ck(ϕ, x)tk,

P(t,∞) =
∑

k≥0 rank Ck(ϕ,∞)tk. The Morse relation says that

(2.1)
∑
x∈Kϕ

M(t, x) = P(t,∞) + (1 + t)Q(t),

where Q(t) =
∑

k≥0 βktk is a formal series with nonnegative integer coefficients βk

(see Chang [3]).
In the study of problem (1.1), we shall use the following two spaces:

W 1,p
per (0, b) = {u ∈W 1,p(0, b) : u(0) = u(b)},

Ĉ(T) = C1(T) ∩W 1,p
per (0, b) = {u ∈ C1(T) : u(0) = u(b)}.
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Note that Ĉ(T) is an ordered Banach space with positive cone Ĉ+ = {u ∈ Ĉ(T) :
u(t) ≥ 0 for all t ∈ T}. This cone has a nonempty interior int Ĉ+ = {u ∈ Ĉ+ :
u(t) > 0 for all t ∈ T}.

The hypotheses on α(t, x) are the following:

H(α) : α(t, x) = h(t, |x|)x for all (t, x) ∈ T × R, where h(t, x) > 0 for all t ∈ T, all
x > 0, and

(i) α ∈ C(T × R) ∩C1
(

T × (R \ {0})
)

;
(ii) there exist 0 < c0 < c1 such that c0|x|p−2 ≤ α ′x(t, x) ≤ c1|x|p−2, 1 <

p <∞, for all (t, x) ∈ T × (R \ {0});
(iii) if G(t, x) =

∫ x
0 α(t, s)ds, then there exists η ∈ L1(T) such that pG(t, x)−

α(t, x)x ≥ η(t) for a.a. t ∈ T, all x ∈ R.

Remark 2.2 Evidently, for a.a. t ∈ T, α(t, · ) is strictly monotone, G(t, · ) is strictly
convex, and G(t, x) ≤ α(t, x)x. Moreover,

|α(t, x)| ≤ c1

p − 1
|x|p−1, α(t, x)x ≥ c0

p − 1
|x|p,

and
c0

p(p − 1)
|x|p ≤ G(t, x) ≤ c1

p(p − 1)
|x|p

for all (t, x) ∈ T × R.

Example 2.3 The following functions α(t, x) satisfy hypotheses H(α). Here ϑ ∈
C1(T) with ϑ(t) > 0 for all t ∈ T:

• α(t, x) = ϑ(t)|x|p−2x, 1 < p < ∞ (corresponds to the weighted scalar p-
Laplacian);

• α(t, x) = ϑ(t)
[
|x|p−2x + |x|q−2x

]
for 2 ≤ p;

• α(t, x) =

{
ϑ(t)

[
|x|p−2x + |x|q−2x

]
, if |x| ≤ 1,

ϑ(t)
[
|x|p−2x + c|x|r−2x − (c − 1)x

]
if |x| > 1.

with 1 < r < p ≤ q and r < 2 ≤ p or 2 < r ≤ p < q;

• α(t, x) = ϑ(t)
[
|x|p−2x +

|x|p−2x

1 + |x|p
]

for 1 < p ≤ 2.

H(f) : f : T ×R → R is a Carathéodory function such that f (t, 0) = 0 for a.a. t ∈ T
and

(i) | f (t, x)| ≤ α̂(t)(1 + |x|r−1) for a.a t ∈ T, all x ∈ R with α̂ ∈ L1(T)+,
p < r <∞;

(ii) if F(t, x) =
∫ x

0 f (t, s)ds, then lim|x|→∞
F(t,x)
|x|p = +∞ uniformly for a.a.

t ∈ T and there exist µ > r − p and β0 > 0 such that

β0 ≤ lim inf
|x|→∞

f (t, x)− pF(t, x)

|x|µ
uniformly for a.a. t ∈ T;

(iii) limx→0
f (t,x)
|x|p−2x = 0 uniformly for a.a. t ∈ T;
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(iv) there exist ĉ > 0 and δ0 > 0 such that f (t, x)x ≥ −ĉ|x|p for a.a. t ∈ T,
all x ∈ R and F(t, x) ≤ 0 for a.a. t ∈ T, all |x| ≤ δ0.

Remark 2.4 Hypotheses H( f )(ii) and (iii) imply the (p − 1)-superlinear growth
near±∞ and near 0. However, we do not employ the AR-condition, which says that
there exist τ > p and M > 0 such that 0 < τF(t, x) ≤ f (t, x)x for a.a. t ∈ T and
all |x| ≥ M. Integrating this inequality, we obtain c̃ |x|τ ≤ F(t, x) for a.a. t ∈ T and
all |x| ≥ M. Therefore the AR-condition dictates at least a τ -growth near ±∞ for
F(t, · ). In contrast, H( f )(ii) is much weaker and permits slower growth near ±∞.
Similar conditions were also used by Costa and Magalhaes [4] and Fei [7].

Example 2.5 The following functions satisfy H( f ) (for the sake of simplicity we
drop the t-dependence):

f1(x) = |x|r−2x − |x|p−2x with p < r and

f2(x) = |x|p−2x(ln |x|p + 1).

Note that f2 does not satisfy the AR-condition.

In what follows, for the sake of notational simplicity, we set W = W 1,p
per (0, b). Let

A : W → W ∗ be the nonlinear map defined by 〈A(u), y〉 =
∫ b

0 α(t, u ′)y ′dt for all
u, y ∈W . From Papageorgiou and Kyritsi [13], we have the following proposition.

Proposition 2.6 The map A : W →W ∗ defined above is maximal monotone, strictly
monotone and of type (S)+ i.e., if un

w→ u in W and lim supn→∞ 〈A(un), un − u〉 ≤ 0,
then un → u in W .

3 Solutions of Constant Sign

Let ϕ : W → R be the Euler functional for problem (1.1) defined by

ϕ(u) =

∫ b

0
G(t, u ′)dt −

∫ b

0
F(t, x)dt for all u ∈W.

Evidently ϕ ∈ C1(W ). Also for λ > 0, let

f λ+ (t, x) =

{
0 if x ≤ 0,

f (t, x) + λxp−1 if x > 0,
and

f λ−(t, x) =

{
f (t, x) + λxp−1 if x < 0

0 if x ≥ 0.

Set Fλ±(t, x) =
∫ b

0 f λ±(t, s)ds and consider the C1-functionals ϕλ± : W → R defined

by ϕλ±(u) =
∫ b

0 G(t, u ′)dt + λ
p‖u‖

p
p −

∫ b
0 Fλ±(t, u)dt .

https://doi.org/10.4153/CMB-2011-154-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-154-5


370 S.Th. Kyritsi and N. K. Papageorgiou

Proposition 3.1 If hypotheses H(α) and H( f ) hold, then ϕ and ϕλ± satisfy the C-
condition.

Proof First we prove this for ϕ. So, let {un}n≥1 ⊆W be a sequence such that

|ϕ(un)| ≤ M1 for some M1 > 0,(3.1)

and (1 + ‖un‖)ϕ ′(un)→ 0 in W ∗ as n→∞.

From the convergence in (3.1) we have

(3.2)

∣∣∣∣ 〈A(un), h〉 −
∫ b

0
f (t, un)hdt

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

for all h ∈W , with εn → 0+,

(3.3) ⇒ −
∫ b

0
α(t, u ′n)u ′ndt +

∫ b

0
f (t, un)undt ≤ εn for all n ≥ 1

(choosing h = un ∈W ). From (3.1), we also have

(3.4)

∫ b

0
pG(t, u ′n)dt −

∫ b

0
pF(t, un)dt ≤ pM1 for all n ≥ 1,

⇒
∫ b

0

[
f (t, un)un − pF(t, un)

]
dt ≤ M2 for some M2 > 0, all n ≥ 1

(adding (3.3) and using H(α)(iii)).
Hypotheses H( f )(i) and (ii) imply that we can find β1 ∈ (0, β0) and â1 ∈ L1(T)+

such that

(3.5) β1|x|µ − â1(t) ≤ f (t, x)x − pF(t, x) for all t ∈ T, all x ∈ R.

Using (3.5) in (3.4) we infer that {un}n≥1 ⊆ Lµ(T) is bounded. It is clear that we
can always assume that µ < r. Let t ∈ (0, 1) be such that 1

r = 1−t
µ . Invoking the

interpolation inequality, we can find M3 > 0 such that

(3.6) ‖un‖r
r ≤ M3‖un‖tr for all n ≥ 1.

In (3.2) we choose h = un ∈W , and using the properties of α(t, x), H( f )(i) and
(3.6), we have

(3.7)
c0

p − 1
‖u ′n‖

p
p ≤ c2(1 + ‖un‖ + ‖un‖tr) for some c2 > 0, all n ≥ 1.

Recall that u→ ‖u ′‖p +‖u‖µ is equivalent to the Sobolev norm. Since {un}n≥1 ⊆
Lµ(T) is bounded and using (3.7) (note tr = r−µ < p), we infer that {un}n≥1 ⊆W

is bounded. So, we may assume that un
w→ u in W and un → u in C(T). In (3.2) we
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set h = un−u and pass to the limit as n→∞. We obtain limn→∞ 〈A(un), un − u〉 =
0, and so un → u in W (see Proposition 2.6). Therefore, ϕ satisfies the C-condition.

Next, with a slight variation of the above proof, we show that ϕλ± satisfy the
C-condition. So, as before, let {un}n≥1 ⊆W be a sequence such that

(3.8)
∣∣ϕλ+(un)

∣∣ ≤ M3 for some M3 > 0, all n ≥ 1

and (1 + ‖un‖)(ϕλ+) ′(un)→ 0 in W ∗ as n→∞.

From the convergence in (3.8), we have

(3.9)
∣∣∣ 〈A(un), h〉 + λ

∫ b

0
|un|p−2unhdt −

∫ b

0
f (t, u+

n )hdt − λ
∫ b

0
(u+

n )p−1
∣∣∣

≤ εn‖h‖
1 + ‖un‖

for all n ≥ 1.

In (3.9) we choose h = −u−n ∈ W and obtain c0
p−1‖(u−n ) ′‖p

p + λ‖u−n ‖
p
p ≤ εn for

all n ≥ 1, hence

(3.10) u−n → 0 in W as n→∞.

Next, if in (3.9) we choose h = u+
n ∈ W and as before, we use (3.8) and (3.10),

we obtain
∫ b

0

[
f (t, u+

n )u+
n − pF(t, u+

n )
]

dt ≤ M4 for some M4 > 0, all n ≥ 1. From
this, as in the first part of the proof, using H( f )(ii) and the interpolation inequality,
we show that {u+

n}n≥1 ⊆W is bounded. This fact and (3.10), imply that {un}n≥1 ⊆
W is bounded, from which via Proposition 2.6, we conclude that ϕλ+ satisfies the
C-condition. We proceed similarly for ϕλ−.

Proposition 3.2 If hypotheses H(α) and H( f ) hold, then u = 0 is a local minimizer
of ϕλ± and ϕ.

Proof We prove this for ϕλ+, the proofs for ϕλ− and ϕ being similar. Let δ0 > 0

be as postulated by hypothesis H( f )(iv) and let u ∈ Ĉ(T) such that ‖u‖C1(T) ≤ δ0.
Then ϕλ+(u) ≥ c0

p(p−1)‖u
′‖p

p + λ
p‖u
−‖p

p ≥ 0 = ϕλ+(0). Hence u = 0 is a local

Ĉ(T)-minimizer of ϕλ+. From Papageorgiou–Papalini [15, Proposition 5], we infer
that u = 0 is also a local W -minimizer of ϕλ+.

Clearly hypothesis H( f )(ii) implies the following proposition.

Proposition 3.3 If hypotheses H(α) and H( f ) hold, then ϕλ±(ξ) → ±∞ as ξ →
±∞, ξ ∈ R.

Now we are ready to produce two nontrivial solutions of constant sign.

Proposition 3.4 If hypotheses H(α) and H( f ) hold, then problem (1.1) has two non-
trivial solutions of constant sign u0 ∈ intĈ+, v0 ∈ −intĈ+.
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Proof From Proposition 3.2, we know that u = 0 is a local minimizer of ϕλ+. We
may assume that u = 0 is isolated, or, otherwise, we can easily see that we have a
whole sequence of distinct positive solutions. Hence, reasoning as in Papageorgiou
and Papalini [15, Proposition 6], we can find % ∈ (0, 1) small such that

(3.11) ϕλ+(0) = 0 < inf
[
ϕλ+(u) : ‖u‖ = %

]
= m%.

Then (3.11) together with Propositions 3.1 and 3.4 permits the use of Theorem 2.1
(the mountain pass theorem), and we obtain u0 ∈W such that

(3.12) ϕλ+(0) = 0 < m% ≤ ϕλ+(u0) and (ϕλ+) ′(u0) = 0.

From the inequality in (3.12), we infer that u0 6= 0. From the equality in (3.12), we
have

A(u0) + λ|u0|p−2u0 = Nλ
+(u0),(3.13)

where Nλ
+(u)( · ) = f λ+

(
· , u( · )

)
for u ∈ W . Acting on (3.13) with −u−0 ∈ W , we

obtain u0 ≥ 0, u0 6= 0. Then (3.13) becomes A(u0) = N(u0), where N(u)( · ) =
f ( · , u( · )) for all u ∈ W . Hence u0 ∈ Ĉ(T) and solves (1.1) (see [8]). Also, from
H( f )(iv) we have (α(t, u ′(t))) ′ ≤ ĉu0(t)p−1 a.a. on T, hence u0 ∈ int Ĉ+ (see Mon-
tenegro [11]). Similarly, working with ϕλ−, we obtain another constant sign solution

v0 ∈ − int Ĉ+.

4 Critical Groups at Infinity

In this section we compute the critical groups at infinity for ϕ and ϕλ±.

Proposition 4.1 If hypotheses H(α) and H( f ) hold, then Ck(ϕ,∞) = 0 for all k ≥ 0.

Proof Hypotheses H( f )(i) and (ii) imply that given any ξ > 0, we can find α̂2 ∈
L1(T)+ such that

(4.1) F(t, x) ≥ ξ

p
|x|p − α̂2(t) for a.a. t ∈ T, all x ∈ R.

Let u ∈ ∂B1 = {u ∈W : ‖u‖ = 1} and s > 0. Then

ϕ(su) ≤ c1sp

p(p − 1)
‖u ′‖p

p −
∫ b

0
F(t, su)dt

≤ sp

p

( 1

p − 1
− ξ‖u‖p

p

)
+ ‖α̂2‖1 (see (4.1)).

(4.2)

Choosing ξ > 1
(p−1)‖u‖p

p
, from (4.2) we see that

(4.3) ϕ(su) ≤ c1sp

p(p − 1)
‖u ′‖p

p −
∫ b

0
F(t, su)dt → −∞ as s→ +∞.
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Using (3.5), for every u ∈W we have

(4.4)

∫ b

0

[
pF(t, su)− f (t, u)u

]
dt ≤ −β1

∫ b

0
|u|µdt + ‖α̂2‖1.

Choose η < −(‖α̂2‖1 + 1) < 0. From (4.3) we see that for s > 0 large and u ∈ ∂B1,
we have

(4.5) p ϕ(su) ≤ c1sp

p − 1
−
∫ b

0
pF(t, su)dt ≤ η < 0 = ϕ(0) (since ‖u‖ = 1).

Clearly then, we can find s∗ > 0 such that ϕ(s∗u) = η. We have

d

ds
ϕ(su) = 〈ϕ ′(su), u〉 =

∫ b

0
α(t, su ′)u ′dt −

∫ b

0
f (t, su)udt

≤ 1

s

[
sp c1

p − 1
−
∫ b

0
pF(t, su)udt + ‖α̂2‖1

]
(see (4.4))

≤ 1

s

[
η + ‖α̂2‖1

]
< 0 (see (4.5) and recall that η < −(‖α̂2‖1 + 1)).

It follows that the above s∗ > 0 is unique, and we denote it by γ(u) > 0. We have
ϕ
(
γ(u)u

)
= η, u ∈ ∂B1, and moreover, the implicit function theorem implies that

γ ∈ C(∂B1). We set γ̂(u) = 1
‖u‖γ

(
u
‖u‖
)

for all u ∈W \ {0}. Then γ̂ ∈ C(W \ {0})
and ϕ

(
γ̂(u)u

)
= η for all u ∈W \ {0}. Also, ϕ(u) = η implies γ̂(u) = 1. Hence, if

for u 6= 0 we set

γ̂0(u) =

{
1 if u ∈ ϕη ,

γ̂(u) if u /∈ ϕη,

then γ̂0 ∈ C(W \ {0}). Consider the homotopy h(τ , u) = (1 − τ )u + τ γ̂0(u)u.
We have h(0, u) = u, h(1, u) ∈ ϕη and h(τ , · )|ϕη = id|ϕη for all τ ∈ [0, 1], hence
ϕη is a strong deformation retract of W \ {0}. Also, by considering the homotopy
ĥ(τ , u) = (1−τ )u+τ u

‖u‖ , we see that ∂B1 is a strong deformation retract of W \{0}.
Thusϕη and ∂B1 are homotopy equivalent and ∂B1 is contractible in itself. Therefore
choosing η < infϕ(Kϕ), we conclude that

Ck(ϕ,∞) = Hk(W, ϕη) = Hk(W, ∂B1) = 0 for all k ≥ 0

(see Granas–Dugundji [9]).

In a similar way, we show the triviality of the critical groups at infinity of ϕλ±.

Proposition 4.2 If hypotheses H(α) and H( f ) hold, then Ck(ϕλ±,∞) = 0 for all
k ≥ 0.
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Proof We prove this for ϕλ+, the proof for ϕλ− being similar. Again, from H( f )(i) and
(ii) we see that for any ξ > 0, we can find α̂3 ∈ L1(T)+ such that

(4.6) F(t, x+) ≥ ξ

p
(x+)p − α̂3(t) for a.a. t ∈ T, all x ∈ R.

Let ∂B+ = {u ∈ ∂B1 : u+ 6= 0}. Then for u ∈ ∂B+ and s > 0 we have

(4.7) ϕλ+(su) ≤ sp
[ c1

p − 1
+ λ‖u−‖p

p − ξ‖u+‖p
p

]
+ ‖α̂3‖1 → −∞ as s→ +∞

(see (4.6) and recall that ξ > 0 is arbitrary).
From H( f )(i) and (ii), we can find β1 ∈ (0, β0) and α̂4 ∈ L1(T)+ such that

(4.8) f (t, x+)x+ − pF(t, x+) ≥ β1(x+)µ − α̂4(t) a.a. t ∈ T, all x ∈ R.

For u ∈W , we have

(4.9)

∫ b

0

[
pF(t, u+)− f (t, u+)u+

]
dt ≤ −β1

∫ b

0
(u+)µdt + ‖α̂4‖1 (see (4.8)).

Choose η < −(‖α̂4‖1 + 1) < 0. From (4.6) and (4.7), we see that for s > 0 large

(4.10) sp
[ c1

p − 1
+ λ‖u−‖p

p −
∫ b

0
pF(t, su+)dt

]
≤ η < 0 = ϕλ+(0).

Hence we can find ŝ > 0 such that ϕλ+(ŝu) = η. Moreover, since

d

ds
ϕλ+(su) =

〈
(ϕλ+) ′(su), u

〉
≤ 1

s

[ c1sp

p − 1
+ spλ‖u−‖p

p −
∫ b

0
pF(t, su+)dt + ‖α̂4‖1

]
(see (4.9))

≤ 1

s

[
η + ‖α̂4‖1

]
< 0 (see (4.10) and recall that η < −(‖α̂4‖1 + 1)),

the above ŝ > 0 is unique and we denote it by γ+(u) > 0. Then ϕλ+
(
γ+(u)u

)
= η

for all u ∈ ∂B+, and by the implicit function theorem, γ+ ∈ C(∂B+). Let E+ = {u ∈
W : u+ 6= 0} and set γ̂+(u) = 1

‖u‖γ
+
(

u
‖u‖
)

for all u ∈ E+. Then γ̂+ ∈ C(E+) and

ϕλ+
(
γ̂+(u)u

)
= η for all u ∈ E+. In addition, ϕλ+(u) = η implies γ̂+(u) = 1. So, if

for u ∈ E+ we set

γ̂+
0 (u) =

{
1 if u ∈ (ϕλ+)η,

γ̂(u) if u /∈ (ϕλ+)η,

then γ̂+
0 ∈ C(E+). Let h(t, u) = (1− t)u + t γ̂+

0 (u)u. We have

(4.11) (ϕλ+)η is a strong deformation retract of E+.
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Also, using ĥ(t, u) = (1−t)u+tû0

‖(1−t)u+tû0‖ , we see that

(4.12) E+ is contractible in itself.

From (4.11) and (4.12), it follows that Hk

(
W, (ϕλ+)η

)
= Hk(W, E+) = 0 for all

k ≥ 0 (see Granas and Dugundji [9]), hence choosing η < infϕλ+(Kϕλ+
), we infer

Ck(ϕλ+,∞) = 0 for all k ≥ 0. Similarly we show that Ck(ϕλ−,∞) = 0 for all k ≥ 0,
this time using ∂B− = {u ∈ ∂B1 : u− 6= 0}.

5 Three Solutions Theorem

In this section, we prove the full multiplicity theorem for problem (1.1), producing
three nontrivial solutions.

Theorem 5.1 If hypotheses H(α) and H( f ) hold, then problem (1.1) has at least three
nontrivial solutions: u0 ∈ intĈ+, v0 ∈ −intĈ+, and y0 ∈ C1(T).

Proof From Proposition 3.3, we already have two constant sign solutions u0 ∈ int Ĉ+

and v0 ∈ − int Ĉ+. Suppose that {0, u0, v0} are the only critical points of ϕ. Then we
can easily see that {0, u0} are the only critical points of ϕλ+, and {0, v0} are the only
critical points of ϕλ−.

Claim 1: Ck(ϕλ+, u0) = Ck(ϕλ−, v0) = δk,1Z for all k ≥ 0.
Let η̂ < 0 = ϕλ+(0) < η < ϕλ+(u0) (see (3.12)). We have (ϕλ+)η̂ ⊆ (ϕλ+)η ⊆ W . We
consider the long exact sequence of homological groups corresponding to this triple
of sets:

(5.1) · · · → Hk

(
W, (ϕλ+)η̂

) i∗→ Hk

(
W, (ϕλ+)η

) ∂∗→ Hk−1

(
(ϕλ+)η, (ϕλ+)η̂

)
→ · · · .

Here i is the embedding of (ϕλ+)η̂ into (ϕλ+)η , and ∂ is the boundary map. We have

Hk

(
W, (ϕλ+)η̂

)
= Ck(ϕλ+,∞) = 0 for all k ≥ 0 (see Proposition 4.2),(5.2)

Hk

(
W, (ϕλ+)η

)
= Ck(ϕλ+, 0) = δk,0Z for all k ≥ 0 (see Proposition 3.2).(5.3)

From (5.2) and (5.3), we see that in (5.1) only the tail k = 1 is nontrivial. More-
over, from the exactness of (5.1) and the rank theorem, we see that rank C1(ϕλ+, u0)=
rank H1

(
W, (ϕλ+)η

)
≤ 1. On the other hand recall that u0 is a critical point of moun-

tain pass type for ϕλ+ (see the proof of Proposition 3.4). So, rank C1(ϕλ+, u0) ≥ 1.
Therefore, we conclude that Ck(ϕλ+, u0) = δk,1Z for all k ≥ 0. Similarly we show that
Ck(ϕλ−, v0) = δk,1Z for all k ≥ 0. This proves Claim 1.

Claim 2: Ck(ϕ, u0) = Ck(ϕλ+, u0) and Ck(ϕ, v0) = Ck(ϕλ−, v0) for all k ≥ 0.
Let h+(s, u) = (1 − s)ϕ(u) + sϕλ+(u), (s, u) ∈ [0, 1] ×W . We will show that there
exists % ∈ (0, 1) small such that u0 is the only critical point in B%(u0) = {u ∈
W : ‖u − u0‖ ≤ %} of h+(s, · ) for all s ∈ [0, 1]. Indeed, if this is not the case,
then we can find tn → t ∈ [0, 1], un → u0 in W and (h+) ′u(sn, un) = 0 for all
n ≥ 1. From Papageorgiou and Papalini [15, proof of Proposition 5], we know that
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{un}n≥1 ⊆ Ĉ(T) is relatively compact. So, we have un → u0 in Ĉ(T) and since

u0 ∈ int Ĉ+, we will have un ∈ int Ĉ+ for all n ≥ n0. Because ϕ
∣∣

Ĉ+
= ϕλ+

∣∣
Ĉ+

,

it follows that {un}n≥n0 are all distinct critical points of ϕ, a contradiction to our
assumption. Also, reasoning as in the proof of Proposition 3.1, we show that for
all s ∈ [0, 1], h+(s, · ) satisfies the C-condition. Then by virtue of the homotopy
invariance property of the critical groups (see Chang [3]), we have

Ck(ϕ, u0) = Ck

(
h+(0, · ), u0

)
= Ck

(
h+(1, · ), u0

)
= Ck(ϕλ+, u0)

for all k ≥ 0. Similarly for the triple {ϕ,ϕλ−, v0}. This proves Claim 2.
From Propositions 3.2 and 4.1, we have

(5.4) Ck(ϕ, 0) = δk,0Z and Ck(ϕ,∞) = 0 for all k ≥ 0.

From Claims 1, 2, (5.4), and the Morse relation (see (2.1)), with t = −1, we have
2(−1)1 + (−1)0 = 0, a contradiction. So, ϕ has a critical point y0 /∈ {0, u0, v0}. Then
y0 ∈ C1(T) solves problem (1.1).
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