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Characterizations of Operator
Birkhoff–James Orthogonality

Mohammad Sal Moslehian and Ali Zamani

Abstract. In this paper, we obtain some characterizations of the (strong) Birkhoò–James orthogo-
nality for elements of Hilbert C∗-modules and certain elements of B(H ). Moreover, we obtain a
kind of Pythagorean relation for bounded linear operators. In addition, for T ∈ B(H ) we prove
that if the norm attaining setMT is a unit sphere of some ûnite dimensional subspaceH0 ofH and
∥T∥H0⊥ < ∥T∥, then for every S ∈ B(H ), T is the strong Birkhoò–James orthogonal to S if and
only if there exists a unit vector ξ ∈ H0 such that ∥T∥ξ = ∣T ∣ξ and S∗Tξ = 0. Finally, we introduce
a new type of approximate orthogonality and investigate this notion in the setting of inner product
C∗-modules.

1 Introduction and Preliminaries

LetB(H ,K )denote the linear spaceof allbounded linearoperatorsbetweenHilbert
spaces (H , [ ⋅ , ⋅ ]) and (K , [ ⋅ , ⋅ ]). By Iwe denote the identity operator. WhenH =
K , we write B(H ) for B(H ,K ). ByK(H ) we denote the algebra of all compact
operators on H , and by C1(H ) the algebra of all trace-class operators on H . Let
SH = {ξ ∈ H ∶ ∥ξ∥ = 1} be the unit sphere ofH . For T ∈ B(H ), letMT denote the
set of all vectors in SH at which T attains norm, i.e.,MT = {ξ ∈ SH ∶ ∥T ξ∥ = ∥T∥}.
For T ∈ B(H ,K ), the symbol m(T) ∶= inf{∥T ξ∥ ∶ ξ ∈ SH } denotes theminimum
modulus of T .

Inner product C∗-modules generalize inner product spaces by allowing inner
products to take values in an arbitrary C∗-algebra instead of the C∗-algebra of com-
plex numbers.

In an inner product C∗-module (V , ⟨ ⋅ , ⋅ ⟩) over a C∗-algebra A the following
Cauchy–Schwarz inequality holds (see also [1]):

⟨x , y⟩∗⟨x , y⟩ ≤ ∥⟨x , x⟩∥⟨y, y⟩ (x , y ∈ V).

Consequently, ∥x∥ = ∥⟨x , x⟩∥ 1
2 deûnes a norm on V . If V is complete with respect to

this norm, then it is called a Hilbert A -module, or a Hilbert C∗-module over A . Any
C∗-algebra A can be regarded as a Hilbert C∗-module over itself via ⟨a, b⟩ ∶= a∗b.
For every x ∈ V the positive square root of ⟨x , x⟩ is denoted by ∣x∣. In the case of a
C∗-algebra, we get the usual notation ∣a∣ = (a∗a) 1

2 . By S(A ) we denote the set of all
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states ofA , that is, the set of all positive linear functionals ofA whose norm is equal
to one.
Furthermore, if φ ∈ S(A ), then (x , y)↦ φ(⟨x , y⟩) gives rise to a usual semi-inner

product on V , so we have the following useful Cauchy–Schwarz inequality:

∣φ(⟨x , y⟩)∣2 ≤ φ(⟨x , x⟩)φ(⟨y, y⟩) (x , y ∈ V).

We refer the reader to [11, 17, 20] for more information on the basic theory of
C∗-algebras andHilbert C∗-modules.
A concept of orthogonality in a Hilbert C∗-module can be deûned with respect

to the C∗- valued inner product in a natural way: two elements x and y of a Hilbert
C∗-moduleV over a C∗-algebraA are called orthogonal, denoted x ⊥ y, if ⟨x , y⟩ = 0.

In a normed linear space there are several notions of orthogonality, all of which
are generalizations of orthogonality in a Hilbert space. One of the most important
concepts is that of the Birkhoò–James orthogonality: if x , y are elements of a complex
normed linear space (X , ∥ ⋅ ∥), then x is orthogonal to y in the Birkhoò–James sense
[6, 16], in short, x ⊥B y, if

∥x + λy∥ ≥ ∥x∥ (λ ∈ C).

_e central role of Birkhoò–James orthogonality in approximation theory is typiûed
by the fact that T ∈ B(H ) is a best approximation of S ∈ B(H ) from a linear sub-
space M of B(H ) if and only if T is a Birkhoò–James orthogonal projection of S
onto M. By the Hahn–Banach theorem, if x , y are two elements of a normed linear
space X, then x ⊥B y if and only if there is a norm one linear functional f of X such
that f (x) = ∥x∥ and f (y) = 0. If we have additional structures on a normed linear
space X, then we obtain other characterizations of Birkhoò–James orthogonality; see
[3, 5, 13,22,25] and the references therein.

In Section 2, we present some characterizations of Birkhoò–James orthogonality
for elements of a Hilbert K(H )-module and elements of B(H ). Next, we will give
some applications. In particular, for T , S ∈ B(H )with m(S) > 0,we prove that there
exists a unique γ ∈ C such that

∥(T + γS) + λS∥ 2
≥ ∥T + γS∥ 2

+ ∣λ∣2m2(S) (λ ∈ C).

As a natural generalization of the notion of Birkhoò–James orthogonality, the concept
of strongBirkhoò–James orthogonality,which involvesmodular structure of aHilbert
C∗-modulewas introduced in [2]. When x and y are elements of aHilbertA -module
V , x is orthogonal to y in the strong Birkhoò–James sense, in short, x ⊥s

B y if

∥x + ya∥ ≥ ∥x∥ (a ∈ A );

i.e., the distance from x to yA , theA -submodule of V generated by y, is exactly ∥x∥.
_is orthogonality is “between” ⊥ and ⊥B , i.e.,

x ⊥ yÔ⇒ x ⊥s
B yÔ⇒ x ⊥B y, (x , y ∈ V),

while the converses do not hold in general (see [2]). It was shown in [2] that the
following relation between the strong and the classical Birkhoò–James orthogonality
is valid:

x ⊥s
B y⇔ x ⊥B y⟨y, x⟩ (x , y ∈ V).
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In particular, by [3, Proposition 3.1], if ⟨x , y⟩ ≥ 0, then

x ⊥s
B y⇔ x ⊥B y (x , y ∈ V).(1.1)

If V is a full Hilbert A -module, then the only case where the orthogonalities ⊥s
B and

⊥B coincide is when A is isomorphic to C (see [3,_eorem 3.5]), while orthogonal-
ities ⊥s

B and ⊥ coincide only when A or K(V) is isomorphic to C (see [3,_eorems
4.7, 4.8]). Further, by [3, Lemma 4.2], we have

x ⊥B (∥x∥2 y − y⟨x , x⟩) (x , y ∈ V),(1.2)

x ⊥s
B (∥x∥2x − x⟨x , x⟩) (x ∈ V).(1.3)

In Section 2,we obtain a characterization of strong Birkhoò–James orthogonality for
elements of a C∗-algebra. We also present some characterizations of strong Birkhoò–
James orthogonality for certain elements of B(H ). In particular, for T ∈ B(H )
we prove that if SH0 = MT , where H0 is a ûnite dimensional subspace of H and
∥T∥H0

⊥ < ∥T∥, then for every S ∈ B(H ), T ⊥s
B S if and only if there exists a unit

vector ξ ∈ H0 such that ∥T∥ξ = ∣T ∣ξ and S∗T ξ = 0.
For given ε ≥ 0, elements x , y in an inner product A -module V are said to be

approximately orthogonal or ε-orthogonal, in short, x ⊥ε y if ∥⟨x , y⟩∥ ≤ ε∥x∥∥y∥. For
ε ≥ 1, it is clear that every pair of vectors is ε-orthogonal, so the interesting case is
when ε ∈ [0, 1).

In an arbitrary normed space X, Chmieliński [7, 8] introduced the approximate
Birkhoò–James orthogonality x ⊥εB y by

∥x + λy∥2 ≥ ∥x∥2 − 2ε∣λ∣∥x∥∥y∥ (λ ∈ C).

Inspired by the above approximate Birkhoò–James orthogonality, we propose a new
type of approximate orthogonality in inner product C∗-modules.

Deûnition 1.1 For given ε ∈ [0, 1), elements x , y of an inner product A -module V
are said to be approximate strongly Birkhoò–James orthogonal, denoted by x ⊥s

Bε y, if

∥x + ya∥2 ≥ ∥x∥2 − 2ε∥a∥∥x∥∥y∥ (a ∈ A ).

In Section 3,we investigate thisnotion of approximate orthogonality in innerprod-
uct C∗-modules. In particular, we show that

x ⊥ε yÔ⇒ x ⊥s
Bε yÔ⇒ x ⊥εB y, (x , y ∈ V),

while the converses do not hold in general.
As a result, we show that if T ∶V →W is a linear mapping between inner product

A -modules such that x ⊥B y⇒ Tx ⊥s
Bε Ty for all x , y ∈ V , then

(1 − 16ε)∥T∥∥x∥ ≤ ∥Tx∥ ≤ ∥T∥∥x∥ (x ∈ V).

Some other related topics can be found in [14, 15,23,24].

2 Operator (Strong) Birkhoff–James Orthogonality

_e characterization of the (strong) Birkhoò–James orthogonality for elements of a
Hilbert C∗-module bymeans of the states of the underlying C∗-algebra is known. For
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elements x , y of aHilbert A -module V , the following results were obtained in [2, 5]:

x ⊥B y⇐⇒ (∃φ ∈ S(A ) ∶ φ(⟨x , x⟩) = ∥x∥2 and φ(⟨x , y⟩) = 0)(2.1)

x ⊥s
B y⇐⇒ (∃φ ∈ S(A ) ∶ φ(⟨x , x⟩) = ∥x∥2 and φ(⟨x , y⟩a) = 0 ∀a ∈ A ) .(2.2)

In the following resultwe establish a characterization of Birkhoò–James orthogonality
for elements of aHilbert K(H )-module.

_eorem 2.1 Let V be a Hilbert K(H )-module and x , y ∈ V . _en the following
statements are equivalent:
(i) x ⊥B y.
(ii) _ere exists a positive operator P ∈ C1(H ) of trace one such that

∥x + λy∥2 ≥ ∥x∥2 + ∣λ∣2tr(P∣y∣2) (λ ∈ C).

Proof Let x ⊥B y. By (2.1), there exists a state φ over K(H ) such that φ(⟨x , x⟩) =
∥x∥2 and φ(⟨x , y⟩) = 0. For every λ ∈ C, we therefore have

∥x + λy∥2 ≥ φ(⟨x + λy, x + λy⟩)

= φ(⟨x , x⟩) + λφ(⟨x , y⟩) + λφ(⟨x , y⟩) + ∣λ∣2φ(⟨y, y⟩)
= ∥x∥2 + ∣λ∣2φ(∣y∣2).

_us,
∥x + λy∥2 ≥ ∥x∥2 + ∣λ∣2φ(∣y∣2) (λ ∈ C).

Now, by [20,_eorem 4.2.1], there exists a positive operator P ∈ C1(H ) of trace one
such that φ(T) = tr(PT), T ∈ K(H ). _us, we have

∥x + λy∥2 ≥ ∥x∥2 + ∣λ∣2φ(∣y∣2) = ∥x∥2 + ∣λ∣2tr(P∣y∣2) (λ ∈ C).

Conversely, if (ii) holds, then, since ∣λ∣2tr(P∣y∣2) ≥ 0 for all λ ∈ C, we get

∥x + λy∥ ≥
√

∥x∥2 + ∣λ∣2tr(P∣y∣2) ≥ ∥x∥ (λ ∈ C).

Hence, x ⊥B y.

Remark 2.2 Let V be a Hilbert K(H )-module and x , y ∈ V . Using the same
argument as in the proof of_eorem 2.1 and (2.2)we obtain x⊥s

B y if and only if there
exists a positive operator P ∈ C1(H ) of trace one such that

∥x + ya∥2 ≥ ∥x∥2 + tr(P∣ya∣2) (a ∈ A ).

In the following result we establish a characterization of strong Birkhoò–James
orthogonality for elements of a C∗-algebra.

_eorem 2.3 Let A be a C∗-algebra, and a, b ∈ A . _en the following statements
are equivalent:
(i) a ⊥s

B b.
(ii) _ere exist aHilbert spaceH , a representation π∶A → B(H ), and a unit vector

ξ ∈ H such that
∥a + bc∥2 ≥ ∥a∥2 + ∥π(bc)ξ∥2 (c ∈ A ).

https://doi.org/10.4153/CMB-2017-004-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-004-5


820 M. S. Moslehian and A. Zamani

Proof Suppose that a⊥s
B b. By (2.2) applied to V = A and using the same argument

as in the proof of _eorem 2.1, there exists a state φ of A such that ∥a + bd∥2 ≥
∥a∥2 + φ(∣bd∣2) for all d ∈ A . Now, by [11, Proposition 2.4.4] there exist a Hilbert
spaceH , a representation π∶A → B(H ), and a unit vector ξ ∈ H such that for any
c ∈ A we have φ(c) = [π(c)ξ, ξ]. Hence,

∥a + bc∥2 ≥ ∥a∥2 + φ(∣bc∣2) = ∥a∥2 + [π(∣bc∣2)ξ, ξ]

= ∥a∥2 + [π(bc)ξ, π(bc)ξ] = ∥a∥2 + ∥π(bc)ξ∥2 ,

for all c ∈ A .
_e converse is obvious.

Corollary 2.4 Let A be a unital C∗-algebra with the unit e. For every self-adjoint
noninvertible a ∈ A , there exist a Hilbert space H , a representation π∶A → B(H )
and a unit vector ξ ∈ H such that

∥e + ab∥2 ≥ 1 + ∥π(ab)ξ∥2 (b ∈ A ).

Proof Since a is noninvertible, a2 is noninvertible as well. _erefore there is a state
φ ofA such that φ(a2) = 0. We have φ(ee∗) = ∥e∥2 = 1 and

∣φ(eab)∣ ≤
√

φ(eaa∗e∗)φ(b∗b) =
√

φ(a2)φ(b∗b) = 0 (b ∈ A ).

_us, by (2.2) we get e ⊥s
B a. Hence, by _eorem 2.3, there exist a Hilbert space H ,

a representation π∶A → B(H ), and a unit vector ξ ∈ H such that ∥e + ab∥2 ≥
1 + ∥π(ab)ξ∥2 for all b ∈ A .

Now, we are going to obtain some characterizations of (strong) Birkhoò–James
orthogonality in the Hilbert C∗-module B(H ). Let T , S ∈ B(H ). It was proved in
[4,_eorem 1.1 and Remark 3.1] and [2, Proposition 2.8] that T ⊥B S (resp. T ⊥s

B S) if
and only if there is a sequence of unit vectors (ξn) ⊂ H such that

(2.3) lim
n→∞

∥T ξn∥ = ∥T∥ and lim
n→∞

[T ξn , Sξn] = 0 (resp. lim
n→∞

S∗T ξn = 0).

When H is ûnite dimensional, it holds that T ⊥B S (resp. T ⊥s
B S) if and only if there

is a unit vector ξ ∈ H such that

(2.4) ∥T ξ∥ = ∥T∥ and [T ξ, Sξ] = 0 (resp. S∗T ξ = 0).

_e following results are immediate consequences of the above characterizations.

Corollary 2.5 Let T ∈ B(H ) be an isometry and S ∈ B(H ) be an invertible positive
operator. _en T ÙB TS.

Corollary 2.6 Let S ∈ B(H ). _en the following statements are equivalent:
(i) S is non-invertible.
(ii) T ⊥B S for every unitary operator T ∈ B(H ).

Proof By [10, Proposition 3.3], S ∈ B(H ) is not invertible if and only if

0 ∈ { λ ∈ C ∶ ∃(ξn) ⊂ H , ∥ξn∥ = 1, lim
n→∞

[T∗Sξn , ξn] = λ} ,

for every unitary operator T . Hence, by using (2.3), the statements are equivalent.
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Corollary 2.7 Let T , S ∈ B(H ). _en the following statements hold:
(i) If dimH <∞, then T ⊥B S if and only if there is a unit vector ξ ∈ H such that

∥T∥ξ = ∣T ∣ξ and [T ξ, Sξ] = 0.
(ii) If dimH = ∞, then T ⊥B S if and only if there is a sequence of unit vectors

(ξn) ⊂ H such that limn→∞ (∥T∥ξn − ∣T ∣ξn) = 0 and limn→∞[T ξn , Sξn] = 0.
(iii) If dimH <∞, then T ⊥s

B S if and only if there is a unit vector ξ ∈ H such that
∥T∥ξ = ∣T ∣ξ and S∗T ξ = 0.

(iv) If dimH = ∞, then T ⊥s
B S if and only if there is a sequence of unit vectors

(ξn) ⊂ H such that limn→∞ (∥T∥ξn − ∣T ∣ξn) = 0 and limn→∞ S∗T ξn = 0.

Proof (i) Let T ⊥B S. Take the same vector ξ as in (2.4). So, we have

∥T ξ∥2
= [T ξ, T ξ] = [∣T ∣2ξ, ξ] ≤ ∥∣T ∣∥

2
∥ξ∥2

≤ ∥T∥
2
∥ξ∥2

= ∥T ξ∥2 .

_is forces ∣T ∣2ξ = ∥T∥2ξ and thus ∣T ∣ξ = ∥T∥ξ, as asserted.
_e converse is trivial.
Using (2.3) and (2.4), we can similarly prove statements (ii)–(iv).

_eorem 2.8 Let S ∈ B(H ). Let H0 /= {0} be a closed subspace ofH and let P be
the orthogonal projection onto H0. _en the following statements hold:
(i) If dimH <∞, then P ⊥B S if and only if there is a unit vector ξ ∈ H0 such that

[Sξ, ξ] = 0.
(ii) If dimH = ∞, then P ⊥B S if and only if there is a sequence of unit vectors

(ξn) ⊂ H0 such that limn→∞[Sξn , ξn] = 0.

Proof (i) Let P ⊥B S. By (2.4), there is a unit vector ζ ∈ H such that ∥Pζ∥ = ∥P∥ = 1
and [Pζ , Sζ] = 0. We have ζ = ξ + η, where ξ ∈ H0 and η ∈ H0

⊥. Since ∥ξ∥ =
∥P(ξ + η)∥ = ∥Pζ∥ = 1 and ∥ξ∥2 + ∥η∥2 = 1, so we get η = 0. Hence, [Sξ, ξ] =

[S(ξ + η), ξ] = [S(ξ + η), P(ξ + η)] = [Pζ , Sζ] = 0.
_e converse is trivial.
(ii) Let P⊥BS. Take the vector sequence (ζn) ofH as in (2.3). Wehave ζn = µn+ηn ,

where µn ∈ H0 and ηn ∈ H0
⊥. Since

lim
n→∞

∥µn∥ = lim
n→∞

∥P(µn + ηn)∥ = lim
n→∞

∥Pζn∥ = 1 and ∥µn∥
2 + ∥ηn∥

2 = 1,

we get limn→∞ ∥ηn∥ = 0. We can assume that ∥µn∥ ≥
1
2 for every n ∈ N. Let us put

ξn = µn
∥µn∥

. We have

∣ [Sξn , ξn]∣ =
1

∥µn∥2 ∣ [Sµn , µn]∣

=
1

∥µn∥2 ∣ [Sζn , Pζn] + [Sµn , µn] − [Sζn , Pζn]∣

≤
1

∥µn∥2 ∣ [Sζn , Pζn]∣ +
1

∥µn∥2 ∣ [Sµn , µn] − [S(µn + ηn), µn]∣

≤
1

∥µn∥2 ∣ [Sζn , Pζn]∣ +
1

∥µn∥2 ∣ [Sηn , µn]∣
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≤
1

∥µn∥2 ∣ [Sζn , Pζn]∣ +
1

∥µn∥
∥S∥∥ηn∥

≤ 4∣ [Sζn , Pζn]∣ + 2∥S∥∥ηn∥,

whence

∣ [Sξn , ξn]∣ ≤ 4∣ [Sζn , Pζn]∣ + 2∥S∥∥ηn∥.

Since limn→∞[Pζn , Sζn] = 0 and limn→∞ ∥ηn∥ = 0, from the above equality we get
limn→∞[Sξn , ξn] = 0.

_e converse is trivial.

_eorem 2.9 Let T , S ∈ B(H ). _en the following statements are equivalent:
(i) T ⊥B S;
(ii) ∥T + λS∥2 ≥ ∥T∥2 + ∣λ∣2m2(S) (λ ∈ C), where m(S) is the minimum modulus

of S.

Proof (i)⇒(ii) Let T ⊥B S and dimH =∞. By (2.3), there exists a sequence of unit
vectors (ξn) ⊂ H such that limn→∞ ∥T ξn∥ = ∥T∥ and limn→∞[T ξn , Sξn] = 0. We
have

∥T + λS∥2 ≥ ∥(T + λS)ξn∥2 = ∥T ξn∥2 + λ[T ξn , Sξn] + λ[Sξn , T ξn] + ∣λ∣2∥Sξn∥2 ,

for all λ ∈ C and n ∈ N. _us,

∥T + λS∥2 ≥ ∥T∥2 + ∣λ∣2 lim
n→∞

sup ∥Sξn∥2 ≥ ∥T∥2 + ∣λ∣2m2(S) (λ ∈ C).

When dimH <∞, by using (2.4), we can similarly prove the statement (ii).
(ii)⇒(i) _is implication is trivial.

Remark 2.10 Notice that for S ∈ B(H ) it is straightforward to show that m(S) > 0
if and only if S is bounded below, or equivalently, S is le� invertible. So in the impli-
cation (i)⇒(ii) of_eorem 2.9, if S is le� invertible, then m(S) > 0.

It is well known that Pythagoras’ equality does not hold in B(H ). _e following
result is a kind of Pythagorean inequality for bounded linear operators.

Corollary 2.11 Let T , S ∈ B(H ) with m(S) > 0. _en there exists a unique γ ∈ C,
such that

∥(T + γS) + λS∥ 2
≥ ∥T + γS∥ 2

+ ∣λ∣2m2(S) (λ ∈ C).

Proof _e function λ ↦ ∥T + λS∥ attains its minimum at, say, γ (there may be of
coursemany such points) and hence T + γS ⊥B S. So, by _eorem 2.9, we have

∥(T + γS) + λS∥ 2
≥ ∥T + γS∥ 2

+ ∣λ∣2m2(S) (λ ∈ C).

Now, suppose that ξ is another point satisfying the inequality

∥(T + ξS) + λS∥ 2
≥ ∥T + ξS∥ 2

+ ∣λ∣2m2(S) (λ ∈ C).
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Choose λ = γ − ξ to get

∥T + γS∥ 2
= ∥(T + ξS) + (γ − ξ)S∥ 2

≥ ∥T + ξS∥ 2
+ ∣γ − ξ∣2m2(S)

≥ ∥T + γS∥ 2
+ ∣γ − ξ∣2m2(S).

Hence 0 ≥ ∣γ − ξ∣2m2(S). Since m2(S) > 0, we get ∣γ − ξ∣2 = 0, or equivalently, γ = ξ.
_is shows that γ is unique.

Let T ∈ B(H ). For every S ∈ B(H ), it is easy to see that if there exists a unit
vector ξ ∈ H such that ∥T∥ξ = ∣T ∣ξ and S∗T ξ = 0; then T⊥s

B S. _e question is under
which conditions the converse is true. When theHilbert space is ûnite dimensional, it
follows from Corollary 2.7(iii) that there exists a unit vector ξ ∈ H such that ∥T∥ξ =
∣T ∣ξ and S∗T ξ = 0.

_e following example shows that the ûnite dimensionality in statement (iii) of
Corollary 2.7 is essential.

Example 2.12 Consider operators T , S∶ ℓ2 → ℓ2 deûned by

T(ξ1 , ξ2 , ξ3 , . . . ) = (
1
2
ξ1 ,

2
3
ξ2 ,

3
4
ξ3 , . . .) and S(ξ1 , ξ2 , ξ3 , . . . ) = (ξ1 , 0, 0, . . . ).

One can easily observe that T ⊥B S and T∗S(ξ1 , ξ2 , ξ3 , . . . ) = 1
2 ξ1

2
≥ 0. So, by (1.1),

we get T ⊥s
B S. But there does not exist ξ ∈ ℓ2 such that ∥T∥ξ = ∣T ∣ξ.

We now settle the problem for any inûnite dimensional Hilbert space. _e proof
of_eorem 2.13 is amodiûcation of one given by Paul et al. [21,_eorem 3.1].

_eorem 2.13 Let dimH =∞ and T ∈ B(H ). If SH0 =MT , whereH0 is a ûnite
dimensional subspace ofH and ∥T∥H0

⊥ = sup{∥T ξ∥ ∶ ξ ∈ H0
⊥ , ∥ξ∥ = 1} < ∥T∥, then

for every S ∈ B(H ), the following statements are equivalent:
(i) T ⊥s

B S.
(ii) _ere exists a unit vector ξ ∈ H0 such that ∥T ξ∥ = ∥T∥ and S∗T ξ = 0.
(iii) _ere exists a unit vector ξ ∈ H0 such that ∥T∥ξ = ∣T ∣ξ and S∗T ξ = 0.

Proof (i)⇒(ii) Suppose (i) holds. By (2.3), there exists a sequence of unit vectors
{ζn} in H such that

lim
n→∞

∥Tζn∥ = ∥T∥ and lim
n→∞

S∗Tζn = 0.(2.5)

For each n ∈ N, we have ζn = ξn + ηn , where ξn ∈ H0 and ηn ∈ H0
⊥.

Since H0 is a ûnite dimensional subspace and ∥ξn∥ ≤ 1, {ξn} has a convergent
subsequence converging to some element ofH0. Without loss of generalitywe assume
that limn→∞ ξn = ξ. Since SH0 =MT ,

lim
n→∞

∥T ξn∥ = ∥T ξ∥ = ∥T∥∥ξ∥(2.6)

and

lim
n→∞

∥ηn∥
2 = lim

n→∞
(∥ζn∥2 − ∥ξn∥2) = 1 − ∥ξ∥2 .(2.7)
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Now for each non-zero element ξn ∈ H0, by hypothesis ξn
∥ξn∥

∈ SH0 = MT , and so
∥T ξn∥ = ∥T∥∥ξn∥. _us,

∥T∗T∥∥ξn∥2 = ∥T∥2∥ξn∥2 = ∥T ξn∥2 = [T∗T ξn , ξn] ≤ ∥T∗T ξn∥∥ξn∥ ≤ ∥T∗T∥.

Hence, [T∗T ξn , ξn] = ∥T∗T ξn∥∥ξn∥. By the equality case of Cauchy–Schwarz in-
equality T∗T ξn = λn ξn for some λn ∈ C, and therefore

[T∗T ξn , ηn] = [T∗Tηn , ξn] = 0.(2.8)

By (2.5), (2.6), and (2.8) we have

∥T∥2 = lim
n→∞

∥Tζn∥2 = lim
n→∞

[T∗Tζn , ζn]

= lim
n→∞

([T∗T ξn , ξn] + [T∗T ξn , ηn] + [T∗Tηn , ξn] + [T∗Tηn , ηn])

= lim
n→∞

∥T ξn∥2 + lim
n→∞

∥Tηn∥
2 = ∥T∥2∥ξ∥2 + lim

n→∞
∥Tηn∥

2 ,

whence by (2.7) we reach

(2.9) lim
n→∞

∥Tηn∥
2 = ∥T∥2(1 − ∥ξ∥2) = ∥T∥2 lim

n→∞
∥ηn∥

2 .

By the hypothesis ∥T∥H0
⊥ < ∥T∥, and so by (2.9) there does not exist any non-zero

subsequence of {∥ηn∥}. So we conclude that ηn = 0 for all n ∈ N. Hence, (2.5) and
(2.7) imply

∥ξ∥ = 1, ∥T ξ∥ = ∥T∥, and S∗T ξ = 0.

(ii)⇒(iii) _is implication follows from the proof of Corollary 2.7.
(iii)⇒(i) _is implication is trivial.

Corollary 2.14 Let dimH =∞ and T ∈ B(H ). If SH0 =MT , whereH0 is a ûnite
dimensional subspace ofH and ∥T∥H0

⊥ < ∥T∥, then there exists a unit vector ξ ∈ H0
such that ∥T∥ξ = ∣T ∣ξ and ∥T∥2T∗T ξ = (T∗T)2ξ.

Proof By (1.3), T⊥s
B (∥T∥2T−TT∗T). So, by_eorem 2.13, there exists a unit vector

ξ ∈ H0 such that ∥T∥ξ = ∣T ∣ξ and (∥T∥2T − TT∗T)∗T ξ = 0. _us, ∥T∥2T∗T ξ =
(T∗T)2ξ.

Corollary 2.15 Let dimH =∞ and let T ∈ B(H ) be a nonzero positive operator. If
SH0 = MT , whereH0 is a ûnite dimensional subspace ofH and ∥T∥H0

⊥ < ∥T∥, then
for every S ∈ B(H ) the following statements are equivalent:
(i) T ⊥s

B S.
(ii) _ere exists a unit vector ξ ∈ H0 such that T ξ = ∥T∥ξ and S∗ξ = 0.

Proof Obviously, (ii)⇒(i).
Suppose (i) holds. By _eorem 2.13, there exists a unit vector ξ ∈ H0 such that

∥T ξ∥ = ∥T∥ and S∗T ξ = 0. Since T ≥ 0, ∥T ξ∥ = ∥T∥ ⇔ T ξ = ∥T∥ξ. _erefore,
S∗T ξ = 0⇔ S∗ξ = 0, as T /= 0.
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3 An Approximate Strong Birkhoff–James Orthogonality

Recall that in an inner product A -module V and for ε ∈ [0, 1), we say x , y are ap-
proximate strongly Birkhoò–James orthogonal, in short x ⊥s

Bε y, if

∥x + ya∥2 ≥ ∥x∥2 − 2ε∥a∥∥x∥∥y∥ (a ∈ A ).

_e following proposition states some basic properties of the relation ⊥s
Bε .

Proposition 3.1 Let ε ∈ [0, 1
2 ) and let V be an inner product A -module. _en the

following statements hold for every x , y ∈ V :
(i) x ⊥s

Bε x⇔ x = 0.
(ii) x ⊥s

Bε y⇒ αx ⊥s
Bε βy for all α, β ∈ C.

(iii) x ⊥ε y⇒ x ⊥s
Bε y.

(iv) x ⊥s
Bε y⇒ x ⊥εB y.

(v) x ⊥s
Bε y⇔ x ⊥εB ya for all a ∈ A .

Proof (i) Let x ⊥s
Bε x. Also, suppose that (e i)i∈I is an approximate unit for A . We

have
∥x − xe i∥2 ≥ ∥x∥2 − 2ε∥ − e i∥∥x∥∥x∥ (i ∈ I).

Since limi ∥x − xe i∥ = 0 and ∥e i∥ = 1, we get (1 − 2ε)∥x∥2 ≤ 0. _us, x = 0.
_e converse is obvious.
(ii) Let x ⊥s

Bε y and let α, β ∈ C. Excluding the obvious case α = 0, we have

∥αx + βya∥2 = ∣α∣2∥x + y β
α
a∥

2
≥ ∣α∣2(∥x∥2 − 2ε∥a∥∥x∥∥ β

α
y∥)

= ∥αx∥2 − 2ε∥a∥∥αx∥∥βy∥.

Hence, αx ⊥s
Bε βy.

(iii) Let x ⊥ε y. For any a ∈ A , we have

∥x + ya∥2 = ∥⟨x + ya, x + ya⟩∥ = ∥⟨x , x⟩ + ⟨ya, ya⟩ + ⟨x , ya⟩ + ⟨ya, x⟩∥
≥ ∥⟨x , x⟩ + ⟨ya, ya⟩∥ − ∥⟨x , ya⟩ + ⟨ya, x⟩∥
≥ ∥⟨x , x⟩∥ − ∥⟨x , ya⟩ + ⟨ya, x⟩∥
≥ ∥x∥2 − ∥⟨x , ya⟩∥ − ∥⟨ya, x⟩∥ ≥ ∥x∥2 − 2∥a∥∥⟨x , y⟩∥
≥ ∥x∥2 − 2ε∥a∥∥x∥∥y∥.

_us, ∥x + ya∥2 ≥ ∥x∥2 − 2ε∥a∥∥x∥∥y∥, or equivalently, x ⊥s
Bε y.

(iv) Let x ⊥s
Bε y. Hence, for any λ ∈ C and an approximate unit (e i)i∈I for A , we

have

(∥x + λy∥ + ∣λ∣∥ye i − y∥) 2
≥ ∥x + λye i∥2 ≥ ∥x∥2 − 2ε∥λe i∥∥x∥∥y∥
≥ ∥x∥2 − 2ε∣λ∣∥x∥∥y∥.

Since lim
i

∥ye i−y∥ = 0,whencewe get ∥x+λy∥2 ≥ ∥x∥2−2ε∣λ∣∥x∥∥y∥, or equivalently,
x ⊥ε y.
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(v) Let x ⊥s
Bε y and let (e i)i∈I be an approximate unit for A . We have

(∥x + λya∥ + ∥λyae i − λya∥) 2
≥ ∥x + λyae i∥2 ≥ ∥x∥2 − 2ε∥λae i∥∥x∥∥y∥
≥ ∥x∥2 − 2ε∣λ∣∥a∥∥x∥∥y∥

for all a ∈ A and all λ ∈ C. Since lim
i

∥yae i − ya∥ = 0, we obtain from the above
inequality

∥x + λya∥2 ≥ ∥x∥2 − 2ε∣λ∣∥a∥∥x∥∥y∥,
for all a ∈ A and all λ ∈ C. _us, x ⊥εB ya for all a ∈ A .

_e converse is trivial.

Proposition 3.1 shows that in an arbitrary inner product C∗-module the relation
⊥ε isweaker than the relation ⊥s

Bε and this relation isweaker than the relation ⊥εB , but
the converses are not true in general (see the example below).

Example 3.2 Suppose that ε ∈ [0, 1
2 ). ConsiderM2(C), regarded as an inner prod-

uct M2(C)-module. Let I = [ 1 0
0 1 ] ,A = [ −1 0

0 1 ] and B = [ 1 0
0 0 ] . _en

∥I + λA∥2 = ∥[
1 − λ 0
0 1 + λ]∥

2

= (max{∣1 − λ∣, ∣1 + λ∣}) 2

≥ 1 ≥ 1 − 2ε∣λ∣ = ∥I∥2 − 2ε∣λ∣∥I∥∥A∥

for all λ ∈ C. Hence I ⊥εB A, but not I ⊥s
Bε A, since

∥I + A(−A)∥2 = 0 < 1 − 2ε = ∥I∥2 − 2ε∥ − A∥∥I∥∥A∥.

On the other hand, for any C = [ c1 c2c3 c4 ] , we have

∥I + BC∥2 = ∥[
1 + c1 c2
0 1 ]∥

= [
1
2
( ∣1 + c1∣2 + ∣c2∣2 + 1) +

1
2

√
(∣1 + c1∣2 + ∣c2∣2 + 1)2 − 4∣1 + c1∣2]

1
2

≥ 1 ≥ 1 − 2ε∥C∥∥B∥ = ∥I∥2 − 2ε∥C∥∥I∥∥B∥.

_erefore, I ⊥s
Bε B. But not I ⊥ε B since

∥⟨I, B⟩∥ = ∥B∥ = 1 > ε = ε∥I∥∥B∥.

By combining Proposition 3.1(iv) and [19, _eorem 3.5], we obtain the following
result (see also [9, 12, 18]).

Corollary 3.3 Let V ,W be inner product A -modules, ε ∈ [0, 1
2 ) and let T ∶V →W

be a linear mapping satisfying x ⊥B y⇒ Tx ⊥s
Bε Ty. _en

(1 − 16ε)∥T∥∥x∥ ≤ ∥Tx∥ ≤ ∥T∥∥x∥ (x ∈ V).

Proposition 3.4 Let ε ∈ [0, 1). Let x , y be elements in an inner product A -module
V such that ⟨x , x⟩ ⊥s

Bε ⟨x , y⟩; then x ⊥s
Bε y.
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Proof We assume that x /= 0. Since ⟨x , x⟩ ⊥s
Bε ⟨x , y⟩, therefore for every a ∈ A , we

have

∥⟨x , x⟩ + ⟨x , y⟩a∥2 ≥ ∥⟨x , x⟩∥2 − 2ε∥a∥∥⟨x , x⟩∥∥⟨x , y⟩∥

or equivalently,

∥⟨x , x + ya⟩∥2 ≥ ∥x∥4 − 2ε∥a∥∥x∥2∥⟨x , y⟩∥.

Hence, we get

∥x∥2∥x + ya∥2 ≥ ∥x∥4 − 2ε∥a∥∥x∥3∥y∥ (a ∈ A ).

Since ∥x∥2 /= 0, we obtain from the above inequality

∥x + ya∥2 ≥ ∥x∥2 − 2ε∥a∥∥x∥∥y∥ (a ∈ A ).

_us, x ⊥s
Bε y.

Proposition 3.5 Let x , y be two elements in an inner product A -module V and let
ε ∈ [0, 1). If there exists a state φ on A such that φ(⟨x , x⟩) = ∥x∥2 and ∣φ(⟨x , y⟩a)∣ ≤
ε∥a∥∥x∥∥y∥ for all a ∈ A , then x ⊥s

Bε y.

Proof We assume that x /= 0. Let a ∈ A . By the Cauchy–Schwarz inequality, we
have

∥x∥2 = φ(⟨x , x⟩) = ∣φ(⟨x , x + ya⟩) − φ(⟨x , ya⟩)∣
≤ ∣φ(⟨x , x + ya⟩)∣ + ∣φ(⟨x , ya⟩)∣

≤
√

φ(⟨x , x⟩)φ(⟨x + ya, x + ya⟩) + ε∥a∥∥x∥∥y∥
≤ ∥x∥∥x + ya∥ + ε∥a∥∥x∥∥y∥.

_us, ∥x∥2 ≤ ∥x∥∥x + ya∥ + ε∥a∥∥x∥∥y∥, i.e, ∥x + ya∥ ≥ ∥x∥ − ε∥a∥∥y∥. We consider
two cases.

Case 1: If ∥x∥ − ε∥a∥∥y∥ ≥ 0, then we get

∥x + ya∥2 ≥ (∥x∥ − ε∥a∥∥y∥) 2
= ∥x∥2 − 2ε∥a∥∥x∥∥y∥ + ε2∥a∥2∥y∥2

≥ ∥x∥2 − 2ε∥a∥∥x∥∥y∥.

Case 2: If ∥x∥ − ε∥a∥∥y∥ < 0, then we reach

∥x + ya∥2 ≥ 0 > ∥x∥(∥x∥ − ε∥a∥∥y∥) ≥ ∥x∥(∥x∥ − ε∥a∥∥y∥) − ε∥a∥∥x∥∥y∥
= ∥x∥2 − 2ε∥a∥∥x∥∥y∥.

Hence, x ⊥s
Bε y.

Proposition 3.6 Let x , y be two elements in an inner product A -module V and let
ε ∈ [0, 1

2 ). If x ⊥
s
Bε y then there exists a state φ on A such that

∣φ(⟨x , y⟩a)∣ ≤
√

2ε∥a∥∥x∥∥y∥ (a ∈ A ).
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Proof Suppose that x ⊥s
Bε y. Because of the homogeneity of relation ⊥s

Bε , we can
assume, without loss of generality, that ∥x∥ = ∥y∥ = 1. _en for arbitrary a ∈ A , we
have

∥x + ya∥2 ≥ 1 − 2ε∥a∥∥y∥.
Since ∥ − ⟨y, x⟩∥ ≤ ∥y∥∥x∥ = 1, for a = −⟨y, x⟩ ∈ A we get

∥x − y⟨y, x⟩∥2 ≥ 1 − 2ε.

On the other hand, by [20,_eorem 3.3.6], there is φ ∈ S(A ) such that

φ(⟨x − y⟨y, x⟩, x − y⟨y, x⟩⟩) = ∥x − y⟨y, x⟩∥2 .

Also, we have

φ(⟨x − y⟨y, x⟩, x − y⟨y, x⟩⟩)
= φ(⟨x , x⟩) − 2φ(⟨x , y⟩⟨y, x⟩) + φ(⟨x , y⟩⟨y, y⟩⟨y, x⟩)
≤ ∥x∥2 − 2φ(⟨x , y⟩⟨y, x⟩) + φ(⟨x , y⟩∥y∥2⟨y, x⟩)
= 1 − φ(⟨x , y⟩⟨y, x⟩),

so, we get

1 − φ(⟨x , y⟩⟨y, x⟩) ≥ φ(⟨x − y⟨y, x⟩, x − y⟨y, x⟩⟩) = ∥x − y⟨y, x⟩∥2 ≥ 1 − 2ε.

_erefore, φ(⟨x , y⟩⟨y, x⟩) ≤ 2ε. Now, by the Cauchy–Schwarz inequality, we reach

∣φ(⟨x , ya⟩)∣ ≤
√

φ(⟨x , y⟩⟨y, x⟩)φ(a∗a) ≤
√

2ε∥a∥ (a ∈ A ).

Acknowledgments _e authorswould like to sincerely thank the referee for several
useful suggestions.
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