Characterizations of Operator Birkhoff-James Orthogonality

Mohammad Sal Moslehian and Ali Zamani

Abstract

In this paper, we obtain some characterizations of the (strong) Birkhoff-James orthogonality for elements of Hilbert C^{*}-modules and certain elements of $\mathbb{B}(\mathscr{H})$. Moreover, we obtain a kind of Pythagorean relation for bounded linear operators. In addition, for $T \in \mathbb{B}(\mathscr{H})$ we prove that if the norm attaining set \mathbb{M}_{T} is a unit sphere of some finite dimensional subspace \mathscr{H}_{0} of \mathscr{H} and $\|T\|_{\mathscr{H}_{0} \perp}<\|T\|$, then for every $S \in \mathbb{B}(\mathscr{H}), T$ is the strong Birkhoff-James orthogonal to S if and only if there exists a unit vector $\xi \in \mathscr{H}_{0}$ such that $\|T\| \xi=|T| \xi$ and $S^{*} T \xi=0$. Finally, we introduce a new type of approximate orthogonality and investigate this notion in the setting of inner product C^{*}-modules.

1 Introduction and Preliminaries

Let $\mathbb{B}(\mathscr{H}, \mathscr{K})$ denote the linear space of all bounded linear operators between Hilbert spaces $(\mathscr{H},[\cdot, \cdot])$ and $(\mathscr{K},[\cdot, \cdot])$. By I we denote the identity operator. When $\mathscr{H}=$ \mathscr{K}, we write $\mathbb{B}(\mathscr{H})$ for $\mathbb{B}(\mathscr{H}, \mathscr{K})$. By $\mathbb{K}(\mathscr{H})$ we denote the algebra of all compact operators on \mathscr{H}, and by $\mathcal{C}_{1}(\mathscr{H})$ the algebra of all trace-class operators on \mathscr{H}. Let $\mathbb{S}_{\mathscr{H}}=\{\xi \in \mathscr{H}:\|\xi\|=1\}$ be the unit sphere of \mathscr{H}. For $T \in \mathbb{B}(\mathscr{H})$, let \mathbb{M}_{T} denote the set of all vectors in $\mathbb{S}_{\mathscr{H}}$ at which T attains norm, i.e., $\mathbb{M}_{T}=\left\{\xi \in \mathbb{S}_{\mathscr{H}}:\|T \xi\|=\|T\|\right\}$. For $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$, the symbol $m(T):=\inf \left\{\|T \xi\|: \xi \in \mathbb{S}_{\mathscr{H}}\right\}$ denotes the minimum modulus of T.

Inner product C^{*}-modules generalize inner product spaces by allowing inner products to take values in an arbitrary C^{*}-algebra instead of the C^{*}-algebra of complex numbers.

In an inner product C^{*}-module $(V,\langle\cdot, \cdot\rangle)$ over a C^{*}-algebra \mathscr{A} the following Cauchy-Schwarz inequality holds (see also [1]):

$$
\langle x, y\rangle^{*}\langle x, y\rangle \leq\|\langle x, x\rangle\|\langle y, y\rangle \quad(x, y \in V)
$$

Consequently, $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$ defines a norm on V. If V is complete with respect to this norm, then it is called a Hilbert \mathscr{A}-module, or a Hilbert C^{*}-module over \mathscr{A}. Any C^{*}-algebra \mathscr{A} can be regarded as a Hilbert C^{*}-module over itself via $\langle a, b\rangle:=a^{*} b$. For every $x \in V$ the positive square root of $\langle x, x\rangle$ is denoted by $|x|$. In the case of a C^{*}-algebra, we get the usual notation $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$. By $\mathcal{S}(\mathscr{A})$ we denote the set of all

Received by the editors August 27, 2016; revised January 23, 2017.
Published electronically March 8, 2017.
M. S. Moslehian (the corresponding author) was supported by a grant from Ferdowsi University of Mashhad (No. 2/42627).

AMS subject classification: 46L05, 46L08, 46B20.
Keywords: Hilbert C^{*}-module, Birkhoff-James orthogonality, strong Birkhoff-James orthogonality, approximate orthogonality.
states of \mathscr{A}, that is, the set of all positive linear functionals of \mathscr{A} whose norm is equal to one.

Furthermore, if $\varphi \in \mathcal{S}(\mathscr{A})$, then $(x, y) \mapsto \varphi(\langle x, y\rangle)$ gives rise to a usual semi-inner product on V, so we have the following useful Cauchy-Schwarz inequality:

$$
|\varphi(\langle x, y\rangle)|^{2} \leq \varphi(\langle x, x\rangle) \varphi(\langle y, y\rangle) \quad(x, y \in V) .
$$

We refer the reader to $[11,17,20]$ for more information on the basic theory of C^{*}-algebras and Hilbert C^{*}-modules.

A concept of orthogonality in a Hilbert C^{*}-module can be defined with respect to the C^{*} - valued inner product in a natural way: two elements x and y of a Hilbert C^{*}-module V over a C^{*}-algebra \mathscr{A} are called orthogonal, denoted $x \perp y$, if $\langle x, y\rangle=0$.

In a normed linear space there are several notions of orthogonality, all of which are generalizations of orthogonality in a Hilbert space. One of the most important concepts is that of the Birkhoff-James orthogonality: if x, y are elements of a complex normed linear space $(X,\|\cdot\|)$, then x is orthogonal to y in the Birkhoff-James sense [6,16], in short, $x \perp_{B} y$, if

$$
\|x+\lambda y\| \geq\|x\| \quad(\lambda \in \mathbb{C}) .
$$

The central role of Birkhoff-James orthogonality in approximation theory is typified by the fact that $T \in \mathbb{B}(\mathscr{H})$ is a best approximation of $S \in \mathbb{B}(\mathscr{H})$ from a linear subspace M of $\mathbb{B}(\mathscr{H})$ if and only if T is a Birkhoff-James orthogonal projection of S onto M. By the Hahn-Banach theorem, if x, y are two elements of a normed linear space X, then $x \perp_{B} y$ if and only if there is a norm one linear functional f of X such that $f(x)=\|x\|$ and $f(y)=0$. If we have additional structures on a normed linear space X, then we obtain other characterizations of Birkhoff-James orthogonality; see [$3,5,13,22,25$] and the references therein.

In Section 2, we present some characterizations of Birkhoff-James orthogonality for elements of a Hilbert $\mathbb{K}(\mathscr{H})$-module and elements of $\mathbb{B}(\mathscr{H})$. Next, we will give some applications. In particular, for $T, S \in \mathbb{B}(\mathscr{H})$ with $m(S)>0$, we prove that there exists a unique $\gamma \in \mathbb{C}$ such that

$$
\|(T+\gamma S)+\lambda S\|^{2} \geq\|T+\gamma S\|^{2}+|\lambda|^{2} m^{2}(S) \quad(\lambda \in \mathbb{C}) .
$$

As a natural generalization of the notion of Birkhoff-James orthogonality, the concept of strong Birkhoff-James orthogonality, which involves modular structure of a Hilbert C^{*}-module was introduced in [2]. When x and y are elements of a Hilbert \mathscr{A}-module V, x is orthogonal to y in the strong Birkhoff-James sense, in short, $x \perp_{B}^{s} y$ if

$$
\|x+y a\| \geq\|x\| \quad(a \in \mathscr{A}) ;
$$

i.e., the distance from x to $\overline{y \mathscr{A}}$, the \mathscr{A}-submodule of V generated by y, is exactly $\|x\|$. This orthogonality is "between" \perp and \perp_{B}, i.e.,

$$
x \perp y \Longrightarrow x \perp_{B}^{s} y \Longrightarrow x \perp_{B} y, \quad(x, y \in V),
$$

while the converses do not hold in general (see [2]). It was shown in [2] that the following relation between the strong and the classical Birkhoff-James orthogonality is valid:

$$
x \perp_{B}^{s} y \Leftrightarrow x \perp_{B} y\langle y, x\rangle \quad(x, y \in V) .
$$

In particular, by [3, Proposition 3.1], if $\langle x, y\rangle \geq 0$, then

$$
\begin{equation*}
x \perp_{B}^{s} y \Leftrightarrow x \perp_{B} y \quad(x, y \in V) \tag{1.1}
\end{equation*}
$$

If V is a full Hilbert \mathscr{A}-module, then the only case where the orthogonalities \perp_{B}^{s} and \perp_{B} coincide is when \mathscr{A} is isomorphic to \mathbb{C} (see [3, Theorem 3.5]), while orthogonalities \perp_{B}^{s} and \perp coincide only when \mathscr{A} or $\mathbb{K}(V)$ is isomorphic to \mathbb{C} (see [3, Theorems 4.7, 4.8]). Further, by [3, Lemma 4.2], we have

$$
\begin{array}{ll}
x \perp_{B}\left(\|x\|^{2} y-y\langle x, x\rangle\right) & (x, y \in V) \\
x \perp_{B}^{s}\left(\|x\|^{2} x-x\langle x, x\rangle\right) & (x \in V) \tag{1.3}
\end{array}
$$

In Section 2, we obtain a characterization of strong Birkhoff-James orthogonality for elements of a C^{*}-algebra. We also present some characterizations of strong BirkhoffJames orthogonality for certain elements of $\mathbb{B}(\mathscr{H})$. In particular, for $T \in \mathbb{B}(\mathscr{H})$ we prove that if $\mathbb{S}_{\mathscr{H}_{0}}=\mathbb{M}_{T}$, where \mathscr{H}_{0} is a finite dimensional subspace of \mathscr{H} and $\|T\|_{\mathscr{H}_{0}{ }^{\perp}}<\|T\|$, then for every $S \in \mathbb{B}(\mathscr{H}), T \perp_{B}^{s} S$ if and only if there exists a unit vector $\xi \in \mathscr{H}_{0}$ such that $\|T\| \xi=|T| \xi$ and $S^{*} T \xi=0$.

For given $\varepsilon \geq 0$, elements x, y in an inner product \mathscr{A}-module V are said to be approximately orthogonal or ε-orthogonal, in short, $x \perp^{\varepsilon} y$ if $\|\langle x, y\rangle\| \leq \varepsilon\|x\|\|y\|$. For $\varepsilon \geq 1$, it is clear that every pair of vectors is ε-orthogonal, so the interesting case is when $\varepsilon \in[0,1)$.

In an arbitrary normed space X, Chmieliński $[7,8]$ introduced the approximate Birkhoff-James orthogonality $x \perp_{B}^{\varepsilon} y$ by

$$
\|x+\lambda y\|^{2} \geq\|x\|^{2}-2 \varepsilon|\lambda|\|x\|\|y\| \quad(\lambda \in \mathbb{C})
$$

Inspired by the above approximate Birkhoff-James orthogonality, we propose a new type of approximate orthogonality in inner product C^{*}-modules.

Definition 1.1 For given $\varepsilon \in[0,1)$, elements x, y of an inner product \mathscr{A}-module V are said to be approximate strongly Birkhoff-James orthogonal, denoted by $x \perp_{B^{\varepsilon}}^{s} y$, if

$$
\|x+y a\|^{2} \geq\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\| \quad(a \in \mathscr{A}) .
$$

In Section 3, we investigate this notion of approximate orthogonality in inner product C^{*}-modules. In particular, we show that

$$
x \perp^{\varepsilon} y \Longrightarrow x \perp_{B^{\varepsilon}}^{s} y \Longrightarrow x \perp_{B}^{\varepsilon} y, \quad(x, y \in V)
$$

while the converses do not hold in general.
As a result, we show that if $T: V \rightarrow W$ is a linear mapping between inner product \mathscr{A}-modules such that $x \perp_{B} y \Rightarrow T x \perp_{B^{\varepsilon}}^{s} T y$ for all $x, y \in V$, then

$$
(1-16 \varepsilon)\|T\|\|x\| \leq\|T x\| \leq\|T\|\|x\| \quad(x \in V)
$$

Some other related topics can be found in [14, 15, 23, 24].

2 Operator (Strong) Birkhoff-James Orthogonality

The characterization of the (strong) Birkhoff-James orthogonality for elements of a Hilbert C^{*}-module by means of the states of the underlying C^{*}-algebra is known. For
elements x, y of a Hilbert \mathscr{A}-module V, the following results were obtained in [2,5]:
(2.1) $x \perp_{B} y \Longleftrightarrow\left(\exists \varphi \in \mathcal{S}(\mathscr{A}): \varphi(\langle x, x\rangle)=\|x\|^{2}\right.$ and $\left.\varphi(\langle x, y\rangle)=0\right)$
(2.2) $x \perp_{B}^{s} y \Longleftrightarrow\left(\exists \varphi \in \mathcal{S}(\mathscr{A}): \varphi(\langle x, x\rangle)=\|x\|^{2}\right.$ and $\left.\varphi(\langle x, y\rangle a)=0 \forall a \in \mathscr{A}\right)$.

In the following result we establish a characterization of Birkhoff-James orthogonality for elements of a Hilbert $\mathbb{K}(\mathscr{H})$-module.

Theorem 2.1 Let V be a Hilbert $\mathbb{K}(\mathscr{H})$-module and $x, y \in V$. Then the following statements are equivalent:
(i) $x \perp_{B} y$.
(ii) There exists a positive operator $P \in \mathcal{C}_{1}(\mathscr{H})$ of trace one such that

$$
\|x+\lambda y\|^{2} \geq\|x\|^{2}+|\lambda|^{2} \operatorname{tr}\left(P|y|^{2}\right) \quad(\lambda \in \mathbb{C})
$$

Proof Let $x \perp_{B} y$. By (2.1), there exists a state φ over $\mathbb{K}(\mathscr{H})$ such that $\varphi(\langle x, x\rangle)=$ $\|x\|^{2}$ and $\varphi(\langle x, y\rangle)=0$. For every $\lambda \in \mathbb{C}$, we therefore have

$$
\begin{aligned}
\|x+\lambda y\|^{2} & \geq \varphi(\langle x+\lambda y, x+\lambda y\rangle) \\
& =\varphi(\langle x, x\rangle)+\lambda \varphi(\langle x, y\rangle)+\overline{\lambda \varphi(\langle x, y\rangle)}+|\lambda|^{2} \varphi(\langle y, y\rangle) \\
& =\|x\|^{2}+|\lambda|^{2} \varphi\left(|y|^{2}\right)
\end{aligned}
$$

Thus,

$$
\|x+\lambda y\|^{2} \geq\|x\|^{2}+|\lambda|^{2} \varphi\left(|y|^{2}\right) \quad(\lambda \in \mathbb{C})
$$

Now, by [20, Theorem 4.2.1], there exists a positive operator $P \in \mathcal{C}_{1}(\mathscr{H})$ of trace one such that $\varphi(T)=\operatorname{tr}(P T), T \in \mathbb{K}(\mathscr{H})$. Thus, we have

$$
\|x+\lambda y\|^{2} \geq\|x\|^{2}+|\lambda|^{2} \varphi\left(|y|^{2}\right)=\|x\|^{2}+|\lambda|^{2} \operatorname{tr}\left(P|y|^{2}\right) \quad(\lambda \in \mathbb{C}) .
$$

Conversely, if (ii) holds, then, since $|\lambda|^{2} \operatorname{tr}\left(P|y|^{2}\right) \geq 0$ for all $\lambda \in \mathbb{C}$, we get

$$
\|x+\lambda y\| \geq \sqrt{\|x\|^{2}+|\lambda|^{2} \operatorname{tr}\left(P|y|^{2}\right)} \geq\|x\| \quad(\lambda \in \mathbb{C}) .
$$

Hence, $x \perp_{B} y$.
Remark 2.2 Let V be a Hilbert $\mathbb{K}(\mathscr{H})$-module and $x, y \in V$. Using the same argument as in the proof of Theorem 2.1 and (2.2) we obtain $x \perp_{B}^{s} y$ if and only if there exists a positive operator $P \in \mathcal{C}_{1}(\mathscr{H})$ of trace one such that

$$
\|x+y a\|^{2} \geq\|x\|^{2}+\operatorname{tr}\left(P|y a|^{2}\right) \quad(a \in \mathscr{A})
$$

In the following result we establish a characterization of strong Birkhoff-James orthogonality for elements of a C^{*}-algebra.

Theorem 2.3 Let \mathscr{A} be $a C^{*}$-algebra, and $a, b \in \mathscr{A}$. Then the following statements are equivalent:
(i) $a \perp_{B}^{s} b$.
(ii) There exist a Hilbert space \mathscr{H}, a representation $\pi: \mathscr{A} \rightarrow \mathbb{B}(\mathscr{H})$, and a unit vector $\xi \in \mathscr{H}$ such that

$$
\|a+b c\|^{2} \geq\|a\|^{2}+\|\pi(b c) \xi\|^{2} \quad(c \in \mathscr{A})
$$

Proof Suppose that $a \perp_{B}^{s} b$. By (2.2) applied to $V=\mathscr{A}$ and using the same argument as in the proof of Theorem 2.1, there exists a state φ of \mathscr{A} such that $\|a+b d\|^{2} \geq$ $\|a\|^{2}+\varphi\left(|b d|^{2}\right)$ for all $d \in \mathscr{A}$. Now, by [11, Proposition 2.4.4] there exist a Hilbert space \mathscr{H}, a representation $\pi: \mathscr{A} \rightarrow \mathbb{B}(\mathscr{H})$, and a unit vector $\xi \in \mathscr{H}$ such that for any $c \in \mathscr{A}$ we have $\varphi(c)=[\pi(c) \xi, \xi]$. Hence,

$$
\begin{aligned}
\|a+b c\|^{2} & \geq\|a\|^{2}+\varphi\left(|b c|^{2}\right)=\|a\|^{2}+\left[\pi\left(|b c|^{2}\right) \xi, \xi\right] \\
& =\|a\|^{2}+[\pi(b c) \xi, \pi(b c) \xi]=\|a\|^{2}+\|\pi(b c) \xi\|^{2}
\end{aligned}
$$

for all $c \in \mathscr{A}$.
The converse is obvious.
Corollary 2.4 Let \mathscr{A} be a unital C^{*}-algebra with the unit e. For every self-adjoint noninvertible a $\in \mathscr{A}$, there exist a Hilbert space \mathscr{H}, a representation $\pi: \mathscr{A} \rightarrow \mathbb{B}(\mathscr{H})$ and a unit vector $\xi \in \mathscr{H}$ such that

$$
\|e+a b\|^{2} \geq 1+\|\pi(a b) \xi\|^{2} \quad(b \in \mathscr{A})
$$

Proof Since a is noninvertible, a^{2} is noninvertible as well. Therefore there is a state φ of \mathscr{A} such that $\varphi\left(a^{2}\right)=0$. We have $\varphi\left(e e^{*}\right)=\|e\|^{2}=1$ and

$$
|\varphi(e a b)| \leq \sqrt{\varphi\left(e a a^{*} e^{*}\right) \varphi\left(b^{*} b\right)}=\sqrt{\varphi\left(a^{2}\right) \varphi\left(b^{*} b\right)}=0 \quad(b \in \mathscr{A}) .
$$

Thus, by (2.2) we get $e \perp_{B}^{s} a$. Hence, by Theorem 2.3, there exist a Hilbert space \mathscr{H}, a representation $\pi: \mathscr{A} \rightarrow \mathbb{B}(\mathscr{H})$, and a unit vector $\xi \in \mathscr{H}$ such that $\|e+a b\|^{2} \geq$ $1+\|\pi(a b) \xi\|^{2}$ for all $b \in \mathscr{A}$.

Now, we are going to obtain some characterizations of (strong) Birkhoff-James orthogonality in the Hilbert C^{*}-module $\mathbb{B}(\mathscr{H})$. Let $T, S \in \mathbb{B}(\mathscr{H})$. It was proved in [4, Theorem 1.1 and Remark 3.1] and [2, Proposition 2.8] that $T \perp_{B} S\left(\right.$ resp. $\left.T \perp_{B}^{s} S\right)$ if and only if there is a sequence of unit vectors $\left(\xi_{n}\right) \subset \mathscr{H}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T \xi_{n}\right\|=\|T\| \quad \text { and } \quad \lim _{n \rightarrow \infty}\left[T \xi_{n}, S \xi_{n}\right]=0 \quad\left(\text { resp. } \lim _{n \rightarrow \infty} S^{*} T \xi_{n}=0\right) \tag{2.3}
\end{equation*}
$$

When \mathscr{H} is finite dimensional, it holds that $T \perp_{B} S$ (resp. $T \perp_{B}^{s} S$) if and only if there is a unit vector $\xi \in \mathscr{H}$ such that

$$
\begin{equation*}
\|T \xi\|=\|T\| \quad \text { and } \quad[T \xi, S \xi]=0 \quad\left(\text { resp. } S^{*} T \xi=0\right) \tag{2.4}
\end{equation*}
$$

The following results are immediate consequences of the above characterizations.
Corollary 2.5 Let $T \in \mathbb{B}(\mathscr{H})$ be an isometry and $S \in \mathbb{B}(\mathscr{H})$ be an invertible positive operator. Then $T \pm_{B} T S$.

Corollary 2.6 Let $S \in \mathbb{B}(\mathscr{H})$. Then the following statements are equivalent:
(i) S is non-invertible.
(ii) $T \perp_{B} S$ for every unitary operator $T \in \mathbb{B}(\mathscr{H})$.

Proof By [10, Proposition 3.3], $S \in \mathbb{B}(\mathscr{H})$ is not invertible if and only if

$$
0 \in\left\{\lambda \in \mathbb{C}: \exists\left(\xi_{n}\right) \subset \mathscr{H},\left\|\xi_{n}\right\|=1, \lim _{n \rightarrow \infty}\left[T^{*} S \xi_{n}, \xi_{n}\right]=\lambda\right\}
$$

for every unitary operator T. Hence, by using (2.3), the statements are equivalent.

Corollary 2.7 Let $T, S \in \mathbb{B}(\mathscr{H})$. Then the following statements hold:
(i) If $\operatorname{dim} \mathscr{H}<\infty$, then $T \perp_{B} S$ if and only if there is a unit vector $\xi \in \mathscr{H}$ such that $\|T\| \xi=|T| \xi$ and $[T \xi, S \xi]=0$.
(ii) If $\operatorname{dim} \mathscr{H}=\infty$, then $T \perp_{B} S$ if and only if there is a sequence of unit vectors $\left(\xi_{n}\right) \subset \mathscr{H}$ such that $\lim _{n \rightarrow \infty}\left(\|T\| \xi_{n}-|T| \xi_{n}\right)=0$ and $\lim _{n \rightarrow \infty}\left[T \xi_{n}, S \xi_{n}\right]=0$.
(iii) If $\operatorname{dim} \mathscr{H}<\infty$, then $T \perp_{B}^{s} S$ if and only if there is a unit vector $\xi \in \mathscr{H}$ such that $\|T\| \xi=|T| \xi$ and $S^{*} T \xi=0$.
(iv) If $\operatorname{dim} \mathscr{H}=\infty$, then $T \perp_{B}^{s} S$ if and only if there is a sequence of unit vectors $\left(\xi_{n}\right) \subset \mathscr{H}$ such that $\lim _{n \rightarrow \infty}\left(\|T\| \xi_{n}-|T| \xi_{n}\right)=0$ and $\lim _{n \rightarrow \infty} S^{*} T \xi_{n}=0$.

Proof (i) Let $T \perp_{B} S$. Take the same vector ξ as in (2.4). So, we have

$$
\|T \xi\|^{2}=[T \xi, T \xi]=\left[|T|^{2} \xi, \xi\right] \leq\||T|\|^{2}\|\xi\|^{2} \leq\|T\|^{2}\|\xi\|^{2}=\|T \xi\|^{2} .
$$

This forces $|T|^{2} \xi=\|T\|^{2} \xi$ and thus $|T| \xi=\|T\| \xi$, as asserted.
The converse is trivial.
Using (2.3) and (2.4), we can similarly prove statements (ii)-(iv).
Theorem 2.8 Let $S \in \mathbb{B}(\mathscr{H})$. Let $\mathscr{H}_{0} \neq\{0\}$ be a closed subspace of \mathscr{H} and let P be the orthogonal projection onto \mathscr{H}_{0}. Then the following statements hold:
(i) If $\operatorname{dim} \mathscr{H}<\infty$, then $P \perp_{B} S$ if and only if there is a unit vector $\xi \in \mathscr{H}_{0}$ such that $[S \xi, \xi]=0$.
(ii) If $\operatorname{dim} \mathscr{H}=\infty$, then $P \perp_{B} S$ if and only if there is a sequence of unit vectors $\left(\xi_{n}\right) \subset \mathscr{H}_{0}$ such that $\lim _{n \rightarrow \infty}\left[S \xi_{n}, \xi_{n}\right]=0$.

Proof (i) Let $P \perp_{B} S$. By (2.4), there is a unit vector $\zeta \in \mathscr{H}$ such that $\|P \zeta\|=\|P\|=1$ and $[P \zeta, S \zeta]=0$. We have $\zeta=\xi+\eta$, where $\xi \in \mathscr{H}_{0}$ and $\eta \in \mathscr{H}_{0}{ }^{\perp}$. Since $\|\xi\|=$ $\|P(\xi+\eta)\|=\|P \zeta\|=1$ and $\|\xi\|^{2}+\|\eta\|^{2}=1$, so we get $\eta=0$. Hence, $[S \xi, \xi]=$ $[S(\xi+\eta), \xi]=[S(\xi+\eta), P(\xi+\eta)]=\overline{[P \zeta, S \zeta]}=0$.

The converse is trivial.
(ii) Let $P \perp_{B} S$. Take the vector sequence (ζ_{n}) of \mathscr{H} as in (2.3). We have $\zeta_{n}=\mu_{n}+\eta_{n}$, where $\mu_{n} \in \mathscr{H}_{0}$ and $\eta_{n} \in \mathscr{H}_{0}{ }^{\perp}$. Since

$$
\lim _{n \rightarrow \infty}\left\|\mu_{n}\right\|=\lim _{n \rightarrow \infty}\left\|P\left(\mu_{n}+\eta_{n}\right)\right\|=\lim _{n \rightarrow \infty}\left\|P \zeta_{n}\right\|=1 \quad \text { and } \quad\left\|\mu_{n}\right\|^{2}+\left\|\eta_{n}\right\|^{2}=1
$$

we get $\lim _{n \rightarrow \infty}\left\|\eta_{n}\right\|=0$. We can assume that $\left\|\mu_{n}\right\| \geq \frac{1}{2}$ for every $n \in \mathbb{N}$. Let us put $\xi_{n}=\frac{\mu_{n}}{\left\|\mu_{n}\right\|}$. We have

$$
\begin{aligned}
\left|\left[S \xi_{n}, \xi_{n}\right]\right| & =\frac{1}{\left\|\mu_{n}\right\|^{2}}\left|\left[S \mu_{n}, \mu_{n}\right]\right| \\
& =\frac{1}{\left\|\mu_{n}\right\|^{2}}\left|\left[S \zeta_{n}, P \zeta_{n}\right]+\left[S \mu_{n}, \mu_{n}\right]-\left[S \zeta_{n}, P \zeta_{n}\right]\right| \\
& \leq \frac{1}{\left\|\mu_{n}\right\|^{2}}\left|\left[S \zeta_{n}, P \zeta_{n}\right]\right|+\frac{1}{\left\|\mu_{n}\right\|^{2}}\left|\left[S \mu_{n}, \mu_{n}\right]-\left[S\left(\mu_{n}+\eta_{n}\right), \mu_{n}\right]\right| \\
& \leq \frac{1}{\left\|\mu_{n}\right\|^{2}}\left|\left[S \zeta_{n}, P \zeta_{n}\right]\right|+\frac{1}{\left\|\mu_{n}\right\|^{2}}\left|\left[S \eta_{n}, \mu_{n}\right]\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{\left\|\mu_{n}\right\|^{2}}\left|\left[S \zeta_{n}, P \zeta_{n}\right]\right|+\frac{1}{\left\|\mu_{n}\right\|}\|S\|\left\|\eta_{n}\right\| \\
& \leq 4\left|\left[S \zeta_{n}, P \zeta_{n}\right]\right|+2\|S\|\left\|\eta_{n}\right\|
\end{aligned}
$$

whence

$$
\left|\left[S \xi_{n}, \xi_{n}\right]\right| \leq 4\left|\left[S \zeta_{n}, P \zeta_{n}\right]\right|+2\|S\|\left\|\eta_{n}\right\| .
$$

Since $\lim _{n \rightarrow \infty}\left[P \zeta_{n}, S \zeta_{n}\right]=0$ and $\lim _{n \rightarrow \infty}\left\|\eta_{n}\right\|=0$, from the above equality we get $\lim _{n \rightarrow \infty}\left[S \xi_{n}, \xi_{n}\right]=0$.

The converse is trivial.
Theorem 2.9 Let $T, S \in \mathbb{B}(\mathscr{H})$. Then the following statements are equivalent:
(i) $T \perp_{B} S$;
(ii) $\|T+\lambda S\|^{2} \geq\|T\|^{2}+|\lambda|^{2} m^{2}(S)(\lambda \in \mathbb{C})$, where $m(S)$ is the minimum modulus of S.

Proof (i) \Rightarrow (ii) Let $T \perp_{B} S$ and $\operatorname{dim} \mathscr{H}=\infty$. By (2.3), there exists a sequence of unit vectors $\left(\xi_{n}\right) \subset \mathscr{H}$ such that $\lim _{n \rightarrow \infty}\left\|T \xi_{n}\right\|=\|T\|$ and $\lim _{n \rightarrow \infty}\left[T \xi_{n}, S \xi_{n}\right]=0$. We have

$$
\|T+\lambda S\|^{2} \geq\left\|(T+\lambda S) \xi_{n}\right\|^{2}=\left\|T \xi_{n}\right\|^{2}+\bar{\lambda}\left[T \xi_{n}, S \xi_{n}\right]+\lambda\left[S \xi_{n}, T \xi_{n}\right]+|\lambda|^{2}\left\|S \xi_{n}\right\|^{2},
$$

for all $\lambda \in \mathbb{C}$ and $n \in \mathbb{N}$. Thus,

$$
\|T+\lambda S\|^{2} \geq\|T\|^{2}+|\lambda|^{2} \lim _{n \rightarrow \infty} \sup \left\|S \xi_{n}\right\|^{2} \geq\|T\|^{2}+|\lambda|^{2} m^{2}(S) \quad(\lambda \in \mathbb{C}) .
$$

When $\operatorname{dim} \mathscr{H}<\infty$, by using (2.4), we can similarly prove the statement (ii).
(ii) \Rightarrow (i) This implication is trivial.

Remark 2.10 Notice that for $S \in \mathbb{B}(\mathscr{H})$ it is straightforward to show that $m(S)>0$ if and only if S is bounded below, or equivalently, S is left invertible. So in the implication (i) \Rightarrow (ii) of Theorem 2.9, if S is left invertible, then $m(S)>0$.

It is well known that Pythagoras' equality does not hold in $\mathbb{B}(\mathscr{H})$. The following result is a kind of Pythagorean inequality for bounded linear operators.

Corollary 2.11 Let $T, S \in \mathbb{B}(\mathscr{H})$ with $m(S)>0$. Then there exists a unique $\gamma \in \mathbb{C}$, such that

$$
\|(T+\gamma S)+\lambda S\|^{2} \geq\|T+\gamma S\|^{2}+|\lambda|^{2} m^{2}(S) \quad(\lambda \in \mathbb{C}) .
$$

Proof The function $\lambda \mapsto\|T+\lambda S\|$ attains its minimum at, say, γ (there may be of course many such points) and hence $T+\gamma S \perp_{B}$ S. So, by Theorem 2.9 , we have

$$
\|(T+\gamma S)+\lambda S\|^{2} \geq\|T+\gamma S\|^{2}+|\lambda|^{2} m^{2}(S) \quad(\lambda \in \mathbb{C}) .
$$

Now, suppose that ξ is another point satisfying the inequality

$$
\|(T+\xi S)+\lambda S\|^{2} \geq\|T+\xi S\|^{2}+|\lambda|^{2} m^{2}(S) \quad(\lambda \in \mathbb{C}) .
$$

Choose $\lambda=\gamma-\xi$ to get

$$
\begin{aligned}
\|T+\gamma S\|^{2} & =\|(T+\xi S)+(\gamma-\xi) S\|^{2} \geq\|T+\xi S\|^{2}+|\gamma-\xi|^{2} m^{2}(S) \\
& \geq\|T+\gamma S\|^{2}+|\gamma-\xi|^{2} m^{2}(S)
\end{aligned}
$$

Hence $0 \geq|\gamma-\xi|^{2} m^{2}(S)$. Since $m^{2}(S)>0$, we get $|\gamma-\xi|^{2}=0$, or equivalently, $\gamma=\xi$. This shows that γ is unique.

Let $T \in \mathbb{B}(\mathscr{H})$. For every $S \in \mathbb{B}(\mathscr{H})$, it is easy to see that if there exists a unit vector $\xi \in \mathscr{H}$ such that $\|T\| \xi=|T| \xi$ and $S^{*} T \xi=0$; then $T \perp_{B}^{s} S$. The question is under which conditions the converse is true. When the Hilbert space is finite dimensional, it follows from Corollary 2.7(iii) that there exists a unit vector $\xi \in \mathscr{H}$ such that $\|T\| \xi=$ $|T| \xi$ and $S^{*} T \xi=0$.

The following example shows that the finite dimensionality in statement (iii) of Corollary 2.7 is essential.

Example 2.12 Consider operators $T, S: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
T\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(\frac{1}{2} \xi_{1}, \frac{2}{3} \xi_{2}, \frac{3}{4} \xi_{3}, \ldots\right) \quad \text { and } \quad S\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\left(\xi_{1}, 0,0, \ldots\right)
$$

One can easily observe that $T \perp_{B} S$ and $T^{*} S\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)=\frac{1}{2} \xi_{1}{ }^{2} \geq 0$. So, by (1.1), we get $T \perp_{B}^{s} S$. But there does not exist $\xi \in \ell^{2}$ such that $\|T\| \xi=|T| \xi$.

We now settle the problem for any infinite dimensional Hilbert space. The proof of Theorem 2.13 is a modification of one given by Paul et al. [21, Theorem 3.1].

Theorem 2.13 Let $\operatorname{dim} \mathscr{H}=\infty$ and $T \in \mathbb{B}(\mathscr{H})$. If $\mathbb{S}_{\mathscr{H}_{0}}=\mathbb{M}_{T}$, where \mathscr{H}_{0} is a finite dimensional subspace of \mathscr{H} and $\|T\|_{\mathscr{H}_{0}{ }^{\perp}}=\sup \left\{\|T \xi\|: \xi \in \mathscr{H}_{0}{ }^{\perp},\|\xi\|=1\right\}<\|T\|$, then for every $S \in \mathbb{B}(\mathscr{H})$, the following statements are equivalent:
(i) $T \perp_{B}^{s} S$.
(ii) There exists a unit vector $\xi \in \mathscr{H}_{0}$ such that $\|T \xi\|=\|T\|$ and $S^{*} T \xi=0$.
(iii) There exists a unit vector $\xi \in \mathscr{H}_{0}$ such that $\|T\| \xi=|T| \xi$ and $S^{*} T \xi=0$.

Proof (i) \Rightarrow (ii) Suppose (i) holds. By (2.3), there exists a sequence of unit vectors $\left\{\zeta_{n}\right\}$ in \mathscr{H} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T \zeta_{n}\right\|=\|T\| \quad \text { and } \quad \lim _{n \rightarrow \infty} S^{*} T \zeta_{n}=0 \tag{2.5}
\end{equation*}
$$

For each $n \in \mathbb{N}$, we have $\zeta_{n}=\xi_{n}+\eta_{n}$, where $\xi_{n} \in \mathscr{H}_{0}$ and $\eta_{n} \in \mathscr{H}_{0}{ }^{\perp}$.
Since \mathscr{H}_{0} is a finite dimensional subspace and $\left\|\xi_{n}\right\| \leq 1,\left\{\xi_{n}\right\}$ has a convergent subsequence converging to some element of \mathscr{H}_{0}. Without loss of generality we assume that $\lim _{n \rightarrow \infty} \xi_{n}=\xi$. Since $\mathbb{S}_{\mathscr{H}_{0}}=\mathbb{M}_{T}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T \xi_{n}\right\|=\|T \xi\|=\|T\|\|\xi\| \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\eta_{n}\right\|^{2}=\lim _{n \rightarrow \infty}\left(\left\|\zeta_{n}\right\|^{2}-\left\|\xi_{n}\right\|^{2}\right)=1-\|\xi\|^{2} \tag{2.7}
\end{equation*}
$$

Now for each non-zero element $\xi_{n} \in \mathscr{H}_{0}$, by hypothesis $\frac{\xi_{n}}{\left\|\xi_{n}\right\|} \in \mathbb{S}_{\mathscr{H}_{0}}=\mathbb{M}_{T}$, and so $\left\|T \xi_{n}\right\|=\|T\|\left\|\xi_{n}\right\|$. Thus,

$$
\left\|T^{*} T\right\|\left\|\xi_{n}\right\|^{2}=\|T\|^{2}\left\|\xi_{n}\right\|^{2}=\left\|T \xi_{n}\right\|^{2}=\left[T^{*} T \xi_{n}, \xi_{n}\right] \leq\left\|T^{*} T \xi_{n}\right\|\left\|\xi_{n}\right\| \leq\left\|T^{*} T\right\|
$$

Hence, $\left[T^{*} T \xi_{n}, \xi_{n}\right]=\left\|T^{*} T \xi_{n}\right\|\left\|\xi_{n}\right\|$. By the equality case of Cauchy-Schwarz inequality $T^{*} T \xi_{n}=\lambda_{n} \xi_{n}$ for some $\lambda_{n} \in \mathbb{C}$, and therefore

$$
\begin{equation*}
\left[T^{*} T \xi_{n}, \eta_{n}\right]=\left[T^{*} T \eta_{n}, \xi_{n}\right]=0 \tag{2.8}
\end{equation*}
$$

By (2.5), (2.6), and (2.8) we have

$$
\begin{aligned}
\|T\|^{2} & =\lim _{n \rightarrow \infty}\left\|T \zeta_{n}\right\|^{2}=\lim _{n \rightarrow \infty}\left[T^{*} T \zeta_{n}, \zeta_{n}\right] \\
& =\lim _{n \rightarrow \infty}\left(\left[T^{*} T \xi_{n}, \xi_{n}\right]+\left[T^{*} T \xi_{n}, \eta_{n}\right]+\left[T^{*} T \eta_{n}, \xi_{n}\right]+\left[T^{*} T \eta_{n}, \eta_{n}\right]\right) \\
& =\lim _{n \rightarrow \infty}\left\|T \xi_{n}\right\|^{2}+\lim _{n \rightarrow \infty}\left\|T \eta_{n}\right\|^{2}=\|T\|^{2}\|\xi\|^{2}+\lim _{n \rightarrow \infty}\left\|T \eta_{n}\right\|^{2}
\end{aligned}
$$

whence by (2.7) we reach

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T \eta_{n}\right\|^{2}=\|T\|^{2}\left(1-\|\xi\|^{2}\right)=\|T\|^{2} \lim _{n \rightarrow \infty}\left\|\eta_{n}\right\|^{2} \tag{2.9}
\end{equation*}
$$

By the hypothesis $\|T\|_{\mathscr{H}_{0}{ }^{\perp}}<\|T\|$, and so by (2.9) there does not exist any non-zero subsequence of $\left\{\left\|\eta_{n}\right\|\right\}$. So we conclude that $\eta_{n}=0$ for all $n \in \mathbb{N}$. Hence, (2.5) and (2.7) imply

$$
\|\xi\|=1, \quad\|T \xi\|=\|T\|, \quad \text { and } \quad S^{*} T \xi=0
$$

(ii) \Rightarrow (iii) This implication follows from the proof of Corollary 2.7.
$($ iii $) \Rightarrow(\mathrm{i})$ This implication is trivial.
Corollary 2.14 Let $\operatorname{dim} \mathscr{H}=\infty$ and $T \in \mathbb{B}(\mathscr{H})$. If $\mathbb{S}_{\mathscr{H}_{0}}=\mathbb{M}_{T}$, where \mathscr{H}_{0} is a finite
 such that $\|T\| \xi=|T| \xi$ and $\|T\|^{2} T^{*} T \xi=\left(T^{*} T\right)^{2} \xi$.

Proof $\operatorname{By}(1.3), T \perp_{B}^{s}\left(\|T\|^{2} T-T T^{*} T\right)$. So, by Theorem 2.13, there exists a unit vector $\xi \in \mathscr{H}_{0}$ such that $\|T\| \xi=|T| \xi$ and $\left(\|T\|^{2} T-T T^{*} T\right)^{*} T \xi=0$. Thus, $\|T\|^{2} T^{*} T \xi=$ $\left(T^{*} T\right)^{2} \xi$.

Corollary 2.15 Let $\operatorname{dim} \mathscr{H}=\infty$ and let $T \in \mathbb{B}(\mathscr{H})$ be a nonzero positive operator. If $\mathbb{S}_{\mathscr{H}_{0}}=\mathbb{M}_{T}$, where \mathscr{H}_{0} is a finite dimensional subspace of \mathscr{H} and $\|T\|_{\mathscr{H}_{0}{ }^{\perp}}<\|T\|$, then for every $S \in \mathbb{B}(\mathscr{H})$ the following statements are equivalent:
(i) $T \perp_{B}^{s} S$.
(ii) There exists a unit vector $\xi \in \mathscr{H}_{0}$ such that $T \xi=\|T\| \xi$ and $S^{*} \xi=0$.

Proof Obviously, (ii) \Rightarrow (i).
Suppose (i) holds. By Theorem 2.13, there exists a unit vector $\xi \in \mathscr{H}_{0}$ such that $\|T \xi\|=\|T\|$ and $S^{*} T \xi=0$. Since $T \geq 0,\|T \xi\|=\|T\| \Leftrightarrow T \xi=\|T\| \xi$. Therefore, $S^{*} T \xi=0 \Leftrightarrow S^{*} \xi=0$, as $T \neq 0$.

3 An Approximate Strong Birkhoff-James Orthogonality

Recall that in an inner product \mathscr{A}-module V and for $\varepsilon \in[0,1)$, we say x, y are $a p$ proximate strongly Birkhoff-James orthogonal, in short $x \perp_{B^{\varepsilon}}^{s} y$, if

$$
\|x+y a\|^{2} \geq\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\| \quad(a \in \mathscr{A})
$$

The following proposition states some basic properties of the relation $\perp_{B^{\varepsilon}}^{s}$.
Proposition 3.1 Let $\varepsilon \in\left[0, \frac{1}{2}\right)$ and let V be an inner product \mathscr{A}-module. Then the following statements hold for every $x, y \in V$:
(i) $x \perp_{B^{\varepsilon}}^{s} x \Leftrightarrow x=0$.
(ii) $x \perp_{B^{\varepsilon}}^{s} y \Rightarrow \alpha x \perp_{B^{\varepsilon}}^{s} \beta y$ for all $\alpha, \beta \in \mathbb{C}$.
(iii) $x \perp^{\varepsilon} y \Rightarrow x \perp_{B^{\varepsilon}}^{s} y$.
(iv) $x \perp_{B^{\varepsilon}}^{s} y \Rightarrow x \perp_{B}^{\varepsilon} y$.
(v) $x \perp_{B^{\varepsilon}}^{s} y \Leftrightarrow x \perp_{B}^{\varepsilon}$ ya for all $a \in \mathscr{A}$.

Proof (i) Let $x \perp_{B^{\varepsilon}}^{s} x$. Also, suppose that $\left(e_{i}\right)_{i \in I}$ is an approximate unit for \mathscr{A}. We have

$$
\left\|x-x e_{i}\right\|^{2} \geq\|x\|^{2}-2 \varepsilon\left\|-e_{i}\right\|\|x\|\|x\| \quad(i \in I)
$$

Since $\lim _{i}\left\|x-x e_{i}\right\|=0$ and $\left\|e_{i}\right\|=1$, we get $(1-2 \varepsilon)\|x\|^{2} \leq 0$. Thus, $x=0$.
The converse is obvious.
(ii) Let $x \perp_{B^{\varepsilon}}^{s} y$ and let $\alpha, \beta \in \mathbb{C}$. Excluding the obvious case $\alpha=0$, we have

$$
\begin{aligned}
\|\alpha x+\beta y a\|^{2} & =|\alpha|^{2}\left\|x+y \frac{\beta}{\alpha} a\right\|^{2} \geq|\alpha|^{2}\left(\|x\|^{2}-2 \varepsilon\|a\|\|x\|\left\|\frac{\beta}{\alpha} y\right\|\right) \\
& =\|\alpha x\|^{2}-2 \varepsilon\|a\|\|\alpha x\|\|\beta y\| .
\end{aligned}
$$

Hence, $\alpha x \perp_{B^{\varepsilon}}^{s} \beta y$.
(iii) Let $x \perp^{\varepsilon} y$. For any $a \in \mathscr{A}$, we have

$$
\begin{aligned}
\|x+y a\|^{2} & =\|\langle x+y a, x+y a\rangle\|=\|\langle x, x\rangle+\langle y a, y a\rangle+\langle x, y a\rangle+\langle y a, x\rangle\| \\
& \geq\|\langle x, x\rangle+\langle y a, y a\rangle\|-\|\langle x, y a\rangle+\langle y a, x\rangle\| \\
& \geq\|\langle x, x\rangle\|-\|\langle x, y a\rangle+\langle y a, x\rangle\| \\
& \geq\|x\|^{2}-\|\langle x, y a\rangle\|-\|\langle y a, x\rangle\| \geq\|x\|^{2}-2\|a\|\|\langle x, y\rangle\| \\
& \geq\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\| .
\end{aligned}
$$

Thus, $\|x+y a\|^{2} \geq\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\|$, or equivalently, $x \perp_{B^{\varepsilon}}^{s} y$.
(iv) Let $x \perp_{B^{\varepsilon}}^{s} y$. Hence, for any $\lambda \in \mathbb{C}$ and an approximate unit $\left(e_{i}\right)_{i \in I}$ for \mathscr{A}, we have

$$
\begin{aligned}
\left(\|x+\lambda y\|+|\lambda|\left\|y e_{i}-y\right\|\right)^{2} & \geq\left\|x+\lambda y e_{i}\right\|^{2} \geq\|x\|^{2}-2 \varepsilon\left\|\lambda e_{i}\right\|\|x\|\|y\| \\
& \geq\|x\|^{2}-2 \varepsilon|\lambda|\|x\|\|y\| .
\end{aligned}
$$

Since $\lim _{i}\left\|y e_{i}-y\right\|=0$, whence we get $\|x+\lambda y\|^{2} \geq\|x\|^{2}-2 \varepsilon|\lambda|\|x\|\|y\|$, or equivalently, $x \perp^{\varepsilon} y$.
(v) Let $x \perp_{B^{\varepsilon}}^{s} y$ and let $\left(e_{i}\right)_{i \in I}$ be an approximate unit for \mathscr{A}. We have

$$
\begin{aligned}
\left(\|x+\lambda y a\|+\left\|\lambda y a e_{i}-\lambda y a\right\|\right)^{2} & \geq\left\|x+\lambda y a e_{i}\right\|^{2} \geq\|x\|^{2}-2 \varepsilon\left\|\lambda a e_{i}\right\|\|x\|\|y\| \\
& \geq\|x\|^{2}-2 \varepsilon|\lambda|\|a\|\|x\|\|y\|
\end{aligned}
$$

for all $a \in \mathscr{A}$ and all $\lambda \in \mathbb{C}$. Since $\lim _{i}\left\|y a e_{i}-y a\right\|=0$, we obtain from the above inequality

$$
\|x+\lambda y a\|^{2} \geq\|x\|^{2}-2 \varepsilon|\lambda|\|a\|\|x\|\|y\|
$$

for all $a \in \mathscr{A}$ and all $\lambda \in \mathbb{C}$. Thus, $x \perp_{B}^{\varepsilon} y a$ for all $a \in \mathscr{A}$.
The converse is trivial.
Proposition 3.1 shows that in an arbitrary inner product C^{*}-module the relation \perp^{ε} is weaker than the relation $\perp_{B^{\varepsilon}}^{s}$ and this relation is weaker than the relation \perp_{B}^{ε}, but the converses are not true in general (see the example below).

Example 3.2 Suppose that $\varepsilon \in\left[0, \frac{1}{2}\right)$. Consider $\mathbb{M}_{2}(\mathbb{C})$, regarded as an inner product $\mathbb{M}_{2}(\mathbb{C})$-module. Let $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Then

$$
\begin{aligned}
\|I+\lambda A\|^{2} & =\left\|\left[\begin{array}{cc}
1-\lambda & 0 \\
0 & 1+\lambda
\end{array}\right]\right\|^{2}=(\max \{|1-\lambda|,|1+\lambda|\})^{2} \\
& \geq 1 \geq 1-2 \varepsilon|\lambda|=\|I\|^{2}-2 \varepsilon|\lambda|\|I\|\|A\|
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$. Hence $I \perp_{B}^{\varepsilon} A$, but not $I \perp_{B^{\varepsilon}}^{s} A$, since

$$
\|I+A(-A)\|^{2}=0<1-2 \varepsilon=\|I\|^{2}-2 \varepsilon\|-A\|\|I\|\|A\| .
$$

On the other hand, for any $C=\left[\begin{array}{cc}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right]$, we have

$$
\begin{aligned}
\|I+B C\|^{2} & =\left\|\left[\begin{array}{cc}
1+c_{1} & c_{2} \\
0 & 1
\end{array}\right]\right\| \\
& =\left[\frac{1}{2}\left(\left|1+c_{1}\right|^{2}+\left|c_{2}\right|^{2}+1\right)+\frac{1}{2} \sqrt{\left(\left|1+c_{1}\right|^{2}+\left|c_{2}\right|^{2}+1\right)^{2}-4\left|1+c_{1}\right|^{2}}\right]^{\frac{1}{2}} \\
& \geq 1 \geq 1-2 \varepsilon\|C\|\|B\|=\|I\|^{2}-2 \varepsilon\|C\|\|I\|\|B\| .
\end{aligned}
$$

Therefore, $I \perp_{B^{\varepsilon}}^{s} B$. But not $I \perp^{\varepsilon} B$ since

$$
\|\langle I, B\rangle\|=\|B\|=1>\varepsilon=\varepsilon\|I\|\|B\| .
$$

By combining Proposition 3.1(iv) and [19, Theorem 3.5], we obtain the following result (see also [9,12,18]).

Corollary 3.3 Let V, W be inner product \mathscr{A}-modules, $\varepsilon \in\left[0, \frac{1}{2}\right)$ and let $T: V \rightarrow W$ be a linear mapping satisfying $x \perp_{B} y \Rightarrow T x \perp_{B^{\varepsilon}}^{s} T y$. Then

$$
(1-16 \varepsilon)\|T\|\|x\| \leq\|T x\| \leq\|T\|\|x\| \quad(x \in V)
$$

Proposition 3.4 Let $\varepsilon \in[0,1)$. Let x, y be elements in an inner product \mathscr{A}-module V such that $\langle x, x\rangle \perp_{B^{\varepsilon}}^{s}\langle x, y\rangle$; then $x \perp_{B^{\varepsilon}}^{s} y$.

Proof We assume that $x \neq 0$. Since $\langle x, x\rangle \perp_{B^{\varepsilon}}^{s}\langle x, y\rangle$, therefore for every $a \in \mathscr{A}$, we have

$$
\|\langle x, x\rangle+\langle x, y\rangle a\|^{2} \geq\|\langle x, x\rangle\|^{2}-2 \varepsilon\|a\|\|\langle x, x\rangle\|\|\langle x, y\rangle\|
$$

or equivalently,

$$
\|\langle x, x+y a\rangle\|^{2} \geq\|x\|^{4}-2 \varepsilon\|a\|\|x\|^{2}\|\langle x, y\rangle\| .
$$

Hence, we get

$$
\|x\|^{2}\|x+y a\|^{2} \geq\|x\|^{4}-2 \varepsilon\|a\|\|x\|^{3}\|y\| \quad(a \in \mathscr{A})
$$

Since $\|x\|^{2} \neq 0$, we obtain from the above inequality

$$
\|x+y a\|^{2} \geq\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\| \quad(a \in \mathscr{A})
$$

Thus, $x \perp_{B^{\varepsilon}}^{s} y$.
Proposition 3.5 Let x, y be two elements in an inner product \mathscr{A}-module V and let $\varepsilon \in[0,1)$. If there exists a state φ on \mathscr{A} such that $\varphi(\langle x, x\rangle)=\|x\|^{2}$ and $|\varphi(\langle x, y\rangle a)| \leq$ $\varepsilon\|a\|\|x\|\|y\|$ for all $a \in \mathscr{A}$, then $x \perp_{B^{\varepsilon}}^{s} y$.

Proof We assume that $x \neq 0$. Let $a \in \mathscr{A}$. By the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\|x\|^{2} & =\varphi(\langle x, x\rangle)=|\varphi(\langle x, x+y a\rangle)-\varphi(\langle x, y a\rangle)| \\
& \leq|\varphi(\langle x, x+y a\rangle)|+|\varphi(\langle x, y a\rangle)| \\
& \leq \sqrt{\varphi(\langle x, x\rangle) \varphi(\langle x+y a, x+y a\rangle)}+\varepsilon\|a\|\|x\|\|y\| \\
& \leq\|x\|\|x+y a\|+\varepsilon\|a\|\|x\|\|y\| .
\end{aligned}
$$

Thus, $\|x\|^{2} \leq\|x\|\|x+y a\|+\varepsilon\|a\|\|x\|\|y\|$, i.e, $\|x+y a\| \geq\|x\|-\varepsilon\|a\|\|y\|$. We consider two cases.
Case 1: If $\|x\|-\varepsilon\|a\|\|y\| \geq 0$, then we get

$$
\begin{aligned}
\|x+y a\|^{2} & \geq(\|x\|-\varepsilon\|a\|\|y\|)^{2}=\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\|+\varepsilon^{2}\|a\|^{2}\|y\|^{2} \\
& \geq\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\| .
\end{aligned}
$$

Case 2: If $\|x\|-\varepsilon\|a\|\|y\|<0$, then we reach

$$
\begin{aligned}
\|x+y a\|^{2} & \geq 0>\|x\|(\|x\|-\varepsilon\|a\|\|y\|) \geq\|x\|(\|x\|-\varepsilon\|a\|\|y\|)-\varepsilon\|a\|\|x\|\|y\| \\
& =\|x\|^{2}-2 \varepsilon\|a\|\|x\|\|y\| .
\end{aligned}
$$

Hence, $x \perp_{B^{\varepsilon}}^{s} y$.
Proposition 3.6 Let x, y be two elements in an inner product \mathscr{A}-module V and let $\varepsilon \in\left[0, \frac{1}{2}\right)$. If $x \perp_{B^{\varepsilon}}^{s} y$ then there exists a state φ on \mathscr{A} such that

$$
|\varphi(\langle x, y\rangle a)| \leq \sqrt{2 \varepsilon}\|a\|\|x\|\|y\| \quad(a \in \mathscr{A})
$$

Proof Suppose that $x \perp_{B^{\varepsilon}}^{s} y$. Because of the homogeneity of relation $\perp_{B^{\varepsilon}}^{s}$, we can assume, without loss of generality, that $\|x\|=\|y\|=1$. Then for arbitrary $a \in \mathscr{A}$, we have

$$
\|x+y a\|^{2} \geq 1-2 \varepsilon\|a\|\|y\| .
$$

Since $\|-\langle y, x\rangle\| \leq\|y\|\|x\|=1$, for $a=-\langle y, x\rangle \in \mathscr{A}$ we get

$$
\|x-y\langle y, x\rangle\|^{2} \geq 1-2 \varepsilon
$$

On the other hand, by [20, Theorem 3.3.6], there is $\varphi \in \mathcal{S}(\mathscr{A})$ such that

$$
\varphi(\langle x-y\langle y, x\rangle, x-y\langle y, x\rangle\rangle)=\|x-y\langle y, x\rangle\|^{2} .
$$

Also, we have

$$
\begin{aligned}
& \varphi(\langle x-y\langle y, x\rangle, x-y\langle y, x\rangle\rangle) \\
& \quad=\varphi(\langle x, x\rangle)-2 \varphi(\langle x, y\rangle\langle y, x\rangle)+\varphi(\langle x, y\rangle\langle y, y\rangle\langle y, x\rangle) \\
& \quad \leq\|x\|^{2}-2 \varphi(\langle x, y\rangle\langle y, x\rangle)+\varphi\left(\langle x, y\rangle\|y\|^{2}\langle y, x\rangle\right) \\
& \quad=1-\varphi(\langle x, y\rangle\langle y, x\rangle)
\end{aligned}
$$

so, we get

$$
1-\varphi(\langle x, y\rangle\langle y, x\rangle) \geq \varphi(\langle x-y\langle y, x\rangle, x-y\langle y, x\rangle\rangle)=\|x-y\langle y, x\rangle\|^{2} \geq 1-2 \varepsilon
$$

Therefore, $\varphi(\langle x, y\rangle\langle y, x\rangle) \leq 2 \varepsilon$. Now, by the Cauchy-Schwarz inequality, we reach

$$
|\varphi(\langle x, y a\rangle)| \leq \sqrt{\varphi(\langle x, y\rangle\langle y, x\rangle) \varphi\left(a^{*} a\right)} \leq \sqrt{2 \varepsilon}\|a\| \quad(a \in \mathscr{A}) .
$$

Acknowledgments The authors would like to sincerely thank the referee for several useful suggestions.

References

[1] J. M. Aldaz, S. Barza, M. Fujii, and M. S. Moslehian, Advances in operator Cauchy-Schwarz inequalities and their reverses. Ann. Funct. Anal. 6(2015), no. 3, 275-295. http://dx.doi.org/10.15352/afa/06-3-20
[2] Lj. Arambašić and R. Rajić, A strong version of the Birkhoff-James orthogonality in Hilbert C^{*}-modules. Ann. Funct. Anal. 5(2014), no. 1, 109-120. http://dx.doi.org/10.15352/afa/1391614575
[3] , On three concepts of orthogonality in Hilbert C^{*}-modules. Linear Multilinear Algebra 63(2015), no. 7, 1485-1500. http://dx.doi.org/10.1080/03081087.2014.947983
[4] R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems. Linear Algebra Appl. 287(1999), no. 1-3, 77-85. http://dx.doi.org/10.1016/S0024-3795(98)10134-9
[5] T. Bhattacharyya and P. Grover, Characterization of Birkhoff-James orthogonality. J. Math. Anal. Appl. 407(2013), no. 2, 350-358. http://dx.doi.org/10.1016/j.jmaa.2013.05.022
[6] G. Birkhoff, Orthogonality in linear metric spaces. Duke Math. J. 1(1935), no. 2, 169-172. http://dx.doi.org/10.1215/S0012-7094-35-00115-6
[7] J. Chmieliński, On an e-Birkhoff orthogonality. J. Inequal. Pure Appl. Math. 6(2005), no. 3, Art. 79.
[8] , Linear mappings approximately preserving orthogonality. J. Math. Anal. Appl. 304(2005), 158-169. http://dx.doi.org/10.1016/j.jmaa.2004.09.011
[9] , Orthogonality equation with two unknown functions. Aequationes Math. 90(2016), no. 1, 11-23. http://dx.doi.org/10.1007/s00010-015-0359-x
[10] C. Diogo, Algebraic properties of the set of operators with 0 in the closure of the numerical range. Oper. Matrices 9(2015), no. 1, 83-93. http://dx.doi.org/10.7153/oam-09-04
[11] J. Dixmier, C^{*}-Algebras. North-Holland, Amsterdam, 1981.
[12] M. Frank, A. S. Mishchenko, and A. A. Pavlov, Orthogonality-preserving, C^{*}-conformal and conformal module mappings on Hilbert C^{*}-modules. J. Funct. Anal. 260(2011), no. 2, 327-339. http://dx.doi.org/10.1016/j.jfa.2010.10.009
[13] P. Ghosh, D. Sain and K. Paul, Orthogonality of bounded linear operators. Linear Algebra Appl. 500(2016), 43-51. http://dx.doi.org/10.1016/j.laa.2016.03.009
[14] P. Grover, Orthogonality of matrices in the Ky Fan k-norms. Linear Multilinear Algebra 65(2017), no. 3, 496-509. http://dx.doi.org/10.1080/03081087.2016.1193118
[15] D. Ilišević and A. Turnšek, Approximately orthogonality preserving mappings on C^{*}-modules. J. Math. Anal. Appl. 341(2008), no. ,1 298-308. http://dx.doi.org/10.1016/j.jmaa.2007.10.028
[16] R. C. James, Orthogonality in normed linear spaces. Duke Math. J. 12(1945), 291-302. http://dx.doi.org/10.1215/S0012-7094-45-01223-3
[17] E. C. Lance, Hilbert C^{*}-modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995. http://dx.doi.org/10.1017/CBO9780511526206
[18] C.-W. Leung, C.-K. Ng, and N.-C. Wong, Linear orthogonality preservers of Hilbert C* ${ }^{*}$-modules. J. Operator Theory 71(2014), no. 2, 571-584. http://dx.doi.org/10.7900/jot.2012jul12.1966
[19] B. Mojškerc and A. Turnšek, Mappings approximately preserving orthogonality in normed spaces. Nonlinear Anal. 73(2010), no. 12, 3821-3831. http://dx.doi.org/10.1016/j.na.2010.08.007
[20] G. J. Murphy, C*-Algebras and operator theory. Academic Press, Boston, MA, 1990.
[21] K. Paul, D. Sain, and P. Ghosh, Birkhoff-James orthogonality and smoothness of bounded linear operators. Linear Algebra Appl. 506(2016), 551-563. http://dx.doi.org/10.1016/j.laa.2016.06.024
[22] D. Sain, K. Paul, and S. Hait, Operator norm attainment and Birkhoff-James orthogonality. Linear Algebra Appl. 476(2015), 85-97. http://dx.doi.org/10.1016/j.laa.2015.03.002
[23] P. Wójcik, Norm-parallelism in classical M-ideals. Indag. Math., to appear. http://dx.doi.org/10.1016/j.indag.2016.07.001
[24] A. Zamani and M. S. Moslehian, Exact and approximate operator parallelism. Canad. Math. Bull. 58(2015), no. 1, 207-224. http://dx.doi.org/10.4153/CMB-2014-029-4
[25] A. Zamani, M. S. Moslehian, and M. Frank, Angle preserving mappings. Z. Anal. Anwend. 34(2015), no. 4, 485-500. http://dx.doi.org/10.4171/ZAA/1551
(M. S. Moslehian, A. Zamani) Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran
e-mail: moslehian@um.ac.ir zamani.ali85@yahoo.com
(A. Zamani) Department of Mathematics, Farhangian University, Iran

