Canad. Math. Bull. Vol. 60 (4), 2017 pp. 816–829 http://dx.doi.org/10.4153/CMB-2017-004-5 © Canadian Mathematical Society 2017

Characterizations of Operator Birkhoff–James Orthogonality

Mohammad Sal Moslehian and Ali Zamani

Abstract. In this paper, we obtain some characterizations of the (strong) Birkhoff–James orthogonality for elements of Hilbert C^* -modules and certain elements of $\mathbb{B}(\mathscr{H})$. Moreover, we obtain a kind of Pythagorean relation for bounded linear operators. In addition, for $T \in \mathbb{B}(\mathscr{H})$ we prove that if the norm attaining set \mathbb{M}_T is a unit sphere of some finite dimensional subspace \mathscr{H}_0 of \mathscr{H} and $\|T\|_{\mathscr{H}_0^{\perp}} < \|T\|$, then for every $S \in \mathbb{B}(\mathscr{H})$, T is the strong Birkhoff–James orthogonal to S if and only if there exists a unit vector $\xi \in \mathscr{H}_0$ such that $\|T\|\xi = |T|\xi$ and $S^*T\xi = 0$. Finally, we introduce a new type of approximate orthogonality and investigate this notion in the setting of inner product C^* -modules.

1 Introduction and Preliminaries

Let $\mathbb{B}(\mathcal{H}, \mathcal{K})$ denote the linear space of all bounded linear operators between Hilbert spaces $(\mathcal{H}, [\cdot, \cdot])$ and $(\mathcal{H}, [\cdot, \cdot])$. By *I* we denote the identity operator. When $\mathcal{H} = \mathcal{K}$, we write $\mathbb{B}(\mathcal{H})$ for $\mathbb{B}(\mathcal{H}, \mathcal{K})$. By $\mathbb{K}(\mathcal{H})$ we denote the algebra of all compact operators on \mathcal{H} , and by $C_1(\mathcal{H})$ the algebra of all trace-class operators on \mathcal{H} . Let $\mathbb{S}_{\mathcal{H}} = \{\xi \in \mathcal{H} : \|\xi\| = 1\}$ be the unit sphere of \mathcal{H} . For $T \in \mathbb{B}(\mathcal{H})$, let \mathbb{M}_T denote the set of all vectors in $\mathbb{S}_{\mathcal{H}}$ at which *T* attains norm, *i.e.*, $\mathbb{M}_T = \{\xi \in \mathbb{S}_{\mathcal{H}} : \|T\xi\| = \|T\|\}$. For $T \in \mathbb{B}(\mathcal{H}, \mathcal{K})$, the symbol $m(T) := \inf\{\|T\xi\| : \xi \in \mathbb{S}_{\mathcal{H}}\}$ denotes the minimum modulus of *T*.

Inner product C^* -modules generalize inner product spaces by allowing inner products to take values in an arbitrary C^* -algebra instead of the C^* -algebra of complex numbers.

In an inner product C^* -module $(V, \langle \cdot, \cdot \rangle)$ over a C^* -algebra \mathscr{A} the following Cauchy–Schwarz inequality holds (see also [1]):

$$\langle x, y \rangle^* \langle x, y \rangle \le || \langle x, x \rangle || \langle y, y \rangle$$
 $(x, y \in V).$

Consequently, $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$ defines a norm on *V*. If *V* is complete with respect to this norm, then it is called a *Hilbert* \mathscr{A} -module, or a *Hilbert* C^* -module over \mathscr{A} . Any C^* -algebra \mathscr{A} can be regarded as a Hilbert C^* -module over itself via $\langle a, b \rangle := a^*b$. For every $x \in V$ the positive square root of $\langle x, x \rangle$ is denoted by |x|. In the case of a C^* -algebra, we get the usual notation $|a| = (a^*a)^{\frac{1}{2}}$. By $S(\mathscr{A})$ we denote the set of all

Received by the editors August 27, 2016; revised January 23, 2017.

Published electronically March 8, 2017.

M. S. Moslehian (the corresponding author) was supported by a grant from Ferdowsi University of Mashhad (No. 2/42627).

AMS subject classification: 46L05, 46L08, 46B20.

Keywords: Hilbert C^* -module, Birkhoff–James orthogonality, strong Birkhoff–James orthogonality, approximate orthogonality.

states of \mathscr{A} , that is, the set of all positive linear functionals of \mathscr{A} whose norm is equal to one.

Furthermore, if $\varphi \in S(\mathscr{A})$, then $(x, y) \mapsto \varphi(\langle x, y \rangle)$ gives rise to a usual semi-inner product on *V*, so we have the following useful Cauchy–Schwarz inequality:

$$|\varphi(\langle x, y \rangle)|^2 \le \varphi(\langle x, x \rangle)\varphi(\langle y, y \rangle) \qquad (x, y \in V).$$

We refer the reader to [11, 17, 20] for more information on the basic theory of C^* -algebras and Hilbert C^* -modules.

A concept of orthogonality in a Hilbert C^* -module can be defined with respect to the C^* - valued inner product in a natural way: two elements x and y of a Hilbert C^* -module V over a C^* -algebra \mathscr{A} are called *orthogonal*, denoted $x \perp y$, if $\langle x, y \rangle = 0$.

In a normed linear space there are several notions of orthogonality, all of which are generalizations of orthogonality in a Hilbert space. One of the most important concepts is that of the Birkhoff–James orthogonality: if x, y are elements of a complex normed linear space $(X, \|\cdot\|)$, then x is orthogonal to y in the Birkhoff–James sense [6,16], in short, $x \perp_B y$, if

$$\|x + \lambda y\| \ge \|x\| \qquad (\lambda \in \mathbb{C}).$$

The central role of Birkhoff–James orthogonality in approximation theory is typified by the fact that $T \in \mathbb{B}(\mathcal{H})$ is a best approximation of $S \in \mathbb{B}(\mathcal{H})$ from a linear subspace M of $\mathbb{B}(\mathcal{H})$ if and only if T is a Birkhoff–James orthogonal projection of Sonto M. By the Hahn–Banach theorem, if x, y are two elements of a normed linear space X, then $x \perp_B y$ if and only if there is a norm one linear functional f of X such that f(x) = ||x|| and f(y) = 0. If we have additional structures on a normed linear space X, then we obtain other characterizations of Birkhoff–James orthogonality; see [3,5,13,22,25] and the references therein.

In Section 2, we present some characterizations of Birkhoff–James orthogonality for elements of a Hilbert $\mathbb{K}(\mathcal{H})$ -module and elements of $\mathbb{B}(\mathcal{H})$. Next, we will give some applications. In particular, for $T, S \in \mathbb{B}(\mathcal{H})$ with m(S) > 0, we prove that there exists a unique $\gamma \in \mathbb{C}$ such that

$$\left\| \left(T + \gamma S \right) + \lambda S \right\|^{2} \ge \left\| T + \gamma S \right\|^{2} + |\lambda|^{2} m^{2}(S) \qquad (\lambda \in \mathbb{C}).$$

As a natural generalization of the notion of Birkhoff–James orthogonality, the concept of strong Birkhoff–James orthogonality, which involves modular structure of a Hilbert C^* -module was introduced in [2]. When *x* and *y* are elements of a Hilbert \mathscr{A} -module *V*, *x* is orthogonal to *y* in the *strong Birkhoff–James sense*, in short, $x \perp_B^s y$ if

$$\|x + ya\| \ge \|x\| \qquad (a \in \mathscr{A})$$

i.e., the distance from x to $\overline{y\mathscr{A}}$, the \mathscr{A} -submodule of V generated by y, is exactly ||x||. This orthogonality is "between" \bot and \bot_B , *i.e.*,

$$x \perp y \Longrightarrow x \perp_B^s y \Longrightarrow x \perp_B y, \qquad (x, y \in V),$$

while the converses do not hold in general (see [2]). It was shown in [2] that the following relation between the strong and the classical Birkhoff–James orthogonality is valid:

$$x \perp_B^s y \Leftrightarrow x \perp_B y \langle y, x \rangle \qquad (x, y \in V)$$

In particular, by [3, Proposition 3.1], if $\langle x, y \rangle \ge 0$, then

(1.1)
$$x \perp_B^s y \Leftrightarrow x \perp_B y \qquad (x, y \in V).$$

If *V* is a full Hilbert \mathscr{A} -module, then the only case where the orthogonalities \bot_B^s and \bot_B coincide is when \mathscr{A} is isomorphic to \mathbb{C} (see [3, Theorem 3.5]), while orthogonalities \bot_B^s and \bot coincide only when \mathscr{A} or $\mathbb{K}(V)$ is isomorphic to \mathbb{C} (see [3, Theorems 4.7, 4.8]). Further, by [3, Lemma 4.2], we have

(1.2)
$$x \perp_B \left(\|x\|^2 y - y\langle x, x \rangle \right) \qquad (x, y \in V),$$

(1.3)
$$x \perp_B^s \left(\|x\|^2 x - x\langle x, x \rangle \right) \qquad (x \in V).$$

In Section 2, we obtain a characterization of strong Birkhoff–James orthogonality for elements of a C^* -algebra. We also present some characterizations of strong Birkhoff–James orthogonality for certain elements of $\mathbb{B}(\mathcal{H})$. In particular, for $T \in \mathbb{B}(\mathcal{H})$ we prove that if $\mathbb{S}_{\mathcal{H}_0} = \mathbb{M}_T$, where \mathcal{H}_0 is a finite dimensional subspace of \mathcal{H} and $\|T\|_{\mathcal{H}_0^{\perp}} < \|T\|$, then for every $S \in \mathbb{B}(\mathcal{H})$, $T \perp_B^s S$ if and only if there exists a unit vector $\xi \in \mathcal{H}_0$ such that $\|T\|_{\xi} = |T|\xi$ and $S^*T\xi = 0$.

For given $\varepsilon \ge 0$, elements x, y in an inner product \mathscr{A} -module V are said to be *approximately orthogonal* or ε -orthogonal, in short, $x \perp^{\varepsilon} y$ if $||\langle x, y \rangle|| \le \varepsilon ||x|| ||y||$. For $\varepsilon \ge 1$, it is clear that every pair of vectors is ε -orthogonal, so the interesting case is when $\varepsilon \in [0, 1)$.

In an arbitrary normed space *X*, Chmieliński [7, 8] introduced the approximate Birkhoff–James orthogonality $x \perp_B^{\varepsilon} y$ by

$$\|x + \lambda y\|^2 \ge \|x\|^2 - 2\varepsilon |\lambda| \|x\| \|y\| \qquad (\lambda \in \mathbb{C})$$

Inspired by the above approximate Birkhoff–James orthogonality, we propose a new type of approximate orthogonality in inner product C^* -modules.

Definition 1.1 For given $\varepsilon \in [0, 1)$, elements x, y of an inner product \mathscr{A} -module V are said to be *approximate strongly Birkhoff–James orthogonal*, denoted by $x \perp_{B^{\varepsilon}}^{s} y$, if

$$\|x+ya\|^2 \ge \|x\|^2 - 2\varepsilon \|a\| \|x\| \|y\| \qquad (a \in \mathscr{A}).$$

In Section 3, we investigate this notion of approximate orthogonality in inner product C^* -modules. In particular, we show that

$$x \perp^{\varepsilon} y \Longrightarrow x \perp^{s}_{B^{\varepsilon}} y \Longrightarrow x \perp^{\varepsilon}_{B} y, \qquad (x, y \in V),$$

while the converses do not hold in general.

As a result, we show that if $T: V \to W$ is a linear mapping between inner product \mathscr{A} -modules such that $x \perp_B y \Rightarrow Tx \perp_{B^{\varepsilon}}^{s} Ty$ for all $x, y \in V$, then

$$(1 - 16\varepsilon) \|T\| \|x\| \le \|Tx\| \le \|T\| \|x\| \qquad (x \in V).$$

Some other related topics can be found in [14, 15, 23, 24].

2 Operator (Strong) Birkhoff–James Orthogonality

The characterization of the (strong) Birkhoff–James orthogonality for elements of a Hilbert C^* -module by means of the states of the underlying C^* -algebra is known. For

elements x, y of a Hilbert \mathscr{A} -module V, the following results were obtained in [2,5]:

(2.1)
$$x \perp_B y \iff (\exists \varphi \in \mathcal{S}(\mathscr{A}) : \varphi(\langle x, x \rangle) = ||x||^2 \text{ and } \varphi(\langle x, y \rangle) = 0)$$

(2.2) $x \perp_B^s y \iff (\exists \varphi \in \mathcal{S}(\mathscr{A}) : \varphi(\langle x, x \rangle) = ||x||^2 \text{ and } \varphi(\langle x, y \rangle a) = 0 \ \forall a \in \mathscr{A}).$

In the following result we establish a characterization of Birkhoff–James orthogonality for elements of a Hilbert $\mathbb{K}(\mathcal{H})$ -module.

Theorem 2.1 Let V be a Hilbert $\mathbb{K}(\mathcal{H})$ -module and $x, y \in V$. Then the following statements are equivalent:

- (i) $x \perp_B y$.
- (ii) There exists a positive operator $P \in C_1(\mathcal{H})$ of trace one such that

$$\|x + \lambda y\|^2 \ge \|x\|^2 + |\lambda|^2 \operatorname{tr}(P|y|^2) \qquad (\lambda \in \mathbb{C}).$$

Proof Let $x \perp_B y$. By (2.1), there exists a state φ over $\mathbb{K}(\mathscr{H})$ such that $\varphi(\langle x, x \rangle) = ||x||^2$ and $\varphi(\langle x, y \rangle) = 0$. For every $\lambda \in \mathbb{C}$, we therefore have

$$\begin{split} \|x + \lambda y\|^2 &\geq \varphi(\langle x + \lambda y, x + \lambda y \rangle) \\ &= \varphi(\langle x, x \rangle) + \lambda \varphi(\langle x, y \rangle) + \overline{\lambda \varphi(\langle x, y \rangle)} + |\lambda|^2 \varphi(\langle y, y \rangle) \\ &= \|x\|^2 + |\lambda|^2 \varphi(|y|^2). \end{split}$$

Thus,

$$\|x + \lambda y\|^2 \ge \|x\|^2 + |\lambda|^2 \varphi(|y|^2) \qquad (\lambda \in \mathbb{C}).$$

Now, by [20, Theorem 4.2.1], there exists a positive operator $P \in \mathcal{C}_1(\mathcal{H})$ of trace one such that $\varphi(T) = tr(PT)$, $T \in \mathbb{K}(\mathcal{H})$. Thus, we have

$$||x + \lambda y||^2 \ge ||x||^2 + |\lambda|^2 \varphi(|y|^2) = ||x||^2 + |\lambda|^2 \operatorname{tr}(P|y|^2) \qquad (\lambda \in \mathbb{C}).$$

Conversely, if (ii) holds, then, since $|\lambda|^2 \operatorname{tr}(P|y|^2) \ge 0$ for all $\lambda \in \mathbb{C}$, we get

$$\|x + \lambda y\| \ge \sqrt{\|x\|^2 + |\lambda|^2 \operatorname{tr}(P|y|^2)} \ge \|x\| \qquad (\lambda \in \mathbb{C}).$$

Hence, $x \perp_B y$.

Remark 2.2 Let *V* be a Hilbert $\mathbb{K}(\mathscr{H})$ -module and $x, y \in V$. Using the same argument as in the proof of Theorem 2.1 and (2.2) we obtain $x \perp_B^s y$ if and only if there exists a positive operator $P \in \mathcal{C}_1(\mathscr{H})$ of trace one such that

$$\|x+ya\|^2 \ge \|x\|^2 + \operatorname{tr}(P|ya|^2) \qquad (a \in \mathscr{A}).$$

In the following result we establish a characterization of strong Birkhoff–James orthogonality for elements of a C^* -algebra.

Theorem 2.3 Let \mathscr{A} be a C^* -algebra, and $a, b \in \mathscr{A}$. Then the following statements are equivalent:

- (i) $a \perp_B^s b$.
- (ii) There exist a Hilbert space \mathcal{H} , a representation $\pi: \mathcal{A} \to \mathbb{B}(\mathcal{H})$, and a unit vector $\xi \in \mathcal{H}$ such that

$$||a + bc||^{2} \ge ||a||^{2} + ||\pi(bc)\xi||^{2} \qquad (c \in \mathscr{A}).$$

Proof Suppose that $a \perp_B^s b$. By (2.2) applied to $V = \mathscr{A}$ and using the same argument as in the proof of Theorem 2.1, there exists a state φ of \mathscr{A} such that $||a + bd||^2 \ge ||a||^2 + \varphi(|bd|^2)$ for all $d \in \mathscr{A}$. Now, by [11, Proposition 2.4.4] there exist a Hilbert space \mathscr{H} , a representation $\pi: \mathscr{A} \to \mathbb{B}(\mathscr{H})$, and a unit vector $\xi \in \mathscr{H}$ such that for any $c \in \mathscr{A}$ we have $\varphi(c) = [\pi(c)\xi, \xi]$. Hence,

$$\|a + bc\|^{2} \ge \|a\|^{2} + \varphi(|bc|^{2}) = \|a\|^{2} + \left[\pi(|bc|^{2})\xi,\xi\right]$$
$$= \|a\|^{2} + \left[\pi(bc)\xi,\pi(bc)\xi\right] = \|a\|^{2} + \|\pi(bc)\xi\|^{2},$$

for all $c \in \mathcal{A}$.

The converse is obvious.

Corollary 2.4 Let \mathscr{A} be a unital C^* -algebra with the unit e. For every self-adjoint noninvertible $a \in \mathscr{A}$, there exist a Hilbert space \mathscr{H} , a representation $\pi: \mathscr{A} \to \mathbb{B}(\mathscr{H})$ and a unit vector $\xi \in \mathscr{H}$ such that

$$\|e+ab\|^2 \ge 1 + \|\pi(ab)\xi\|^2 \qquad (b \in \mathscr{A}).$$

Proof Since *a* is noninvertible, a^2 is noninvertible as well. Therefore there is a state φ of \mathscr{A} such that $\varphi(a^2) = 0$. We have $\varphi(ee^*) = ||e||^2 = 1$ and

$$|\varphi(eab)| \leq \sqrt{\varphi(eaa^*e^*)\varphi(b^*b)} = \sqrt{\varphi(a^2)\varphi(b^*b)} = 0 \qquad (b \in \mathscr{A}).$$

Thus, by (2.2) we get $e \perp_B^s a$. Hence, by Theorem 2.3, there exist a Hilbert space \mathcal{H} , a representation $\pi: \mathscr{A} \to \mathbb{B}(\mathcal{H})$, and a unit vector $\xi \in \mathcal{H}$ such that $||e + ab||^2 \ge 1 + ||\pi(ab)\xi||^2$ for all $b \in \mathscr{A}$.

Now, we are going to obtain some characterizations of (strong) Birkhoff–James orthogonality in the Hilbert C^* -module $\mathbb{B}(\mathcal{H})$. Let $T, S \in \mathbb{B}(\mathcal{H})$. It was proved in [4, Theorem 1.1 and Remark 3.1] and [2, Proposition 2.8] that $T \perp_B S$ (resp. $T \perp_B^s S$) if and only if there is a sequence of unit vectors $(\xi_n) \subset \mathcal{H}$ such that

(2.3)
$$\lim_{n\to\infty} \|T\xi_n\| = \|T\| \text{ and } \lim_{n\to\infty} [T\xi_n, S\xi_n] = 0 \text{ (resp. } \lim_{n\to\infty} S^*T\xi_n = 0).$$

When \mathscr{H} is finite dimensional, it holds that $T \perp_B S$ (resp. $T \perp_B^s S$) if and only if there is a unit vector $\xi \in \mathscr{H}$ such that

(2.4)
$$||T\xi|| = ||T||$$
 and $[T\xi, S\xi] = 0$ (resp. $S^*T\xi = 0$)

The following results are immediate consequences of the above characterizations.

Corollary 2.5 Let $T \in \mathbb{B}(\mathcal{H})$ be an isometry and $S \in \mathbb{B}(\mathcal{H})$ be an invertible positive operator. Then $T \pm_B TS$.

Corollary 2.6 Let $S \in \mathbb{B}(\mathcal{H})$. Then the following statements are equivalent:

- (i) *S* is non-invertible.
- (ii) $T \perp_B S$ for every unitary operator $T \in \mathbb{B}(\mathcal{H})$.

Proof By [10, Proposition 3.3], $S \in \mathbb{B}(\mathcal{H})$ is not invertible if and only if

$$0 \in \left\{ \lambda \in \mathbb{C} : \exists (\xi_n) \subset \mathscr{H}, \|\xi_n\| = 1, \lim_{n \to \infty} \left[T^* S \xi_n, \xi_n \right] = \lambda \right\}$$

for every unitary operator T. Hence, by using (2.3), the statements are equivalent.

Corollary 2.7 Let $T, S \in \mathbb{B}(\mathcal{H})$. Then the following statements hold:

- (i) If dim $\mathcal{H} < \infty$, then $T \perp_B S$ if and only if there is a unit vector $\xi \in \mathcal{H}$ such that $||T||\xi = |T|\xi$ and $[T\xi, S\xi] = 0$.
- (ii) If dim $\mathscr{H} = \infty$, then $T \perp_B S$ if and only if there is a sequence of unit vectors $(\xi_n) \subset \mathscr{H}$ such that $\lim_{n \to \infty} (\|T\|\xi_n |T|\xi_n) = 0$ and $\lim_{n \to \infty} [T\xi_n, S\xi_n] = 0$.
- (iii) If dim $\mathcal{H} < \infty$, then $T \perp_B^s S$ if and only if there is a unit vector $\xi \in \mathcal{H}$ such that $||T||\xi = |T|\xi$ and $S^*T\xi = 0$.
- (iv) If dim $\mathscr{H} = \infty$, then $T \perp_B^s S$ if and only if there is a sequence of unit vectors $(\xi_n) \subset \mathscr{H}$ such that $\lim_{n \to \infty} (\|T\|\xi_n |T|\xi_n) = 0$ and $\lim_{n \to \infty} S^*T\xi_n = 0$.
- **Proof** (i) Let $T \perp_B S$. Take the same vector ξ as in (2.4). So, we have

$$||T\xi||^{2} = [T\xi, T\xi] = [|T|^{2}\xi, \xi] \le ||T||^{2} ||\xi||^{2} \le ||T||^{2} ||\xi||^{2} = ||T\xi||^{2}.$$

This forces $|T|^2 \xi = ||T||^2 \xi$ and thus $|T|\xi = ||T||\xi$, as asserted.

The converse is trivial.

Using (2.3) and (2.4), we can similarly prove statements (ii)–(iv).

Theorem 2.8 Let $S \in \mathbb{B}(\mathcal{H})$. Let $\mathcal{H}_0 \neq \{0\}$ be a closed subspace of \mathcal{H} and let P be the orthogonal projection onto \mathcal{H}_0 . Then the following statements hold:

- (i) If dim $\mathcal{H} < \infty$, then $P \perp_B S$ if and only if there is a unit vector $\xi \in \mathcal{H}_0$ such that $[S\xi, \xi] = 0$.
- (ii) If dim $\mathscr{H} = \infty$, then $P \perp_B S$ if and only if there is a sequence of unit vectors $(\xi_n) \subset \mathscr{H}_0$ such that $\lim_{n\to\infty} [S\xi_n, \xi_n] = 0$.

Proof (i) Let $P \perp_B S$. By (2.4), there is a unit vector $\zeta \in \mathcal{H}$ such that $||P\zeta|| = ||P|| = 1$ and $[P\zeta, S\zeta] = 0$. We have $\zeta = \xi + \eta$, where $\xi \in \mathcal{H}_0$ and $\eta \in \mathcal{H}_0^{\perp}$. Since $||\xi|| =$ $||P(\xi + \eta)|| = ||P\zeta|| = 1$ and $||\xi||^2 + ||\eta||^2 = 1$, so we get $\eta = 0$. Hence, $[S\xi, \xi] =$ $[S(\xi + \eta), \xi] = [S(\xi + \eta), P(\xi + \eta)] = [P\zeta, S\zeta] = 0$.

The converse is trivial.

(ii) Let $P_{\perp B}S$. Take the vector sequence (ζ_n) of \mathscr{H} as in (2.3). We have $\zeta_n = \mu_n + \eta_n$, where $\mu_n \in \mathscr{H}_0$ and $\eta_n \in \mathscr{H}_0^{\perp}$. Since

$$\lim_{n \to \infty} \|\mu_n\| = \lim_{n \to \infty} \|P(\mu_n + \eta_n)\| = \lim_{n \to \infty} \|P\zeta_n\| = 1 \text{ and } \|\mu_n\|^2 + \|\eta_n\|^2 = 1,$$

we get $\lim_{n\to\infty} \|\eta_n\| = 0$. We can assume that $\|\mu_n\| \ge \frac{1}{2}$ for every $n \in \mathbb{N}$. Let us put $\xi_n = \frac{\mu_n}{\|\mu_n\|}$. We have

$$\begin{split} \left[S\xi_{n}, \xi_{n} \right] &= \frac{1}{\|\mu_{n}\|^{2}} \left| \left[S\mu_{n}, \mu_{n} \right] \right| \\ &= \frac{1}{\|\mu_{n}\|^{2}} \left| \left[S\zeta_{n}, P\zeta_{n} \right] + \left[S\mu_{n}, \mu_{n} \right] - \left[S\zeta_{n}, P\zeta_{n} \right] \right| \\ &\leq \frac{1}{\|\mu_{n}\|^{2}} \left| \left[S\zeta_{n}, P\zeta_{n} \right] \right| + \frac{1}{\|\mu_{n}\|^{2}} \left| \left[S\mu_{n}, \mu_{n} \right] - \left[S(\mu_{n} + \eta_{n}), \mu_{n} \right] \right| \\ &\leq \frac{1}{\|\mu_{n}\|^{2}} \left| \left[S\zeta_{n}, P\zeta_{n} \right] \right| + \frac{1}{\|\mu_{n}\|^{2}} \left| \left[S\eta_{n}, \mu_{n} \right] \right| \end{split}$$

M. S. Moslehian and A. Zamani

$$\leq \frac{1}{\|\mu_{n}\|^{2}} \left| \left[S\zeta_{n}, P\zeta_{n} \right] \right| + \frac{1}{\|\mu_{n}\|} \|S\| \|\eta_{n} \\ \leq 4 \left| \left[S\zeta_{n}, P\zeta_{n} \right] \right| + 2 \|S\| \|\eta_{n}\|,$$

whence

$$\left| \left[S\xi_n, \xi_n \right] \right| \le 4 \left| \left[S\zeta_n, P\zeta_n \right] \right| + 2 \|S\| \|\eta_n\|$$

Since $\lim_{n\to\infty} [P\zeta_n, S\zeta_n] = 0$ and $\lim_{n\to\infty} ||\eta_n|| = 0$, from the above equality we get $\lim_{n\to\infty} [S\zeta_n, \zeta_n] = 0$.

The converse is trivial.

Theorem 2.9 Let $T, S \in \mathbb{B}(\mathcal{H})$. Then the following statements are equivalent: (i) $T \perp_B S$;

(ii) $||T + \lambda S||^2 \ge ||T||^2 + |\lambda|^2 m^2(S)$ ($\lambda \in \mathbb{C}$), where m(S) is the minimum modulus of S.

Proof (i) \Rightarrow (ii) Let $T \perp_B S$ and dim $\mathscr{H} = \infty$. By (2.3), there exists a sequence of unit vectors $(\xi_n) \subset \mathscr{H}$ such that $\lim_{n\to\infty} ||T\xi_n|| = ||T||$ and $\lim_{n\to\infty} [T\xi_n, S\xi_n] = 0$. We have

$$||T + \lambda S||^{2} \ge ||(T + \lambda S)\xi_{n}||^{2} = ||T\xi_{n}||^{2} + \overline{\lambda}[T\xi_{n}, S\xi_{n}] + \lambda[S\xi_{n}, T\xi_{n}] + |\lambda|^{2}||S\xi_{n}||^{2},$$

for all $\lambda \in \mathbb{C}$ and $n \in \mathbb{N}$. Thus,

$$||T + \lambda S||^{2} \ge ||T||^{2} + |\lambda|^{2} \lim_{n \to \infty} \sup ||S\xi_{n}||^{2} \ge ||T||^{2} + |\lambda|^{2} m^{2}(S) \qquad (\lambda \in \mathbb{C})$$

When dim ℋ < ∞, by using (2.4), we can similarly prove the statement (ii).
(ii)⇒(i) This implication is trivial.

Remark 2.10 Notice that for $S \in \mathbb{B}(\mathcal{H})$ it is straightforward to show that m(S) > 0 if and only if S is bounded below, or equivalently, S is left invertible. So in the implication (i) \Rightarrow (ii) of Theorem 2.9, if S is left invertible, then m(S) > 0.

It is well known that Pythagoras' equality does not hold in $\mathbb{B}(\mathcal{H})$. The following result is a kind of Pythagorean inequality for bounded linear operators.

Corollary 2.11 Let $T, S \in \mathbb{B}(\mathcal{H})$ with m(S) > 0. Then there exists a unique $\gamma \in \mathbb{C}$, such that

$$\left\| \left(T + \gamma S \right) + \lambda S \right\|^{2} \ge \left\| T + \gamma S \right\|^{2} + |\lambda|^{2} m^{2}(S) \qquad (\lambda \in \mathbb{C})$$

Proof The function $\lambda \mapsto ||T + \lambda S||$ attains its minimum at, say, γ (there may be of course many such points) and hence $T + \gamma S \perp_B S$. So, by Theorem 2.9, we have

$$\left\| \left(T + \gamma S \right) + \lambda S \right\|^{2} \ge \left\| T + \gamma S \right\|^{2} + |\lambda|^{2} m^{2}(S) \qquad (\lambda \in \mathbb{C}).$$

Now, suppose that ξ is another point satisfying the inequality

$$\left\|\left(T+\xi S\right)+\lambda S\right\|^{2}\geq\left\|T+\xi S\right\|^{2}+|\lambda|^{2}m^{2}(S)\qquad (\lambda\in\mathbb{C}).$$

Choose $\lambda = \gamma - \xi$ to get

$$\|T + \gamma S\|^{2} = \|(T + \xi S) + (\gamma - \xi)S\|^{2} \ge \|T + \xi S\|^{2} + |\gamma - \xi|^{2}m^{2}(S)$$
$$\ge \|T + \gamma S\|^{2} + |\gamma - \xi|^{2}m^{2}(S).$$

Hence $0 \ge |\gamma - \xi|^2 m^2(S)$. Since $m^2(S) > 0$, we get $|\gamma - \xi|^2 = 0$, or equivalently, $\gamma = \xi$. This shows that γ is unique.

Let $T \in \mathbb{B}(\mathcal{H})$. For every $S \in \mathbb{B}(\mathcal{H})$, it is easy to see that if there exists a unit vector $\xi \in \mathcal{H}$ such that $||T||\xi = |T|\xi$ and $S^*T\xi = 0$; then $T \perp_B^s S$. The question is under which conditions the converse is true. When the Hilbert space is finite dimensional, it follows from Corollary 2.7(iii) that there exists a unit vector $\xi \in \mathcal{H}$ such that $||T||\xi = |T|\xi$ and $S^*T\xi = 0$.

The following example shows that the finite dimensionality in statement (iii) of Corollary 2.7 is essential.

Example 2.12 Consider operators $T, S: \ell^2 \to \ell^2$ defined by

$$T(\xi_1,\xi_2,\xi_3,...) = \left(\frac{1}{2}\xi_1,\frac{2}{3}\xi_2,\frac{3}{4}\xi_3,...\right)$$
 and $S(\xi_1,\xi_2,\xi_3,...) = (\xi_1,0,0,...).$

One can easily observe that $T \perp_B S$ and $T^*S(\xi_1, \xi_2, \xi_3, ...) = \frac{1}{2}{\xi_1}^2 \ge 0$. So, by (1.1), we get $T \perp_B^s S$. But there does not exist $\xi \in \ell^2$ such that $||T|| \xi = |T| \xi$.

We now settle the problem for any infinite dimensional Hilbert space. The proof of Theorem 2.13 is a modification of one given by Paul et al. [21, Theorem 3.1].

Theorem 2.13 Let dim $\mathcal{H} = \infty$ and $T \in \mathbb{B}(\mathcal{H})$. If $\mathbb{S}_{\mathcal{H}_0} = \mathbb{M}_T$, where \mathcal{H}_0 is a finite dimensional subspace of \mathcal{H} and $||T||_{\mathcal{H}_0^{\perp}} = \sup\{||T\xi|| : \xi \in \mathcal{H}_0^{\perp}, ||\xi|| = 1\} < ||T||$, then for every $S \in \mathbb{B}(\mathcal{H})$, the following statements are equivalent:

- (ii) There exists a unit vector $\xi \in \mathscr{H}_0$ such that $||T\xi|| = ||T||$ and $S^*T\xi = 0$.
- (iii) There exists a unit vector $\xi \in \mathscr{H}_0$ such that $||T|| \xi = |T| \xi$ and $S^*T\xi = 0$.

Proof (i) \Rightarrow (ii) Suppose (i) holds. By (2.3), there exists a sequence of unit vectors $\{\zeta_n\}$ in \mathscr{H} such that

(2.5)
$$\lim_{n \to \infty} \|T\zeta_n\| = \|T\| \text{ and } \lim_{n \to \infty} S^* T\zeta_n = 0.$$

For each $n \in \mathbb{N}$, we have $\zeta_n = \xi_n + \eta_n$, where $\xi_n \in \mathscr{H}_0$ and $\eta_n \in \mathscr{H}_0^{\perp}$.

Since \mathcal{H}_0 is a finite dimensional subspace and $||\xi_n|| \leq 1$, $\{\xi_n\}$ has a convergent subsequence converging to some element of \mathcal{H}_0 . Without loss of generality we assume that $\lim_{n\to\infty} \xi_n = \xi$. Since $\mathbb{S}_{\mathcal{H}_0} = \mathbb{M}_T$,

(2.6)
$$\lim_{n \to \infty} \|T\xi_n\| = \|T\xi\| = \|T\| \|\xi$$

and

(2.7)
$$\lim_{n \to \infty} \|\eta_n\|^2 = \lim_{n \to \infty} \left(\|\zeta_n\|^2 - \|\xi_n\|^2 \right) = 1 - \|\xi\|^2.$$

⁽i) $T \perp_B^s S$.

Now for each non-zero element $\xi_n \in \mathscr{H}_0$, by hypothesis $\frac{\xi_n}{\|\xi_n\|} \in \mathbb{S}_{\mathscr{H}_0} = \mathbb{M}_T$, and so $\|T\xi_n\| = \|T\| \|\xi_n\|$. Thus,

$$||T^*T|| ||\xi_n||^2 = ||T||^2 ||\xi_n||^2 = ||T\xi_n||^2 = [T^*T\xi_n, \xi_n] \le ||T^*T\xi_n|| ||\xi_n|| \le ||T^*T||.$$

Hence, $[T^*T\xi_n, \xi_n] = ||T^*T\xi_n|| ||\xi_n||$. By the equality case of Cauchy–Schwarz inequality $T^*T\xi_n = \lambda_n\xi_n$ for some $\lambda_n \in \mathbb{C}$, and therefore

(2.8)
$$\left[T^*T\xi_n,\eta_n\right] = \left[T^*T\eta_n,\xi_n\right] = 0.$$

By (2.5), (2.6), and (2.8) we have

$$\|T\|^{2} = \lim_{n \to \infty} \|T\zeta_{n}\|^{2} = \lim_{n \to \infty} [T^{*}T\zeta_{n}, \zeta_{n}]$$

=
$$\lim_{n \to \infty} \left([T^{*}T\xi_{n}, \xi_{n}] + [T^{*}T\xi_{n}, \eta_{n}] + [T^{*}T\eta_{n}, \xi_{n}] + [T^{*}T\eta_{n}, \eta_{n}] \right)$$

=
$$\lim_{n \to \infty} \|T\xi_{n}\|^{2} + \lim_{n \to \infty} \|T\eta_{n}\|^{2} = \|T\|^{2} \|\xi\|^{2} + \lim_{n \to \infty} \|T\eta_{n}\|^{2},$$

whence by (2.7) we reach

(2.9)
$$\lim_{n \to \infty} \|T\eta_n\|^2 = \|T\|^2 (1 - \|\xi\|^2) = \|T\|^2 \lim_{n \to \infty} \|\eta_n\|^2.$$

By the hypothesis $||T||_{\mathscr{H}_0^\perp} < ||T||$, and so by (2.9) there does not exist any non-zero subsequence of $\{||\eta_n||\}$. So we conclude that $\eta_n = 0$ for all $n \in \mathbb{N}$. Hence, (2.5) and (2.7) imply

$$\|\xi\| = 1$$
, $\|T\xi\| = \|T\|$, and $S^*T\xi = 0$.

(ii)⇒(iii) This implication follows from the proof of Corollary 2.7.
(iii)⇒(i) This implication is trivial.

Corollary 2.14 Let dim $\mathcal{H} = \infty$ and $T \in \mathbb{B}(\mathcal{H})$. If $\mathbb{S}_{\mathcal{H}_0} = \mathbb{M}_T$, where \mathcal{H}_0 is a finite dimensional subspace of \mathcal{H} and $||T||_{\mathcal{H}_0^{\perp}} < ||T||$, then there exists a unit vector $\xi \in \mathcal{H}_0$ such that $||T||\xi = |T|\xi$ and $||T||^2 T^* T\xi = (T^*T)^2 \xi$.

Proof By (1.3), $T \perp_B^s (||T||^2 T - TT^*T)$. So, by Theorem 2.13, there exists a unit vector $\xi \in \mathscr{H}_0$ such that $||T||\xi = |T|\xi$ and $(||T||^2 T - TT^*T)^*T\xi = 0$. Thus, $||T||^2 T^*T\xi = (T^*T)^2\xi$.

Corollary 2.15 Let dim $\mathcal{H} = \infty$ and let $T \in \mathbb{B}(\mathcal{H})$ be a nonzero positive operator. If $\mathbb{S}_{\mathcal{H}_0} = \mathbb{M}_T$, where \mathcal{H}_0 is a finite dimensional subspace of \mathcal{H} and $||T||_{\mathcal{H}_0^\perp} < ||T||$, then for every $S \in \mathbb{B}(\mathcal{H})$ the following statements are equivalent:

(i) $T \perp_B^s S$.

(ii) There exists a unit vector $\xi \in \mathscr{H}_0$ such that $T\xi = ||T|| \xi$ and $S^*\xi = 0$.

Proof Obviously, (ii) \Rightarrow (i).

Suppose (i) holds. By Theorem 2.13, there exists a unit vector $\xi \in \mathcal{H}_0$ such that $||T\xi|| = ||T||$ and $S^*T\xi = 0$. Since $T \ge 0$, $||T\xi|| = ||T|| \Leftrightarrow T\xi = ||T||\xi$. Therefore, $S^*T\xi = 0 \Leftrightarrow S^*\xi = 0$, as $T \ne 0$.

Characterizations of Operator Birkhoff-James Orthogonality

3 An Approximate Strong Birkhoff–James Orthogonality

Recall that in an inner product \mathscr{A} -module *V* and for $\varepsilon \in [0,1)$, we say *x*, *y* are *approximate strongly Birkhoff–James orthogonal*, in short $x \perp_{B^{\varepsilon}}^{s} y$, if

$$\|x + ya\|^2 \ge \|x\|^2 - 2\varepsilon \|a\| \|x\| \|y\| \qquad (a \in \mathscr{A}).$$

The following proposition states some basic properties of the relation $\perp_{B^{\varepsilon}}^{s}$.

Proposition 3.1 Let $\varepsilon \in [0, \frac{1}{2})$ and let V be an inner product \mathscr{A} -module. Then the following statements hold for every $x, y \in V$:

- (i) $x \perp_{B^{\varepsilon}}^{s} x \Leftrightarrow x = 0.$ (ii) $x \perp_{B^{\varepsilon}}^{s} y \Rightarrow \alpha x \perp_{B^{\varepsilon}}^{s} \beta y \text{ for all } \alpha, \beta \in \mathbb{C}.$ (iii) $x \perp_{B^{\varepsilon}}^{\varepsilon} y \Rightarrow x \perp_{B^{\varepsilon}}^{s} y.$

- (iv) $x \perp_{B^{\varepsilon}}^{s} y \Rightarrow x \perp_{B}^{\varepsilon} y$. (v) $x \perp_{B^{\varepsilon}}^{s} y \Leftrightarrow x \perp_{B}^{\varepsilon} ya$ for all $a \in \mathscr{A}$.

Proof (i) Let $x \perp_{B^{\varepsilon}}^{s} x$. Also, suppose that $(e_i)_{i \in I}$ is an approximate unit for \mathscr{A} . We have

$$||x - xe_i||^2 \ge ||x||^2 - 2\varepsilon || - e_i || ||x|| ||x|| \quad (i \in I).$$

Since $\lim_{i} ||x - xe_{i}|| = 0$ and $||e_{i}|| = 1$, we get $(1 - 2\varepsilon) ||x||^{2} \le 0$. Thus, x = 0. The converse is obvious.

(ii) Let $x \perp_{B^{\epsilon}}^{s} y$ and let $\alpha, \beta \in \mathbb{C}$. Excluding the obvious case $\alpha = 0$, we have

$$\|\alpha x + \beta ya\|^{2} = |\alpha|^{2} \|x + y\frac{\beta}{\alpha}a\|^{2} \ge |\alpha|^{2} \Big(\|x\|^{2} - 2\varepsilon\|a\|\|x\|\Big\|\frac{\beta}{\alpha}y\Big\|\Big)$$
$$= \|\alpha x\|^{2} - 2\varepsilon\|a\|\|\alpha x\|\|\beta y\|.$$

Hence, $\alpha x \perp_{B^{\varepsilon}}^{s} \beta y$.

(iii) Let $x \perp^{\varepsilon} y$. For any $a \in \mathscr{A}$, we have

$$\begin{aligned} \|x + ya\|^2 &= \|\langle x + ya, x + ya \rangle\| = \|\langle x, x \rangle + \langle ya, ya \rangle + \langle x, ya \rangle + \langle ya, x \rangle\| \\ &\geq \|\langle x, x \rangle + \langle ya, ya \rangle\| - \|\langle x, ya \rangle + \langle ya, x \rangle\| \\ &\geq \|\langle x, x \rangle\| - \|\langle x, ya \rangle + \langle ya, x \rangle\| \\ &\geq \|x\|^2 - \|\langle x, ya \rangle\| - \|\langle ya, x \rangle\| \ge \|x\|^2 - 2\|a\|\|\langle x, y \rangle\| \\ &\geq \|x\|^2 - 2\varepsilon \|a\|\|x\|\|y\|. \end{aligned}$$

Thus, $||x + ya||^2 \ge ||x||^2 - 2\varepsilon ||a|| ||x|| ||y||$, or equivalently, $x \perp_{B^{\varepsilon}}^{s} y$.

(iv) Let $x \perp_{B^{\epsilon}}^{s} y$. Hence, for any $\lambda \in \mathbb{C}$ and an approximate unit $(e_i)_{i \in I}$ for \mathscr{A} , we have

$$\left(\|x + \lambda y\| + |\lambda| \|ye_i - y\| \right)^2 \ge \|x + \lambda ye_i\|^2 \ge \|x\|^2 - 2\varepsilon \|\lambda e_i\| \|x\| \|y\| \\ \ge \|x\|^2 - 2\varepsilon |\lambda| \|x\| \|y\|.$$

Since $\lim ||ye_i - y|| = 0$, whence we get $||x + \lambda y||^2 \ge ||x||^2 - 2\varepsilon |\lambda| ||x|| ||y||$, or equivalently, $x \perp^{\varepsilon} y$.

M. S. Moslehian and A. Zamani

(v) Let $x \perp_{B^{\varepsilon}}^{s} y$ and let $(e_i)_{i \in I}$ be an approximate unit for \mathscr{A} . We have

$$\left(\|x + \lambda ya\| + \|\lambda yae_i - \lambda ya\| \right)^2 \ge \|x + \lambda yae_i\|^2 \ge \|x\|^2 - 2\varepsilon \|\lambda ae_i\| \|x\| \|y\|$$
$$\ge \|x\|^2 - 2\varepsilon |\lambda| \|a\| \|x\| \|y\|$$

for all $a \in \mathscr{A}$ and all $\lambda \in \mathbb{C}$. Since $\lim_{i} ||yae_i - ya|| = 0$, we obtain from the above inequality

$$||x + \lambda ya||^{2} \ge ||x||^{2} - 2\varepsilon |\lambda| ||a|| ||x|| ||y||,$$

for all $a \in \mathscr{A}$ and all $\lambda \in \mathbb{C}$. Thus, $x \perp_B^{\varepsilon} ya$ for all $a \in \mathscr{A}$. The converse is trivial.

Proposition 3.1 shows that in an arbitrary inner product C^* -module the relation \perp^{ε} is weaker than the relation $\perp^{s}_{B^{\varepsilon}}$ and this relation is weaker than the relation \perp^{ε}_{B} , but the converses are not true in general (see the example below).

Example 3.2 Suppose that $\varepsilon \in [0, \frac{1}{2})$. Consider $\mathbb{M}_2(\mathbb{C})$, regarded as an inner product $\mathbb{M}_2(\mathbb{C})$ -module. Let $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then

$$\|I + \lambda A\|^{2} = \left\| \begin{bmatrix} 1 - \lambda & 0 \\ 0 & 1 + \lambda \end{bmatrix} \right\|^{2} = \left(\max\{|1 - \lambda|, |1 + \lambda|\} \right)^{2}$$
$$\geq 1 \geq 1 - 2\varepsilon |\lambda| = \|I\|^{2} - 2\varepsilon |\lambda| \|I\| \|A\|$$

for all $\lambda \in \mathbb{C}$. Hence $I \perp_B^{\varepsilon} A$, but not $I \perp_{B^{\varepsilon}}^{s} A$, since

$$||I + A(-A)||^2 = 0 < 1 - 2\varepsilon = ||I||^2 - 2\varepsilon ||-A|| ||I|| ||A||.$$

On the other hand, for any $C = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$, we have

$$\|I + BC\|^{2} = \left\| \begin{bmatrix} 1 + c_{1} & c_{2} \\ 0 & 1 \end{bmatrix} \right\|$$
$$= \left[\frac{1}{2} \left(|1 + c_{1}|^{2} + |c_{2}|^{2} + 1 \right) + \frac{1}{2} \sqrt{(|1 + c_{1}|^{2} + |c_{2}|^{2} + 1)^{2} - 4|1 + c_{1}|^{2}} \right]^{\frac{1}{2}}$$
$$\geq 1 \geq 1 - 2\varepsilon \|C\| \|B\| = \|I\|^{2} - 2\varepsilon \|C\| \|I\| \|B\|.$$

Therefore, $I \perp_{B^{\varepsilon}}^{s} B$. But not $I \perp^{\varepsilon} B$ since

$$||\langle I, B \rangle|| = ||B|| = 1 > \varepsilon = \varepsilon ||I|| ||B||.$$

By combining Proposition 3.1(iv) and [19, Theorem 3.5], we obtain the following result (see also [9, 12, 18]).

Corollary 3.3 Let V, W be inner product \mathscr{A} -modules, $\varepsilon \in [0, \frac{1}{2})$ and let $T: V \to W$ be a linear mapping satisfying $x \perp_B y \Rightarrow Tx \perp_{B^{\varepsilon}}^{s} Ty$. Then

$$(1 - 16\varepsilon) ||T|| ||x|| \le ||Tx|| \le ||T|| ||x|| \qquad (x \in V).$$

Proposition 3.4 Let $\varepsilon \in [0,1)$. Let x, y be elements in an inner product \mathscr{A} -module V such that $\langle x, x \rangle \perp_{B^{\varepsilon}}^{s} \langle x, y \rangle$; then $x \perp_{B^{\varepsilon}}^{s} y$.

Proof We assume that $x \neq 0$. Since $\langle x, x \rangle \perp_{B^{\varepsilon}}^{s} \langle x, y \rangle$, therefore for every $a \in \mathcal{A}$, we have

$$\|\langle x, x \rangle + \langle x, y \rangle a\|^{2} \ge \|\langle x, x \rangle\|^{2} - 2\varepsilon \|a\| \|\langle x, x \rangle\| \|\langle x, y \rangle\|$$

or equivalently,

$$\|\langle x, x + ya \rangle\|^2 \ge \|x\|^4 - 2\varepsilon \|a\| \|x\|^2 \|\langle x, y \rangle\|.$$

Hence, we get

$$||x||^{2}||x + ya||^{2} \ge ||x||^{4} - 2\varepsilon ||a|| ||x||^{3} ||y|| \qquad (a \in \mathscr{A}).$$

Since $||x||^2 \neq 0$, we obtain from the above inequality

$$\|x+ya\|^2 \ge \|x\|^2 - 2\varepsilon \|a\| \|x\| \|y\| \qquad (a \in \mathscr{A}).$$

Thus, $x \perp_{B^{\varepsilon}}^{s} y$.

Proposition 3.5 Let x, y be two elements in an inner product \mathscr{A} -module V and let $\varepsilon \in [0,1)$. If there exists a state φ on \mathscr{A} such that $\varphi(\langle x, x \rangle) = ||x||^2$ and $|\varphi(\langle x, y \rangle a)| \le \varepsilon ||a|| ||x|| ||y||$ for all $a \in \mathscr{A}$, then $x \perp_{B^{\varepsilon}}^{s} y$.

Proof We assume that $x \neq 0$. Let $a \in \mathscr{A}$. By the Cauchy–Schwarz inequality, we have

$$\begin{aligned} \|x\|^2 &= \varphi(\langle x, x \rangle) = |\varphi(\langle x, x + ya \rangle) - \varphi(\langle x, ya \rangle)| \\ &\leq |\varphi(\langle x, x + ya \rangle)| + |\varphi(\langle x, ya \rangle)| \\ &\leq \sqrt{\varphi(\langle x, x \rangle)\varphi(\langle x + ya, x + ya \rangle)} + \varepsilon \|a\| \|x\| \|y\| \\ &\leq \|x\| \|x + ya\| + \varepsilon \|a\| \|x\| \|y\|. \end{aligned}$$

Thus, $||x||^2 \le ||x|| ||x + ya|| + \varepsilon ||a|| ||x|| ||y||$, *i.e*, $||x + ya|| \ge ||x|| - \varepsilon ||a|| ||y||$. We consider two cases.

Case 1: If $||x|| - \varepsilon ||a|| ||y|| \ge 0$, then we get

$$||x + ya||^{2} \ge (||x|| - \varepsilon ||a|| ||y||)^{2} = ||x||^{2} - 2\varepsilon ||a|| ||x|| ||y|| + \varepsilon^{2} ||a||^{2} ||y||^{2}$$

$$\ge ||x||^{2} - 2\varepsilon ||a|| ||x|| ||y||.$$

Case 2: If $||x|| - \varepsilon ||a|| ||y|| < 0$, then we reach

$$||x + ya||^{2} \ge 0 > ||x|| (||x|| - \varepsilon ||a|| ||y||) \ge ||x|| (||x|| - \varepsilon ||a|| ||y||) - \varepsilon ||a|| ||x|| ||y||$$

= ||x||^{2} - 2\varepsilon ||a|| ||x|| ||y||.

Hence, $x \perp_{B^{\varepsilon}}^{s} y$.

Proposition 3.6 Let x, y be two elements in an inner product \mathscr{A} -module V and let $\varepsilon \in [0, \frac{1}{2})$. If $x \perp_{B^{\varepsilon}}^{s} y$ then there exists a state φ on \mathscr{A} such that

$$|\varphi(\langle x, y \rangle a)| \leq \sqrt{2\varepsilon} \|a\| \|x\| \|y\| \qquad (a \in \mathscr{A}).$$

827

Proof Suppose that $x \perp_{B^{\varepsilon}}^{s} y$. Because of the homogeneity of relation $\perp_{B^{\varepsilon}}^{s}$, we can assume, without loss of generality, that ||x|| = ||y|| = 1. Then for arbitrary $a \in \mathcal{A}$, we have

$$\|x + ya\|^{2} \ge 1 - 2\varepsilon \|a\| \|y\|.$$

Since $\|-\langle y, x \rangle\| \le \|y\| \|x\| = 1$, for $a = -\langle y, x \rangle \in \mathscr{A}$ we get
 $\|x - y\langle y, x \rangle\|^{2} \ge 1 - 2\varepsilon.$

On the other hand, by [20, Theorem 3.3.6], there is $\varphi \in S(\mathscr{A})$ such that

$$\varphi(\langle x-y\langle y,x\rangle,x-y\langle y,x\rangle\rangle) = ||x-y\langle y,x\rangle||^2.$$

Also, we have

$$\begin{split} \varphi\Big(\Big\langle x - y \langle y, x \rangle, x - y \langle y, x \rangle \Big\rangle \Big) \\ &= \varphi(\langle x, x \rangle) - 2\varphi(\langle x, y \rangle \langle y, x \rangle) + \varphi(\langle x, y \rangle \langle y, y \rangle \langle y, x \rangle) \\ &\leq \|x\|^2 - 2\varphi(\langle x, y \rangle \langle y, x \rangle) + \varphi(\langle x, y \rangle \|y\|^2 \langle y, x \rangle) \\ &= 1 - \varphi(\langle x, y \rangle \langle y, x \rangle), \end{split}$$

so, we get

$$1-\varphi(\langle x,y\rangle\langle y,x\rangle)\geq\varphi(\langle x-y\langle y,x\rangle,x-y\langle y,x\rangle\rangle)=\|x-y\langle y,x\rangle\|^2\geq 1-2\varepsilon.$$

Therefore, $\varphi(\langle x, y \rangle \langle y, x \rangle) \le 2\varepsilon$. Now, by the Cauchy–Schwarz inequality, we reach

$$|\varphi(\langle x, ya\rangle)| \leq \sqrt{\varphi(\langle x, y\rangle\langle y, x\rangle)\varphi(a^*a)} \leq \sqrt{2\varepsilon} ||a|| \qquad (a \in \mathscr{A}).$$

Acknowledgments The authors would like to sincerely thank the referee for several useful suggestions.

References

- J. M. Aldaz, S. Barza, M. Fujii, and M. S. Moslehian, Advances in operator Cauchy-Schwarz inequalities and their reverses. Ann. Funct. Anal. 6(2015), no. 3, 275–295. http://dx.doi.org/10.15352/afa/06-3-20
- [2] Lj. Arambašić and R. Rajić, A strong version of the Birkhoff-James orthogonality in Hilbert C*-modules. Ann. Funct. Anal. 5(2014), no. 1, 109–120. http://dx.doi.org/10.15352/afa/1391614575
- [3] _____, On three concepts of orthogonality in Hilbert C*-modules. Linear Multilinear Algebra 63(2015), no. 7, 1485–1500. http://dx.doi.org/10.1080/03081087.2014.947983
- [4] R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems. Linear Algebra
- Appl. 287(1999), no. 1–3, 77–85. http://dx.doi.org/10.1016/S0024-3795(98)10134-9
 [5] T. Bhattacharyya and P. Grover, *Characterization of Birkhoff-James orthogonality*. J. Math. Anal. Appl. 407(2013), no. 2, 350–358. http://dx.doi.org/10.1016/j.jmaa.2013.05.022
- [6] G. Birkhoff, Orthogonality in linear metric spaces. Duke Math. J. 1(1935), no. 2, 169–172. http://dx.doi.org/10.1215/S0012-7094-35-00115-6
- [7] J. Chmieliński, On an ε-Birkhoff orthogonality. J. Inequal. Pure Appl. Math. 6(2005), no. 3, Art. 79.
- [8] _____, Linear mappings approximately preserving orthogonality. J. Math. Anal. Appl. 304(2005), 158–169. http://dx.doi.org/10.1016/j.jmaa.2004.09.011
- [9] _____, Orthogonality equation with two unknown functions. Aequationes Math. 90(2016), no. 1, 11–23. http://dx.doi.org/10.1007/s00010-015-0359-x
- [10] C. Diogo, Algebraic properties of the set of operators with 0 in the closure of the numerical range. Oper. Matrices 9(2015), no. 1, 83–93. http://dx.doi.org/10.7153/oam-09-04
- [11] J. Dixmier, C*-Algebras. North-Holland, Amsterdam, 1981.

Characterizations of Operator Birkhoff–James Orthogonality

- [12] M. Frank, A. S. Mishchenko, and A. A. Pavlov, Orthogonality-preserving, C*-conformal and conformal module mappings on Hilbert C*-modules. J. Funct. Anal. 260(2011), no. 2, 327–339. http://dx.doi.org/10.1016/j.jfa.2010.10.009
- [13] P. Ghosh, D. Sain and K. Paul, Orthogonality of bounded linear operators. Linear Algebra Appl. 500(2016), 43-51. http://dx.doi.org/10.1016/j.laa.2016.03.009
- [14] P. Grover, Orthogonality of matrices in the Ky Fan k-norms. Linear Multilinear Algebra 65(2017), no. 3, 496–509. http://dx.doi.org/10.1080/03081087.2016.1193118
 [15] D. Ilišević and A. Turnšek, Approximately orthogonality preserving mappings on C*-modules. J.
- [15] D. Ilišević and A. Turnšek, Approximately orthogonality preserving mappings on C^{*}-modules. J. Math. Anal. Appl. 341(2008), no. ,1 298–308. http://dx.doi.org/10.1016/j.jmaa.2007.10.028
- [16] R. C. James, Orthogonality in normed linear spaces. Duke Math. J. 12(1945), 291–302. http://dx.doi.org/10.1215/S0012-7094-45-01223-3
- [17] E. C. Lance, Hilbert C*-modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995. http://dx.doi.org/10.1017/CBO9780511526206
- [18] C.-W. Leung, C.-K. Ng, and N.-C. Wong, Linear orthogonality preservers of Hilbert C*-modules. J. Operator Theory 71(2014), no. 2, 571–584. http://dx.doi.org/10.7900/jot.2012jul12.1966
- [19] B. Mojškerc and A. Turnšek, Mappings approximately preserving orthogonality in normed spaces. Nonlinear Anal. 73(2010), no. 12, 3821–3831. http://dx.doi.org/10.1016/j.na.2010.08.007
- [20] G. J. Murphy, C*-Algebras and operator theory. Academic Press, Boston, MA, 1990.
- [21] K. Paul, D. Sain, and P. Ghosh, Birkhoff-James orthogonality and smoothness of bounded linear operators. Linear Algebra Appl. 506(2016), 551–563. http://dx.doi.org/10.1016/j.laa.2016.06.024
- [22] D. Sain, K. Paul, and S. Hait, Operator norm attainment and Birkhoff-James orthogonality. Linear Algebra Appl. 476(2015), 85-97. http://dx.doi.org/10.1016/j.laa.2015.03.002
- [23] P. Wójcik, Norm-parallelism in classical M-ideals. Indag. Math., to appear. http://dx.doi.org/10.1016/j.indag.2016.07.001
- [24] A. Zamani and M. S. Moslehian, Exact and approximate operator parallelism. Canad. Math. Bull. 58(2015), no. 1, 207–224. http://dx.doi.org/10.4153/CMB-2014-029-4
- [25] A. Zamani, M. S. Moslehian, and M. Frank, Angle preserving mappings. Z. Anal. Anwend. 34(2015), no. 4, 485–500. http://dx.doi.org/10.4171/ZAA/1551

(M. S. Moslehian, A. Zamani) Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

e-mail: moslehian@um.ac.ir zamani.ali85@yahoo.com

(A. Zamani) Department of Mathematics, Farhangian University, Iran