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Abstract

We derive an explicit piecewise-polynomial closed form for the probability density function of the
distance travelled by a uniform random walk in an odd-dimensional space.
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1. Introduction

In [1], the authors explore the distance travelled by a uniform n-step random walk
in Rd with unit step length. Following their lead, we denote the probability density
function of this distance by pn(m − 1/2; x), where m = (d − 1)/2.

We recall that the density can be expressed in terms of an integral engaging the
normalised Bessel function of the first kind of order ν, defined by

jν(x) = ν!
(2

x

)ν
Jν(x) = ν!

∑
k≥0

(−x2/4)k

k!(k + ν)!
.

With this normalisation, we have jν(0) = 1 and obtain the following theorem.

Theorem 1.1 (Bessel representation [1, 4]). The probability density function of the
distance to the origin in d ≥ 2 dimensions after n ≥ 2 steps is, for x > 0,

pn(m − 1/2; x) =
2−m+1/2

Γ(m + 1/2)

∫ ∞

0
(tx)m+1/2Jm−1/2(tx) j n

m−1/2(t) dt,

where m = (d − 1)/2.

The study of the density pn(ν; x) is quite classical, originating in the early twentieth
century [2, 4–7]. The most fundamental cases are those of two and three dimensions
[2, 7]. The Bessel representation of the density is valuable for its generality and its
analytically-pleasing structure, which form the basis for many related results [1, 4].
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Additionally, when Theorem 1.1 is used for half-integer m, one can symbolically
integrate any given small-order case, although the structure of the closed form is
obscured in the process.

While some probabilistic results such as Theorem 1.1 hold in all dimensions, many
arithmetic and analytic results are distinct between odd and even dimensions. Indeed,
even dimensional results often involve elliptic integrals [1, 2], while odd dimensional
results are typically resolvable in terms of elementary functions. For instance, noting
that j1/2(x) = sinc(x) = sin(x)/x partly explains why analysis in three-dimensional
space is relatively simple. More generally, jν(x) is elementary when v is a proper
half-integer [1, 4, 7]. In light of this discussion, it is striking that the next result is very
recent.

Theorem 1.2 (Convolution formula for density in odd dimensions [3]). Assume that
the dimension d = 2m + 1 is an odd number. Then for x ≥ 0,

pn(m − 1/2; x) =
(2x)2mΓ(m)

Γ(2m)

(
−

1
2x

d
dx

)m
Pm,n(x),

where Pm,n is the piecewise polynomial obtained from convolving

fm(x) :=
Γ(m + 1/2)
Γ(1/2)Γ(m)

{
(1 − x2)m−1 if x ∈ [−1, 1],
0 otherwise,

n − 1 times with itself.

The expression in Theorem 1.2 above is both elegant and compact. It shows easily
that in odd dimensions the density is a piecewise polynomial, but it can be difficult to
manipulate or compute with or without a computer algebra system such as Maple or
Mathematica. Note also that pn(m − 1/2; x) = pn(m − 1/2;−x) in all cases.

2. Main result

We now use Theorem 1.2 to obtain an entirely explicit and tractable, convolution
and differentiation free formula for pn(m − 1/2; x), valid for all lengths and in all odd
dimensions. We begin with a preliminary result which simplifies Pm,n(x). We shall
employ the Heaviside step function H(x) which has H(x) = 1 for x > 0, H(x) = 0 for
x < 0 and H(0) = 1/2. We also use the notation [x j]Q(x) to denote the coefficient of x j

in a polynomial Q.

Proposition 2.1. Let n ≥ 1 and m ≥ 1. Then for |x| ≤ n,

Pm,n(x) =

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mrH(n − 2r + x)

×

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
[x j]Cm(x)rCm(−x)n−r,

(2.1)
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where

Cm(x) :=
m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

xk.

Note that Cm(x) satisfies the useful recurrence

Cm(x) = (2m − 3) x Cm−1(x) + Cm−2(x).

Moreover, in terms of hypergeometric functions, Cm(x) = 2F0(m, 1 − m;−x/2).

Proof. By the convolution theorem for the Fourier transform,

F (Pm,n(x)) = F ( fm(x))n =

(
Γ(m + 1/2)
Γ(1/2)Γ(m)

∫ 1

−1
(1 − x2)m−1e−iwx dx

)n
.

Observe that, for m ≥ 3, F ( fm(x)) satisfies the recurrence

Tm =
(2m − 1)(2m − 3)

w2 (Tm−1 − Tm−2),

which is also satisfied by

Gm(w) :=
(

Γ(2m)
2mΓ(m)

) m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

(−1)m 2 cos(w + 1
2π(m + k))

wm+k .

This can be checked by hand. It can also easily be shown with the following Maple 18
code.

wi th ( i n t t r a n s , f o u r i e r ) :
f :=m −> p i e c e w i s e (−1<=x and x<=1 ,

GAMMA(m+ 1 / 2 ) / (GAMMA(m)∗GAMMA( 1 / 2 ) ) ∗ (1−x ˆ 2 ) ˆ ( m− 1 ) , 0 ) :
F :=m −> f o u r i e r ( f (m) , x ,w ) :
s i m p l i f y ( F (m) − (2∗m−1)∗ (2∗m−3 ) /wˆ 2 ∗ ( F (m−1)−F (m− 2 ) ) ) ;

The above code returns 0 to indicate that F ( fm(x)) satisfies the recurrence.
Correspondingly, we may execute the following Maple 18 code.

G := m −> (GAMMA(2∗m) / ( 2 ˆm∗GAMMA(m) ) )
∗ sum ( (m−1+k ) ! / ( 2 ˆ k∗k ! ∗ (m−1−k ) ! )
∗ ( −1) ˆm ∗ (2∗ cos (w+Pi / 2 ∗ (m+k ) ) / wˆ (m+k ) ) , k = 0 . .m−1 ) :

s i m p l i f y (G(m) − (2∗m−1)∗ (2∗m−3 ) /wˆ 2 ∗ (G(m−1)−G(m− 2 ) ) ) ;

This returns 0 to show that Gm(x) satisfies the same recurrence.
We can easily check that F ( fm(x)) and Gm(x) agree for m = 1 and m = 2, and so we

may conclude that F ( fm(x)) = Gm(x) for all m ≥ 1.
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Therefore,

F (Pm,n(x)) =

(
Γ(2m)

2mΓ(m)

)n(m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

· (−1)m 2 cos(w + 1
2π(m + k))

wm+k

)n

=

(
Γ(2m)

2mΓ(m)

)n(m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

· (−1)m (−1)m+keiw + e−iw

(iw)m+k

)n

=

(
Γ(2m)

2mΓ(m)

)n(m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

·
(−1)meiw

(−iw)m+k

+

m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

·
(−1)me−iw

(iw)m+k

)n

=

(
Γ(2m)

2mΓ(m)

)n(
eiw

( 1
iw

)m
Cm

(
−1
iw

)
+ e−iw

(
−1
iw

)m
Cm

( 1
iw

))n

=

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
eiw(n−2r)

(iw)mn

(
(−1)mCm

( 1
iw

))r
Cm

(
−1
iw

)n−r

=

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

(m−1)n∑
j=0

eiw(n−2r)

(iw)mn+ j [x j]Cm(x)rCm(−x)n−r.

We can now reconstruct Pm,n(x) from its Fourier transform, since

F −1
( eiw(n−2r)

(iw)mn+ j

)
=

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x) −

1
2

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
.

Thus, taking the inverse Fourier transform of F (Pm,n(x)),

Pm,n(x) =

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

×

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x)[x j]Cm(x)rCm(−x)n−r

+
1
2

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!

× [x j]Cm(x)rCm(−x)n−r. (2.2)

It remains only to show that the second double sum above is zero. Observe that
when x < − n, Pm,n(x) simplifies to

1
2

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
[x j]Cm(x)rCm(−x)n−r. (2.3)
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From the definition of convolution, we can easily deduce that Pm,n(x) vanishes for
|x| > n. It follows that (2.3) is zero for x < − n, but since it is a polynomial it must be
zero everywhere. Thus, the latter term in (2.2) is zero, yielding (2.1). �

Next, we deal with the differential operator in Theorem 1.2.

Lemma 2.2. For all F(x) and m ≥ 1,(
−

1
2x

d
dx

)m
F(x) =

m∑
k=1

(−1)k(2m − 1 − k)!
22m−k(m − k)!(k − 1)!

1
x2m−k

( d
dx

)k
F(x). (2.4)

Proof. We proceed by induction. It is trivial to see that (2.4) is true for m = 1. Suppose
it holds for some m ≥ 1. Then(

−
1
2x

d
dx

)m+1
F(x)

=

(
−

1
2x

d
dx

) m∑
k=1

(−1)k(2m − 1 − k)!
22m−k(m − k)!(k − 1)!

1
x2m−k

( d
dx

)k
F(x)

=

m∑
k=1

(−1)k+1(2m − 1 − k)!
22m−k+1(m − k)!(k − 1)!

( 1
x2m−k+1

( d
dx

)k+1
F(x) −

2m − k
x2m−k+2

( d
dx

)k
F(x)

)
=

m+1∑
k=2

(−1)k(2m − k)!
22m−k+2(m + 1 − k)!(k − 2)!

1
x2m−k+2

( d
dx

)k
F(x)

+

m∑
k=1

(−1)k(2m − k)!
22m−k+1(m − k)!(k − 1)!

1
x2m−k+2

( d
dx

)k
F(x)

=

m+1∑
k=1

(−1)k(2m + 1 − k)!
22m+2−k(m + 1 − k)!(k − 1)!

1
x2m+2−k

( d
dx

)k
F(x).

Thus, (2.4) holds for all m ≥ 1, proving the lemma. �

We are now ready to approach the probability density. Combining our previous
results will allow us to fully expand pn(m − 1/2; x).

Theorem 2.3 (Densities in odd dimensions). Let n ≥ 2 and m ≥ 1. Then for x ≥ 0,

pn(m − 1/2; x) =

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mrH(n − 2r + x)

×

m∑
k=1

(−2)k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

×

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j−k

(mn − 1 + j − k)!
[x j]Cm(x)rCm(−x)n−r, (2.5)
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where H(x) is the Heaviside step function and

Cm(x) =

m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

xk.

Proof. By Theorem 1.2, Lemma 2.2 and Proposition 2.1,

pn(m − 1/2; x) =
(2x)2mΓ(m)

Γ(2m)

(
−

1
2x

d
dx

)m
Pm,n(x)

=
(2x)2mΓ(m)

Γ(2m)

m∑
k=1

(−1)k(2m − 1 − k)!
22m−k(m − k)!(k − 1)!

1
x2m−k

( d
dx

)k
Pm,n(x)

=

(
Γ(2m)

2mΓ(m)

)n m∑
k=1

(−2)k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

×

n∑
r=0

(
n
r

)
(−1)mr

mn−n∑
j=0

[x j]Cm(x)rCm(−x)n−r
( d
dx

)k

×
(n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x).

We can evaluate the above derivative directly, but we must be careful since there are
jump discontinuities at n − 2r for 0 ≤ r ≤ n. We shall see that these points are not an
issue. Applying the general Leibniz rule, we obtain( d

dx

)k (n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x)

=

k∑
a=0

(
k
a

)(( d
dx

)a (n − 2r + x)mn−1+ j

(mn − 1 + j)!

)(( d
dx

)k−a
H(n − 2r + x)

)
=

k∑
a=0

(
k
a

)
(n − 2r + x)mn−1+ j−a

(mn − 1 + j − a)!

(( d
dx

)k−a
H(n − 2r + x)

)
.

We shall see that the terms of this sum vanish except when a = k. Suppose a < k
and consider one such term. Clearly, (d/dx))k−aH(n − 2r + x) = 0 for x , −n + 2r.
Additionally, since a < k ≤ m and n ≥ 2 the exponent mn − 1 + j − a is strictly positive,
so (n − 2r + x)mn−1+ j−a = 0 at x = −n + 2r. Thus, the summand above vanishes for
a < k, yielding( d

dx

)k (n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x) =

(n − 2r + x)mn−1+ j−k

(mn − 1 + j − k)!
H(n − 2r + x).

We apply the above relation and the result follows from a simple rearrangement. �

The formula we have presented is derived from the convolution form in Theorem 1.2
and produces an even function. However, pn(m − 1/2; x) is the probability density
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function of a nonnegative random variable, so it must be 0 for negative values of x. We
may use this fact to significantly reduce the number of terms in our formula, halving
the time needed to compute pn(m − 1/2; x) for given values of n and m.

Corollary 2.4. Let n ≥ 2 and m ≥ 1. Then for x ≥ 0,

pn(m − 1/2; x) =

(
Γ(2m)

2mΓ(m)

)n b(n−1)/2c∑
r=0

(
n
r

)
(−1)mrH(n − 2r − x)

×

m∑
k=1

2k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

×

(m−1)n∑
j=0

(n − 2r − x)mn−1+ j−k

(mn − 1 + j − k)!
[x j]Cm(x)rCm(−x)n−r.

Proof. Since our formula (2.5) is even (easily seen in Theorem 1.2), for x ≥ 0

pn(m − 1/2; x) = pn(m − 1/2;−x)

=

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mrH(n − 2r − x)

×

m∑
k=1

2k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

×

(m−1)n∑
j=0

(n − 2r − x)mn−1+ j−k

(mn − 1 + j − k)!
[x j]Cm(x)rCm(−x)n−r,

by Theorem 2.3. Observe that when r > b(n − 1)/2c, H(n − 2r − x) is zero on (0,∞).
At x = 0, every term is 0 for all values of r. Thus, when x ≥ 0, we may simply omit
the terms where r > b(n − 1)/2c. So we let r range from 0 to b(n − 1)/2c in the sum,
which yields our result directly. �

We finish with two examples echoing the direct analyses in [7].

Example 2.5 (Density in three dimensions). In R3, we have C1(x) = 1 so for n ≥ 2 and
x ≥ 0, the density reduces to

pn(1/2; x) =
−x

2n−1

n∑
r=0

(
n
r

)
(−1)rH(n − 2r + x)

(n − 2r + x)n−2

(n − 2)!
.

In particular, as shown in Figure 1,

p2(1/2; x) =


0 if x < 0,
x/2 if x ∈ [0, 2),
0 if x > 2,
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Figure 1. pn(1/2; x) for n = 2, 3, 4.

p3(1/2; x) =



0 if x < 0,
1
2 x2 if x ∈ [0, 1),

− 1
4 x2 + 3

4 x if x ∈ [1, 3),

0 if x > 3,

p4(1/2; x) =



0 if x < 0,

− 3
16 x3 + 1

2 x2 if x ∈ [0, 2),
1

16 x3 − 1
2 x2 + x if x ∈ [2, 4),

0 if x > 4.

Example 2.6 (Density in five dimensions). In R5, we have C2(x) = 1 + x, so for n ≥ 2
and x ≥ 0, the density reduces to

pn(3/2; x) =

(3
2

)n−1 n∑
r=0

(
n
r

)
H(n − 2r + x)

×

n∑
j=0

(n − 2r + x)2n−3+ j

(2n − 3 + j)!

(
x2 − x

(n − 2r + x)
(2n − 2 + j)

) j∑
l=0

(−1) j−l
(
r
l

)(
n − r
j − l

)
.

In particular, as shown in Figure 2,

p2(3/2; x) =


0 if x < 0,

− 3
16 x5 + 3

4 x3 if x ∈ [0, 2),

0 if x > 2,
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0
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0.8

1

0 1 2
x

3 4

Figure 2. pn(3/2; x) for n = 2, 3.

p3(3/2; x) =



0 if x < 0,
3

560 x8 − 9
40 x6 + 9

16 x4 if x ∈ [0, 1),

− 3
1120 x8 + 9

80 x6 − 9
32 x5 − 9

32 x4 + 81
80 x3 − 243

1120 x if x ∈ [1, 3),

0 if x > 3.

As these examples demonstrate, Theorem 2.3 always provides an explicit, workable
expression for pn(m − 1/2; x) with clearly indicated structure. We finish by observing
that, if Wn(m − 1/2, s) :=

∫ n
x=0 xs pn(m − 1/2; x) dx denotes the moment function, we

may also obtain an explicit formula for Wn(m − 1/2, s).
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