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Summary

A two-step procedure is presented for analysis of h (FST) statistics obtained for a battery of loci,
which eventually leads to a clustered structure of values. The first step uses a simple Bayesian model
for drawing samples from posterior distributions of h-parameters, but without constructing Markov
chains. This step assigns a weakly informative prior to allelic frequencies and does not make any
assumptions about evolutionary models. The second step regards samples from these posterior
distributions as ‘data’ and fits a sequence of finite mixture models, with the aim of identifying
clusters of h-statistics. Hopefully, these would reflect different types of processes and would assist in
interpreting results. Procedures are illustrated with hypothetical data, and with published allelic
frequency data for type II diabetes in three human populations, and for 12 isozyme loci in 12
populations of the argan tree in Morocco.

1. Introduction

The discovery of a massive number of single nucleo-
tide polymorphisms (SNPs) in the genome of several
species has enabled exploration of genome-wide sig-
natures of selection via an assessment of variation in
marker allele frequencies among populations (e.g.
Holsinger & Weir, 2009). Several methods have been
proposed for doing this, such as site frequency spec-
trum, linkage disequilibrium and population differen-
tiation (Sabeti et al., 2006; Akey, 2009). Concerning
population differentiation, a parameter h=FST,
measuring relatedness between pairs of alleles within
a sub-population relative to that in an entire popu-
lation, has been used for this purpose (Wright, 1951;
Cockerham, 1969; Weir & Hill, 2002) ; Lewontin &
Krakauer (1973) and Robertson (1975) discuss related
approaches. Equivalently, h can be interpreted as a
measure of dispersion of gene frequencies among
groups relative to the variation expected in the popu-
lation from which such groups derived. For example,
Akey et al. (2002) analysed over 26 500 SNPs for
which allele frequencies were available in three popu-
lations of humans. The h parameter was estimated for

every marker locus and the distribution of estimates
over the entire genome, and by chromosome, was
examined. By referring these estimates to their em-
pirical genome-wide distribution, 174 candidate genes
were identified as possible targets of selection.

Holsinger & Weir (2009) provide an account of the
logic of the procedure. Briefly, given a set of loci in a
given species, a reasonable assumption is that all
share the same demographic history and patterns of
migration. If these loci are neutral and have similar
mutation rates, members of this set can be conceivably
regarded as exchangeable realizations of the same
evolutionary process. Loci showing departures from
the resulting distribution may serve as flags of geno-
mic regions that have been under the influence of
selection. Under the hypothesis of selective neutrality,
the distribution (over loci) of estimates of h is ex-
pected to be driven by genetic drift, assumed to affect
all loci in a similar fashion. On the other hand, when
selection operates on one or several loci (as in a multi-
factorial model for complex traits), markers that are
within genes or in nearby locations will display large
or small values of h, the latter occurring when some
sort of balancing selection takes place (Cavalli-Sforza,
1966). This opens an avenue for identification of
regions associated with population differentiation,* Corresponding author. e-mail : gianola@ansci.wisc.edu
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e.g., high versus low producing breeds of dairy cattle.
Knowledge of such regions may be useful for en-
hancing the effectiveness of breeding programs via
marker-assisted selection, or for tagging variants
associated with disease or quantitative traits. While
unusual values of h may point to genomic locations
where selection may have operated, there is arbitrari-
ness with respect to characterizing the type of selection
that might have occurred. Typically, loci are classified
as either neutral, or subject to balancing selection
(low values of h), or favoured by selection within some
specific population or environment (large population
differentiation, thus leading to large values of h). If
the values of h arise from different evolutionary or
artificial (such as in plant and animal breeding) pro-
cesses, one would expect to observe a mixture of dis-
tributions leading to clusters representing the different
kinds of mechanisms operating. There is no apparent
reason why there should be only two or three such
clusters ; there may be several clusters harbouring
loci undergoing different types of selection processes.
On the other hand, if h values vary completely at
random due to genetic drift, a single cluster is to be
expected.

Statistical issues associated with inferring h-
statistics have been discussed, e.g., by Weir &
Cockerham (1984) and Weir & Hill (2002), with
emphasis on methods of moments estimation; by
Balding (2003) using maximum likelihood for beta-
binomial and Dirichlet-multinomial distributions;
and by Holsinger (1999), Beaumont & Balding (2004)
and Guo et al. (2009) employing Bayesian procedures.
None of these treatments have addressed the possible
existence of a clustered structure.

The objective of this paper is to present a two-step
procedure eventually leading to clusters of h values.
The first step, along the lines of Holsinger (1999),
Balding (2003) and Beaumont & Balding (2004), uses
a simple Bayesian structure for drawing samples from
the posterior distributions of h-parameters, but with-
out constructing Markov chains. This step assigns a
weakly informative prior to allelic frequencies and
does not make any assumptions about evolutionary
models. The second step regards samples from these
posterior distributions as ‘data’ and fits a sequence of
finite mixture models, with the aim of identifying
clusters of h-statistics. Hopefully, these would reflect
different types of processes and would assist in inter-
preting results.

The paper is organized as follows. Section 2 reviews
basic concepts. In section 3, the first step of the pro-
cedure is presented, contrasted with maximum likeli-
hood, and illustrated with a hypothetical dataset and
with data on type II diabetes in three populations.
Section 4 describes the second step of the procedure,
and illustrates it with a dataset containing allelic
frequencies for 12 polymorphic isozyme loci in 12

populations of the argan tree (Argania spinosa L.
Skeels) of Morocco presented in Petit et al. (1998) and
analysed by Holsinger (1999). The paper concludes
with a discussion of the proposed methodology.

2. Background

(i) Basic concepts

The stage is set by reviewing essentials of a random
effects treatment proposed by Cockerham (1969,
1973). Suppose that genetic markers (e.g. SNPs) are
screened in a set of individuals in each of R groups or
populations, the latter viewed as drawn at random
from some conceptual hyper-population from which
such groups derive. Consider a bi-allelic locus (devel-
opments carry to multiple alleles as well) and let Al

and al be the two alleles at locus l (l=1, 2, …, L) ;
define pl=Pr (Al) to be the true, unobserved, fre-
quency of allele Al in the hyper-population, with
1xpl=Pr (al) being the frequency of al. Cockerham
(1969) defines al as any allele other thanAl and uses an
indicator variable x to denote allelic state (‘content ’),
such that

xrij, l=
1, if an allele is Al,
0, otherwise:

�
Here, r=1, 2, …, R denotes group or replicate, i in-
dicates an individual, j is an index for a within-indi-
vidual deviation and l=1, 2, …, L is an indicator for
locus. Even though xrij,l is a binary variable (so a lin-
ear model is questionable), Cockerham (1969) uses
the linear decomposition

xrij, l=pl+ar, l+bri, l+wrij, l, (1)

where pl is as before and ar,ly(0, sa,l
2 ), bri,ly(0, sb,l

2 )
and wrij,ly(0, sw,l

2 ) are mutually uncorrelated zero-
mean random deviates, specific to locus l ; the s2ks are
variance components. Under the assumption that all
alleles at locus l have the same marginal distribution,

E(xrij, l)=pl

and

Var(xrij, l)=pl(1xpl)=s2
a, l+s2

b, l+s2
w, l=s2

l

for l=1, 2, …, L. Decomposition (1) induces the fol-
lowing covariance structure between allelic content
variables :

Cov(xrij, l, xrkikjk, l)=

s2
l , if r=rk, i=ik, j=jk,

s2
a, if r=rk, ilik, jljk,

s2
a, l+s2

b, l, if r=rk, i=ik, jljk,

Cov(ar, ark), if replicates are correlated somehow:

8>>><>>>:
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A standard assumption is Cov(ar, ark)=0. The fol-
lowing correlations (all positive) follow.

’ Pairs of alleles drawn at random from different in-
dividuals in the same group are correlated as

ra, l=
s2
a, l

s2
a, l+s2

b, l+s2
w, l

=hl=FST, l, (2)

so 0fhlf1 for all l.
’ Pairs of alleles drawn within individuals over all

replicates bear a correlation equal to

rab, l=
s2
a, l+s2

b, l

s2
a, l+s2

b, l+s2
w, l

=Fl=FIT, l,

where F is the total inbreeding coefficient, also
known as FIT (e.g. Weir & Hill, 2002).

’ The correlation between alleles within individuals
within the same replicate is

rb, l=
s2
b, l

s2
b, l+s2

w, l

=fl=FIS, l,

which is the within sub-population inbreeding co-
efficient f.

It is easy to show that

hl=
FIT, lxFIS, l

1xFIS, l

=FST, l:

This expression satisfies

1xFIT, l=(1xFIS, l)(1xFST, l),

indicating that a reduction in heterozygosity has two
sources : one that is due to population sub-division or
Wahlund’s effect, (1xFST,l), and a reduction within
subpopulation or group caused by ‘ local ’ inbreeding,
(1xFIS,l).

Note that parameter FST given in (2) can also be
written as

hl=
s2
a, l

s2
a, l+s2

b, l+s2
w, l

=
s2
a, l

pl(1xpl)
:

In Cockerham (1969), the variance sa,l
2 arises by

drawing alleles from a random sample of populations.
Under conceptual repeated sampling, this generates a
distribution having such variance. However, in many
applications, the R groups under study are targeted
(as opposed to randomly sampled) populations, e.g.,
Myles et al. (2007) ; this defines a ‘fixed effects ’ model.
Now, since sa,l

2 is the between-group variance in allelic
content as per model (1), an alternative parametric
definition of hl in terms of the unknown gene fre-
quencies of the R groups is

hl=
gR

r=1(pr, lxp̄l)
2

R

p̄l(1xp̄l)
, (3)

where p̄l=gR

r=1pr, l=R is the average (over groups) of
the frequencies of allele Al at locus l. Note that p̄l is
taken as an unweighted average ; it does not seem
sensible to express a parameter in terms of sample size
(unless weights assigned to samples reflect true popu-
lation sizes). Expressing hl explicitly in terms of the
locus-specific gene frequencies yields

hl=
gR

r=1p
2
r, lx

gR

r=1pr, lð Þ2
R

gR

r=1pr, lx
gR

r=1pr, lð Þ2
R

� � , (4)

providing a mapping from the joint space of R allelic
frequencies to the single-dimensional space of hl,
which resides in (0, 1). If allelic frequencies for the
different loci are driven from the same stochastic
evolutionary process (e.g. as generated by random
drift), this defines a distribution of values of h expec-
ted under neutrality assumptions. From a Bayesian
perspective, every unknown is a random variable and,
since allelic frequencies are unknown, h as given in (3)
will posses a distribution, both a priori and a poster-
iori. In the first step of the method proposed in this
paper, the posterior distribution of hl will result from
assigning a vague prior to all allelic frequencies, cor-
responding in some sense to what could be termed as a
fixed effects treatment from a frequentist perspective.
The second step addresses the question of whether or
not all hl stem from the same distribution or from
different distributions resulting from heterogeneity of
the underlying stochastic processes. This makes the
treatment proposed here different from those in, e.g.,
Holsinger (1999) or Balding (2003).

3. Estimation of parameters

(i) Inferring gene frequencies

Gene frequencies can be inferred using a simple
Bayesian approach. Suppose that nr individuals are
genotyped in population r, so that the number of
alleles screened at locus l is 2nr=nr,Al+nr,al, where
nr,Al and nr,al are the observed numbers of copies of Al

and al, respectively.
A convenient assumption is that of mutual indepen-

dence between the distributions of alleles at different
loci (stronger than that of pairwise linkage equilib-
rium). Linkage disequilibrium is pervasive but the as-
sumption made above facilitates matters and is widely
used, e.g., by Corander et al. (2003). Let p=(p1, p2, …,
pR)k be an RLr1 vector of allelic frequencies for all R
groups, where pr=(pr,1,pr,2, …, pr,L)k has order Lr1.
Under the mutual independence assumption, the
likelihood conferred by the observed number of copies
of alleles to the gene frequencies is

l(pjDATA)=
YR
r=1

YL
l=1

p
nr,Al
r, l (1xpr, l)

nr, al : (5)
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The maximum likelihood estimator of pr,l is p̂r,l=
nr,Al/2nr and its empirical variance is dVarVar(p̂r, l)=
p̂r, l(1xp̂r, l)=2nr. The maximum likelihood estimator
is unbiased but unstable, and may take values at
the boundaries of the parameter space in small sam-
ples.

In a Bayesian treatment, allelic frequencies are
assigned a prior distribution that might be homo-
geneous or heterogeneous over populations, chromo-
somes or genomic regions (e.g. coding versus
non-coding regions). For example, Holsinger (1999,
2006) adopts a prior beta distribution, Beta (pl|al, bl)
(and interprets it as describing variation over popu-
lations) with parameters

al=
1xh

h
xl

and

bl=
1xh

h
(1xxl):

Here h is common to all loci (i.e. the hypothesis of
neutrality) and xl is the mean allelic frequency at locus
l (averaged over populations). Using properties of the
beta distribution in the parametric definition of h
leads to

Var(pl)

E(pl)[1xE(pl)]
=

albl
(al+bl)

2(al+bl+1)

al
al+bl

� bl
al+bl

=h:

Then, the joint posterior distribution of all unknowns
(allelic frequencies, h and vector x={xl}) is

g(p, h, xjDATA)

/
YR
r=1

YL
l=1

p
nr,Al+((1xh)=h)xlx1
r, l

(1xpr, l)
nr, al+((1xh)=h)(1xxl)x1g(h)g(x):

Holsinger (1999) took g(h)=Beta(1, 2) distribution as
prior for h, and assumed that all xl were identically
distributed according to the uniform process
g(xl)=U(0, 1). Given h and x, the allelic frequencies
are conditionally independent with conditional pos-
terior distributions :

g(pr, ljELSE)=Beta nr,Al
+

1xh

h
xl, nr, al+

1xh

h
(1xxl)

� �
,

r=1, 2, . . . , R l=1, 2, . . . , L,

where ELSE means all parameters other than pr,l and
the data observed. However, the conditional posterior
distributions of h and x are not recognizable, so an
elaborate sampling scheme, e.g., one based on
Markov chain Monte Carlo (MCMC) methods, must
be tailored. Holsinger (1999) found that inferences
were insensitive with respect to the choices of beta and

uniform prior distributions for h and elements of x,
respectively. However, it was assumed (as in a neutral
model) that all loci share the same h parameter. This
produces a mutual borrowing of information among
loci (shrinking pr,l towards a common value), but the
procedures are not explicit with respect to the exist-
ence of heterogeneity over loci due to forces such as
differential mutation or selective sweeps. As proposed
by Beaumont & Balding (2004), one could estimate
locus specific h values and refer these estimates to the
posterior distribution of h under the homogeneity
value. In this manner, outliers could be found with
respect to the ‘neutral ’ distribution, but this would
not inform about the structure of any latent hetero-
geneity.

Here, an alternative approach is used. Jeffreys rule
(Bernardo & Smith, 1994; Sorensen & Gianola, 2002)
is used to produce a reference prior, which is a
Beta 1

2
, 1
2

� �
distribution assigned to all loci in all popu-

lations. This reference prior distribution is minimally
informative in a well defined sense (Bernardo and
Smith, 1994). Using Bayes theorem, the joint pos-
terior density of all allelic frequencies is now

g(pjDATA) /
YR
r=1

YL
l=1

p
nr,Al+(1=2)x1
r, l (1xpr, l)

nr, al+(1=2)x1

=
YR
r=1

YL
l=1

Beta nr,Al
+1

2
, nr, al+

1
2

� �
: (6)

Thus, allelic frequencies at different loci are mutually
independent, a posteriori, with pr,l following a beta
distribution with parameters arl=nr,AL

+1
2

and
brl=nr, al+

1
2
. Possible point estimates of allelic fre-

quencies are the posterior mean

p
$

r, l=
nr,Al

+1
2

2nr+1
, (7)

and the posterior mode

~ppr, l=
nr,Al

x1
2

2nrx1
, for nr,Al

o1: (8)

The variance of the posterior distribution of pr,l is

Var(pr, ljDATA)=
nr,Al

+1
2

� �
nr, al+

1
2

� �
(2nr+1)2 (2nr+2)

: (9)

Even though a weakly informative prior is used,
differences exist with respect to maximum likelihood.
To illustrate this point, consider a hypothetical ex-
ample with two groups, M and N. Suppose that 100
individuals are genotyped in group M and that the
observed number of Al alleles is 199, i.e. the locus
is nearly fixed. The maximum likelihood estimate
of pM,l is 0.995 and its estimated standard error is
4.99r10x3 ; a calculation based on asymptotic
normality (without truncation) yields that the prob-
ability of obtaining estimates larger than 1 is close
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to 0.16! Further, the probability of obtaining
estimates between 0.9 and 0.995 is close to 1

2
. On the

other hand, the posterior distribution of pM,l is
Beta 199+1

2
, 1+1

2

� �
. The posterior mean and posterior

standard deviation are 0.993 (note some shrinkage
away from the edge of the parameter space) and
6.06r10x3, respectively ; the posterior probability of
the frequency being larger than 1 is exactly zero, and
the probability that pM,l takes values between 0.9 and
0.995 is about 0.57. Figure 1 displays the posterior
distribution of the allelic frequency obtained with
Jeffreys prior, overlaid against the normal approxi-
mation to the distribution of the maximum likelihood
estimates. Clearly, the approach used makes a differ-
ence, even in a situation where allelic frequencies are
estimated with reasonable precision, as indicated by
the small standard error of the maximum likelihood
estimate and the small posterior standard deviation in
the Bayesian analysis (the coefficient of variation of
the posterior distribution is less than 1%).

In the second population, N, 30 individuals are
genotyped and 10 alleles are of the type Al ; the
maximum likelihood estimate of pN,l is then

1
6
, much

lower than in M, and its sampling variance is
2.31r10x3. The posterior distribution of pN,l is
Beta 10+1

2
, 50+1

2

� �
. In N, the posterior density of pN,l

and the normal approximation to the density of the
distribution of the maximum likelihood estimator are
very similar (not shown here).

Differences in allelic frequencies between popu-
lationsM andN at the locus in question may be due to
random drift or may suggest a signature of selection.

(ii) Inferring h by maximum likelihood

A likelihood-based estimate of h can be obtained by
replacing in (3) or (4) the unknown allelic frequencies

by their maximum likelihood estimates. For the
example of populations M and N above, the esti-
mate is

ĥl=
g2

r=1(p̂r, lxp̂̄l)
2

2p̂̄l(1xp̂̄l)
� 0�7046:

The sampling variance of the maximum likelihood
estimator of hl can be approximated using a Taylor
series expansion. As shown in Appendix A, the first
derivative of hl with respect to the allelic frequency at
locus l in group r is

@

@pr, l
hl=

2(pr, lxp̄l)

p2
lxp̄2l

x
(1x2p̄l)

p̄l(1xp̄l)

" #
hl

R
,

for r=1,2, …, R ; l=1,2, …, L, where p̄l=gR

r=1pr, l=R
is as before and p̄2l=gR

r=1p
2
r, l=R. Further, let

r̂= @

@pr, l
hl

� �
pr, l=p̂ r, l

,

be an RLr1 vector of first derivatives evaluated at
the maximum likelihood estimates of the allelic fre-
quencies. Then, approximately

dVarVar(ĥl) �r̂kdVarVar(p̂)r̂

= g
R

r=1

2(pr, lxp̄l)

p2
lxp̄2l

x
(1x2p̄l)

p̄l(1xp̄l)

" #
hl

R

( )2

pr, l=p̂ r, l

r
p̂r, l(1xp̂r, l)

2nr
,

where dVarVar(p̂)=Diag(p̂r, l(1xp̂r, l)=2nr) is a diagonal
matrix containing the estimates of the sampling vari-
ances of the maximum likelihood estimates of allelic
frequencies pr,l. For the hypothetical example,dVarVar(ĥl) � 9�8265r10x5. The asymptotic normal ap-
proximation to the distribution of the estimates
assigns nil probability to ‘estimates ’ outside of (0,1) ;
the probability of obtaining estimates of h between
0.67 and 0.74 for this two-population situation is
0.9996.

(iii) Bayesian inference of h

Consider now finding the posterior distribution of hl
as defined in (4) and without making the assumption
that the hs are realizations from the same stochastic
process, i.e. without borrowing information across
loci over and above the shrinkage of allelic fre-
quencies produced by Jeffreys prior. The posterior
distribution is analytically difficult to arrive at be-
cause hl is a non-linear function of gene frequencies in
all R groups. However, since it is easy to obtain in-
dependent samples from each of the Beta(nr,Al

+1
2
,

100

90

80

70

60

50

40

30

20

10

0

Density

0·96 0·97 0·98 0·99 1·00 1·01 1·02
Allelic frequency p

Fig. 1. Posterior density (thick line) of the allelic frequency
p at a locus for which 199 copies have been observed out
of 200 alleles counted in hypothetical population M ; the
posterior distribution is Beta 199+1

2
, 1+1

2

� �
. The thin line is

the density of a normal approximation to the sampling
distribution of the maximum likelihood estimator.
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nr, al+
1
2
) processes, Monte Carlo estimates of features

of the posterior distribution of hl can be obtained
without using MCMC methods at all. Let pr,l

(s), s=
1,2, …, S, be samples from the posterior (beta) dis-
tribution of pr,l, the frequency of allele Al at locus l.
Then, a draw from the posterior distribution of hl is
given by

h(s)
l =

gR

r=1(p
(s)
r, l)

2x
gR

r=1p
(s)
r, l

� �2

R

RgR

r=1p
(s)
r, lx gR

r=1p
(s)
r, l

� �2

R

0B@
1CA

, (10)

which is a random variable with support in (0,1)
(Holsinger, 2006). Then, from S samples, the mean,
median, variance, etc., of the posterior distribution of
hl can be estimated. Each hl (l=1, 2, …, L) will have a
point estimate and an assessment of uncertainty, e.g.,
a credibility interval of size 95% given by the 2.5%
and 97.5% percentiles of the corresponding posterior
distribution estimated either from samples or from the
normal theory approximation given in Appendix B.

In the hypothetical populations M and N, the pos-
terior distributions of the frequency of Al are
Beta(199.5,1.5) and Beta(10.5,50.5), respectively.
With draws denoted as B(s) (.,.), S samples from
the posterior distribution of hl can be obtained as

To illustrate, 5000 samples were drawn from each of
the two beta distributions, to form S=5000 corre-
sponding draws from the posterior distribution of hl.
The mean and median were 0.6966 and 0.6972, re-
spectively; the standard deviation was 0.070 and the
range of values samples spanned from 0.4268 to
0.8883. The posterior density of hl and the empirical
cumulative distribution function are in Figs 2 and 3,
respectively. Values of hl appearing with appreciable
density range from about 0.5 to 0.9 (Fig. 2), with
small posterior probability assigned to values smaller
than 0.6 (Fig. 3).

(iv) A Bayesian ‘null ’ distribution for assessing
sampling variation uncertainty

It is important to check whether or not posterior es-
timates of hl depart from what would be expected by
chance alone. A posterior distribution consistent with
expectations under a ‘null ’ model is formulated next.
The hl statistics calculated from the ‘full ’ model
above can then be referred to this null distribution.
Note that the ‘null ’ distribution given below describes
the uncertainty to be expected from drawing random
samples from the same population, but not the
variability to be expected due to genetic drift. If esti-
mates of hl fall in this null distribution, this would
indicate that the study lacks power to answer evol-
utionary questions in any meaningful manner.

6

5

4

3

2

1

0

D
en

si
ty

Posterior density of θ

0·4 0·5 0·6 0·7 0·8 0·9

θ

Fig. 2. Posterior density of hl for the hypothetical
example of populations M and N.

1·0

0·8

0·6

0·4

0·2

0·0

Fr
eq

ue
cy

0·5 0·6 0·7 0·8 0·9

θ

Empirical distribution function of θ

Fig. 3. Empirical cumulative distribution function of
hl for the hypothetical example of populations M and N.

h
sð Þ
l =

[B(s)(199�5, 1�5)]2+[B(s)(10�5, 50�5)]2x {[B(s)(199�5, 1�5)]+[B(s)(10�5, 50�5)]}2

2

[B(s)(199�5, 1�5)]+[B(s)(10�5, 50�5)]x {[B(s)(199�5, 1�5)]+[B(s)(10�5, 50�5)]}2

2

, s=1; 2; . . . ;S:
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A ‘null ’ distribution is arrived at by stating that
pr,l=pl is the same random variable for all R popu-
lations. Under this assumption, the posterior distri-
bution of the vector of gene frequencies (now of
dimension Lr1) under the ‘null ’ model is

g(pjDATA,Null)

/
YR
r=1

YL
l=1

p
nr,Al
l (1xpl)

nr, al

" #YR
l=1

p
1
2x1

l (1xpl)
1
2x1

=
YL
l=1

Beta g
R

r=1
nr,Al

+
1

2
, g

R

r=1
nr, al+

1

2

� �
: (11)

Hence, allelic frequencies pl are mutually indepen-
dent, a posteriori, with pl|DATA, Null being a beta
distribution with parameters al=gR

r=1nr,Al
+1

2
and

br=gR

r=1nr, al+
1
2
: A draw from the posterior distri-

bution of the FST statistic under this model takes the
form

h(s)
l, Null=

gR

r=1(p
(r, s)

l
xp̄

(s)

l
)
2

R

p̄(s)l (1xp̄(s)l )
, (12)

where pl
(r,s) is a draw from

Beta gR

r=1nr,Al
+1

2
,gR

r=1nr, al+
1
2

� �
, with R such draws

involved in a realization of hl
(s), and p̄(s)l is the average

of the R draws. A set of samples from the posterior
distribution of hl under the null model is obtained by
repeating the sampling process S times. This distri-
bution serves as a reference against which the hl
statistics calculated from the ‘full ’ model can be
compared. If the posterior mean of hl obtained from
the ‘full ’ model falls outside of a high density area of
the posterior distribution of h in the null model, then
the divergence between populations would be prob-
ably due to drift or selection (assuming mutation rates
are constant over populations), but not due to chance
alone.

For the example of populations M and N,
gR

r=1nr,Al
=209 and gR

r=1nr, al=51. Figure 4 depicts
the Beta(209.5,51.5) distribution of the allelic fre-
quency under the ‘null ’ model. Note that the maxi-
mum likelihood estimates of the allelic frequencies in
theM andN populations, of 0.995 and 1

6
, respectively,

are not assigned any appreciable density under this
model. Upon drawing 5000 independent samples
from the beta distribution of the allelic frequency
under the null model, 5000 draws for hl,Null

(s) were ob-
tained by evaluating (12) for each of the samples.
Draws ranged from 8.24r10x13 to 0.0503; the mean
(standard deviation) was 0.0038(0.0053) and the pos-
terior median was 0.0017. The posterior density of
hl,Null was very sharp as shown in Fig. 5. In the full
model, the estimated posterior mean (standard devi-
ation) of hl was 0.6966, which is unlikely to have been
generated under the null distribution. This would

make the locus a reasonable candidate for further
examination.

(v) Illustration of sampling variation with candidate
genes for type-II diabetes

The Bayesian method was applied to data pertaining
to identification of candidate gene variants for type II
diabetes in Polynesians (Myles et al., 2007). Preva-
lence of this disease is high in several Pacific popu-
lations, e.g. 40% of adults living in the island of
Nauru. DNA samples were obtained from 23
Polynesians, 23 New Guineans and 19 Han Chinese
from Beijing. Type II diabetes-associated alleles were
from 10 SNP loci having evidence of association. Es-
timated frequencies and hl statistics are shown in page
587 of Myles et al. (2007). To illustrate the Bayesian
procedure, data for the KCNJ11 locus was used, and
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susceptibility allele frequencies (Al in our notation)
were 0.30, 0.25 and 0.34 in the three populations
above, respectively. Their figures do not lead to an
integer number of alleles, due to rounding error, so
the number of observed Al alleles used here was set to
14 (Polynesians), 12 (New Guineans) and 13 (Han
Chinese). Myles et al. (2007) employed an ‘unbiased
estimator’ of hl for calculating population pairwise
differences, and their estimates were 0.003 (New
Guinea–China), x0.024 (China–Polynesia) and
x0.017 (New Guinea–Polynesia). Note the two
negative estimates of a parameter that resides in (0,1) ;
standard errors or significance levels were not pro-
vided. Their analysis suggests that this locus is not
associated with prevalence of the disease.

The posterior distributions of Al were
BetaPolynesians(14.5,32.5), BetaNewGuineans(12.5,34.5)
and BetaHanChinese(13.5,25.5). The number of samples
drawn from each of these 3 posterior distributions
was S=1000, and 1000 draws from the posterior dis-
tribution of hKCNJ11 were obtained by evaluation of
(10). Values of hKCNJ11 ranged from 2.423r10x5 to
0.1500, with an estimated posterior mean (standard
deviation) of 0.019 (0.0193) ; this estimate is higher
than that of Myles et al. (2007). The non-parametric
estimate of the posterior density of hKCNJ11 is shown
in Fig. 6, illustrating that the true value of the FST

parameter is very likely below 0.10. The posterior
inter-correlation structure between allelic frequencies
and hKCNJ11 in the full model was examined and, as
expected, draws from the posterior distributions of
allelic frequencies in the three populations were un-
correlated. Samples of hKCNJ11 were positively corre-
lated (0.55) with those for allelic frequency in Chinese
Han, and the 95% confidence interval for the

correlation was 0.51–0.60. However, draws for
hKCNJ11 were negatively correlated with allele fre-
quencies in Polynesians (x0.07) and New Guineans
(x0.39) ; the confidence intervals for these two cor-
relations were (x0.13,x0.01) and (x0.44,x0.34),
respectively.

For the ‘null ’ model, the 1000 samples from the
posterior distribution of hKCNJ11,Null ranged from
3.62r10x6 to 0.1460, with the posterior mean (stan-
dard deviation) estimated at 0.002 (0.002) ; the pos-
terior median was 0.002 as well. The posterior mean
(standard deviation) estimate of hKCNJ11 under the
‘ full ’ model was 0.019, and it did not enter with high
density in the ‘null ’ model (not shown). Although
variation in allelic frequency at locus KCNJ11 among
the three populations departs from what would be
expected from chance alone (statistical sampling), the
observed h value is very small. This may support the
hypothesis that this locus may not be associated with
differences in prevalence of type II diabetes, in agree-
ment with Myles et al. (2007). Allelic frequencies
were uncorrelated, as it should be, given that the three
replicates were drawn from the same Beta(209.5,51.5)
distribution. The hKCNJ11,Null statistic was uncor-
related with allelic frequencies, and the correlations
were x0.08, x0.11 and 0.03 in the three replicates,
with all confidence intervals including 0.

4. Clustering of h-parameters

The second step of the procedure consists of cluster-
ing a set of estimates of h values (in this case, posterior
means) from a multi-locus analysis into data driven
groups. The expectation is that these clusters might be
representative of different processes taking place in
the populations such as balancing or directional
selection, neutrality or anything else.

The method is illustrated with data from a study
of Petit et al. (1998) in which alleles were sampled
for 12 isozyme loci of the Argania genus tree in each
of 12 areas (populations) of Morocco. The data, given
in page 847 of Petit et al. (1998), were modified
as shown in Table 1. The modification consisted of
treating all loci as bi-allelic by lumping alleles for
loci with more than two variants into two classes.
The number of individuals sampled per population
ranged between 20 and 50, and the number of alleles
per locus varied originally between 2 and 5. Note that,
at some loci, one of the alleles was fixed in almost
all populations. For example, for locus 3, the only
population in which segregation was observed was
TA.

For each locus, 2000 samples were drawn from the
beta posterior distributions of allelic frequencies. For
example, the posterior distribution of pAB,1 was
Beta(21.5,19.5). From these samples, 2000 draws
from the posterior distribution of h for each locus
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obtained from allelic frequencies in Myles et al. (2007).
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were formed as in (10). The posterior means were as
follows:

so estimates of h varied over loci from about 0.095
(locus 10) to 0.791 (locus 3); all these estimates did not
enter into the corresponding ‘null ’ distributions. Box
plots of the posterior distributions of the h parameters
are in Fig. 7. Visually, it is tempting to suggest four
clusters: the first one would include locus 3, with the
posterior mean of h close to 0.79; the second cluster
would include locus 9, with an estimate of h of 0.59.
The third cluster would include loci 5, 7 and 8 with
estimates ranging between 0.30 and 0.39, and the
fourth cluster would be represented by loci 1, 2, 4, 6,
10, 11 and 12 having the lowest estimates of h.

The existence of an underlying structure is sug-
gested by the distribution of all 24 000 samples, pres-
ented in Fig. 8. In the left panel, a non-parametric
density estimate was obtained from these samples
treated as if all draws (2000 for each of the 12 loci)
had been made from the same process; the densities in
the middle and right panels correspond to the logit,
i.e., log(h/(1xh)), andGompit,xlog(xlog(h)), trans-
forms of the sampled h values, respectively. The three
densities suggest that h values cluster around 3, per-
haps 4, modes.

Table 1. Allelic frequencies at 12 isozyme loci in each of 12 Argan tree populations, adapted from Petit et al.
(1998) by making all loci bi-allelic. A1–A12 represent frequencies of the ‘A ’ allele at loci 1–12; No. A1–No. A12
are the observed number of copies of the alleles. The number of ‘a ’ alleles can be calculated from the number of
individuals samples and the number of ‘A ’ alleles observed

Population AB AD AR BS GO MI OG S1 TA TE TM TT

No. Individuals 20 40 20 30 32 20 30 20 30 20 20 50
A1 0.525 0.512 0.475 0.467 0.047 0.475 0.517 0.575 0.517 0.425 0.55 0.52
No. A1 21 41 19 28 3 19 31 23 31 17 22 52
A2 0.4 0.438 0.55 0.917 0.688 0.525 0.467 0.825 0.483 0.925 0.475 0.51
No. A2 16 35 22 55 44 21 28 33 29 37 19 51
A3 1 1 1 0 1 1 1 1 0.75 1 1 1
No. A3 40 80 40 0 64 40 60 40 45 40 40 100
A4 0.525 0.375 0.45 0.517 0.922 0.525 1 0.7 0.467 0.575 0.5 0.52
No. A4 21 30 18 31 59 21 60 28 28 23 20 52
A5 0.475 0.463 0.475 1 1 1 1 1 0.817 1 1 0.51
No. A5 19 37 19 60 64 40 60 40 49 40 40 51
A6 0.85 0.538 0.9 0.533 0.922 0.575 0.55 0.75 0.517 0.525 0.55 0.53
No. A6 34 43 36 32 59 23 33 30 31 21 22 53
A7 1 1 1 0.567 0.922 0.9 1 1 0.967 1 1 1
No. A7 40 80 40 34 59 36 60 40 58 40 40 100
A8 1 1 1 1 1 1 1 1 1 1 0.575 0.97
No. A8 40 80 40 60 64 40 60 40 60 40 23 97
A9 1 0.937 1 1 0.312 1 1 1 1 1 1 1
No. A9 40 75 40 60 20 40 60 40 60 40 40 100
A10 0.925 0.5 0.525 0.625 0.475 0.5 0.55 0.4 0.575 0.5 0.475 0.5
No. A10 37 40 21 38 30 20 33 16 35 20 19 50
A11 0.6 0.7 0.575 0.5 0.6 0.525 1 0.375 0.625 0.475 0.55 0.47
No. A11 24 56 23 30 38 21 60 15 38 19 22 47
A12 1 1 0.85 0.6 0.875 0.775 1 0.875 1 1 1 0.87
No. A12 40 80 34 36 56 31 60 35 60 40 40 87
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Fig. 7. Box plot of the posterior distributions of
h-parameters in 12 isozyme loci of the argan tree in
Morocco (data originally from Petit et al. 1998).
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The structure was explored more formally by fitting
a sequence of finite mixture models to the means of
the posterior distribution of the h values for each of
the 12 loci. These posterior means are independent
(under the assumptions made for the allelic frequency
models), but not identically distributed, since they are
estimated with different precision, due to unequal
numbers of individuals sampled and varying allelic
frequencies. The distributions of h values among loci
are not normal (the logit and Gompit transforms
would be expected to be more nearly so). This should
not be an issue because the mixture model was not
used for testing hypotheses; its objective, rather, was
to explore a clustered structure. Since there are only
12 posterior means, the mixture models must have less
than 12 parameters; otherwise, a perfect fit would be
obtained. The mixture model fitted to the posterior
mean estimates h̄l postulated that

h̄l or log
h̄l

1xh̄l

� �
or xlog (x log (h̄l))

� g
K

k=1

pkN(h̄ljmk, s
2
k),

where K is the number of components of the mixture
(clusters of posterior means of h values or transforms
thereof), pk is the probability that h̄l belongs to cluster
k (subject to gK

k=1pk=1), and mk and sk
2 are the mean

and variance, respectively, of component k. For

example, if k=2, there are 5 ‘free ’ parameters in the
mixture; if k=4, there are 11 such parameters, so it is
not sensible to fit a model with more than 4 compo-
nents. Mixture model parameters were estimated by
maximum likelihood via the expectation–maximiza-
tion algorithm as implemented in the FlexMix pack-
age (Leisch, 2004) in the R project (R development
core team, 2008). Upon convergence (assuming the
stationary point was a global maximum), the con-
ditional probability that h̄l (or its transformation)
belongs to cluster k is calculated as

Pr locus l 2 cluster kjparameter estimatesð Þ=
p̂kN(h̄ljm̂k, ŝ2

k)

gK

k=1p̂kN(h̄ljm̂k, ŝ2
k)
:

The locus was assigned to the cluster with the largest
conditional probability. Models with different values
of k=1, 2, 3 and 4 were compared using Akaike’s
information criterion (AIC), that is

AIC Kð Þ=2 pKx g
12

l=1

log g
K

k=1

p̂kN(h̄ljm̂k, ŝ2
k)

� �	 

,

where pK is the number of parameters for a model
withK components (McLachlan&Peel, 2000).Models
with the smallest AIC values are preferred. It is known
that this criterion tends to overstate the number of
components due to violation of regularity conditions
in mixture models (Celeux & Soromenho, 1996).
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All samples treated as homogeneous, i.e. as generated from the same stochastic process.
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Results of the mixture model analysis, by number
of components fitted, are shown in Table 2. The AIC
favoured a mixture with two clusters when the re-
sponse was either h or its Gompit transform, and a
single component when the logit transformation was
used. Clearly, with data from only 12 loci, the analy-
ses did not have enough power to resolve heterogen-
eity in a finer manner. This would certainly not be the
case with SNP data, where the number of marker loci
typically oscillates between a few thousands in some
animal species to close to a million in humans.
Classification probabilities using K=2 and estimates
of cluster mean and standard deviation are shown in
Table 3. Irrespective of whether h values were trans-
formed or not, loci were clustered into two groups,
one consisting of loci 3, 5, 7, 8 and 9, possibly re-
flecting a selection signature, and the other one in-
cluding the remaining loci, presumably representing
neutral loci. The maximum likelihood estimates of the
mean and variance of h values in the cluster with loci
3, 5, 7, 8 and 9 were 0.41¡0.21, whereas the corre-
sponding estimates in the other cluster were
0.12¡0.03. This assignment into clusters is consistent
with the picture emerging from visual consideration
of the box plots in Fig. 7.

The two-step procedure is simple and does not re-
quire the tailoring of problem-specific software.
However, it has the drawback of not taking into ac-
count the uncertainty associated with the posterior
distributions of the h-parameters, inferred in the first
step. In principle, a better approach is to feed the
entire set of posterior samples to the clustering pro-
cedure, such that not only the location of the
posterior distributions of the hs is considered but

also their uncertainty as well. Although this is very
appealing conceptually, it may create difficulties with
the EM algorithm, leading to convergence failure.
For instance Qanbari et al. (personal communication)
employed the procedure with posterior means (each
calculated with 1 million samples from the corre-
sponding posterior distribution) with about 35 000
SNPs in Hereford and Simmental cattle. When pos-
terior means were used as data, the mixture model
approach revealed the existence of 4–5 clusters.
However, when the 35 million samples were used as
data points, the Expectation–Maximization (EM)
algorithm, as implemented in FlexMix, failed to con-
verge. An alternative to using the entire collection of
samples is to feed a selected set of percentiles of the
posterior distribution of each hl, so that a proxy for
the dispersion of the individual posterior distributions
enters into the analysis.

5. Discussion

The use of F-statistics for the study of genetic diver-
gence between population dates back to Wright
(1931). Holsinger & Weir (2009) have provided a jus-
tification for their usefulness, e.g., in association
mapping and in detecting genomic regions affected
by evolutionary processes, such as selection. These
authors also reviewed different types of statistical
methods for inferring FST, including Bayesian pro-
cedures. Method of moments estimation was pro-
mpted by the linear model formalism of Cockerham
(1969, 1973), and a review is in Weir & Hill (2002).
There has been an increased interest in Bayesian
methods, and important contributions in this front
have been made by Holsinger (1999, 2006), Beaumont
& Balding (2004) and Guo et al. (2009).

In the Bayesian approaches that have been sug-
gested, e.g., Holsinger (1999), the model poses a
product binomial (or product multinomial in the case
of multiple alleles) likelihood function for allelic fre-
quencies, with conjugate prior distributions, such as
beta or Dirichlet processes. Marginalizing over the
allelic frequencies yields the beta binomial or
Dirichlet-multinomial distributions used by Balding
(2003) for likelihood-based inference. Holsinger
(1999) matched the mean and variance of, e.g., the
beta distribution, to the definition of h, and obtained
a joint posterior distribution which is a function of the
unknown allelic frequencies, of h (assumed exchange-
able over all loci) and of the mean allelic frequencies
in an undivided population. The implementation, as
well as those of Beaumont & Balding (2004) and of
Guo et al. (2009) requires MCMC. While the power
and flexibility of hierarchical models coupled with
MCMC are well known (Sorensen & Gianola, 2002),
implementations are not trivial and monitoring of
convergence to the equilibrium distribution is a

Table 2. Comparison of mixture models with 2, 3 or 4
components fitted to the 12 posterior means of
h-parameters and their logit or Gompit transforms in
the argan tree data of Petit et al. (1998).
AIC (models with smallest values are favoured and
indicated in boldface)

Variable

No. of
components
(k)

Iterations to
convergence AIC

h k=1 2 x0.651
k=2 16 x6.299
k=3 36 x2.921
k=4 39 3.079

log h
1xh

k=1 2 39.100
k=2 28 40.102
k=3 77 44.392
k=4 94 50.392

xlog[xlog(h)] k=1 2 26.909
k=2 36 24.328

k=3 41 27.742
k=4 48 33.742
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delicate matter (Cowles & Carlin, 1996). The idea in
these methods is that, under a neutral model, all h
(over loci) should be realizations of the same stoch-
astic process. Outlying h values may be suggestive of
genomic regions affected by selection. Typically, it is
argued that loci are either neutral, subject to balanc-
ing selection or to directional selection favouring
alleles in specific environments, e.g. Akey et al. (2002).
However, the assignment of loci to specific types of
processes is often arbitrary.

The present paper follows ideas of Holsinger
(1999), but it differs in two important respects. The
proposed method has two steps. First, allelic fre-
quencies are assigned a non-informative prior, so that
the mutual borrowing of information between loci is
limited, leading to less shrinkage of frequencies to-
wards a common value; in maximum likelihood there
is no shrinkage at all, an issue criticized by Haldane
(1948). Samples of allelic frequencies can be obtained
directly (actually, their posterior distributions are
tractable, analytically), and these draws are used to
form draws from the posterior distribution of locus-
specific h-parameters, using the parametric definition
of FST as a function of allelic frequencies. The first
step was illustrated with hypothetical data and with
type II diabetes data in Myles et al. (2007). The step
leads to estimates of the posterior distribution of the
hs, which can be used to explore underlying structure,
presumably caused by different evolutionary forces.
In the second step, the structure is explored by using
features of the posterior distribution of the hs
(posterior means or transformations thereof) as re-
sponse variables in a mixture model. Data from Petit
et al. (1998) on 12 isozyme loci in 12 populations of
the argan tree in Morocco were used to illustrate the
second step. Here, the posterior means of h are treated

as belonging to a mixture of normal distributions,
which is then resolved into data-supported compo-
nents. Since the final objective is that of clustering loci
according to their similarity in h values, departures
from normality are arguably of little consequence.
Here, logit and Gompit transformations were examin-
ed, and the clustering procedure produced exactly
the same results. Using AIC as a gauge for model
comparison, it was suggested that the 12 estimates of h
clustered into two groups, one representing putatively
neutral loci (provided that this group reflects variation
due to drift), and another one possibly corresponding
to genomic regions affected by selection. With 12 loci
only, it is unreasonable to expect a finer clustering
structure. An ongoing study is applying the two-step
procedure to large-scale SNP data in an animal
population and this will be reported in a future com-
munication.

As mentioned earlier in the paper, the two-step
procedure has the disadvantage of not incorporating
the uncertainty about the posterior distributions in-
ferred in the first step. Although this can be remedied
by using all posterior samples as input into the mix-
ture model analysis, it can create numerical difficulties
with the EM algorithm. This is an issue that needs
additional research.

The method proposed here extends naturally to
multiple alleles. In this case the likelihood is product
multinomial, and the beta prior distribution is re-
placed by a Dirichlet distribution with minimum
information content. The posterior distribution of the
allelic frequencies is product Dirichlet, which is simple
to sample from. Then, samples from the posterior
distribution of hl would be drawn by evaluation
of formulae similar to those in Nei (1973) where
h-parameters are averaged over alleles. For example,

Table 3. Conditional probabilities of membership to one of two clusters for mixture models fitted to the posterior
means of h for the 12 loci in the argan tree, and their logit, log(h/1xh), and Gompit, xlog(xlog(h)),
transformations (boldfaced probability indicates the cluster with largest probability of membership)

Locus

h means logit(h) Gompit(h)

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 0.93 0.07 0.91 0.09 0.91 0.09
2 0.92 0.08 0.83 0.17 0.89 0.11
3 0.00 1.00 0.00 1.00 0.00 1.00

4 0.92 0.08 0.82 0.18 0.88 0.12
5 0.00 1.00 0.00 1.00 0.00 1.00
6 0.95 0.05 0.91 0.09 0.93 0.07
7 0.00 1.00 0.08 0.92 0.04 0.96
8 0.00 1.00 0.00 1.00 0.00 1.00

9 0.00 1.00 0.00 1.00 0.00 1.00
10 0.92 0.08 0.89 0.11 0.89 0.11
11 0.95 0.05 0.92 0.08 0.93 0.07
12 0.87 0.13 0.76 0.24 0.83 0.17
Cluster mean 0.12 0.41 x2.03 x0.52 x0.11 0.76
Cluster standard deviation 0.03 0.21 0.32 1.02 0.67 0.13
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one could define

hl= g
M

m=1
p̄l,m

gR

r=1(pr, l,mxp̄l,m)
2

R

p̄l,m(1xp̄l,m)
= g

M

m=1

gR

r=1(pr, l,mxp̄l,m)
2

R(1xp̄l,m)
,

where pr,l,m is the frequency of allele m at locus l in
population r and p̄l,m is the unweighted average over
the R populations.

In common with the studies of Holsinger (1999),
Beaumont & Balding (2004), Weir et al. (2005) and
Guo et al. (2009), the procedure presented here as-
sumes that allelic frequencies are in linkage equilib-
rium, so that the likelihood of all allelic frequencies is
either product binomial or product multinomial.
Accommodating linkage disequilibrium, especially
with dense batteries of marker loci, represents a for-
midable task and it is a challenge for future research.
For example, Akey et al. (2002) and Weir et al. (2005)
reported that h values of loci in regions of high link-
age disequilibrium were similar. Guo et al. (2009)
address correlations due to linkage, but not due to
linkage disequilibrium, and do so by introducing a
spatial structure for loci located in the same chromo-
some. Specifically, they proposed an autoregressive
model in which logit transforms of h values are cor-
related according to physical distance. The model is
quite involved and requires MCMC computations.
However, loci may be in linkage disequilibrium even
though not being physically linked (Crow & Kimura,
1970), and such disequilibrium is very common in
animal populations (Sandor et al., 2006; de Roos
et al., 2008; Lipkin et al., 2009; Qanbari et al., 2009),
where finite size and selection under epistasis are fac-
tors in building up linkage disequilibrium. The two-
step approach considered here could be enhanced by
exploring algorithms alternative to EM as well as by
consideration of different types of mixtures, e.g., of
beta distributions, which are more appropriate for
random variables taking values in (0,1).
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Appendix B: Approximate Bayesian analysis

An approximate Bayesian analysis without sampling
from the posterior distribution is also possible. An
approximation to the mean and variance of the pos-
terior distribution of hl can be obtained using a
Taylor series expansion about the modes ~ppr, l of the
allelic frequencies. Let now err= @

@pr, l
hl

n o
pr, l== ~ppr, l

be an

Rr1 vector of first derivatives evaluated at the pos-
terior mode estimates (8) of the allelic frequencies.
Then, approximately\tab

hl � ehhl + err k plxeplplð Þ,

where ~ppl is the vector of posterior mode estimates of
allele frequencies in the R groups. Then, approxi-
mately
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Likewise

Var hljDATAð Þ � errkVar(pljDATA) err:

Since allelic frequencies have mutually independent
distributions, the RrR variance–covariance matrix
Var (pl|DATA) is diagonal with elements given by (9).
Thus
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In short, each hl (l=1, 2, …, L) statistic will have a
point estimate and an assessment of uncertainty, e.g.,
a credibility interval of size 95% given by the 2.5%
and 97.5% percentiles of the corresponding posterior
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distribution estimated from samples, or from using a
normal theory approximation, e.g.,
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