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Diffusiophoresis takes place when a particle in solution moves due to the presence of a
solute concentration gradient. This phenomenon is often studied under some simplifying
assumptions, such as negligible diffusive layer thickness or infinite diffusion coefficient.
In this work we simulate diffusiophoresis without these simplifications. The goal of this
numerical study is to investigate equilibrium and fully developed states of non-electrolyte
phoretic systems. Simulation results show that equilibrium states depend on solute
diffusivity and on a reference solute concentration far from the particle. An expression
is regressed that gives the (equilibrium) diffusiophoretic velocity as a function of solute
concentration gradient, solute diffusion coefficient and the reference solute concentration
far from the particle. A different set of results reveals that the state of phoretic systems
does not depend on the initial conditions when time goes to infinity. This motivates
the definition of fully developed states, designating those systems whose properties no
longer depend on initial conditions. Apart from these findings, this work also depicts
the effect of solute–interface interactions on diffusiophoresis. Simulation results for
two solid particles with different interaction potentials are used to illustrate particle
separation via diffusiophoresis. Finally, values of particle mobility are calculated for
different solute–interface attraction strengths. These results are compared with another
work in the literature, which studies polymer diffusiophoresis via molecular simulations
(Ramírez-Hinestrosa et al., J. Chem. Phys., vol. 152, 2020, p. 164901).
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1. Introduction

The interaction between surfaces and pure fluid/mixtures has major applications
in laboratory experiments as well as in industry, like when chromatography or
adsorption processes are operated. Two interface-driven phenomena, nowadays known as
diffusioosmosis and diffusiophoresis, were described by Derjaguin and coauthors in 1947
(Derjaguin et al. 1947). The researchers observed that solutions in a capillary tube can
flow relative to the fixed wall if a gradient in solute concentration is applied. Furthermore,
the authors noted that particles may move spontaneously in a fluid mixture because of
a concentration gradient of a different substance. These observations are instances of
diffusioosmosis and diffusiophoresis, respectively.

Diffusiophoresis is present in applications ranging from particle separation in
microfluidics (Shin 2020) to oil extraction (Velegol et al. 2016). This phenomenon is
also believed to influence several natural processes, such as intracellular transport of viral
DNA and protein transport across membrane pores (Velegol et al. 2016). Most of the early
models for diffusiophoresis made strong simplifying assumptions, like an infinitesimally
thin interface–solute interaction range (Derjaguin et al. 1947). Furthermore, many of the
later papers focus on adsorbing solutes (Anderson & Prieve 1984), and are not valid for
repulsive interface–solute interactions. Recent modelling works that are not restricted to
adsorption keep some simplifying assumptions, such as neglecting solute advection (Brady
2011; Marbach, Yoshida & Bocquet 2020). These assumptions will be waived in this
paper.

Apart from this, the literature does not pay much attention to the intrinsic transient
character of diffusiophoresis. Phoretic systems are inherently transient because the particle
experiences different bulk solute concentrations as it moves. However, authors often argue
that the migration speed of the particle is slow enough so that the concentration can be
always considered at steady state (the quasi-steady state approximation) (Anderson &
Prieve 1984; Brady 2011; Marbach et al. 2020). For sufficiently large solute diffusion
coefficients (infinite diffusivity), this approximation holds and solute transport via
convection can also be neglected (Brady 2011; Marbach et al. 2020). In this case, the
phoretic velocity depends only on the externally imposed solute gradient, and not on the
absolute value of solute concentration in the bulk. However, if convection is taken into
account, the diffusiophoretic velocity depends on the bulk solute concentration (Anderson
& Prieve 1984).

Such a dependency already highlights the transient character of these systems: as
the particle moves, the bulk concentration changes, and so does its velocity. But even
more interesting transient aspects of diffusiophoresis can be studied if the quasi-steady
hypothesis is dropped. For example, one may be interested in knowing whether the phoretic
flow depends on the initial conditions after a long time. For quasi-steady systems, this
dependency does not occur because the solute concentration profile is always in its steady
form. However, the matter is not trivial when the dependency on time is considered:
indeed, the fact that the particle is always moving and that its velocity is always changing
means that a steady state is never achieved. Even if fluid and particle inertia are neglected,
two systems with different initial conditions (e.g. different initial concentration profiles)
will evolve differently. The differences in the solute concentration profiles affect the fluid
velocity field, as the latter depends on the former. This effect is entangled with the
dependency of concentration on the velocity field when advection is considered. Therefore,
a phoretic system may or may not forget its initial state after a long time. To the best
of the authors’ knowledge, this question has never been addressed. Hereafter, we use
the term fully developed state to refer to the hypothetical systems whose properties no
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longer depend on the initial state. This is different from the equilibrium state, which is an
approximation that considers the particle at mechanical equilibrium.

The investigation on fully developed states will be assisted by numerical simulations.
The use of such simulations to study phoretic systems is not unprecedented. Indeed,
they are useful to support or illustrate theoretical findings. For example, Ault, Shin &
Stone (2018) studied the dynamics of a fluid/particle/solute system comprised in a narrow
channel. In their study, numerical simulations were used to validate the series expansion
approach employed to derive analytical solutions for the two-dimensional velocity, solute
concentration and particle concentration profiles. Another set of simulations illustrates
the shift away from one-dimensional predictions as the channel aspect ratio increases.
In addition, simulations in conjunction with experimental data can also validate models
describing specific phoretic systems. Banerjee et al. (2016) suggested a model to describe
the migration of colloids in the presence of a large particle that works as a solute beacon.
The equations describing the system are solved, and computations for the radial phoretic
velocity of the colloids are compared with the velocities measured during the experiments.
The comparison shows good agreement, which validates their model.

One application of numerical simulations that is neglected in this field is the regression
of theoretical results based on simulation data. In Ault et al. (2018) theoretical results
are validated with numerical data. However, such theoretical results are often obtained
with a number of simplifying assumptions, and are only valid as approximations of small
orders. If one assumes that the model (i.e. the set of differential equations describing the
phenomenon being studied) is correct, numerical simulations can be done without strong
simplifying assumptions to obtain a large set of simulation results. This set can then be
used to regress equations describing certain aspects of the system, which have a wider
range of validity.

The missing points in the literature of diffusiophoresis described above highlight the
novelty of the present work. The objectives of this paper are as follows.

(i) To explore the inherent transient aspect of diffusiophoresis, proving that particle
phoresis becomes independent of the initial state of the system if given enough time.

(ii) To derive, via regression of numerical data, a general equation that gives the
diffusiophoretic velocity as a function of system parameters, such as solute
concentration gradient, bulk solute concentration, solute diffusion coefficient and
so on.

(iii) To study the influence on diffusiophoresis of solute–particle interaction going
from repulsion to attraction region, comparing the mobility trend obtained
via fluid simulations with another trend obtained via molecular simulations
(Ramírez-Hinestrosa et al. 2020).

The rest of the paper is organized as follows. Section 2 reviews the main works pertinent
to the present study. Section 3 describes the case study that will be used throughout the
paper. Section 4 presents three physical models describing diffusiophoresis. Section 5
discusses technical aspects of the simulation and validates the numerical implementation
of the model. Section 6 compiles the simulation results and addresses the objectives
mentioned above. Finally, § 7 reviews the main findings of this work.

2. Literature review

In 1947 Derjaguin and co-authors studied the displacement of wax beads in a
water/methanol/glucose solution contained in a cylinder connected to two reservoirs of
different glucose concentration, 0 at the top and positive at the bottom (Derjaguin et al.
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1947, 1993; Churaev, Derjaguin & Muller 1987). The glucose gradient creates a linear
density distribution, and one should expect all the beads to remain at a level in the cylinder
corresponding to 0 buoyancy. However, glucose molecules interact repulsively with the
wax beads, and because of the glucose concentration gradient, the resultant force of the
glucose-bead interaction points towards the top. Hence, the beads will move up until an
equilibrium is reached between this force and the buoyancy of the particles.

Anderson & Prieve (1984) made a review of early theoretical and experimental works
on this phenomenon. The study considers both an electrolyte and non-electrolyte solute,
the latter being relevant to the present paper. Anderson & Prieve (1984) focus specifically
on models that predict the diffusiophoretic velocity vDP. This velocity depends on the
interaction potential between the moving particle and the solute, or between the moving
particle and smaller colloids depending on the type of mixture. Such a potential will be
noted hereafter in its dimensionless form as Πic. The early vDP model of Derjaguin et al.
(1947) expresses vDP as a function of Πic and of the solute concentration gradient, written
in compact form as

vDP = L∗K
kBT
η

∇n∞. (2.1)

In (2.1), kB is the Boltzmann constant, T is temperature, η is the fluid viscosity and ∇n∞ is
the far-field solute concentration gradient. Furthermore, K (called the adsorption length)
and L∗ are functionals of the solute–interface interaction potential, defined as

K =
∫ ∞

0

(
e−Πic − 1

)
dy, (2.2a)

L∗ = 1
K

∫ ∞

0
y
(
e−Πic − 1

)
dy. (2.2b)

In this equation y is the coordinate measuring the distance from the interface to a point in
the mixture domain.

Equation (2.1) highlights that phoretic motion is proportional to the far-field solute
concentration gradient, and that it is independent of the particle shape and size. The
latter feature comes from the infinitesimally thin layer assumption, which presumes that
both the interfacial layer length λ and the adsorption length K are much smaller than
the minimum radius of curvature Rc of the particle (Anderson & Prieve 1991). Another
hypothesis underlying (2.1) is that solute transport by convection is negligible.

When the condition K/Rc → 0 is not met, a new expression can be derived, which
relates the phoretic velocity of a spherical particle to its radius R. This expression is
(Anderson & Prieve 1984)

vDP = L∗K
kBT
η

∇n∞
(

1 − K
R

+ O(λ̂2)

)
. (2.3)

To derive (2.3), the solute transport equation is once again decoupled from the fluid
momentum balance by neglecting convective transport. The velocity profile can then be
obtained using a dimensionless Stokes streamfunction. The velocity (and, consequently,
the streamfunction itself) is expanded in powers of λ̂, which is the ratio between the
thickness of the interfacial layer and the radius R. Each term can then be solved separately.

If solute transport by convection is accounted for in the diffusive layer, solute mass
balance is no longer decoupled from the velocity profile near the sphere. The phoretic
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velocity in this case depends on the diffusion coefficient D. This dependency is captured
via two dimensionless numbers,

Pe1 = nmL∗KkBT
Dη

, (2.4a)

Pe2 = ∇n∞RL∗KkBT
Dη

. (2.4b)

In (2.4a), nm is the mean far-field solute concentration. For most real phoretic systems,
Pe2 ≈ 0 (Anderson & Prieve 1984). In the case where Pe1 is of order O(1) or higher, one
must consider that the coefficients in the expansion in powers of λ̂ depend on Pe1. This
yields (Anderson & Prieve 1984)

vDP = L∗K
kBT
η

∇n∞
(

1 − (1 + νPe1)
K
R

+ O(λ̂2)

)
. (2.5)

Equation (2.5) is a first-order approximation with respect to K/R and λ̂ in the limit
L/K → 0. Note that (2.3) can be obtained from (2.5) by setting Pe1 = 0. The new term ν

in (2.5) is yet another functional of the solute–interface interaction potential, given by

ν = 1
L∗K2

∫ ∞

0
dy

[∫ ∞

y

(
e−Πic − 1

)
dy∗

]2

, (2.6)

where y and y∗ represent the distance between a point in the domain and the surface of the
sphere.

Anderson & Prieve (1991) generalized (2.5) for arbitrary K/R. This equation is given by

vDP = L∗K
kBT
η

∇n∞
(

1 + (1 + νPe1)
K
R

)−1

. (2.7)

Equation (2.7) still ignores solute transport via convection outside the diffusive layer (in
the bulk), and it is valid in the limit λ̂→ 0 and λ/K → 0.

The discussion in Anderson & Prieve (1984, 1991) focuses on an adsorbing solute. This
choice of solute–interface attractive-only interaction affects the validity of the simplifying
assumptions (e.g. λ/K → 0), which in general hold true for adsorption. Note that for
purely repulsive solute–interface interactions, Πic > 0 and, hence, (2.2a) yields |K| < λ,
so that λ/K → 0 does not hold.

Keh & Weng (2001) improved on the previous works by finding an expression for
the phoretic velocity that accounts for convective transport in the bulk, and without the
restrictions λ/K → 0 and Pe2 = 0. The derivation follows closely that used by Anderson
& Prieve (1991) to obtain (2.7). The frame of reference is set at the centre of the spherical
particle, and the solute–interface interaction range λ is again assumed small relative to
the radius of the particle. With these considerations, the boundary layer approach can be
used. It consists in solving the transport equations in the bulk (where the solute–interface
interactions are negligible), and using a matching procedure to ensure the continuity of the
solution at the surface of the sphere. Because λ� R, the boundary conditions (BCs) for
the bulk transport equations can be imposed at y = 0 instead of y = λ.

Furthermore, Keh & Weng (2001) claim that under the quasi-steady state assumption
∂n/∂t (the time derivative of solute concentration) can be replaced by ∇n∞vDP in the
solute transport equation for the bulk phase. Finally, the velocity and concentration profiles
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are expanded in powers of Pe2, and matching between the inner (diffusive layer) and outer
(bulk) profiles yields (Keh & Weng 2001)

vDP = L∗K
kBT
η

∇n∞ (1 + β)−1
(

1 + α2Pe2
2 + O(Pe2

4)
)

, (2.8)

with

β = (1 + νPe1)
K
R

, (2.9a)

α2 = −
(
77 + 111β + 274β2 + 312β3) (1 + β)

360
(
1 + β4

)
(1 + 2β)

. (2.9b)

Note that the multiplying term before the brackets in (2.8) is the expression reported in
(2.1). As a reminder, the latter is valid when convective transport is negligible, and when
the curvature of the phoretic particle is much larger than the length of solute–interface
interactions. In addition, one can see that (2.8) reduces to (2.7) when Pe2 = 0. Therefore,
the former seems to be a more general version of the latter. However, there might be some
issues with (2.8) and its derivation, which shall be discussed later in § 6.

Khair (2013) built on the work by Keh & Weng (2001) by studying the effect of
solute advection on the motion of two phoretic particles. The strength of advection is
measured via a third Péclet number Pe3 = b∇n∞R/D, with b being the mobility of the
diffusive layer. In the absence of solute advection, the particles do not influence each
other’s motion, each translating as if it was isolated. However, if solute transport via
convection is considered, the particles influence each other’s movement, even for small
Pe3. A consequence of such a behaviour is that a pair of particles will tend to orient itself
normal to the solute concentration gradient imposed. The time scale for this phenomenon
depends on Pe3: the higher Pe3 is, the lower is the time required for particle orientation.

Assuming only that convection does not affect solute transport, Marbach et al. (2020)
found semi-analytical solutions for the diffusiophoretic velocity, when the particle is at
mechanical equilibrium. Considering a potential Πic that depends only on the distance to
the particle’s surface, and also considering a constant solute gradient ∇n∞ far from the
particle, the solute concentration profile in spherical coordinates is

n = n0(r) + R∇n∞ cos(θ)f (r), (2.10)

n0(r) = nme−Πic (2.11)

for f (r) such that

f (r) : 2rf ′ + r2f ′′ − 2f + 2rΠ ′
icf + r2f ′Π ′

ic + r2f Π ′′
ic = 0. (2.12)

In (2.10) and (2.11), θ is the polar angle, R is the radius of the particle, r is the radial
distance, nm = limr→∞ n(r, θ = π/2), and we consider that the solute concentration
gradient far from the sphere is parallel to the azimuthal direction (θ = 0). The function f (r)
in (2.10) is defined by (2.12), where the superscript (′) indicates the derivative with respect
to r. Note that there is no general solution for this differential equation. Nevertheless, one
can still derive an expression for the diffusiophoresis velocity of the particle in terms of f
(Marbach et al. 2020),

vDP = R2

3η
∇n∞kBT

∫ ∞

R
f (r)(−Π ′

ic)

(
r
R

− R
3r

− 2r2

3R2

)
dr. (2.13)

Equation (2.10) corresponds to an unnumbered equation in the first paragraph of § 3 in
Marbach et al. (2020). Equations (2.11) and (2.12) are not given in Marbach’s paper, but
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Static fluid

mobile object

(a) (b)

H

L

Y

Fdrag Fci

vdp

2R
z

nl

nr < nl

Figure 1. Diffusiophoresis set-up: spherical particle moving under the influence of a solute concentration
gradient, when solute molecules repel the particle.

they can be found by inserting (2.10) into the solute transport equation and later using the
BCs to get rid of unknown constants. Finally, (2.13) is equation (3.23) in Marbach et al.
(2020).

Ramírez-Hinestrosa et al. (2020) studied the diffusiophoresis of a polymer in a mixture
via molecular dynamic simulations. The interactions between the various particles in
the system (monomers, solute and solvent molecules) were modelled with the 12-6
Lennard–Jones potential, except for monomer–monomer interactions. The authors found
that the corresponding diffusiophoretic velocity depends weakly on the size of the
polymer. Besides, it was shown that the effect of solute–monomer dispersion energy (εms)
on the mobility of the particle is non-monotonic. Mobility, defined as the ratio between
diffusiophoretic velocity and the solute chemical potential gradient, is negative when
monomers have more affinity with solvent molecules than solute molecules (i.e. εms < 1).
In other words, the polymer moves towards lower solute concentration regions when it
has lower affinity with solute particles. When εms > 1, the solute molecules are adsorbed
around the polymer, and the direction of particle displacement is inverted. The mobility
of the polymer continues to increase with respect to εms until a certain threshold, after
which it decreases, possibly due to the immobilization of the diffusive layer surrounding
the polymer.

Finally, Popescu, Uspal & Dietrich (2016) made a concise review of self-diffusiophoresis,
the phenomenon upon which an immersed particle itself creates the gradient of solute
serving as the driving force for its motion. One of the mechanisms through which the
particle can create this gradient is if its surface catalyses the formation/degradation of
solute. A degree of asymmetry (e.g. anisotropic chemical activity over the surface) is
necessary for motion to take place. Still in the context of self-diffusiophoresis, Michelin &
Lauga (2014) proposed a framework for finding the phoretic velocity of Janus particles,
i.e. particles whose surfaces have two or more distinct physical properties. Using this
framework, the authors found that advection affects self-phoresis in a non-monotonic way:
a maximum in phoretic velocity was found in their study for Péclet numbers of O(1).

3. Case study

The system used to study diffusiophoresis is depicted in figure 1. It consists of a spherical
particle (black sphere) immersed in a mixture of solute (red circles) and water. The solute
concentration gradient is kept constant very far from the sphere. The particle is assumed
to be impermeable to solute and solvent alike, and a no-slip condition is imposed for the
fluid at the particle’s wall.
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∇n∞ (μm−4) [−149, −48] L (μm) 16 kic [10, 100]
nm (μm−3) [0, 11 937] H (μm) 16 lic (μm) [0.01, 0.1]
D (μm2 s−1) [21.8, ∞) R (μm) 0.2 att [0, 1.1]
η (Pa s) 10−3 T (K) 303 — —

Table 1. Range of dimensions and parameters used for simulations.

This set-up is axisymmetric with respect to the z axis passing through the centre of
the sphere and parallel to the solute gradient. Therefore, instead of choosing a volume
containing the sphere as the simulation box, one can simply choose a plane passing through
the symmetry axis as the domain. In our simulations, we chose a rectangular simulation
domain on the Y–z plane, which translates into a cylindrical three-dimensional domain
because of the rotational symmetry. The origin of the coordinate system is set at the centre
of the cylinder, and as an initial condition, we place the centre of the sphere at the origin.
The sphere may or may not move away from the centre of the cylinder, depending on
the model used for simulation. The cylinder in this figure corresponds to the simulation
domain, and its size can be arbitrarily chosen as long as H, L � R. A solute gradient
∇n∞ = (nr − nl)/L is imposed by fixing the solute concentration (number of particles
per volume of mixture) at z = −L/2 (nl) and at z = L/2 (nr). Values of parameters used
for simulations are given in table 1.

In this table, nm is the mean value of the far-field profile, given by nm = (nl + nr)/2.
Further, D is the diffusion coefficient of the solute forming the concentration gradient, η

is the fluid (water) viscosity and T is the temperature of the mixture. Finally, kic, lic and att
are parameters for the interface–solute interaction potential, as given in (4.4).

The spherical particle is subjected to the force exerted by the solute on its interface
(Fci), and to the viscous drag Fdrag opposing particle motion. The direction of these forces
depends on the nature of solute–interface interactions. If repulsive interactions dominate,
the left-hand side of the domain (richer in solute) ‘pushes harder’ than the right-hand side,
so Fci is positive and the drag force is negative. Alternatively, if attractive interactions
dominate, the left part of the mixture ‘pulls harder’ than the right part, and the forces will
be oriented oppositely.

The case study depicted in figure 1 is used to calculate diffusiophoretic velocities vDP
for several combinations of the parameters listed in table 1. The goal of these simulations
is to regress an expression for vDP. Furthermore, dynamic simulations of the case study
in figure 1 shall show whether there exist fully developed states for which velocity and
solute concentration profiles change with respect to time, but no longer depend on the
initial conditions of the system. The last goal to be achieved through this case study is to
investigate the influence of solute–interface attraction strength on diffusiophoresis.

4. Physical model

Classically, the modelling of solution flow is done assuming that the solute is sufficiently
diluted so that its effect on the solvent flow can be neglected. However, in the case
where interface–solute forces are present, these are transmitted to the fluid, for example,
via viscous drag (Oster & Peskin 1992). The resultant body force on the solvent enters
the Navier–Stokes equation as the gradient of an interaction potential, times the solute
concentration. Furthermore, the action of the interface on the solute is accounted for via
an extra convection term in the solute mass balance equation. The modified set of transport
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equations is then (Michelin & Lauga 2014; Popescu et al. 2016; Marbach et al. 2020)

∇ · u = 0, (4.1)

η∇2u − ∇p − kBTn∇Πic = 0, (4.2)

∂n
∂t

= −∇ · Jn = −∇ · (−D∇n − Dn∇Πic + nu). (4.3)

In these equations, u stands for the velocity of the fluid, p is pressure, Jn is the solute flux
and t is time. In addition, −kBTn∇Πic is the body force that is transmitted from the solute
to the solvent, with kB being the Boltzmann constant and Πic being the interface–solute
interaction potential. Note that (4.1) assumes an incompressible fluid, whereas (4.2)
neglects inertia.

There are several ways to model the solute–interface interaction potential. For steric
exclusion, Πic = +∞ for y ≤ a and Πic = 0 for y > a, with a being the size of the solute
species and y being the distance between the interface and a point in the domain. For
charged particles with an electric double layer in a mixture with polar solute molecules,
Πic depends on the local electric field and on the dipole moment of the solute (Anderson
1989). In the present work Πic is modelled as the sum of a repulsive and an attractive
exponential term, as proposed by Bacchin (2017),

Πic = kic

⎡
⎢⎣

repulsion︷ ︸︸ ︷
(1 + att)e−(y/lic) −

attraction︷ ︸︸ ︷
atte−(y/2lic)

⎤
⎥⎦ . (4.4)

In (4.4) the parameter att can be used to depict pure repulsion (att = 0) and long-range
attraction with short-range repulsion (att > 0) to keep physical consistency with volume
exclusion. Term kic represents the magnitude of interface–solute interactions, y is the
distance between the interface and a point in the domain and lic is the interaction range.
The repulsion term in Πic is similar to the negative exponential function used in DLVO
(Derjaguin–Landau–Verwey–Overbeek) theory to model repulsion between electric
double layers (Bhattacharjee, Elimelech & Borkovec 1998). Because an exponential decay
is a stiff function, this repulsion term may also model steric exclusion if lic is of the same
order of magnitude as the solute particle’s size. Furthermore, the attraction term may
account for solute adsorption near the solid walls (Bacchin, Glavatskiy & Gerbaud 2019).
The factor 1/2 in the power of the second exponential distinguishes the range of attractive
interactions from the range of repulsive interactions. In (4.4) the range of attraction (2lic)
is longer than the range of repulsion (lic).

In the next subsections, three options are discussed to model the diffusiophoretic system
depicted in figure 1, based on (4.1)–(4.3). They may be chosen depending on the reference
frame (the lab or the phoretic particle), and on whether or not convection can be neglected
in (4.3). Simulation results from these models are shown later in § 6, along with the main
conclusions drawn from them.

4.1. Transient exact formulation
The transient exact formulation (TEF) model uses the laboratory reference frame. In this
frame of reference the fluid far from the particle is considered stagnant. The particle is
therefore moving, and its velocity is a BC for the fluid on the fluid–particle interface.
Furthermore, it is common to assume that the solute profile is well-established far from
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the particle, and that the latter moves under the influence of a distant solute gradient ∇n∞
(Anderson & Prieve 1984, 1991; Churaev et al. 1987; Anderson 1989; Khair 2013; Marbach
et al. 2020; Ramírez-Hinestrosa et al. 2020; Rasmussen, Pedersen & Marie 2020). The
BCs for (4.1)–(4.3) are then listed as six equalities, i.e.

u|interface(t) = v0, (4.5a)

u|∞ = 0, (4.5b)

dv0

dt
= F

M
, (4.5c)

(Jn − v0n) · e|interface(t) = 0, (4.5d)

n|t=0 = n0(x), (4.5e)

n|r→∞ = n∞(x), (4.5f )

where the force F acting on the particle can be calculated by

F =
∫

Ω

kBTn∇Πic dV +
∫

∂Ω

η
(∇u + ∇uT) · e dS −

∫
∂Ω

pe dS (4.6)

Equality (4.5a) corresponds to the no-slip condition; subscript interface (t) refers to
the moving (time-dependent) surface of the particle and v0 refers to its velocity. Equality
(4.5b) means that the fluid is at rest far from the particle. Equality (4.5c) is Newton’s
second law applied to the particle, where M is the mass of the particle. Equation (4.5d)
guarantees that solute molecules cannot enter the particle (e is the unit vector normal
to the particle’s surface). The BC in (4.5e) represents the initial condition of the solute
concentration profile. Finally, the last BC (4.5 f ) stresses that the solute concentration
profile is not perturbed far from the particle. The distance r on the left-hand side is the
distance from the centre of the spherical particle. Because the gradient of solute far
from the particle is considered constant, n∞ depends on the position x. It is a linear
concentration profile.

Equations (4.1)–(4.3) with the BCs given by (4.5) define the dynamics of
diffusiophoresis. According to (4.6), the particle is subjected to the action of three forces,
namely a solute–interface interaction force (first term) and hydrodynamic forces due to
viscous stress (second term) and due to pressure (third term). The volumetric integral is
taken over the entire domain, whereas the surface integrals are taken over the particle’s
surface. One is often interested in the equilibrium state, for which F = 0. Indeed, because
the inertia of the particle is often negligible, it accelerates so fast that the drag quickly
becomes equal to the force exerted on the sphere by the solute. However, neglecting
the inertia of the particle would complicate the TEF simulations, because at every time
step a number of iterations would be required until the equilibrium velocity is found. At
the same time, considering a sphere density of 1000 kg m−3 for instance would require
very small time steps to avoid unrealistically high particle velocities in the first few time
iterations. With such small time steps, capturing the effect of particle displacement and
solute transport is impractical. To avoid these issues, the sphere density considered in the
TEF simulations was set to be much higher (by a factor of 104) than the density of water.
This is simply a mathematical artifice to facilitate the simulations.

The transient formulation presented above has many interesting applications. One of
them is answering whether the solution of (4.1)–(4.3) and (4.5) depends on the initial
conditions as the time goes to infinity. This topic is addressed in § 6.1. In addition, TEF
simulations can be used to illustrate particle separation (§ 6.2).
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4.2. Transient formulation at constant velocity (TFCV)
Equations (4.1)–(4.3) and (4.5), (4.6) are the exact description of the case study. However,
such a model has a high computation cost, since the problem is transient and the domain
needs to be remeshed at every time step. To avoid remeshing, one can assume that the
velocity v0 of the particle is constant. The origin can then be set at the centre of the
particle by defining new coordinates x = x∗ − v0t, where x∗ are the coordinates in the
rigid frame. In this new moving frame, it is suitable to define a new variable w = u − v0
corresponding to the relative velocity of the fluid with respect to the sphere. In this case,
(4.1)–(4.3) and (4.5) can be rewritten as (Brady 2011)

∇ · w = 0, (4.7)

η∇2w − ∇p − kBTn ∇Πic = 0, (4.8)

−∇ · Jn = −∇ · (−D∇n − Dn ∇Πic + nw) = ∂n
∂t

, (4.9)

w|interface = 0, (4.10a)

w|∞ = −v0, (4.10b)

Jn · e|interface = 0, (4.10c)

n|t=0 = n0(x), (4.10d)

n|r→∞ = n∞(x) + ∇n|∞ · v0 t. (4.10e)

The term Jn corresponds to the solute flux perceived by the particle. Equations
(4.7)–(4.10) can be simulated using a fixed mesh. The translation of the particle is captured
by the transient BC given in (4.10e). However, this set of equations is not equivalent to
the dynamic formulation described previously, because here we assume constant particle
velocity. Despite that, this formulation can capture instantaneous equilibrium states. That
is, for a given v0, one can run a simulation with (4.7)–(4.10) and check if the force F
acting on the particle equals zero at some time t. It is also possible to distinguish whether
a certain equilibrium state is momentary or persistent. Indeed, if a simulation using this
formulation shows that the force acting on the surface remains very close to 0 during a
large time interval, that means the actual dynamic system will also sustain an equilibrium
state during the same interval.

4.3. High diffusion limit
In the limit of very high diffusion coefficients (D → ∞), convective solute transport and
the transient term ∂n/∂t in the solute transport equation can be neglected. The equations
describing this formulation are

∇ · w = 0, (4.11)

η∇2w − ∇p − kBTn ∇Πic = 0, (4.12)

∇ · Jn = ∇ · (−D∇n − Dn ∇Πic) = 0, (4.13)

w|interface = 0, (4.14a)

w|∞ = −v0, (4.14b)

Jn · e|interface = 0, (4.14c)

n|r→∞ = n∞(x). (4.14d)
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These equations are in the frame of reference of the particle, which is why the velocity is
set to zero on the particle’s surface in (4.14a).

The high diffusion limit (HDL) formulation is commonly used in the literature
(Sharifi-Mood, Koplik & Maldarelli 2013; Popescu et al. 2016; Marbach et al. 2020),
mainly because it decouples the solute transport equation from the momentum balance
of the mixture. In other words, one can solve (4.13) to find the solute concentration
profile (2.10) before computing the velocity and pressure fields. In addition, HDL does
not require time iterations: the velocity and solute concentration profiles are established
instantaneously for any given far-field BC n∞(x). The semi-analytical expression for the
phoretic velocity from the HDL formulation is given in (2.13).

5. Numerical simulation set-up and validation

In this work the ANSYS Fluent� software (Ansys Inc 2020) is chosen to perform
diffusiophoresis simulations, with help of the coupled algorithm (Ansys Inc 2021) solver
that solves the momentum and continuity equations simultaneously. The software supports
dynamic meshing, which is a required feature to implement the TEF model described in
§ 4.1. Typically, the computation time for one transient simulation remains within less
than 24 h for a large number of time steps (up to 400) and refined mesh (up to 1.3 × 106

elements) using four processors.
To implement the equations, we use the laminar model available in Fluent to simulate

fluid flow, and define a user-defined scalar to describe solute transport (Ansys Inc 2021).
The extra term −kBTn ∇Πic appearing in the momentum balance equation for the fluid,
which corresponds to the force exerted by the interface on the solute (transferred to the
solvent), is handled via a source term. Furthermore, the additional term −Dn ∇Πic in the
solute transport equation, which represents the transport due to interface–solute forces, is
captured via a user-defined function (UDF). User-defined functions are also necessary to
prescribe the motion of the sphere in the TEF model. More details on these UDFs are
given in the supplementary material available at https://doi.org/10.1017/jfm.2022.1067.

The ranges of solute concentration nm and far-field solute concentration gradient ∇n∞
used to define the far-field solute concentration profile are shown in table 1. For the TEF
model, the velocity at the left and right boundaries is set to 0 as the fluid far from the sphere
is considered at rest. Furthermore, no-slip BC is imposed at the wall, whose velocity is
updated based on the forces exerted on the sphere. The solute concentration values at the
left and right boundaries are calculated from nm and ∇n∞. On the other hand, both TFCV
and HDL models place the sphere at the origin of the reference frame. Therefore, null
velocity is imposed for the fluid on the surface of the sphere. The velocity at the left and
right boundaries is imposed, and it is kept the same throughout the simulation. The initial
concentrations at the left and right boundaries are calculated from nm and ∇n∞, but they
are updated for the TFCV model according to (4.10e). Finally, in the three diffusiophoretic
models, an axis-symmetry BC is imposed on the axial axis passing through the centre of
the sphere, a symmetry BC is imposed on the shell of the cylindrical domain in figure 1
and a zero solute flux is imposed on the walls of the sphere.

The mesh used in all diffusiophoresis simulations is shown in figure 2. It consists of a
structured zone with regular squared elements far from the sphere, an inflation layer around
the sphere and an unstructured mesh region between these zones. The total number of
elements is 1 317 824, and the maximum element size is set to 0.01 μm (5 % of the radius
of the sphere). The different mesh zones are clearer in the right extract of figure 2, which
zooms in a small portion of the domain around the sphere. When the entire domain is
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0.4 µm

Figure 2. Mesh used for the diffusiophoresis case study.

(a) (b)vz (µm s–1) vz (µm s–1)

1 µm z z1 µm

2.2

–9.6

–21.4

–33.3

–45.1

2.2

–9.8

–21.8

–33.8

–45.8

Figure 3. Comparison of axial velocity profiles in the diffusiophoresis case study, using meshes with
maximum element size of (a) 0.01 μm and (b) 0.016 μm.

displayed (left image), the elements are not visible and the entire mesh has a solid dark
aspect, due to the limited pixel resolution.

This mesh was validated by comparing simulation results between meshes with a
maximum element size either equal to 0.01 μm or 0.016 μm. Figure 3 shows the
comparison of the axial velocity profiles for both meshes, using the TFCV model with
∇n∞ = −149 μm−4, nm = 1193.7 μm−3, D = 218 μm2 s−1, and setting the velocity at
the inlet and outlet to zero. Note that the deviation between these profiles is negligible
compared with the absolute range of variation in velocity (≈47.3 μm s−1). A second
type of validation was performed by slightly displacing the sphere from the centre of the
domain, while keeping the same nm. It was found that this modification could change the
calculated diffusiophoretic velocities significantly, especially when drag and solute–sphere
interaction forces are of the order of 10−14 N or lower. However, this discrepancy vanishes
if the inflation layer is at least four times thicker than the radius of the sphere. This
condition was taken into account in the mesh shown in figure 2.

A third kind of mesh validation was performed by comparing simulation results
with analytical results of Marbach et al. (2020). The authors derived a semi-analytical
expression for the diffusiophoretic velocity in the HDL model, given by (2.12) and
(2.13). Note that the differential equation (2.12) does not have a general explicit solution.
However, a careful study of these equations led to the finding of a specific interface–solute
interaction potential Πic that results in a fully analytical expression for diffusiophoretic
velocity. Such a mathematically convenient Πic is given by (5.1), and the corresponding
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vDP (μm s−1)

H = 16 μm, L = 16 μm H = 32 μm, L = 32 μm

Πic = 1
2

ln
(

r4

r4 + R4

)
−3.86 −3.97

Πic = kice−(d/lic) 29.1 29.5

Table 2. Comparison between vDP calculated using different domain sizes.

analytical solutions for (2.12) and (2.13) are given in (5.2) and (5.3) as follows:

Πic = 1
2

ln
(

r4

r4 + R4

)
, (5.1)

f (r) = r
R

+ R3

r3 , (5.2)

vDP = R2

6η
∇n∞kBT. (5.3)

The Πic potential in (5.1) does not have a physical significance. However, it works as a
convenient mathematical artifice that can be used together with (5.3) to quickly assess
numerical implementations of the HDL model presented in § 4.3. This has significant
importance due to the relative popularity of the model in the literature (Sharifi-Mood et al.
2013; Popescu et al. 2016; Marbach et al. 2020).

For values of R, η and T given in table 1, and for ∇n∞ = −149 μm−4, one obtains
a theoretical diffusiophoresis velocity vDP = −4.09 μm s−1. From numerical simulation,
the value obtained is vDP = −3.86 μm s−1, corresponding to a relative error of 5.6 %.
The source of the error is not the meshing itself, but rather the size of the simulation
domain, which is too small for a logarithmic potential. Indeed, doubling H and L given
in table 1 (without changing the mesh element size) results in a new simulated velocity
of −3.97 μm s−1, and the error is reduced to 2.9 %. Nevertheless, we keep the values
of H and L in table 1 for all simulations when the exponential potential in (4.4) is
used, because in this case the variation of vDP with respect to domain size is much
smaller. The reason for this difference is that the logarithmic potential in (5.1) decays
in 1/r4, which makes it act over longer distances compared with a potential that decays
exponentially. Table 2 summarizes the changes in vDP considering different domain
sizes and interface–solute interaction potential. The results for the exponential potential
considered ∇n∞ = −149 μm−4, nm = 4775 μm−3, kic = 100, lic = 0.1 μm and att = 0.

This section validated the set-up for diffusiophoresis simulations by assessing the impact
of mesh element size, mesh structure and simulation box size on the diffusiophoretic
velocity and on the flow velocity profile. It was found that the mesh structure must have
an inflation layer at least four times thicker than the radius of the sphere in order to
avoid significant numerical errors. Furthermore, the size of the mesh elements and of
the simulation domain were found to be adequate.
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(a)

(b)

�tA

�tB

nm
A,0

nm
B,0

nm
�

nm
�

Figure 4. Illustration of the possible dependency of a diffusiophoretic system on initial conditions, with two
particles moving under the same far-field solute concentration profile, but starting from different positions.

6. Results and discussion

This section discusses simulation results for the diffusiophoretic case study in § 3, obtained
according to the models described in § 4.

6.1. Influence of initial conditions on long-time behaviour of the system
Transient flow simulation describes the motion of the particle in the solute gradient. As
the particle moves along (or against) this gradient, the amplitude of the forces acting on
it (drag and solute–interface forces) will change. Furthermore, because the force applied
by solute molecules on the interface depends on the solute concentration profile around
the sphere, the motion of the particle should depend on its initial position with respect
to the solute gradient. Nevertheless, it is worth questioning whether the system ‘forgets’
its initial state after a large enough time. This is presented next with the help of the
two transient model formulations TEF (§ 4.1) and TFCV (§ 4.2), which represent slightly
different physical systems. The TEF corresponds to a particle set free in a stagnant solution
with a concentration gradient. Its velocity changes according to the forces exerted on its
surface, as indicated by (4.5c). On the other hand, TFCV assumes that particle velocity
remains the same.

The question of whether the system ‘forgets’ its initial state after a large enough time can
be translated as follows. Imagine two systems A and B under the same imposed far-field
solute concentration gradient, each of them containing a spherical particle of radius R that
occupy different positions at time t = 0. The position of these spheres can be tracked by
the far-field solute concentration nm, so the initial positions will be named nA,0

m and nB,0
m .

Without loss of generality, let us say these particles are moving right, and the sphere in
system B starts ahead of the sphere in A. Eventually, these particles will pass through an
arbitrary position n�

m , though they will not reach this position at the same time. Still, is it
possible to distinguish one system from another when they are at position n�

m? Figure 4
illustrates the above discussion.

The formal mathematical statement for the question depicted in figure 4 is given as
follows. If the profiles nA(x, t), uA(x, t) and nB(x, t), uB(x, t) are solutions of (4.1)–(4.3)
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and (4.5), or (4.7) to (4.10), with the same BCs but with different initial conditions, then

lim
t→∞[nA(x, t + t′) − nB(x, t)] ?= 0, (6.1a)

lim
t→∞[uA(x, t + t′) − uB(x, t)] ?= 0, (6.1b)

where t′ is such that

nA
m(t + t′) = nB

m(t). (6.2)

If (6.1) is true, we can say that the system reaches a fully developed state. That does
not mean its properties will not change with respect to time, but rather that they become
independent of the initial state.

The complexity and nonlinearity of the PDE system describing diffusiophoresis
prevents a rigorous mathematical approach to (6.1). However, numerical simulations can
shed light on the validity of this equation. At first, one can investigate the evolutions of two
systems A and B using the TFCV formulation described in § 4.2. Velocity v0 in (4.10b) is
set to 14.6 μm s−1. In addition, a diffusion coefficient of 21.8 μm2 s−1 is considered. Both
systems are under a linear far-field solute concentration profile with ∇n∞ = −149 μm−4.
Furthermore, particles start at different positions, with nA,0

m = 1551.8 μm−3 and nB,0
m =

1408.5 μm−3. The initial concentration profile n0(x) is linear in both systems, with
∇nA(x, 0) = ∇nB(x, 0) = ∇n∞ez. Figure 5(a) shows how the forces in each system
change with respect to the position nm of the particle. Figure 5(b,c) shows two other pairs
A, B with different diffusion coefficients (respectively 218 and 2180 μm2 s−1) and particle
velocities (80.9 and 200 μm s−1, respectively). All simulations were run with kic = 100,
lic = 0.1 μm and att = 0.

The time arrow shows the direction of the particle movement (towards lower solute
concentrations). Note that in the range nm ∈ (1410, 1554), the plot in figure 5(a) only
shows data for system A. This is because the particle in B starts at nB,0

m = 1410 and moves
towards smaller values of nm. Furthermore, all the systems displayed in figure 5 reach an
equilibrium of forces (|Fdrag| = |Fic|) when nm = 1194 μm−3. This is not by accident: the
velocity v0 for each system in figure 5 was carefully chosen so that the sphere in A is at
equilibrium when nm = 1194 μm−3.

It is clear that the forces in each pair A, B tend to the same values as nm gets smaller
(i.e. as t → ∞). Such a result suggests that (6.1) is true, at least for the set of parameters
used in these simulations. This conclusion is confirmed when comparing the concentration
and velocity profiles for systems A and B in figure 5. For each pair, when nm = 1194 μm−3,
concentration and velocity profiles are identical everywhere, within numerical accuracy.
This is illustrated in figure 6 for D = 218 μm2 s−1 and v0 = 80.9 μm s−1.

Results for the TEF model described in § 4.1 show a similar behaviour. Let us consider
two systems A and B with the same BCs and initial velocity 0, but starting at different
positions (nA,0

m /= nB,0
m ). As the particles move away from their initial positions, the forces

go rapidly to 0 because of the low inertia. The data corresponding to the beginning of the
motion, when the particle is transitioning to this quasi-equilibrium state, are not accurate.
This is because the simulations neglected fluid inertia while assuming an unrealistically
high particle density. However, as explained in § 4.1, this is only a mathematical
artifice to facilitate the numerical study. After this transitioning period, results show
that the corresponding particle velocities tend to the same values. Furthermore, solute
concentration and velocity profiles converge to the same values, indicating that (6.1) is
valid in the TEF. Figure 7 illustrates this behaviour for one particular pair of systems, with
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Figure 5. Solute–interface force (triangles) and minus drag force (circles) acting on the particle in
different pairs of systems A and B, in transition to fully developed state according to TFCV predictions.
Results are shown for (a) D = 21.8 μm2 s−1, v0 = 14.6 μm s−1; (b) D = 218 μm2 s−1, v0 = 80.9 μm s−1;
(c) D = 2180 μm2 s−1, v0 = 200 μm s−1.

D = 2180 μm2 s−1, ∇n∞ = −149 μm−4, kic = 100, lic = 0.1 μm and att = 0. The initial
positions for A and B are nA,0

m = 1552 μm−3 and nB,0
m = 1456 μm−3.

Figure 7(b) shows that the phoretic velocity does not reach a plateau. Instead, the particle
continues to accelerate due to small differences between the solute–interface force and the
drag force. This difference, depicted in figure 5 for the TFCV model, persists in time
because the driving force exerted by the solute on the interface depends on the position of
the sphere with respect to the solute concentration profile (i.e. nm). Hence, contrary to other
phenomena like settling where the driving force is constant, it is generally not possible
to reach a limiting velocity (with no acceleration) in diffusiophoresis. The only special
case in which a limiting velocity can be reached is if such a velocity is 0; in this case,
the particle remains stagnant in the mixture. Still, figure 7(b) shows that the equilibrium
velocity predicted by the TFCV (dashed line) is close to the actual phoretic velocities
obtained via TEF.

The force amplitude being dependent on the position, the movement of the sphere and
the state of the system (i.e. velocity and concentration profiles) are a priori dependent on
the initial position of the particle. However, simulations with two different initial particle
positions (systems A and B in figures 5–7) show that, for large times, the forces and profiles
converge to the same values and are no longer dependent on the initial state of the system.
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Figure 6. Concentration and z-velocity profiles corresponding to (a,b) system A and (c,d) system B in
figure 5(b) at nm = 1194 μm−3.
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Figure 7. (a) Resultant force and (b) particle velocity for a pair of systems A, B in transition to a fully
developed state according to TEF predictions; the dashed line corresponds to the diffusiophoretic velocity
predicted by TFCV for nm = 1194 μm−3.

Furthermore, figure 5 shows that the establishment times (when forces are established and
no longer depend on the initial conditions) are smaller when solute diffusivity is higher.

6.2. Separation of particles via diffusiophoresis
Apart from showing the existence of fully developed out-of-equilibrium states, our
TEF simulations also highlight an interesting application of diffusiophoresis for particle
separation. The applicability of diffusiophoretic separation in microfluidics is indeed
a trending topic in fluid physics, with many recent theoretical and experimental
investigations bringing positive results (Shin 2020). Equation (2.13), obtained in the HDL,
suggests that particles immersed in the same mixture will have different vDP according
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1 µm
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1791 1194
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597 0
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Figure 8. Evolution of solute concentration profile and particle position, illustrating particle separation via
diffusiophoresis. Results are shown for (a) t = 0 s, (b) t = 0.003 s, (c) t = 0.005 s, (d) t = 0.008 s.

to their size and to the interface–solute interactions each of them generates. Therefore,
particles with a different size or with different surface properties may be separated via
diffusiophoresis. Figure 8 illustrates this phenomenon for two particles with the same size
R = 0.2 μm, but with different interaction potentials Πic (4.4). We set att = 0.1 for the
particle on the left (i.e. a repulsive–attractive interface–solute interaction), and att = 0 for
the particle on the right (i.e. a purely repulsive interface–solute interaction). The particle
on the left moves towards the region with higher solute concentration, whereas the particle
on the right moves towards the region with lower solute concentration.

6.3. Influence of solute concentration, diffusivity and concentration gradient on
diffusiophoretic velocities

6.3.1. Numerical data and equation regression
Note that none of the systems discussed so far are permanently at equilibrium. Indeed,
the drag forces and solute–interface forces in figure 5 equilibrate each other only at nm =
1194 μm−3. Furthermore, the velocities of the diffusiophoretic particles in figure 7 never
reach a plateau: they increase at a low rate even by the end of the simulation. This happens
because the equilibrium velocity (i.e. the velocity for which drag and solute–interface
forces equilibrate each other) generally depends on the far-field solute concentration nm.

There are a few limit cases for which the equilibrium velocity does not depend on nm.
This is true for the HDL (see (2.13)), for steric repulsion when the interaction range is
much smaller than the particle radius (Khair 2013), and for adsorptive interactions when
the range of solute–particle interactions and the adsorption length are much smaller than
the particle radius (Anderson & Prieve 1984, 1991). However, other systems have been
described for which equilibrium diffusiophoresis velocity depends on the position of the
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particle with respect to the far-field solute concentration. For example, the equilibrium
velocity vDP of a charged particle in an electrolyte solution is proportional to ∇n∞/nm
(Anderson 1989). This velocity depends not only on the imposed far-field electrolyte
concentration gradient ∇n∞, but also on the position of the particle with respect to this
far field (nm). Indeed, we expect vDP to change as the particle moves through the solution,
since nm does not remain constant.

The diffusiophoresis velocity also depends on the position of the particle if the
adsorption length K is not negligible compared with the particle radius. Anderson & Prieve
(1984, 1991) derived (2.7) for the diffusiophoresis velocity in this case, assuming that the
range of solute–particle interaction (not to be confused with the adsorption length) is much
smaller than the particle radius.

Simulation results in table 3 show that the TFCV model presented in § 4.2 also accounts
for the velocity dependency on the position featured by nm. All these simulations were
performed according to the solute–interface interaction potential in (4.4).

The first row in this table gives the equilibrium velocity for a reference set of
parameters (att = 0, lic = 0.1 μm, kic = 100, nm = 1194 μm−3, D = 218 μm2 s−1 and
∇n∞ = −149 μm−4). Simulations 9–29 prove that the velocity is a function of nm.
Furthermore, results for lic = 0.01 μm or kic = 10 (see (4.4)) show how this dependency is
affected by the solute–interface interaction potential. As the interaction width lic decreases
from 0.1 to 0.01 μm (simulations 23–29 in table 3), the relative change in velocity with
respect to nm is less significant. This is in agreement with previous results obtained for
short-range steric repulsions (Khair 2013). In addition, velocity variation with respect
to nm decreases when the potential magnitude kic decreases from 100 to 10 (simulations
17–22).

Another important feature, shown by simulations 4–7, is that as D → ∞ the equilibrium
velocity approaches the value of 242 μm s−1 obtained assuming HDL (simulation 8).
Furthermore, simulations 1–3 show that the velocity is a linear function of ∇n∞. This
result is in agreement with the various studies on diffusiophoresis cited in this chapter
(Anderson & Prieve 1984, 1991; Churaev et al. 1987; Anderson 1989; Marbach et al.
2020; Ramírez-Hinestrosa et al. 2020). Finally, simulations 9–16 suggest that the velocity
depends on the factor D/nm, as predicted by Anderson & Prieve (1984, 1991) in the limit
of a small solute–particle interaction range (2.7).

With these observations, a suitable fitting function could be derived, which
approximates the diffusiophoretic velocity in the range of values nm, D and ∇n∞ shown
in table 3. This function is given by

vDP = −C1∇n∞ exp
(

− C2

D/nm + C3

)
. (6.3)

The numerical values regressed for C1, C2 and C3 are respectively 1.61393, 0.29199
and 0.08591, all with units of μm5 s−1. Note that this regression was made considering
only the simulations with kic = 100, lic = 0.1 μm and att = 0. In general, C1, C2 and C3
depend on these parameters, as well as on R (SI units: m), η (SI units: kg m−1 s−1) and
kBT (SI units: m2 kg s−2). Extrapolating (6.3) to any set of problem parameters would be
equivalent to assuming that no additional term is hindered in (6.3). For example, the real
expression for vDP could be the right-hand side of (6.3) plus a term proportional to, say,
the square of ∇n∞. However, for the range of parameters shown in table 3, this second
term might go to 0, so it does not appear in the regressed equation (6.3).

The pre-exponential term C1 can be replaced by a general expression for any
interface–solute interaction potential. To find this expression, one should consider that
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vDP lic kic nm D ∇n∞
Number (μm s−1) att (μm) (μm−3) (μm2 s−1) (μm−4) Pe1 Pe2

1 80.9 0 0.1 100 1194 218 −149 −3.27 8.15 × 10−2

2 51.8 0 0.1 100 1194 218 −95 −3.27 5.20 × 10−2

3 26.0 0 0.1 100 1194 218 −48 −3.27 2.63 × 10−2

4 14.5 0 0.1 100 1194 21.8 −149 −32.7 0.815
5 80.9 0 0.1 100 1194 218 −149 −3.27 8.15 × 10−2

6 200 0 0.1 100 1194 2180 −149 −0.327 8.15 × 10−3

7 238 0 0.1 100 1194 21 800 −149 −0.0327 8.15 × 10−4

8a 242 0 0.1 100 1194 ∞ −149 0 0

9 80.9 0 0.1 100 1194 218 −149 −3.27 8.15 × 10−2

10 82.3 0 0.1 100 11 937 2180 −149 −3.27 8.15 × 10−3

11 14.5 0 0.1 100 1194 21.8 −149 −32.7 0.815
12 14.6 0 0.1 100 11 937 218 −149 −32.6 8.15 × 10−2

13 238 0 0.1 100 1194 21 800 −149 −0.0327 8.15 × 10−4

14 237 0 0.1 100 119 2180 −149 −0.0325 8.15 × 10−3

15a 242 0 0.1 100 1194 ∞ −149 0 0
16b 231 0 0.1 100 0 218 −149 0 8.15 × 10−2

17 80.9 0 0.1 100 1194 218 −149 −3.27 8.15 × 10−2

18 29.1 0 0.1 100 4775 218 −149 −13.1 8.15 × 10−2

19 14.6 0 0.1 100 11 937 218 −149 −32.6 8.15 × 10−2

20 46.5 0 0.1 10 1194 218 −149 −1.14 2.84 × 10−2

21 27.9 0 0.1 10 4775 218 −149 −4.55 2.84 × 10−2

22 16.5 0 0.1 10 11 937 218 −149 −11.4 2.84 × 10−2

23b 231 0 0.1 100 0 218 −149 0 8.15 × 10−2

24 80.9 0 0.1 100 1194 218 −149 −3.27 8.15 × 10−2

25 29.1 0 0.1 100 4775 218 −149 −13.1 8.15 × 10−2

26 14.6 0 0.1 100 11 937 218 −149 −32.6 8.15 × 10−2

27 1.07 0 0.01 100 1194 218 −149 −0.0327 8.15 × 10−4

28 1.06 0 0.01 100 4775 218 −149 −0.131 8.15 × 10−4

29 1.03 0 0.01 100 11 937 218 −149 −0.326 8.15 × 10−4

30 200 0 0.1 100 1194 2180 −149 −0.327 8.15 × 10−3

31 62.8 0.061 0.1 100 1194 2180 −149 −0.149 3.73 × 10−3

32 −3.66 0.086 0.1 100 1194 2180 −149 −0.0612 1.53 × 10−3

33 −237 0.4 0.1 100 1194 2180 −149 4.29 −0.107
34 −143 0.7 0.1 100 1194 2180 −149 153 −3.83
35 −252 0.9 0.1 100 1194 2180 −149 3410 −85.1
36 −390 1.1 0.1 100 1194 2180 −149 112 190 −2800

Table 3. Equilibrium velocities obtained with TFCV for different sets of parameters.
aHDL instead of TFCV.

bResult is purely mathematical and has no physical significance, since nm = 0 and ∇n∞ /= 0 imply
negative solute concentrations in the simulation domain.

cSome data are repeated in the table: (1,5,9,17,24); (4,11); (7,13); (8;15); (16,23); (12,19,26); (18,25).

(6.3) must also hold in the limit D → ∞. Under this limit, vDP is given by (2.13).
In addition, dimensional analysis can shed light on the expression for the remaining
coefficients C2 and C3. As previously mentioned, these coefficients have SI units
of m5 s−1. Other than D, the only parameters in (4.7)–(4.10) that contain a time unit are
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Figure 9. Comparison between diffusiophoretic velocities obtained via simulation (x axis) and via the fitting
equation (6.4) (y axis) for kic = 100, lic = 0.1 μm and att = 0.

η and kBT . However, they also happen to be the only parameters containing a mass unit.
Therefore, C2 and C3 are certainly proportional to the ratio kBT/η (SI units: m3 s−1). It is
tempting to multiply this factor by R2 to get the correct units. However, the missing square
length unit could also come from a functional of the potential Πic, such as

∫
Πicr dr.

Finally, kBT and η cannot appear in the form of a dimensionless term in the expression of
C2 and C3, since no dimensionless terms can be generated with kBT (SI units: m2 kg s−2),
η (SI units: kg m−1 s−1) and R (SI units: m). Therefore, the most general expression that
can be derived for vDP is

vDP = R2

3η
∇n∞kBT

(∫ ∞

R
f (r)(−Π ′

ic)

(
r
R

− R
3r

− 2r2

3R2

)
dr

)
exp

⎛
⎜⎜⎝− C′

2
Dη

kBTnm
+ C′

3

⎞
⎟⎟⎠,

(6.4)

where the coefficients C′
2 and C′

3 (units: μm2) depend on R and Πic. Regression of these
parameters using the data in table 3 gives C′

2 = 0.070157 and C′
3 = 0.020669, and the

comparison between simulated and regressed velocities is shown in figure 9.
Equation (6.4) suggests that the ratio inside the exponential could be a suitable definition

for a Péclet number, as follows:

Pe =
nmC′

2kBT
Dη

1 + nmC′
3kBT

Dη

. (6.5)

Such a number could be used as a criterion for the applicability of the ‘infinite diffusivity’
hypothesis in HDL. Indeed, when Pe � 1, the phoretic velocity no longer depends on
diffusivity, and (6.4) becomes (2.13). The problem with such a definition is that the
functionals C′

2 and C′
3 are unknown. The values regressed for them are only valid for

the potential Πic given in (4.4), with att = 0, lic = 0.1 μm, and kic = 100.
Note that the equation regressed for vDP is only applicable in the case of an externally

imposed (constant) far-field gradient. Other situations would have to be treated case
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by case. For example, in self-diffusiophoresis it is common to set a fix solute concentration
far from the sphere, n|r→∞ = n∞ = cte (Michelin & Lauga 2014). In this case, the
parameter n∞ would replace ∇n∞ and nm in table 3, and a completely different equation
for vDP might have been regressed.

To confirm the validity of (6.4), a random set of values within the ranges shown in
table 1 were assigned for ∇n∞ (−120 μm−4), nm (1289 μm−3) and D (186 μm2 s−1).
Furthermore, different values were set for η (2 × 10−3 Pa s) and T (273 K). The velocity
calculated according to (6.4) is then 42.7 μm s−1, corresponding to a relative error of
only -3.6 % when compared with the velocity obtained from simulations (44.3 μm s−1).
Hence, this equation successfully concludes one of the objectives listed in § 3: to derive
an expression for the diffusiophoretic velocity as a function of the problem parameters.
Despite not describing the dependency on the solute–interface interaction potential in
fully explicit terms, it gives a great insight into how the other physical quantities affect
diffusiophoresis. In addition, this equation is derived without assuming infinite diffusivity,
a thin interaction layer or weak interaction strength. To the best of the author’s knowledge,
no explicit relation for diffusiophoretic velocities has been derived before without at least
one of these assumptions.

6.3.2. Comparison with previous studies
As mentioned in the previous paragraph, the equations for phoretic velocity derived in the
literature always make some kind of simplifying assumption. If (6.4) is correct, it should
be compatible with these previous equations under some limiting conditions. This section
is consecrated to verifying this compatibility.

Equation (2.1) is the first to be derived in the literature. It considers an infinitely thin
interfacial layer, neglects solute transport via convection and assumes K/R = 0, with
K being the adsorption layer defined in (2.2a) and R being the sphere radius. Such an
equation is indeed compatible with (2.1). To see this, let us first assess the effect of
neglecting solute transport via convection. This amounts to setting the diffusion coefficient
D to infinity, yielding (2.13). This equation can be further simplified with the infinitely thin
diffusive/adsorption layer assumptions. To obtain this, one needs to change the variable r
to y = r − R in the integral, and then use the hypothesis to set the ratio y/R tending to 0,

vDP = R2

3η
∇n∞kBT

∫ ∞

0
f (R + y)(−Π ′

ic)

(
y + R

R
− R

3( y + R)
− 2( y + R)2

3R2

)
dy =⇒

vDP = R2

3η
∇n∞kBT

∫ ∞

0
f (R + y)(−Π ′

ic)

(
y
R

+ 1 − 1
3

( y
R

+ 1
)−1

−2
3

( y
R

)2 − 4
3

y
R

− 2
3

)
dy =⇒

vDP = R2

3η
∇n∞kBT

∫ ∞

0
f (R + y)(Π ′

ic)

(( y
R

)2 + O
( y

R

)3
)

dy =⇒

vDP = kBT
3η

∇n∞
∫ ∞

0
f (R + y)(Π ′

ic)
(

y2 + y2O
( y

R

))
dy =⇒

vDP = kBT
3η

∇n∞
∫ ∞

0
f (R + y)(Π ′

ic)y
2 dy.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.6)
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Anderson & Prieve (1991) give the solute concentration profile near the sphere for the
infinitely thin boundary layer case. Replacing such a profile into (2.10) gives f (r) inside
the interfacial layer,

f (r) = 3
2

e−Πic . (6.7)

Inserting (6.7) into (6.6) and using integration by parts yields for an infinitely thin
boundary layer,

vDP = kBT
2η

∇n∞
∫ ∞

0
e−Πic(Π ′

ic)y
2 dy =⇒

vDP = kBT
2η

∇n∞
[

y2 (
1 − e−Πic

)∣∣∣∞
0

−
∫ ∞

0

(
1 − e−Πic

)
2y dy

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.8)

The left term inside the square brackets in (6.8) is the difference between the expression
y2(1 − e−Πic) evaluated at y = ∞ and at y = 0. At y = 0, this expression equals 0. At
y = ∞, Πic goes to 0, and the limit is a priori indeterminate. To evaluate it, let us use the
Taylor expansion of e−Πic ,

lim
y→∞ y2 (

1 − e−Πic
) = lim

y→∞ y2
(
Πic + O

(
Πic

2
))

. (6.9)

It can be shown from (4.6) that the interaction potential Πic must be o(1/y2) when
y → ∞. Otherwise, the solute would apply an infinite force on the solvent. Replacing Πic
by o(1/y2) in (6.9) yields

lim
y→∞ y2 (

1 − e−Πic
) = 0. (6.10)

Finally, inserting (6.10) into (6.8) yields (2.1), proving that (6.4) is in agreement with
(2.1) in the limit of infinitely thin interfacial layers.

Anderson & Prieve (1991) also give the solute concentration profile for an arbitrary
length K of the adsorption layer, and under the assumptions of an infinitely thin interfacial
layer and absence of solute transport via convection. Inserting this expression into (2.10)
gives

f (r) =
(

1 + 1
2

1 − 2K/R
1 + K/R

)
e−Πic . (6.11)

Inserting (6.11) into (6.6), integrating by parts and neglecting the terms that are o(K/R)

yields (2.3).
When convection takes place, (6.6) for an infinitely thin diffusive layer must be rewritten

taking into account the exponential term in (6.4),

vDP = kBT
3η

∇n∞ exp

⎛
⎜⎜⎝− C′

2
Dη

kBTnm
+ C′

3

⎞
⎟⎟⎠

∫ ∞

0
f (R + y)(Π ′

ic)y
2 dy. (6.12)

The function f (r) remains the one defined in (6.11), even though convection is taken
into account. This is because such a function is related to the solute concentration profile
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in the absence of convection, as described in § 4.3. Therefore, one should insert (6.11) into
(6.12). Integration by parts then yields

vDP = L∗K
kBT
η

∇n∞

⎛
⎜⎝ 1

1 + K
R

⎞
⎟⎠ exp

⎛
⎜⎜⎝− C′

2
Dη

kBTnm
+ C′

3

⎞
⎟⎟⎠. (6.13)

In order to retrieve (2.5) or (2.7), (6.13) has to be written in terms of the Péclet number
Pe1 defined in (2.4a),

vDP = L∗K
kBT
η

∇n∞

⎛
⎜⎝ 1

1 + K
R

⎞
⎟⎠ exp

⎛
⎜⎜⎝−

C′
2

L∗K
1

Pe1
+ C′

3
L∗K

⎞
⎟⎟⎠. (6.14)

Note that the Péclet number Pe1 given by (2.4a) can be arbitrarily small or large
depending on the diffusion coefficient (cf. table 3). Therefore, to justify a Taylor expansion
of the exponential term in (6.14), one must have

C′
2

L∗K
1

Pe1
+ C′

3
L∗K

� 1. (6.15)

We recall that C′
2 and C′

3 are functionals of the interaction potential Πic, and we shall
assume that (6.15) holds in the limit of infinitely thin interfacial layers. Using the first-order
approximation of the exponential term in (6.14) yields

vDP = L∗K
kBT
η

∇n∞

⎛
⎜⎝ 1

1 + K
R

⎞
⎟⎠

⎡
⎢⎢⎣1 −

⎛
⎜⎜⎝

C′
2

L∗K
1

Pe1
+ C′

3
L∗K

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (6.16)

Finally, comparison between (6.16) and (2.7) gives the sufficient conditions for
compatibility between (6.4) and (2.7). In the limit of infinitely thin interfacial layers, one
must have

C′
2, C′

3 → νL∗K2

K + R
, (6.17)

where ν is given by (2.6).
Because (2.5) is the first-order approximation of (2.7) when Pe1 � 1, it follows that

(2.5) is also a special case of (6.4). Equation (2.5) gives good predictions for vDP in
simulations 27–29, with relative errors between 3.7 % and 4.1 %. This good agreement
comes from the fact that these simulations considered a small solute–interface interaction
range (lic = 0.01 μm), and hence, the hypothesis of a thin interfacial layer holds. And
with that, we conclude that the equation regressed in § 6.3.1 is in agreement with (2.1),
(2.3), (2.5) and (2.7), the latter four being special cases of the former under some limiting
conditions.

In § 2 an additional equation for the phoretic velocity is given (2.8), derived by Keh
& Weng (2001). This equation agrees with (2.7), and consequently with (6.4), when
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Pe2 → 0. However, for finite values of Pe2 (defined in (2.4b)), the expression in (2.8)
is different from (6.4). Indeed, the latter stipulates a linear relationship between ∇n∞ and
vDP, whereas in the former such a relation is nonlinear due to the terms depending on Pe2.
This discrepancy could be due to the fact that the term on Pe2

2 in (2.8) is always much
smaller than 1 for the data set shown in table 3. Indeed, even though Pe2 can be as high as
0.8, the maximum value of the product α2Pe2

2 in table 3 is 0.0058 (for simulation 4/11).
This might be why the data does not capture the nonlinearity with respect to the solute
concentration gradient.

Furthermore, some of the steps in the derivation of (2.8) by Keh & Weng (2001) are
unclear. For example, it seems that the authors neglect the effect of solute–interface
interactions inside the interfacial layer when writing the solute transport equation (17).
Moreover, they use the quasi-steady hypothesis to replace the transient term ∂n/∂t in the
solute mass balance equation (3) by ∇n∞vDP in equation (17). These premises are not
necessarily true, and might result in incorrect inferences in some cases. For example, let
us assess the case of interactions due exclusively to steric exclusion. The interface–solute
interaction potential in this case can be written as

Πic =
{ +∞, y ≤ a,

0, y > a,
(6.18)

where a is the size of the solute particles and y is the distance between the interface and a
point in the mixture domain.

In this case, K = −a and L = a/2. If solute advection is neglected, the solute
concentration profile inside the diffusive layer, according to equation (43) in Keh & Weng
(2001), is

n = nm +

⎛
⎜⎝ r

R
+

1 + 2a
R

2
(

1 − a
R

) R2

r2

⎞
⎟⎠ ∇n∞ cos(θ). (6.19)

This means that for every point inside the diffusive layer on θ = π/2 or θ = 3π/2, the
concentration equals nm. This is obviously false, since steric exclusion implies 0 solute
concentration around the interface. Furthermore, the solute flux across the sphere is not
equal to 0 for the solute concentration profile given in (6.19). It might be that the work by
Keh & Weng (2001) is only applicable in the context of adsorption, even though such a
restriction is not explicitly mentioned by the authors.

6.4. Influence of solute–interface interactions on diffusiophoretic velocity
The last set of simulations in table 3 (30–36) shows the variation of vDP with respect to the
attraction parameter att modulating the solute–interface interactions. For purely repulsive
interactions, the sphere moves against the solute concentration gradient. However, as
att increases this tendency is inverted. Note that the effect of this parameter on the
diffusiophoretic velocity is non-monotonic: vDP decreases from att = 0 to att = 0.4,
increases from att = 0.4 to att = 0.7, and decreases again for att > 0.7. A similar
behaviour is mentioned in § 1, when the paper by Ramírez-Hinestrosa et al. (2020)
is discussed. Figure 10 compares the variations in particle mobility as a function of
att (present study) and as a function of the solute–monomer dispersion energy εms
(Ramírez-Hinestrosa et al. 2020).

The definition of mobility changes slightly between both works: whereas the present
paper defines mobility as Γ = vDP/∇n∞, Ramírez-Hinestrosa et al. (2020) set Γ =
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Figure 10. (a) Particle mobility versus attraction parameter, according to fluid simulation results in table 3;
(b) particle mobility versus solute–monomer dispersion energy εms, according to molecular simulations
(extracted from Ramírez-Hinestrosa et al. (2020) with permission from AIP publishing).

vDP/Fs, where Fs is an external force acting on the solute particles. However, this
difference does not prevent a comparison between results, as the external force considered
in the molecular simulations mimics the effect of explicit concentration gradients.

Both plots in figure 10 show an initial increase in mobility as the solute–interface
attraction becomes stronger. When repulsion dominates over attraction (small att and
εms values), the particle moves towards lower solute concentrations, and Γ < 0. Zero
mobility is attained for att = 0.086 (figure 10a) and for εms = 1ε0 (figure 10b), where
ε0 is a reference energy. The latter result is almost trivial after a closer look into the paper
by Ramírez-Hinestrosa et al. (2020). In that paper, the authors simulate solute–solute,
solute–solvent, solvent–solvent, solvent–monomer and solute–monomer interactions via a
12-6 Lennard–Jones potential, setting all the binary interaction lengths to σ0. Furthermore,
all dispersion energies are set to 1ε0, except possibly for solute–monomer interactions
εms. When εms = 1ε0, the monomers are indistinguishable from solute and solvent
molecules, and diffusiophoresis no longer takes place. The same is not true for the
macroscopic approach that generated figure 10(a). Indeed, even when vDP, and thus
mobility, approaches 0 (simulation 32 in table 3), the effect of the interface on the mixture
was very pronounced. It changes solute distribution significantly near the sphere and drives
diffusioosmotic flow (profiles not shown for brevity).

When attraction dominates over repulsion, the interface tends to move towards higher
solute concentrations, and Γ > 0. Particle mobility continues to increase with respect to
att and εms until it reaches a maximum value at att = 0.4 and εms ≈ 2.5ε0. A possible
reason for this local maximum is given by Ramírez-Hinestrosa et al. (2020): as the
adsorption interactions get stronger, the solute particles surrounding the sphere become
immobilized, hindering diffusiophoresis. Reasoning in mathematical terms for the case
study in figure 1, the solute distribution around the interface becomes more symmetric as
the attraction parameter increases, decreasing the resultant force exerted by the solute on
the sphere.

The systems start to behave differently for large attraction parameters: whereas
Ramírez-Hinestrosa et al. (2020) predict an asymptotic decay for the mobility, this
work has found that the mobility reaches a minimum (for att = 0.7) and then increases
indefinitely. Some possible explanations for this discrepancy are listed below.

(i) Ramírez-Hinestrosa et al. (2020) considered a truncated potential, whereas in
this work the interface can interact with the solute everywhere in the domain.
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To understand how this may affect the behaviour of the curves in figure 10, let us
briefly summarize the discussion from the previous paragraphs. As the adsorption
strength increases, the strength of solute–interface attraction increases, and the
interface tends to move faster and faster towards higher solute concentrations.
However, after a certain threshold, the increase in the individual interaction forces
is offset by the increasing symmetry of the solute concentration profile, and
mobility starts decreasing. In other words, even though the attraction between
individual solute molecules and the interface is stronger, these forces cancel each
other due to the radial symmetry of the solute concentration profile around the
sphere. This explains the local maximum at att = 0.4 and εms ≈ 2.5ε0. In the paper
by Ramírez-Hinestrosa et al. (2020), the monomer–solute interaction potential is
truncated at a certain distance σ . If εms is large enough, the entire range of interaction
σ may be immobilized, and Γ will decrease asymptotically according to figure 10(b).
On the other hand, Πic used in this work is not truncated, and an increase in att
will also increase the range of interaction between the sphere and the solute. For
att > 0.7, this effect probably overcomes the increasing symmetry of the solute
distribution, and the mobility starts increasing again with respect to att.

(ii) In the fluid simulation models we have described in § 4, solute–solute interactions
are neglected. However, the size of the solute particles in the mixture is accounted
for in molecular simulations via the solute–solute Lennard–Jones potential, which
limits solute accumulation around the polymer. These solute–solute interactions
surely play an important role in Ramírez-Hinestrosa et al. (2020), since solute molar
fraction in the bulk was set to 0.5 in their work. Other simplifying assumptions
in the models described here, such as incompressible fluid and constant viscosity
(i.e. viscosity independent of solute concentration) may also contribute to the
discrepancies seen in figure 10.

(iii) The small size of the polymer in the molecular simulations by Ramírez-Hinestrosa
et al. (2020) makes the problem fundamentally different from the case study
investigated here (figure 1). For small ratios between the molecular mean free
path and characteristic length of the system, molecular simulations are generally
in agreement with the governing (continuum) equations for fluid dynamics and
solute transport (Zhang & Ma 2020). However, in the work by Ramírez-Hinestrosa
et al. (2020) the representative physical length scale for the phenomenon is the
size of the polymer, which is close to the mean free path of the solvent molecules.
Indeed, figure 10(b) considers a polymer made of 30 monomers; when εms = 8ε0,
the equivalent hydrodynamic radius of the polymer is Rp ≈ 2.4σ0, comparable to
the mean free path lfree ≈ σ0 of solvent molecules (the length parameter in the
Lennard–Jones potential). It is recalled that the representative physical length scale
in the case study shown in figure 1 is R = 0.2 μm, which is several orders of
magnitude higher than the molecular spacing in liquid water. It is possible that
this difference in the orders of magnitude makes the works incomparable. Still, it
is interesting to note that, as εms decreases, the hydraulic radius of the polymer
increases (e.g. Rp ≈ 4.8σ0 when εms = 1.5ε0). And it is precisely in the region
of low εms (and low att) that qualitative agreement exists between the curves in
figure 10. This could be because the higher hydraulic radius at low εms makes the
polymer diffusiophoresis phenomenon more ‘continuum like’.
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7. Conclusion

This paper has covered various aspects of diffusiophoresis through numerical simulations.
Three different models were used to achieve different goals. The TEF was used to assess
the actual dynamics of a diffusiophoretic system. The numerical simulations using this
model allow us for instance to capture the effect of overlapping diffusive layers in particle
separation. From these simulations it was found that diffusiophoresis may be suitable for
particle separation, as shown in § 6.2. Overall, this section stresses the robustness of the
simulation set-up used in this paper, indicating that it could be used to quickly screen
parameters and configurations that allow better/worst particle separation.

The second model discussed in this paper, called TFCV, was used in combination with
TEF to demonstrate that diffusiophoretic systems ‘forget’ their initial state after a certain
amount of time (see figures 5–7). Transient formulation at constant velocity alone was
employed to regress the mathematical expression (6.4) that relates the diffusiophoretic
velocity to nm, D, ∇n∞, kBT and η. In the limit of infinite diffusivity, this expression
converges to (2.13) derived by Marbach et al. (2020). Furthermore, it agrees with the
previous works placed in the limit of infinitesimally thin solute–interface interaction layers
(Derjaguin et al. 1947; Anderson & Prieve 1984, 1991).

Transient formulation at constant velocity was also used to investigate the effect of
long-range solute–interface attraction on the particle mobility. This study was performed
by varying the parameter att in (4.4). It was found that the mobility changes with respect
to att in a non-monotonic way, as illustrated in figure 10(a). The results were compared
with those from a benchmark work on molecular simulations applied to diffusiophoresis
(Ramírez-Hinestrosa et al. 2020). Both studies agree in the range of small attraction forces,
showing an inversion of particle mobility after a certain attraction threshold, followed by
a peak of maximum phoretic mobility and a subsequent decrease (figure 10). However,
discrepancies arise as attraction forces are further increased. Ramírez-Hinestrosa et al.
(2020) predict that mobility decreases asymptotically in the limit of strong attraction
interactions, whereas the present study predicts that mobility reaches a local minimum and
then increases indefinitely as att → ∞. Probable reasons for this discrepancy are listed at
the end of § 6.4.

Finally, the HDL was used first to validate the mesh used for simulations. This was
done by setting Πic according to (5.1). Such a suitable choice results in the fully analytic
expression (5.3) for diffusiophoretic velocity, which can be compared with vDP obtained
via numerical simulations. In addition, HDL can be used to verify whether the TFCV
implementation behaves properly at high D values, according to simulations 4–8 in table 3.

Supplementary material. Supplementary material containing the C routines for user-defined functions used
in the simulations is available at https://doi.org/10.1017/jfm.2022.1067.
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