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On Two Exponents of Approximation
Related to a Real Number and Its Square

Damien Roy

Abstract. For each real number ξ, let λ̂2(ξ) denote the supremum of all real numbers λ such that,

for each sufficiently large X, the inequalities |x0| ≤ X, |x0ξ − x1| ≤ X−λ and |x0ξ2 − x2| ≤ X−λ

admit a solution in integers x0, x1 and x2 not all zero, and let ω̂2(ξ) denote the supremum of all real

numbers ω such that, for each sufficiently large X, the dual inequalities |x0 + x1ξ + x2ξ2| ≤ X−ω ,

|x1| ≤ X and |x2| ≤ X admit a solution in integers x0, x1 and x2 not all zero. Answering a question of

Y. Bugeaud and M. Laurent, we show that the exponentsλ̂2(ξ) where ξ ranges through all real numbers

with [Q(ξ) : Q] > 2 form a dense subset of the interval [1/2, (
√

5 − 1)/2] while, for the same values

of ξ, the dual exponents ω̂2(ξ) form a dense subset of [2, (
√

5 + 3)/2]. Part of the proof rests on a

result of V. Jarnı́k showing that λ̂2(ξ) = 1 − ω̂2(ξ)−1 for any real number ξ with [Q(ξ) : Q] > 2.

1 Introduction

Let ξ and η be real numbers. Following the notation of Y. Bugeaud and M. Lau-

rent [3], we define λ̂(ξ, η) to be the supremum of all real numbers λ such that the

inequalities

|x0| ≤ X, |x0ξ − x1| ≤ X−λ and |x0η − x2| ≤ X−λ

admit a non-zero integer solution (x0, x1, x2) ∈ Z3 for each sufficiently large value
of X. Similarly, we define ω̂(ξ, η) to be the supremum of all real numbers ω such that

the inequalities

|x0 + x1ξ + x2η| ≤ X−ω, |x1| ≤ X and |x2| ≤ X

admit a non-zero solution (x0, x1, x2) ∈ Z3 for each sufficiently large value of X.

An application of Dirichlet box principle shows that we have 1/2 ≤ λ̂(ξ, η) and
2 ≤ ω̂(ξ, η). Moreover, in the (non-degenerate) case where 1, ξ and η are linearly
independent over Q , a result of V. Jarnı́k, kindly pointed out to the author by Yann

Bugeaud, shows that these exponents are related by the formula

(1) λ̂(ξ, η) = 1 − 1

ω̂(ξ, η)
,

with the convention that the right-hand side of this equality is 1 if ω̂(ξ, η) = ∞ (see
[7, Theorem 1]).
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In the case where η = ξ2, we use the shorter notation λ̂2(ξ) := λ̂(ξ, ξ2) and
ω̂2(ξ) := ω̂(ξ, ξ2) of [3]. The condition that 1, ξ and ξ2 are linearly independent

over Q simply means that ξ is not an algebraic number of degree at most 2 over Q , a
condition which we also write as [Q(ξ) : Q] > 2. Under this condition, it is known
that these exponents satisfy

(2)
1

2
≤ λ̂2(ξ) ≤ 1

γ
= 0.618 . . . and 2 ≤ ω̂2(ξ) ≤ γ2

= 2.618 . . . ,

where γ = (1 +
√

5)/2 denotes the golden ratio. By virtue of W. M. Schmidt’s sub-

space theorem, the lower bounds in (2) are achieved by any algebraic number ξ of
degree at least 3 (see [12, Ch. VI, Corollaries 1C, 1E]). They are also achieved by al-
most all real numbers ξ, with respect to Lebesgue’s measure (see [3, Theorem 2.3]).
On the other hand, the upper bounds follow respectively from [5, Theorem 1a] and

from [2]. They are achieved in particular by the so-called Fibonacci continued frac-
tions (see [8, §2] or [9, §6]), a special case of the Sturmian continued fractions of [1].
Now, thanks to Jarnı́k’s formula (1), we recognize that each set of inequalities in (2)
can be deduced from the other one.

Generalizing the approach of [8], Bugeaud and Laurent have computed the expo-

nents λ̂2(ξ) and ω̂2(ξ) for a general (characteristic) Sturmian continued fraction ξ.

They found that, after 1/γ and γ2, the next largest values of λ̂2(ξ) and ω̂2(ξ) for

such numbers ξ are, respectively, 2 −
√

2 ≃ 0.586 and 1 +
√

2 ≃ 2.414, and
they asked if there exists any transcendental real number ξ which satisfies either

2 −
√

2 < λ̂2(ξ) < 1/γ or 1 +
√

2 < ω̂2(ξ) < γ2 (see [3, §8]). Our main result

below shows that such numbers exist.

Theorem The points (λ̂2(ξ), ω̂2(ξ)) where ξ runs through all real numbers with

[Q(ξ) : Q] > 2 form a dense subset of the curve C = {(1 − ω−1, ω) ; 2 ≤ ω ≤ γ2}.

Since (λ̂2(ξ), ω̂2(ξ)) = (1/2, 2) for any algebraic number ξ of degree at least 3,
it follows in particular that (1/γ, γ2) is an accumulation point for the set of points

(λ̂2(ξ), ω̂2(ξ)) with ξ a transcendental real number. Because of Jarnı́k’s formula (1),
this theorem is equivalent to either one of the following two assertions.

Corollary The exponentsλ̂2(ξ) attached to transcendental real numbers ξ form a dense

subset of the interval [1/2, 1/γ]. The corresponding dual exponents ω̂2(ξ) form a dense

subset of [2, γ2].

The proof is inspired by the constructions of [9, §6] and [11, §5]. We produce
countably many real numbers ξ of “Fibonacci type” (see §7 for a precise definition)
for which we show that the exponents ω̂2(ξ) are dense in [2, γ2]. By (1), this im-

plies the theorem. One may then reformulate the question of Bugeaud and Laurent
by asking if there exist transcendental real numbers ξ not of that type which satisfy
ω̂2(ξ) > 1 +

√
2. The work of S. Fischler announced in [6] should shed some light

on this question.
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2 Notation and Equivalent Definitions of the Exponents

We define the norm of a point x = (x0, x1, x2) ∈ R3 as its maximum norm

‖x‖ = max
0≤i≤2

|xi |.

Given a second point y ∈ R3, we denote by x ∧ y the standard vector product of x

and y, and by 〈x, y〉 their standard scalar product. Given a third point z ∈ R3, we

also denote by det(x, y, z) the determinant of the 3 × 3 matrix whose rows are x, y

and z. Then we have the well-known relation

det(x, y, z) = 〈x, y ∧ z〉

and we get the following alternative definition of the exponents λ̂(ξ, η) and ω̂(ξ, η).

Lemma 2.1 Let ξ, η ∈ R, and let y = (1, ξ, η). Then λ̂(ξ, η) is the supremum of all

real numbers λ such that, for each sufficiently large real number X ≥ 1, there exists a

point x ∈ Z3 with

0 < ‖x‖ ≤ X and ‖x ∧ y‖ ≤ X−λ.

Similarly, ω̂(ξ, η) is the supremum of all real numbers ω such that, for each sufficiently

large real number X ≥ 1, there exists a point x ∈ Z3 with

0 < ‖x‖ ≤ X and |〈x, y〉| ≤ X−ω.

In the sequel, we will need the following inequalities.

Lemma 2.2 For any x, y, z ∈ R3, we have

‖〈x, z〉y − 〈x, y〉z‖ ≤ 2‖x‖‖y ∧ z‖,(3)

‖y‖‖x ∧ z‖ ≤ ‖z‖‖x ∧ y‖ + 2‖x‖‖y ∧ z‖.(4)

Proof Writing y = (y0, y1, y2) and z = (z0, z1, z2), we find

‖〈x, z〉y − 〈x, y〉z‖ = max
i=0,1,2

|〈x, yiz − ziy〉| ≤ 2‖x‖‖y ∧ z‖,

which proves (3). Similarly, one finds ‖yix∧z−zi x∧y‖ ≤ 2‖x‖‖y∧z‖ for i = 0, 1, 2,

and this implies (4).

For any non-zero point x of R3, let [x] denote the point of P2(R) having x as a
set of homogeneous coordinates. Then (4) has a useful interpretation in terms of the

projective distance defined for non-zero points x and y of R3 by

dist([x], [y]) = dist(x, y) =

‖x ∧ y‖
‖x‖‖y‖ .

Indeed, for any triple of non-zero points x, y, z ∈ R3, it gives

(5) dist([x], [z]) ≤ dist([x], [y]) + 2 dist([y], [z]).
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3 Fibonacci Sequences in GL2(C)

A Fibonacci sequence in a monoid is a sequence (wi)i≥0 of elements of that monoid
such that wi+2 = wi+1wi for each index i ≥ 0. Clearly, such a sequence is entirely

determined by its first two elements w0 and w1. We start with the following observa-
tion.

Proposition 3.1 There exists a non-empty Zariski open subset U of GL2(C)2 with the

following property. For each Fibonacci sequence (wi)i≥0 with (w0, w1) ∈ U, there exists

N ∈ GL2(C) such that the matrix

(6) yi =

{
wiN if i is even,

wi
t N if i is odd,

is symmetric for each i ≥ 0. Any matrix N ∈ GL2(C) such that w0N, w1
t N and w1w0N

are symmetric satisfies this property. When w0 and w1 have integer coefficients, we may

take N with integer coefficients.

Proof Let (wi)i≥0 be a Fibonacci sequence in GL2(C) and let N ∈ GL2(C). Defining
yi by (6) for each i ≥ 0, we find yi+3 = yi+1

t SyiSyi+1 with S = N−1 if i is even and
S =

t N−1 if i is odd. Thus, yi is symmetric for each i ≥ 0 if and only if it is so for
i = 0, 1, 2.

Now, for any given point (w0, w1) ∈ GL2(C)2, the conditions that w0N , w1
t N

and w1w0N are symmetric represent a system of three linear equations in the four
unknown coefficients of N . Let V be the Zariski open subset of GL2(C)2 consisting of
all points (w0, w1) for which this linear system has rank 3. Then, for each (w0, w1) ∈
V, the 3 × 3 minors of this linear system conveniently arranged into a 2 × 2 matrix
provide a non-zero solution N of the system, whose coefficients are polynomials in
those of w0 and w1 with integer coefficients. Then the condition det(N) 6= 0 in turn
determines a Zariski open subset U of V. To conclude, we note that U is not empty

as a short computation shows that it contains the point formed by w0 =

(
1 1

1 0

)
and

w1 =

(
0 1

1 0

)
.

Definition 3.2 Let M = Mat2×2(Z) ∩ GL2(C) denote the monoid of 2 × 2 integer
matrices with non-zero determinant. We say that a Fibonacci sequence (wi)i≥0 in M

is admissible if there exists a matrix N ∈ M such that the sequence (yi)i≥0 given by
(6) consists of symmetric matrices.

Since M is Zariski dense in GL2(C), Proposition 3.1 shows that almost all Fi-

bonacci sequences in M are admissible. The following example is an illustration of
this.

Example 3.3 Fix integers a, b, c with a ≥ 2 and c ≥ b ≥ 1, and define

w0 =

(
1 b

a a(b + 1)

)
, w1 =

(
1 c

a a(c + 1)

)
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and

N =

(
−1 + a(b + 1)(c + 1) −a(b + 1)

−a(c + 1) a

)
.

These matrices belong to M since det(w0) = det(w1) = a and det(N) = −a. More-
over, one finds that

w0N =

(
−1 + a(c + 1) −a

−a 0

)
, w1

t N =

(
−1 + a(b + 1) −a

−a 0

)

and

w1w0N =

(
−1 + a −a

−a −a2

)

are symmetric matrices. Therefore, the Fibonacci sequence (wi)i≥0 constructed on
w0 and w1 is admissible with an associated sequence of symmetric matrices (yi)i≥0

given by (6), the first three matrices of this sequence being the above products y0 =

w0N , y1 = w1
t N and y2 = w1w0N .

4 Fibonacci Sequences of 2 × 2 Integer Matrices

In the sequel, we identify R3 (resp., Z3) with the space of 2 × 2 symmetric matrices
with real (resp., integer) coefficients under the map

x = (x0, x1, x2) 7−→
(

x0 x1

x1 x2

)
.

Accordingly, it makes sense to define the determinant of a point x = (x0, x1, x2) of
R3 by det(x) = x0x2 − x2

1
. Similarly, given symmetric matrices x, y and z, we write

x ∧ y, 〈x, y〉 and det(x, y, z) to denote respectively the vector product, scalar product

and determinant of the corresponding points.

In this section we look at arithmetic properties of admissible Fibonacci sequences

in the monoid M of Definition 3.2. For this purpose, we define the content of an
integer matrix w ∈ Mat2×2(Z) or of a point y ∈ Z3 as the greatest common divisor
of their coefficients. We say that such a matrix or point is primitive if its content is 1.

Proposition 4.1 Let (wi)i≥0 be an admissible Fibonacci sequence of matrices in M

and let (yi)i≥0 be a corresponding sequence of symmetric matrices in M. For each i ≥ 0,

define zi = det(wi)
−1yi ∧ yi+1. Then, for each i ≥ 0, we have

(a) tr(wi+3) = tr(wi+1) tr(wi+2) − det(wi+1) tr(wi),

(b) yi+3 = tr(wi+1)yi+2 − det(wi+1)yi ,

(c) zi+3 = tr(wi+1)zi+1 + det(wi)zi ,

(d) det(yi , yi+1, yi+2) = (−1)i det(y0, y1, y2) det(w2)−1 det(wi+2),

(e) zi ∧ zi+1 = (−1)i det(y0, y1, y2) det(w2)−1yi+1.

Proof For each index i ≥ 0, let Ni denote the element of M for which yi = wiNi .
According to (6), we have Ni = N if i is even and Ni =

t N if i is odd. We first prove
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(b) following the argument of the proof of [10, Lemma 2.5(i)]. Multiplying both
sides of the equality wi+2 = wi+1wi on the right by Ni+2 = Ni , we find

(7) yi+2 = wi+1yi,

which can be rewritten as yi+2 = yi+1N−1

i+1
yi . Taking the transpose of both sides, this

gives yi+2 = yiN
−1

i yi+1 = wiyi+1. Replacing i by i + 1 in the latter identity and

combining it with (7), we get

(8) yi+3 = wi+1yi+2 = w2

i+1
yi .

Then (b) follows from (7) and (8), using the fact that, by the Cayley–Hamilton theo-
rem, we have w2

i+1
= tr(wi+1)wi+1 − det(wi+1)I. Multiplying both sides of (b) on the

right by N−1

i and taking the trace, we deduce that

tr(yi+3N−1

i ) = tr(wi+1) tr(wi+2) − det(wi+1) tr(wi).

This gives (a) because tr(yi+3N−1

i ) = tr(t yi+3
t N−1

i ) = tr(wi+3). Taking the exterior

product of both sides of (b) with yi+1, we also find

yi+1 ∧ yi+3 = tr(wi+1) det(wi+1)zi+1 + det(wi+1) det(wi)zi .

Similarly, replacing i by i + 1 in (b) and taking the exterior product with yi+3 gives

det(wi+3)zi+3 = det(wi+2)yi+1 ∧ yi+3.

Then (c) follows upon noting that det(wi+3) = det(wi+2) det(wi+1).
The formula (d) is clearly true for i = 0. If we assume that it holds for some

integer i ≥ 0, then using the formula for yi+3 given by (b) and taking into account

the multilinearity of the determinant we find

det(yi+1, yi+2, yi+3) = − det(wi+1) det(yi , yi+1, yi+2)

= (−1)i+1 det(y0, y1, y2)
det(wi+3)

det(w2)
.

This proves (d) by induction on i. Then (e) follows since, for any x, y, z ∈ Z3, we

have (x ∧ y) ∧ (y ∧ z) = det(x, y, z) y which, in the present case, gives

zi ∧ zi+1 = det(wi+2)−1 det(yi , yi+1, yi+2) yi+1.

Corollary 4.2 The notation being as in the proposition, assume that tr(wi) and

det(wi) are relatively prime for i = 0, 1, 2, 3 and that det(y0, y1, y2) 6= 0. Then for

each i ≥ 0,

(a) the points yi, yi+1, yi+2 are linearly independent,

(b) tr(wi) and det(wi) are relatively prime,

(c) the matrix wi is primitive,

https://doi.org/10.4153/CJM-2007-009-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-009-3


On Two Exponents of Approximation 217

(d) the content of yi divides det(y2)/ det(w2),

(e) the point det(w2) zi belongs to Z3 and its content divides det(y2) det(y0, y1, y2).

Proof The assertion (a) follows from Proposition 4.1(d). Since (b) holds by hy-
pothesis for i = 0, 1, 2, 3, and since det(w2) and det(wi) have the same prime factors
for each i ≥ 2, the assertion (b) follows, by induction on i, from the fact that Propo-

sition 4.1(a) gives tr(wi+1) ≡ tr(wi) tr(wi−1) modulo det(w2) for each i ≥ 3. Then
(c) follows since the content of wi divides both tr(wi) and det(wi).

Let N ∈ M such that y2 = w2N . For each i, we have yi = wiNi where Ni =

N if i is even and Ni =
t N if i is odd. This gives yi Adj(Ni) = det(N)wi where

Adj(Ni) ∈ M denotes the adjoint of Ni . Thus, by (c), the content of yi divides

det(N) = det(y2)/ det(w2), as claimed in (d).

The fact that det(w2) zi belongs to Z3 is clear for i = 0, 1, 2 because det(w0)
and det(w1) divide det(w2). Then Proposition 4.1(c) shows, by induction on i, that
det(w2) zi ∈ Z3 for each i ≥ 0. Moreover, the content of that point divides that of
det(w2)2zi ∧ zi+1 which, by (d) and Proposition 4.1(e), divides det(y0, y1, y2) det(y2).

This proves (e).

Example 4.3 Let (wi)i≥0, N and (yi)i≥0 be as in Example 3.3. Since w0, w1 and N

are congruent to matrices of the form
(
±1 ∗
0 0

)
modulo a and have determinant ±a,

all matrices wi and yi are congruent to matrices of the same form modulo a and their
determinant is, up to sign, a power of a. Thus these matrices have relatively prime
trace and determinant, and so are primitive for each i ≥ 0. Since det(y0, y1, y2) =

a4(c − b), Proposition 4.1(e) shows that the points zi = det(wi)
−1yi ∧ yi+1 satisfy

zi ∧ zi+1 = (−1)ia2(c − b)yi+1 for each i ≥ 0. Moreover, we find that a−1z0 =

(0, 0, b − c), a−1z1 = (a,−1 + a(b + 1),−b) and a−1z2 = (a,−1 + a(c + 1),−c) are
integer points. Then Proposition 4.1(c) shows, by induction on i, that a−1zi ∈ Z3 for

each i ≥ 0. In particular, if c = b + 1, we deduce from the relation a−1zi ∧ a−1zi+1 =

±yi+1 that a−1zi is a primitive integer point for each i ≥ 0.

5 Growth Estimates

Define the norm of a 2 × 2 matrix w = (wk,ℓ) ∈ Mat2×2(R) as the largest absolute

value of its coefficients ‖w‖ = max1≤k,ℓ≤2 |wk,ℓ|, and define γ = (1 +
√

5)/2 as
in the introduction. In this section, we provide growth estimates for the norm and
determinant of elements of certain Fibonacci sequences in GL2(R). We first establish
two basic lemmas.

Lemma 5.1 Let w0, w1 ∈ GL2(R). Suppose that, for i = 0, 1, the matrix wi is of

the form
(

a b
c d

)
with 1 ≤ a ≤ min{b, c} and max{b, c} ≤ d. Then all matrices of the

Fibonacci sequence (wi)i≥0 constructed on w0 and w1 have this form and for each i ≥ 0,

they satisfy

(9) ‖wi‖‖wi+1‖ < ‖wi+2‖ ≤ 2‖wi‖‖wi+1‖.
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Proof The first assertion follows by recurrence on i and is left to the reader. It
implies that ‖wi‖ is equal to the element of index (2, 2) of wi for each i ≥ 0. Then

(9) follows by observing that, for any 2 × 2 matrices w = (wk,ℓ) and w ′
= (w ′

k,ℓ)
with positive real coefficients, the product w ′w = (w ′ ′

k,ℓ) satisfies w2,2w ′
2,2 < w ′ ′

2,2 ≤
2‖w‖‖w ′‖.

Lemma 5.2 Let (ri)i≥0 be a sequence of positive real numbers. Assume that there exist

constants c1, c2 > 0 such that c1riri+1 ≤ ri+2 ≤ c2riri+1 for each i ≥ 0. Then there also

exist constants c3, c4 > 0 such that c3r
γ
i ≤ ri+1 ≤ c4r

γ
i for each i ≥ 0.

Proof Define c3 = c
γ
1
/(cc2) and c4 = cc

γ
2
/c1, where c ≥ 1 is chosen so that the

condition c3 ≤ ri+1/r
γ
i ≤ c4 holds for i = 0. Assuming that the same condition holds

for some index i ≥ 0, we find

ri+2

r
γ
i+1

≥ c1

ri

r
1/γ
i+1

≥ c1c
−1/γ
4

= c1/γ2

c3 ≥ c3,

and similarly ri+2/r
γ
i+1

≤ c4. This proves the lemma by recurrence on i.

Proposition 5.3 Let (wi)i≥0 be a Fibonacci sequence in GL2(R). Suppose that there

exist real numbers c1, c2 > 0 such that

(10) c1‖wi‖‖wi+1‖ ≤ ‖wi+2‖ ≤ c2‖wi‖‖wi+1‖

for each i ≥ 0. Then there exist constants c3, c4 > 0 for which the inequalities

(11) c3‖wi‖γ ≤ ‖wi+1‖ ≤ c4‖wi‖γ , c3| det(wi)|γ ≤ | det(wi+1)| ≤ c4| det(wi)|γ

hold for each i ≥ 0. Moreover, if there exist α, β ≥ 0 such that

(12) (c2‖wi‖)α ≤ | det(wi)| ≤ (c1‖wi‖)β

holds for i = 0, 1, then this relation extends to each i ≥ 0.

Proof The first assertion of the proposition follows from Lemma 5.2 applied once

with ri = ‖wi‖ and once with ri = | det(wi)|. To prove the second assertion, assume
that for some index j ≥ 0 the condition (12) holds both with i = j and i = j + 1.
We find

| det(w j+2)| = | det(w j+1)|| det(w j)| ≥ (c2‖w j+1‖)α(c2‖w j‖)α ≥ (c2‖w j+2‖)α

and similarly | det(w j+2)| ≤ (c1‖w j+2‖)β . Therefore, (12) holds with i = j + 2. By
recurrence on i, this shows that (12) holds for each i ≥ 0 if it holds for i = 0, 1.
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Example 5.4 Let the notation be as in Example 3.3. Since w0 and w1 satisfy the
hypotheses of Lemma 5.1, the Fibonacci sequence (wi)i≥0 that they generate fulfills

for each i ≥ 0 the condition (10) of Proposition 5.3 with c1 = 1 and c2 = 2. As
det(w0) = det(w1) = a, we also note that for this choice of c1 and c2 the condition
(12) holds for i = 0, 1 with

α =

log a

log(2a(c + 1))
and β =

log a

log(a(b + 1))
.

Then, for an appropriate choice of c3, c4 > 0, both (11) and (12) hold for each i ≥ 0.
Moreover, the estimates (9) of Lemma 5.1 imply that the sequence (wi)i≥0 is un-
bounded.

6 Construction of a Real Number

Given sequences of non-negative real numbers with general terms ai and bi , we write

ai ≪ bi or bi ≫ ai if there exists a real number c > 0 such that ai ≤ cbi for all
sufficiently large values of i. We write ai ∼ bi when ai ≪ bi and bi ≪ ai . With this
notation, we now prove the following result (cf. [11, §5]).

Proposition 6.1 Let (wi)i≥0 be an admissible Fibonacci sequence in M and let (yi)i≥0

be a corresponding sequence of symmetric matrices in M. Assume that (wi)i≥0 is un-

bounded and satisfies the conditions

(13) ‖wi+1‖ ∼ ‖wi‖γ , | det(wi+1)| ∼ | det(wi)|γ and | det(wi)| ≪ ‖wi‖β

for a real number β with 0 < β < 2. Viewing each yi as a point in Z3, assume that

det(y0, y1, y2) 6= 0 and define zi = (det(wi))−1yi ∧ yi+1 for each i ≥ 0. Then we have

(14) ‖yi‖ ∼ ‖wi‖, | det(yi)| ∼ | det(wi)|, ‖zi‖ ∼ ‖wi−1‖,

and there exists a non-zero point y of R3 with det(y) = 0 such that

(15) ‖yi ∧ y‖ ∼ | det(wi)|
‖wi‖

and |〈zi, y〉| ∼ | det(wi+1)|
‖wi+2‖

.

If β < 1, the coordinates of such a point y are linearly independent over Q and we may

assume that y = (1, ξ, ξ2) for some real number ξ with [Q(ξ) : Q] > 2.

Proof For each i ≥ 0, let Ni denote the element of M for which yi = wiNi . Putting
N = N0, we have by hypothesis Ni = N when i is even and Ni =

t N otherwise. This
implies that ‖yi‖ ∼ ‖wi‖ and | det(yi)| ∼ | det(wi)|. In the sequel, we will repeatedly

use these relations as well as the hypothesis (13).

We claim that we have

(16) ‖yi ∧ yi+1‖ ≪ | det(wi)|‖wi−1‖.
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To prove this, we define J =

(
0 1

−1 0

)
and note that for each i ≥ 0 the coefficients of

the diagonal of yi Jyi+1 coincide with the first and third coefficients of yi ∧ yi+1 while

the sum of the coefficients of yi Jyi+1 outside of the diagonal is the middle coefficient
of yi ∧ yi+1 multiplied by −1. This gives

(17) ‖yi ∧ yi+1‖ ≤ 2‖yi Jyi+1‖.

Since yi+1 = yiN
−1

i yi−1 and since x Jx = det(x) J for any symmetric matrix x, we also
find that yi Jyi+1 = det(yi) JN−1

i yi−1 and therefore ‖yi Jyi+1‖ ≪ | det(wi)|‖wi−1‖.
Combining this with (17) proves our claim (16), which can also be written in the
form

(18) ‖zi‖ ≪ ‖wi−1‖.

As ‖yi‖ ∼ ‖wi‖ and ‖yi+1‖ ∼ ‖wi‖γ , the estimate (16) shows, in the notation of §2,
that

(19) dist([yi], [yi+1]) ≤ cδi, where δi =

| det(wi)|
‖wi‖2

and where c is some positive constant which does not depend on i. Since by hypoth-

esis we have | det(wi)| ≪ ‖wi‖β with β < 2, we find that limi→∞ δi = 0. Since
moreover, we have δi+1 ∼ δγ

i , we deduce that there exists an index i0 ≥ 1 such that
δi+1 ≤ δi/4 for each i ≥ i0. Then, using (5), we deduce that

(20) dist([yi], [y j]) ≤
j−1∑

k=i

2k−idist([yk], [yk+1]) ≤ c

j−1∑

k=i

2k−iδk ≤ 2cδi

for each choice of i and j with i0 ≤ i < j. Thus the sequence ([yi])i≥0 converges
in P2(R) to a point [y] for some non-zero y ∈ R3. Since the ratio | det(yi)|/‖yi‖2

depends only on the class [yi] of yi in P2(R) and tends to 0 like δi as i → ∞, we
deduce by continuity that | det(y)|/‖y‖2

= 0 and thus that det(y) = 0. By continuity,
(20) also leads to dist([yi], [y]) ≤ 2cδi for each i ≥ i0, and so

(21) ‖yi ∧ y‖ ≪ | det(wi)|
‖wi‖

.

Applying (3) together with the above estimates (18) and (21), we find

‖〈zi, y〉yi+2 −〈zi, yi+2〉y‖ ≤ 2‖zi‖‖yi+2 ∧ y‖ ≪ ‖wi−1‖
| det(wi+2)|
‖wi+2‖

≪ | det(wi+1)|δi.

Using Proposition 4.1(d), we also get

(22) ‖〈zi, yi+2〉y‖ =

| det(yi , yi+1, yi+2)|
| det(wi)|

‖y‖ ∼ | det(wi+1)|.
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Combining the above two estimates, we deduce that ‖〈zi, y〉yi+2‖ ∼ | det(wi+1)| and
therefore that |〈zi, y〉| ∼ | det(wi+1)|/‖wi+2‖. The latter estimate is the second half of

(15). It implies

‖〈zi+1, y〉yi‖ ∼ | det(wi+2)|
‖wi+3‖

‖wi‖ ∼ | det(wi)|δi+1.

Since 〈zi+1, yi〉 = det(wi−1)−1〈zi, yi+2〉, the estimate (22) can also be written in the

form ‖〈zi+1, yi〉y‖ ∼ | det(wi)|. Then, applying (3) once again, we find

2‖zi+1‖‖yi ∧ y‖ ≥ ‖〈zi+1, y〉yi − 〈zi+1, yi〉y‖ ≫ | det(wi)|.

Since, by (18) and (21), we have ‖zi+1‖ ≪ ‖wi‖ and ‖yi ∧ y‖ ≪ | det(wi)|/‖wi‖,
we conclude from this that ‖zi+1‖ ∼ ‖wi‖ and ‖yi ∧ y‖ ∼ | det(wi)|/‖wi‖, which
completes the proof of (14) and (15).

Now, assume that β < 1, and let u ∈ Z3 such that 〈u, y〉 = 0. By (3), we have

(23) 2‖u‖‖yi ∧ y‖ ≥ ‖〈u, y〉yi − 〈u, yi〉y‖ = |〈u, yi〉|‖y‖

for each i ≥ 0. Since ‖yi ∧y‖ ∼ | det(wi)|/‖wi‖ ≪ ‖wi‖β−1 tends to 0 as i → ∞, we
deduce from (23) that the integer 〈u, yi〉 must vanish for all sufficiently large values
of i. This implies that u = 0 because it follows from the hypothesis det(y0, y1, y2) 6= 0
and the formula in Proposition 4.1(d) that any three consecutive points of the se-

quence (yi)i≥0 are linearly independent. Thus the coordinates of y must be linearly
independent over Q . In particular, the first coordinate of y is non-zero and, dividing
y by this coordinate, we may assume that it is equal to 1. Then, upon denoting by ξ
the second coordinate of y, the condition det(y) = 0 implies that y = (1, ξ, ξ2) and

thus [Q(ξ) : Q] > 2.

7 Estimates for the Exponent ω̂2

We first prove the following result and then deduce from it our main theorem in §1.

Proposition 7.1 Let (wi)i≥0 be an admissible Fibonacci sequence in M, and let (yi)i≥0

be a corresponding sequence of symmetric matrices in M. Assume that (wi)i≥0 is un-

bounded and satisfies

(24) ‖wi+1‖ ∼ ‖wi‖γ , | det(wi+1)| ∼ | det(wi)|γ , ‖wi‖α ≪ | det(wi)| ≪ ‖wi‖β

for real numbers α and β with 0 ≤ α ≤ β < γ−2. Assume moreover that tr(wi) and

det(wi) are relatively prime for i = 0, 1, 2, 3 and that det(y0, y1, y2) 6= 0. Then the real

number ξ which comes out from the last assertion of Proposition 6.1 satisfies

γ2 − βγ ≤ ω̂2(ξ) ≤ γ2 − αγ.
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Proof Put y = (1, ξ, ξ2) and define the sequence (zi)i≥0 as in Proposition 4.1. Since
‖y‖ ≥ 1, the inequality (3) combined with the estimates of Proposition 6.1 shows

that, for any point z ∈ Z3 and any index i ≥ 1, we have

(25) |〈z, yi〉| ≤ ‖yi‖|〈z, y〉|+2‖z‖‖yi∧y‖ < c5 max
{
‖wi‖|〈z, y〉|, ‖z‖ | det(wi)|

‖wi‖
}

,

with a constant c5 > 0 which is independent of z and i. Suppose that a point z ∈ Z3

satisfies

(26) 0 < ‖z‖ ≤ Zi := c6‖wi‖ and |〈z, y〉| ≤ | det(wi+1)|
‖wi+2‖

,

where c6 = c−1

5
| det(y2)|−1. Using (25) with i replaced by i + 1, we find

|〈z, yi+1〉| ≪ | det(wi)|γ‖wi‖−1/γ.

Since | det(wi)| ≪ ‖wi‖β with β < γ−2, this gives |〈z, yi+1〉| < 1 provided that i is
sufficiently large. Then the integer 〈z, yi+1〉 must be zero and, by Proposition 4.1(e),
we deduce that z = azi + bzi+1 for some a, b ∈ Q where b is given by

zi ∧ z = bzi ∧ zi+1 = (−1)ib det(y0, y1, y2) det(w2)−1yi+1.

Since det(w2)zi ∧ z ∈ Z3 and since, by Corollary 4.2(d), the content of yi+1 divides
det(y2)/ det(w2), this implies that b det(y0, y1, y2) det(y2)/ det(w2) is an integer. So,
if b is non-zero, it satisfies the lower bound

|b| ≥ | det(w2)/(det(y0, y1, y2) det(y2))|.

We note that 〈zi, yi〉 = 0 and by Proposition 4.1(d) that

〈zi+1, yi〉 =

det(yi , yi+1, yi+2)

det(wi+1)
= (−1)i det(y0, y1, y2)

det(w2)
det(wi).

Therefore, if b 6= 0, the point z = azi + bzi+1 satisfies

|〈z, yi〉| = |b||〈zi+1, yi〉| ≥ | det(y2)|−1| det(wi)| = c5c6| det(wi)|.

However, (25) and (26) give

|〈z, yi〉| < c5 max
{ | det(wi+1)|‖wi‖

‖wi+2‖
, c6| det(wi)|

}
= c5c6| det(wi)|

if i is sufficiently large, because the ratio | det(wi+1)|‖wi‖/‖wi+2‖ ≪ ‖wi‖βγ−γ tends
to 0 as i → ∞. Comparison with the previous inequality then forces b = 0, and so
we get z = azi with a 6= 0. Since det(w2)zi is, by Corollary 4.2(e), an integer point
whose content divides det(y2) det(y0, y1, y2), we deduce that

a det(y2) det(y0, y1, y2)/ det(w2)
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is a non-zero integer and therefore, using the second part of (15) in Proposition 6.1,
we find that

|〈z, y〉| = |a||〈zi, y〉| ≥ | det(w2)|
| det(y2) det(y0, y1, y2)| |〈zi, y〉| ≫ | det(wi+1)|

‖wi+2‖
.

Since this holds for any point z satisfying (26) with i sufficiently large, we deduce that
for any index i ≥ 0 and any point z ∈ Z3 with 0 < ‖z‖ ≤ Zi we have

|〈z, y〉| ≫ | det(wi+1)|
‖wi+2‖

≫ ‖wi‖γα−γ2 ≫ Z
γα−γ2

i .

This shows that ω̂2(ξ) ≤ γ2 − γα.
Finally, for any real number Z ≥ ‖z0‖, there exists an index i ≥ 0 such that

‖zi‖ ≤ Z < ‖zi+1‖ and, for such choice of i, we find by Proposition 6.1 that

|〈zi, y〉| ≪ | det(wi+1)|
‖wi+2‖

≪ ‖wi‖βγ−γ2 ∼ ‖zi+1‖βγ−γ2 ≪ Zβγ−γ2

,

showing that ω̂2(ξ) ≥ γ2 − γβ.

Let us say that a real number ξ is of “Fibonacci type” if there exist an unbounded

Fibonacci sequence (wi)i≥0 in M and a real number θ with θ > 1/γ such that
‖(ξ,−1)wi‖ ≤ ‖wi‖−θ for each sufficiently large index i. There are countably many
such numbers, and any real number ξ obtained from Proposition 6.1 with β < γ−2

is of this type. The following corollary shows that the exponents ω̂2(ξ) attached to

transcendental numbers of Fibonacci type are dense in the interval [2, γ2]. By Jarnı́k’s
formula (1), this implies our main theorem in §1.

Corollary 7.2 Let t and ǫ be real numbers with 0 < t < γ−2 and ǫ > 0. Then there

exist a transcendental real number ξ and an unbounded Fibonacci sequence (wi)i≥0 in

M which satisfy

(a) ‖(ξ,−1)wi‖ ≤ ‖wi‖−1+t for each sufficiently large i,

(b) γ2 − tγ ≤ ω̂2(ξ) ≤ γ2 − (t − ǫ)γ.

Proof Since t < 1, there exist integers k and ℓ with 0 < ℓ < k and t−ǫ ≤ ℓ/(k+2) ≤
ℓ/k < t . For such a choice of k and ℓ, consider the Fibonacci sequence (wi)i≥0

of Example 3.3 with parameters a = 2ℓ, b = 2k−ℓ − 1 and c = 2k−ℓ. According
to Example 4.3, wi has relatively prime trace and determinant for each i ≥ 0 and

the corresponding sequence of symmetric matrices (yi)i≥0 satisfies det(y0, y1, y2) =

24ℓ 6= 0. Moreover, Example 5.4 shows that (wi)i≥0 is unbounded and satisfies the
estimates (24) of Proposition 7.1 with α = ℓ/(k + 2) and β = ℓ/k (note that the
example provides a slightly larger value for α). So, Proposition 7.1 applies and shows

that the corresponding real number ξ constructed by Proposition 6.1 satisfies the
above condition (b). In particular, ξ is transcendental since ω̂2(ξ) > 2. Moreover,
since ‖(ξ,−1)wi‖ ∼ ‖(ξ,−1)yi‖ ∼ ‖yi ∧ y‖, the first estimate in (15) leads to (a).
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339(2004), no. 10, 679–682.
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[8] D. Roy, Approximation simultanée d’un nombre et de son carré. C. R. Acad. Sci., Paris 336(2003),
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