On Two Exponents of Approximation Related to a Real Number and Its Square

Damien Roy

Abstract. For each real number ξ , let $\widehat{\lambda}_2(\xi)$ denote the supremum of all real numbers λ such that, for each sufficiently large X, the inequalities $|x_0| \leq X$, $|x_0\xi - x_1| \leq X^{-\lambda}$ and $|x_0\xi^2 - x_2| \leq X^{-\lambda}$ admit a solution in integers x_0 , x_1 and x_2 not all zero, and let $\widehat{\omega}_2(\xi)$ denote the supremum of all real numbers ω such that, for each sufficiently large X, the dual inequalities $|x_0 + x_1\xi + x_2\xi^2| \leq X^{-\omega}$, $|x_1| \leq X$ and $|x_2| \leq X$ admit a solution in integers x_0 , x_1 and x_2 not all zero. Answering a question of Y. Bugeaud and Y. Laurent, we show that the exponents $\widehat{\lambda}_2(\xi)$ where ξ ranges through all real numbers with $[\mathbb{Q}(\xi):\mathbb{Q}] > 2$ form a dense subset of the interval $[1/2, (\sqrt{5} - 1)/2]$ while, for the same values of ξ , the dual exponents $\widehat{\omega}_2(\xi)$ form a dense subset of $[2, (\sqrt{5} + 3)/2]$. Part of the proof rests on a result of Y. Jarník showing that $\widehat{\lambda}_2(\xi) = 1 - \widehat{\omega}_2(\xi)^{-1}$ for any real number ξ with $[\mathbb{Q}(\xi):\mathbb{Q}] > 2$.

1 Introduction

Let ξ and η be real numbers. Following the notation of Y. Bugeaud and M. Laurent [3], we define $\widehat{\lambda}(\xi,\eta)$ to be the supremum of all real numbers λ such that the inequalities

$$|x_0| \le X$$
, $|x_0\xi - x_1| \le X^{-\lambda}$ and $|x_0\eta - x_2| \le X^{-\lambda}$

admit a non-zero integer solution $(x_0,x_1,x_2)\in\mathbb{Z}^3$ for each sufficiently large value of X. Similarly, we define $\widehat{\omega}(\xi,\eta)$ to be the supremum of all real numbers ω such that the inequalities

$$|x_0 + x_1 \xi + x_2 \eta| \le X^{-\omega}, \quad |x_1| \le X \quad \text{and} \quad |x_2| \le X$$

admit a non-zero solution $(x_0, x_1, x_2) \in \mathbb{Z}^3$ for each sufficiently large value of X. An application of Dirichlet box principle shows that we have $1/2 \leq \widehat{\lambda}(\xi, \eta)$ and $2 \leq \widehat{\omega}(\xi, \eta)$. Moreover, in the (non-degenerate) case where 1, ξ and η are linearly independent over \mathbb{Q} , a result of V. Jarník, kindly pointed out to the author by Yann Bugeaud, shows that these exponents are related by the formula

(1)
$$\widehat{\lambda}(\xi,\eta) = 1 - \frac{1}{\widehat{\omega}(\xi,\eta)},$$

with the convention that the right-hand side of this equality is 1 if $\widehat{\omega}(\xi, \eta) = \infty$ (see [7, Theorem 1]).

Received by the editors July 23, 2004; revised October 12, 2004. Work partially supported by NSERC and CICMA AMS subject classification: Primary: 11J13; secondary: 11J82. ©Canadian Mathematical Society 2007.

In the case where $\eta = \xi^2$, we use the shorter notation $\widehat{\lambda}_2(\xi) := \widehat{\lambda}(\xi, \xi^2)$ and $\widehat{\omega}_2(\xi) := \widehat{\omega}(\xi, \xi^2)$ of [3]. The condition that 1, ξ and ξ^2 are linearly independent over $\mathbb Q$ simply means that ξ is not an algebraic number of degree at most 2 over $\mathbb Q$, a condition which we also write as $[\mathbb Q(\xi):\mathbb Q] > 2$. Under this condition, it is known that these exponents satisfy

(2)
$$\frac{1}{2} \le \widehat{\lambda}_2(\xi) \le \frac{1}{\gamma} = 0.618...$$
 and $2 \le \widehat{\omega}_2(\xi) \le \gamma^2 = 2.618...$,

where $\gamma=(1+\sqrt{5})/2$ denotes the golden ratio. By virtue of W. M. Schmidt's subspace theorem, the lower bounds in (2) are achieved by any algebraic number ξ of degree at least 3 (see [12, Ch. VI, Corollaries 1C, 1E]). They are also achieved by almost all real numbers ξ , with respect to Lebesgue's measure (see [3, Theorem 2.3]). On the other hand, the upper bounds follow respectively from [5, Theorem 1a] and from [2]. They are achieved in particular by the so-called Fibonacci continued fractions (see [8, §2] or [9, §6]), a special case of the Sturmian continued fractions of [1]. Now, thanks to Jarník's formula (1), we recognize that each set of inequalities in (2) can be deduced from the other one.

Generalizing the approach of [8], Bugeaud and Laurent have computed the exponents $\widehat{\lambda}_2(\xi)$ and $\widehat{\omega}_2(\xi)$ for a general (characteristic) Sturmian continued fraction ξ . They found that, after $1/\gamma$ and γ^2 , the next largest values of $\widehat{\lambda}_2(\xi)$ and $\widehat{\omega}_2(\xi)$ for such numbers ξ are, respectively, $2-\sqrt{2}\simeq 0.586$ and $1+\sqrt{2}\simeq 2.414$, and they asked if there exists any transcendental real number ξ which satisfies either $2-\sqrt{2}<\widehat{\lambda}_2(\xi)<1/\gamma$ or $1+\sqrt{2}<\widehat{\omega}_2(\xi)<\gamma^2$ (see [3, §8]). Our main result below shows that such numbers exist.

Theorem The points $(\widehat{\lambda}_2(\xi), \widehat{\omega}_2(\xi))$ where ξ runs through all real numbers with $[\mathbb{Q}(\xi):\mathbb{Q}] > 2$ form a dense subset of the curve $\mathbb{C} = \{(1 - \omega^{-1}, \omega) : 2 \le \omega \le \gamma^2\}$.

Since $(\widehat{\lambda}_2(\xi), \widehat{\omega}_2(\xi)) = (1/2, 2)$ for any algebraic number ξ of degree at least 3, it follows in particular that $(1/\gamma, \gamma^2)$ is an accumulation point for the set of points $(\widehat{\lambda}_2(\xi), \widehat{\omega}_2(\xi))$ with ξ a transcendental real number. Because of Jarník's formula (1), this theorem is equivalent to either one of the following two assertions.

Corollary The exponents $\widehat{\lambda}_2(\xi)$ attached to transcendental real numbers ξ form a dense subset of the interval $[1/2,1/\gamma]$. The corresponding dual exponents $\widehat{\omega}_2(\xi)$ form a dense subset of $[2,\gamma^2]$.

The proof is inspired by the constructions of [9, §6] and [11, §5]. We produce countably many real numbers ξ of "Fibonacci type" (see §7 for a precise definition) for which we show that the exponents $\widehat{\omega}_2(\xi)$ are dense in $[2,\gamma^2]$. By (1), this implies the theorem. One may then reformulate the question of Bugeaud and Laurent by asking if there exist transcendental real numbers ξ not of that type which satisfy $\widehat{\omega}_2(\xi) > 1 + \sqrt{2}$. The work of S. Fischler announced in [6] should shed some light on this question.

2 Notation and Equivalent Definitions of the Exponents

We define the *norm* of a point $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{R}^3$ as its maximum norm

$$\|\mathbf{x}\| = \max_{0 \le i \le 2} |x_i|.$$

Given a second point $\mathbf{y} \in \mathbb{R}^3$, we denote by $\mathbf{x} \wedge \mathbf{y}$ the standard vector product of \mathbf{x} and \mathbf{y} , and by $\langle \mathbf{x}, \mathbf{y} \rangle$ their standard scalar product. Given a third point $\mathbf{z} \in \mathbb{R}^3$, we also denote by $\det(\mathbf{x}, \mathbf{y}, \mathbf{z})$ the determinant of the 3×3 matrix whose rows are \mathbf{x} , \mathbf{y} and \mathbf{z} . Then we have the well-known relation

$$\det(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \langle \mathbf{x}, \mathbf{y} \wedge \mathbf{z} \rangle$$

and we get the following alternative definition of the exponents $\widehat{\lambda}(\xi, \eta)$ and $\widehat{\omega}(\xi, \eta)$.

Lemma 2.1 Let $\xi, \eta \in \mathbb{R}$, and let $\mathbf{y} = (1, \xi, \eta)$. Then $\widehat{\lambda}(\xi, \eta)$ is the supremum of all real numbers λ such that, for each sufficiently large real number $X \geq 1$, there exists a point $\mathbf{x} \in \mathbb{Z}^3$ with

$$0 < \|\mathbf{x}\| \le X$$
 and $\|\mathbf{x} \wedge \mathbf{y}\| \le X^{-\lambda}$.

Similarly, $\widehat{\omega}(\xi, \eta)$ is the supremum of all real numbers ω such that, for each sufficiently large real number $X \geq 1$, there exists a point $\mathbf{x} \in \mathbb{Z}^3$ with

$$0 < ||\mathbf{x}|| \le X$$
 and $|\langle \mathbf{x}, \mathbf{y} \rangle| \le X^{-\omega}$.

In the sequel, we will need the following inequalities.

Lemma 2.2 For any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$, we have

(3)
$$\|\langle \mathbf{x}, \mathbf{z} \rangle \mathbf{y} - \langle \mathbf{x}, \mathbf{y} \rangle \mathbf{z}\| \le 2\|\mathbf{x}\| \|\mathbf{y} \wedge \mathbf{z}\|,$$

(4)
$$\|\mathbf{y}\| \|\mathbf{x} \wedge \mathbf{z}\| \le \|\mathbf{z}\| \|\mathbf{x} \wedge \mathbf{y}\| + 2\|\mathbf{x}\| \|\mathbf{y} \wedge \mathbf{z}\|.$$

Proof Writing $\mathbf{y} = (y_0, y_1, y_2)$ and $\mathbf{z} = (z_0, z_1, z_2)$, we find

$$\|\langle \mathbf{x}, \mathbf{z} \rangle \mathbf{y} - \langle \mathbf{x}, \mathbf{y} \rangle \mathbf{z}\| = \max_{i=0,1,2} |\langle \mathbf{x}, y_i \mathbf{z} - z_i \mathbf{y} \rangle| \le 2 \|\mathbf{x}\| \|\mathbf{y} \wedge \mathbf{z}\|,$$

which proves (3). Similarly, one finds $||y_i\mathbf{x}\wedge\mathbf{z}-z_i\mathbf{x}\wedge\mathbf{y}|| \le 2||\mathbf{x}|| ||\mathbf{y}\wedge\mathbf{z}||$ for i = 0, 1, 2, and this implies (4).

For any non-zero point \mathbf{x} of \mathbb{R}^3 , let $[\mathbf{x}]$ denote the point of $\mathbb{P}^2(\mathbb{R})$ having \mathbf{x} as a set of homogeneous coordinates. Then (4) has a useful interpretation in terms of the projective distance defined for non-zero points \mathbf{x} and \mathbf{y} of \mathbb{R}^3 by

$$\operatorname{dist}([\mathbf{x}],[\mathbf{y}]) = \operatorname{dist}(\mathbf{x},\mathbf{y}) = \frac{\|\mathbf{x} \wedge \mathbf{y}\|}{\|\mathbf{x}\|\|\mathbf{y}\|}.$$

Indeed, for any triple of non-zero points $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$, it gives

(5)
$$\operatorname{dist}([\mathbf{x}], [\mathbf{z}]) \le \operatorname{dist}([\mathbf{x}], [\mathbf{y}]) + 2 \operatorname{dist}([\mathbf{y}], [\mathbf{z}]).$$

3 Fibonacci Sequences in $GL_2(\mathbb{C})$

A *Fibonacci sequence* in a monoid is a sequence $(\mathbf{w}_i)_{i\geq 0}$ of elements of that monoid such that $\mathbf{w}_{i+2} = \mathbf{w}_{i+1}\mathbf{w}_i$ for each index $i \geq 0$. Clearly, such a sequence is entirely determined by its first two elements \mathbf{w}_0 and \mathbf{w}_1 . We start with the following observation.

Proposition 3.1 There exists a non-empty Zariski open subset \mathbb{U} of $GL_2(\mathbb{C})^2$ with the following property. For each Fibonacci sequence $(\mathbf{w}_i)_{i\geq 0}$ with $(\mathbf{w}_0,\mathbf{w}_1)\in \mathbb{U}$, there exists $N\in GL_2(\mathbb{C})$ such that the matrix

(6)
$$\mathbf{y}_{i} = \begin{cases} \mathbf{w}_{i}N & \text{if i is even,} \\ \mathbf{w}_{i}^{t}N & \text{if i is odd,} \end{cases}$$

is symmetric for each $i \geq 0$. Any matrix $N \in GL_2(\mathbb{C})$ such that $\mathbf{w}_0 N$, $\mathbf{w}_1^t N$ and $\mathbf{w}_1 \mathbf{w}_0 N$ are symmetric satisfies this property. When \mathbf{w}_0 and \mathbf{w}_1 have integer coefficients, we may take N with integer coefficients.

Proof Let $(\mathbf{w}_i)_{i\geq 0}$ be a Fibonacci sequence in $\operatorname{GL}_2(\mathbb{C})$ and let $N\in\operatorname{GL}_2(\mathbb{C})$. Defining \mathbf{y}_i by (6) for each $i\geq 0$, we find $\mathbf{y}_{i+3}=\mathbf{y}_{i+1}{}^tS\mathbf{y}_iS\mathbf{y}_{i+1}$ with $S=N^{-1}$ if i is even and $S={}^tN^{-1}$ if i is odd. Thus, \mathbf{y}_i is symmetric for each $i\geq 0$ if and only if it is so for i=0,1,2.

Now, for any given point $(\mathbf{w}_0, \mathbf{w}_1) \in \operatorname{GL}_2(\mathbb{C})^2$, the conditions that $\mathbf{w}_0 N$, $\mathbf{w}_1{}^t N$ and $\mathbf{w}_1 \mathbf{w}_0 N$ are symmetric represent a system of three linear equations in the four unknown coefficients of N. Let \mathcal{V} be the Zariski open subset of $\operatorname{GL}_2(\mathbb{C})^2$ consisting of all points $(\mathbf{w}_0, \mathbf{w}_1)$ for which this linear system has rank 3. Then, for each $(\mathbf{w}_0, \mathbf{w}_1) \in \mathcal{V}$, the 3×3 minors of this linear system conveniently arranged into a 2×2 matrix provide a non-zero solution N of the system, whose coefficients are polynomials in those of \mathbf{w}_0 and \mathbf{w}_1 with integer coefficients. Then the condition $\det(N) \neq 0$ in turn determines a Zariski open subset \mathcal{U} of \mathcal{V} . To conclude, we note that \mathcal{U} is not empty as a short computation shows that it contains the point formed by $\mathbf{w}_0 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{w}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Definition 3.2 Let $\mathcal{M} = \operatorname{Mat}_{2\times 2}(\mathbb{Z}) \cap \operatorname{GL}_2(\mathbb{C})$ denote the monoid of 2×2 integer matrices with non-zero determinant. We say that a Fibonacci sequence $(\mathbf{w}_i)_{i\geq 0}$ in \mathcal{M} is *admissible* if there exists a matrix $N \in \mathcal{M}$ such that the sequence $(\mathbf{y}_i)_{i\geq 0}$ given by (6) consists of symmetric matrices.

Since \mathcal{M} is Zariski dense in $GL_2(\mathbb{C})$, Proposition 3.1 shows that almost all Fibonacci sequences in \mathcal{M} are admissible. The following example is an illustration of this.

Example 3.3 Fix integers a, b, c with $a \ge 2$ and $c \ge b \ge 1$, and define

$$\mathbf{w}_0 = \begin{pmatrix} 1 & b \\ a & a(b+1) \end{pmatrix}, \quad \mathbf{w}_1 = \begin{pmatrix} 1 & c \\ a & a(c+1) \end{pmatrix}$$

and

$$N = \begin{pmatrix} -1 + a(b+1)(c+1) & -a(b+1) \\ -a(c+1) & a \end{pmatrix}.$$

These matrices belong to \mathfrak{M} since $\det(\mathbf{w}_0) = \det(\mathbf{w}_1) = a$ and $\det(N) = -a$. Moreover, one finds that

$$\mathbf{w}_0 N = \begin{pmatrix} -1 + a(c+1) & -a \\ -a & 0 \end{pmatrix}, \quad \mathbf{w}_1^t N = \begin{pmatrix} -1 + a(b+1) & -a \\ -a & 0 \end{pmatrix}$$

and

$$\mathbf{w}_1 \mathbf{w}_0 N = \begin{pmatrix} -1 + a & -a \\ -a & -a^2 \end{pmatrix}$$

are symmetric matrices. Therefore, the Fibonacci sequence $(\mathbf{w}_i)_{i\geq 0}$ constructed on \mathbf{w}_0 and \mathbf{w}_1 is admissible with an associated sequence of symmetric matrices $(\mathbf{y}_i)_{i\geq 0}$ given by (6), the first three matrices of this sequence being the above products $\mathbf{y}_0 = \mathbf{w}_0 N$, $\mathbf{y}_1 = \mathbf{w}_1^t N$ and $\mathbf{y}_2 = \mathbf{w}_1 \mathbf{w}_0 N$.

4 Fibonacci Sequences of 2×2 Integer Matrices

In the sequel, we identify \mathbb{R}^3 (resp., \mathbb{Z}^3) with the space of 2 × 2 symmetric matrices with real (resp., integer) coefficients under the map

$$\mathbf{x} = (x_0, x_1, x_2) \longmapsto \begin{pmatrix} x_0 & x_1 \\ x_1 & x_2 \end{pmatrix}.$$

Accordingly, it makes sense to define the determinant of a point $\mathbf{x} = (x_0, x_1, x_2)$ of \mathbb{R}^3 by $\det(\mathbf{x}) = x_0 x_2 - x_1^2$. Similarly, given symmetric matrices \mathbf{x} , \mathbf{y} and \mathbf{z} , we write $\mathbf{x} \wedge \mathbf{y}$, $\langle \mathbf{x}, \mathbf{y} \rangle$ and $\det(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to denote respectively the vector product, scalar product and determinant of the corresponding points.

In this section we look at arithmetic properties of admissible Fibonacci sequences in the monoid \mathcal{M} of Definition 3.2. For this purpose, we define the *content* of an integer matrix $\mathbf{w} \in \operatorname{Mat}_{2\times 2}(\mathbb{Z})$ or of a point $\mathbf{y} \in \mathbb{Z}^3$ as the greatest common divisor of their coefficients. We say that such a matrix or point is *primitive* if its content is 1.

Proposition 4.1 Let $(\mathbf{w}_i)_{i\geq 0}$ be an admissible Fibonacci sequence of matrices in \mathbb{M} and let $(\mathbf{y}_i)_{i\geq 0}$ be a corresponding sequence of symmetric matrices in \mathbb{M} . For each $i\geq 0$, define $\mathbf{z}_i = \det(\mathbf{w}_i)^{-1}\mathbf{y}_i \wedge \mathbf{y}_{i+1}$. Then, for each $i\geq 0$, we have

- (a) $tr(\mathbf{w}_{i+3}) = tr(\mathbf{w}_{i+1}) tr(\mathbf{w}_{i+2}) det(\mathbf{w}_{i+1}) tr(\mathbf{w}_i)$,
- (b) $\mathbf{y}_{i+3} = \operatorname{tr}(\mathbf{w}_{i+1})\mathbf{y}_{i+2} \operatorname{det}(\mathbf{w}_{i+1})\mathbf{y}_{i}$,
- (c) $\mathbf{z}_{i+3} = \operatorname{tr}(\mathbf{w}_{i+1})\mathbf{z}_{i+1} + \operatorname{det}(\mathbf{w}_i)\mathbf{z}_i$,
- (d) $\det(\mathbf{y}_i, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}) = (-1)^i \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \det(\mathbf{w}_2)^{-1} \det(\mathbf{w}_{i+2}),$
- (e) $\mathbf{z}_i \wedge \mathbf{z}_{i+1} = (-1)^i \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \det(\mathbf{w}_2)^{-1} \mathbf{y}_{i+1}$.

Proof For each index $i \ge 0$, let N_i denote the element of \mathfrak{M} for which $\mathbf{y}_i = \mathbf{w}_i N_i$. According to (6), we have $N_i = N$ if i is even and $N_i = {}^t N$ if i is odd. We first prove

(b) following the argument of the proof of [10, Lemma 2.5(i)]. Multiplying both sides of the equality $\mathbf{w}_{i+2} = \mathbf{w}_{i+1}\mathbf{w}_i$ on the right by $N_{i+2} = N_i$, we find

$$\mathbf{y}_{i+2} = \mathbf{w}_{i+1} \mathbf{y}_i,$$

which can be rewritten as $\mathbf{y}_{i+2} = \mathbf{y}_{i+1} N_{i+1}^{-1} \mathbf{y}_i$. Taking the transpose of both sides, this gives $\mathbf{y}_{i+2} = \mathbf{y}_i N_i^{-1} \mathbf{y}_{i+1} = \mathbf{w}_i \mathbf{y}_{i+1}$. Replacing i by i+1 in the latter identity and combining it with (7), we get

(8)
$$\mathbf{y}_{i+3} = \mathbf{w}_{i+1} \mathbf{y}_{i+2} = \mathbf{w}_{i+1}^2 \mathbf{y}_i.$$

Then (b) follows from (7) and (8), using the fact that, by the Cayley–Hamilton theorem, we have $\mathbf{w}_{i+1}^2 = \operatorname{tr}(\mathbf{w}_{i+1})\mathbf{w}_{i+1} - \det(\mathbf{w}_{i+1})I$. Multiplying both sides of (b) on the right by N_i^{-1} and taking the trace, we deduce that

$$\operatorname{tr}(\mathbf{y}_{i+3}N_i^{-1}) = \operatorname{tr}(\mathbf{w}_{i+1})\operatorname{tr}(\mathbf{w}_{i+2}) - \operatorname{det}(\mathbf{w}_{i+1})\operatorname{tr}(\mathbf{w}_i).$$

This gives (a) because $\operatorname{tr}(\mathbf{y}_{i+3}N_i^{-1}) = \operatorname{tr}({}^t\mathbf{y}_{i+3}{}^tN_i^{-1}) = \operatorname{tr}(\mathbf{w}_{i+3})$. Taking the exterior product of both sides of (b) with \mathbf{y}_{i+1} , we also find

$$\mathbf{y}_{i+1} \wedge \mathbf{y}_{i+3} = \operatorname{tr}(\mathbf{w}_{i+1}) \operatorname{det}(\mathbf{w}_{i+1}) \mathbf{z}_{i+1} + \operatorname{det}(\mathbf{w}_{i+1}) \operatorname{det}(\mathbf{w}_{i}) \mathbf{z}_{i}.$$

Similarly, replacing i by i + 1 in (b) and taking the exterior product with y_{i+3} gives

$$\det(\mathbf{w}_{i+3})\mathbf{z}_{i+3} = \det(\mathbf{w}_{i+2})\mathbf{y}_{i+1} \wedge \mathbf{y}_{i+3}.$$

Then (c) follows upon noting that $det(\mathbf{w}_{i+3}) = det(\mathbf{w}_{i+2}) det(\mathbf{w}_{i+1})$.

The formula (d) is clearly true for i = 0. If we assume that it holds for some integer $i \geq 0$, then using the formula for \mathbf{y}_{i+3} given by (b) and taking into account the multilinearity of the determinant we find

$$\det(\mathbf{y}_{i+1}, \mathbf{y}_{i+2}, \mathbf{y}_{i+3}) = -\det(\mathbf{w}_{i+1}) \det(\mathbf{y}_i, \mathbf{y}_{i+1}, \mathbf{y}_{i+2})
= (-1)^{i+1} \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \frac{\det(\mathbf{w}_{i+3})}{\det(\mathbf{w}_2)}.$$

This proves (d) by induction on *i*. Then (e) follows since, for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{Z}^3$, we have $(\mathbf{x} \wedge \mathbf{y}) \wedge (\mathbf{y} \wedge \mathbf{z}) = \det(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mathbf{y}$ which, in the present case, gives

$$\mathbf{z}_i \wedge \mathbf{z}_{i+1} = \det(\mathbf{w}_{i+2})^{-1} \det(\mathbf{y}_i, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}) \mathbf{y}_{i+1}.$$

Corollary 4.2 The notation being as in the proposition, assume that $tr(\mathbf{w}_i)$ and $det(\mathbf{w}_i)$ are relatively prime for i=0,1,2,3 and that $det(\mathbf{y}_0,\mathbf{y}_1,\mathbf{y}_2)\neq 0$. Then for each i>0,

- (a) the points y_i, y_{i+1}, y_{i+2} are linearly independent,
- (b) $tr(\mathbf{w}_i)$ and $det(\mathbf{w}_i)$ are relatively prime,
- (c) the matrix \mathbf{w}_i is primitive,

- (d) the content of \mathbf{y}_i divides $\det(\mathbf{y}_2)/\det(\mathbf{w}_2)$,
- (e) the point $\det(\mathbf{w}_2) \mathbf{z}_i$ belongs to \mathbb{Z}^3 and its content divides $\det(\mathbf{y}_2) \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2)$.

Proof The assertion (a) follows from Proposition 4.1(d). Since (b) holds by hypothesis for i = 0, 1, 2, 3, and since $det(\mathbf{w}_2)$ and $det(\mathbf{w}_i)$ have the same prime factors for each $i \geq 2$, the assertion (b) follows, by induction on i, from the fact that Proposition 4.1(a) gives $tr(\mathbf{w}_{i+1}) \equiv tr(\mathbf{w}_i) tr(\mathbf{w}_{i-1})$ modulo $det(\mathbf{w}_2)$ for each $i \geq 3$. Then (c) follows since the content of \mathbf{w}_i divides both $tr(\mathbf{w}_i)$ and $det(\mathbf{w}_i)$.

Let $N \in \mathcal{M}$ such that $\mathbf{y}_2 = \mathbf{w}_2 N$. For each i, we have $\mathbf{y}_i = \mathbf{w}_i N_i$ where $N_i = N$ if i is even and $N_i = {}^t N$ if i is odd. This gives $\mathbf{y}_i \operatorname{Adj}(N_i) = \det(N) \mathbf{w}_i$ where $\operatorname{Adj}(N_i) \in \mathcal{M}$ denotes the adjoint of N_i . Thus, by (c), the content of \mathbf{y}_i divides $\det(N) = \det(\mathbf{y}_2) / \det(\mathbf{w}_2)$, as claimed in (d).

The fact that $\det(\mathbf{w}_2) \mathbf{z}_i$ belongs to \mathbb{Z}^3 is clear for i = 0, 1, 2 because $\det(\mathbf{w}_0)$ and $\det(\mathbf{w}_1)$ divide $\det(\mathbf{w}_2)$. Then Proposition 4.1(c) shows, by induction on i, that $\det(\mathbf{w}_2) \mathbf{z}_i \in \mathbb{Z}^3$ for each $i \geq 0$. Moreover, the content of that point divides that of $\det(\mathbf{w}_2)^2 \mathbf{z}_i \wedge \mathbf{z}_{i+1}$ which, by (d) and Proposition 4.1(e), divides $\det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \det(\mathbf{y}_2)$. This proves (e).

Example 4.3 Let $(\mathbf{w}_i)_{i\geq 0}$, N and $(\mathbf{y}_i)_{i\geq 0}$ be as in Example 3.3. Since \mathbf{w}_0 , \mathbf{w}_1 and N are congruent to matrices of the form $\binom{\pm 1}{0} \binom{*}{0}$ modulo a and have determinant $\pm a$, all matrices \mathbf{w}_i and \mathbf{y}_i are congruent to matrices of the same form modulo a and their determinant is, up to sign, a power of a. Thus these matrices have relatively prime trace and determinant, and so are primitive for each $i\geq 0$. Since $\det(\mathbf{y}_0,\mathbf{y}_1,\mathbf{y}_2)=a^4(c-b)$, Proposition 4.1(e) shows that the points $\mathbf{z}_i=\det(\mathbf{w}_i)^{-1}\mathbf{y}_i\wedge\mathbf{y}_{i+1}$ satisfy $\mathbf{z}_i\wedge\mathbf{z}_{i+1}=(-1)^ia^2(c-b)\mathbf{y}_{i+1}$ for each $i\geq 0$. Moreover, we find that $a^{-1}\mathbf{z}_0=(0,0,b-c)$, $a^{-1}\mathbf{z}_1=(a,-1+a(b+1),-b)$ and $a^{-1}\mathbf{z}_2=(a,-1+a(c+1),-c)$ are integer points. Then Proposition 4.1(c) shows, by induction on i, that $a^{-1}\mathbf{z}_i\in\mathbb{Z}^3$ for each $i\geq 0$. In particular, if c=b+1, we deduce from the relation $a^{-1}\mathbf{z}_i\wedge a^{-1}\mathbf{z}_{i+1}=\pm\mathbf{y}_{i+1}$ that $a^{-1}\mathbf{z}_i$ is a primitive integer point for each $i\geq 0$.

5 Growth Estimates

Define the *norm* of a 2 × 2 matrix $\mathbf{w} = (w_{k,\ell}) \in \operatorname{Mat}_{2\times 2}(\mathbb{R})$ as the largest absolute value of its coefficients $\|\mathbf{w}\| = \max_{1 \le k,\ell \le 2} |w_{k,\ell}|$, and define $\gamma = (1 + \sqrt{5})/2$ as in the introduction. In this section, we provide growth estimates for the norm and determinant of elements of certain Fibonacci sequences in $\operatorname{GL}_2(\mathbb{R})$. We first establish two basic lemmas.

Lemma 5.1 Let $\mathbf{w}_0, \mathbf{w}_1 \in GL_2(\mathbb{R})$. Suppose that, for i = 0, 1, the matrix \mathbf{w}_i is of the form $\binom{a \ b}{c \ d}$ with $1 \le a \le \min\{b, c\}$ and $\max\{b, c\} \le d$. Then all matrices of the Fibonacci sequence $(\mathbf{w}_i)_{i \ge 0}$ constructed on \mathbf{w}_0 and \mathbf{w}_1 have this form and for each $i \ge 0$, they satisfy

(9)
$$\|\mathbf{w}_i\| \|\mathbf{w}_{i+1}\| < \|\mathbf{w}_{i+2}\| \le 2\|\mathbf{w}_i\| \|\mathbf{w}_{i+1}\|.$$

Proof The first assertion follows by recurrence on i and is left to the reader. It implies that $\|\mathbf{w}_i\|$ is equal to the element of index (2,2) of \mathbf{w}_i for each $i \geq 0$. Then (9) follows by observing that, for any 2×2 matrices $\mathbf{w} = (w_{k,\ell})$ and $\mathbf{w}' = (w'_{k,\ell})$ with positive real coefficients, the product $\mathbf{w}'\mathbf{w} = (w'_{k,\ell})$ satisfies $w_{2,2}w'_{2,2} < w''_{2,2} \leq 2\|\mathbf{w}\|\|\mathbf{w}'\|$.

Lemma 5.2 Let $(r_i)_{i\geq 0}$ be a sequence of positive real numbers. Assume that there exist constants $c_1, c_2 > 0$ such that $c_1r_ir_{i+1} \leq r_{i+2} \leq c_2r_ir_{i+1}$ for each $i \geq 0$. Then there also exist constants $c_3, c_4 > 0$ such that $c_3r_i^{\gamma} \leq r_{i+1} \leq c_4r_i^{\gamma}$ for each $i \geq 0$.

Proof Define $c_3 = c_1^{\gamma}/(cc_2)$ and $c_4 = cc_2^{\gamma}/c_1$, where $c \ge 1$ is chosen so that the condition $c_3 \le r_{i+1}/r_i^{\gamma} \le c_4$ holds for i = 0. Assuming that the same condition holds for some index $i \ge 0$, we find

$$\frac{r_{i+2}}{r_{i+1}^{\gamma}} \ge c_1 \frac{r_i}{r_{i+1}^{1/\gamma}} \ge c_1 c_4^{-1/\gamma} = c^{1/\gamma^2} c_3 \ge c_3,$$

and similarly $r_{i+2}/r_{i+1}^{\gamma} \le c_4$. This proves the lemma by recurrence on *i*.

Proposition 5.3 Let $(\mathbf{w}_i)_{i\geq 0}$ be a Fibonacci sequence in $GL_2(\mathbb{R})$. Suppose that there exist real numbers $c_1, c_2 > 0$ such that

(10)
$$c_1 \|\mathbf{w}_i\| \|\mathbf{w}_{i+1}\| \le \|\mathbf{w}_{i+2}\| \le c_2 \|\mathbf{w}_i\| \|\mathbf{w}_{i+1}\|$$

for each $i \ge 0$. Then there exist constants $c_3, c_4 > 0$ for which the inequalities

$$(11) \quad c_3 \|\mathbf{w}_i\|^{\gamma} \le \|\mathbf{w}_{i+1}\| \le c_4 \|\mathbf{w}_i\|^{\gamma}, \quad c_3 |\det(\mathbf{w}_i)|^{\gamma} \le |\det(\mathbf{w}_{i+1})| \le c_4 |\det(\mathbf{w}_i)|^{\gamma}$$

hold for each $i \geq 0$. Moreover, if there exist $\alpha, \beta \geq 0$ such that

(12)
$$(c_2 ||\mathbf{w}_i||)^{\alpha} \le |\det(\mathbf{w}_i)| \le (c_1 ||\mathbf{w}_i||)^{\beta}$$

holds for i = 0, 1, then this relation extends to each $i \ge 0$.

Proof The first assertion of the proposition follows from Lemma 5.2 applied once with $r_i = ||\mathbf{w}_i||$ and once with $r_i = |\det(\mathbf{w}_i)|$. To prove the second assertion, assume that for some index $j \ge 0$ the condition (12) holds both with i = j and i = j + 1. We find

$$|\det(\mathbf{w}_{j+2})| = |\det(\mathbf{w}_{j+1})| |\det(\mathbf{w}_{j})| \ge (c_2 ||\mathbf{w}_{j+1}||)^{\alpha} (c_2 ||\mathbf{w}_{j}||)^{\alpha} \ge (c_2 ||\mathbf{w}_{j+2}||)^{\alpha}$$

and similarly $|\det(\mathbf{w}_{j+2})| \le (c_1 ||\mathbf{w}_{j+2}||)^{\beta}$. Therefore, (12) holds with i = j + 2. By recurrence on i, this shows that (12) holds for each $i \ge 0$ if it holds for i = 0, 1.

Example 5.4 Let the notation be as in Example 3.3. Since \mathbf{w}_0 and \mathbf{w}_1 satisfy the hypotheses of Lemma 5.1, the Fibonacci sequence $(\mathbf{w}_i)_{i\geq 0}$ that they generate fulfills for each $i\geq 0$ the condition (10) of Proposition 5.3 with $c_1=1$ and $c_2=2$. As $\det(\mathbf{w}_0)=\det(\mathbf{w}_1)=a$, we also note that for this choice of c_1 and c_2 the condition (12) holds for i=0,1 with

$$\alpha = \frac{\log a}{\log(2a(c+1))} \quad \text{and} \quad \beta = \frac{\log a}{\log(a(b+1))}.$$

Then, for an appropriate choice of c_3 , $c_4 > 0$, both (11) and (12) hold for each $i \ge 0$. Moreover, the estimates (9) of Lemma 5.1 imply that the sequence $(\mathbf{w}_i)_{i\ge 0}$ is unbounded.

6 Construction of a Real Number

Given sequences of non-negative real numbers with general terms a_i and b_i , we write $a_i \ll b_i$ or $b_i \gg a_i$ if there exists a real number c > 0 such that $a_i \leq cb_i$ for all sufficiently large values of i. We write $a_i \sim b_i$ when $a_i \ll b_i$ and $b_i \ll a_i$. With this notation, we now prove the following result (cf. [11, §5]).

Proposition 6.1 Let $(\mathbf{w}_i)_{i\geq 0}$ be an admissible Fibonacci sequence in \mathbb{M} and let $(\mathbf{y}_i)_{i\geq 0}$ be a corresponding sequence of symmetric matrices in \mathbb{M} . Assume that $(\mathbf{w}_i)_{i\geq 0}$ is unbounded and satisfies the conditions

$$(13) \quad \|\mathbf{w}_{i+1}\| \sim \|\mathbf{w}_i\|^{\gamma}, \quad |\det(\mathbf{w}_{i+1})| \sim |\det(\mathbf{w}_i)|^{\gamma} \quad and \quad |\det(\mathbf{w}_i)| \ll \|\mathbf{w}_i\|^{\beta}$$

for a real number β with $0 < \beta < 2$. Viewing each \mathbf{y}_i as a point in \mathbb{Z}^3 , assume that $\det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \neq 0$ and define $\mathbf{z}_i = (\det(\mathbf{w}_i))^{-1}\mathbf{y}_i \wedge \mathbf{y}_{i+1}$ for each $i \geq 0$. Then we have

(14)
$$\|\mathbf{v}_i\| \sim \|\mathbf{w}_i\|, \quad |\det(\mathbf{v}_i)| \sim |\det(\mathbf{w}_i)|, \quad \|\mathbf{z}_i\| \sim \|\mathbf{w}_{i-1}\|,$$

and there exists a non-zero point **y** of \mathbb{R}^3 with $det(\mathbf{y}) = 0$ such that

(15)
$$\|\mathbf{y}_i \wedge \mathbf{y}\| \sim \frac{|\det(\mathbf{w}_i)|}{\|\mathbf{w}_i\|} \quad \text{and} \quad |\langle \mathbf{z}_i, \mathbf{y} \rangle| \sim \frac{|\det(\mathbf{w}_{i+1})|}{\|\mathbf{w}_{i+2}\|}.$$

If $\beta < 1$, the coordinates of such a point \mathbf{y} are linearly independent over \mathbb{Q} and we may assume that $\mathbf{y} = (1, \xi, \xi^2)$ for some real number ξ with $[\mathbb{Q}(\xi):\mathbb{Q}] > 2$.

Proof For each $i \ge 0$, let N_i denote the element of \mathfrak{M} for which $\mathbf{y}_i = \mathbf{w}_i N_i$. Putting $N = N_0$, we have by hypothesis $N_i = N$ when i is even and $N_i = {}^t N$ otherwise. This implies that $\|\mathbf{y}_i\| \sim \|\mathbf{w}_i\|$ and $|\det(\mathbf{y}_i)| \sim |\det(\mathbf{w}_i)|$. In the sequel, we will repeatedly use these relations as well as the hypothesis (13).

We claim that we have

(16)
$$\|\mathbf{y}_i \wedge \mathbf{y}_{i+1}\| \ll |\det(\mathbf{w}_i)| \|\mathbf{w}_{i-1}\|.$$

To prove this, we define $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and note that for each $i \ge 0$ the coefficients of the diagonal of $\mathbf{y}_i J \mathbf{y}_{i+1}$ coincide with the first and third coefficients of $\mathbf{y}_i \wedge \mathbf{y}_{i+1}$ while the sum of the coefficients of $\mathbf{y}_i J \mathbf{y}_{i+1}$ outside of the diagonal is the middle coefficient of $\mathbf{y}_i \wedge \mathbf{y}_{i+1}$ multiplied by -1. This gives

$$||\mathbf{y}_i \wedge \mathbf{y}_{i+1}|| \le 2||\mathbf{y}_i J \mathbf{y}_{i+1}||.$$

Since $\mathbf{y}_{i+1} = \mathbf{y}_i N_i^{-1} \mathbf{y}_{i-1}$ and since $\mathbf{x} J \mathbf{x} = \det(\mathbf{x}) J$ for any symmetric matrix \mathbf{x} , we also find that $\mathbf{y}_i J \mathbf{y}_{i+1} = \det(\mathbf{y}_i) J N_i^{-1} \mathbf{y}_{i-1}$ and therefore $\|\mathbf{y}_i J \mathbf{y}_{i+1}\| \ll |\det(\mathbf{w}_i)| \|\mathbf{w}_{i-1}\|$. Combining this with (17) proves our claim (16), which can also be written in the form

$$||\mathbf{z}_i|| \ll ||\mathbf{w}_{i-1}||.$$

As $\|\mathbf{y}_i\| \sim \|\mathbf{w}_i\|$ and $\|\mathbf{y}_{i+1}\| \sim \|\mathbf{w}_i\|^{\gamma}$, the estimate (16) shows, in the notation of §2, that

(19)
$$\operatorname{dist}([\mathbf{y}_i], [\mathbf{y}_{i+1}]) \le c\delta_i, \quad \text{where} \quad \delta_i = \frac{|\operatorname{det}(\mathbf{w}_i)|}{\|\mathbf{w}_i\|^2}$$

and where c is some positive constant which does not depend on i. Since by hypothesis we have $|\det(\mathbf{w}_i)| \ll ||\mathbf{w}_i||^{\beta}$ with $\beta < 2$, we find that $\lim_{i \to \infty} \delta_i = 0$. Since moreover, we have $\delta_{i+1} \sim \delta_i^{\gamma}$, we deduce that there exists an index $i_0 \ge 1$ such that $\delta_{i+1} \le \delta_i/4$ for each $i \ge i_0$. Then, using (5), we deduce that

(20)
$$\operatorname{dist}([\mathbf{y}_i], [\mathbf{y}_j]) \le \sum_{k=i}^{j-1} 2^{k-i} \operatorname{dist}([\mathbf{y}_k], [\mathbf{y}_{k+1}]) \le c \sum_{k=i}^{j-1} 2^{k-i} \delta_k \le 2c \delta_i$$

for each choice of i and j with $i_0 \le i < j$. Thus the sequence $([\mathbf{y}_i])_{i\ge 0}$ converges in $\mathbb{P}^2(\mathbb{R})$ to a point $[\mathbf{y}]$ for some non-zero $\mathbf{y} \in \mathbb{R}^3$. Since the ratio $|\det(\mathbf{y}_i)|/||\mathbf{y}_i||^2$ depends only on the class $[\mathbf{y}_i]$ of \mathbf{y}_i in $\mathbb{P}^2(\mathbb{R})$ and tends to 0 like δ_i as $i \to \infty$, we deduce by continuity that $|\det(\mathbf{y})|/||\mathbf{y}||^2 = 0$ and thus that $\det(\mathbf{y}) = 0$. By continuity, (20) also leads to $\operatorname{dist}([\mathbf{y}_i], [\mathbf{y}]) \le 2c\delta_i$ for each $i \ge i_0$, and so

$$\|\mathbf{y}_i \wedge \mathbf{y}\| \ll \frac{|\det(\mathbf{w}_i)|}{\|\mathbf{w}_i\|}.$$

Applying (3) together with the above estimates (18) and (21), we find

$$\|\langle \mathbf{z}_{i}, \mathbf{y} \rangle \mathbf{y}_{i+2} - \langle \mathbf{z}_{i}, \mathbf{y}_{i+2} \rangle \mathbf{y}\| \leq 2\|\mathbf{z}_{i}\| \|\mathbf{y}_{i+2} \wedge \mathbf{y}\| \ll \|\mathbf{w}_{i-1}\| \frac{|\det(\mathbf{w}_{i+2})|}{\|\mathbf{w}_{i+2}\|} \ll |\det(\mathbf{w}_{i+1})| \delta_{i}.$$

Using Proposition 4.1(d), we also get

(22)
$$\|\langle \mathbf{z}_{i}, \mathbf{y}_{i+2} \rangle \mathbf{y} \| = \frac{|\det(\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2})|}{|\det(\mathbf{w}_{i})|} \|\mathbf{y}\| \sim |\det(\mathbf{w}_{i+1})|.$$

Combining the above two estimates, we deduce that $\|\langle \mathbf{z}_i, \mathbf{y} \rangle \mathbf{y}_{i+2}\| \sim |\det(\mathbf{w}_{i+1})|$ and therefore that $|\langle \mathbf{z}_i, \mathbf{y} \rangle| \sim |\det(\mathbf{w}_{i+1})| / \|\mathbf{w}_{i+2}\|$. The latter estimate is the second half of (15). It implies

$$\|\langle \mathbf{z}_{i+1}, \mathbf{y} \rangle \mathbf{y}_i\| \sim \frac{|\det(\mathbf{w}_{i+2})|}{\|\mathbf{w}_{i+3}\|} \|\mathbf{w}_i\| \sim |\det(\mathbf{w}_i)| \delta_{i+1}.$$

Since $\langle \mathbf{z}_{i+1}, \mathbf{y}_i \rangle = \det(\mathbf{w}_{i-1})^{-1} \langle \mathbf{z}_i, \mathbf{y}_{i+2} \rangle$, the estimate (22) can also be written in the form $\|\langle \mathbf{z}_{i+1}, \mathbf{y}_i \rangle \mathbf{y}\| \sim |\det(\mathbf{w}_i)|$. Then, applying (3) once again, we find

$$2\|\mathbf{z}_{i+1}\|\|\mathbf{y}_i \wedge \mathbf{y}\| \ge \|\langle \mathbf{z}_{i+1}, \mathbf{y} \rangle \mathbf{y}_i - \langle \mathbf{z}_{i+1}, \mathbf{y}_i \rangle \mathbf{y}\| \gg |\det(\mathbf{w}_i)|.$$

Since, by (18) and (21), we have $\|\mathbf{z}_{i+1}\| \ll \|\mathbf{w}_i\|$ and $\|\mathbf{y}_i \wedge \mathbf{y}\| \ll |\det(\mathbf{w}_i)|/\|\mathbf{w}_i\|$, we conclude from this that $\|\mathbf{z}_{i+1}\| \sim \|\mathbf{w}_i\|$ and $\|\mathbf{y}_i \wedge \mathbf{y}\| \sim |\det(\mathbf{w}_i)|/\|\mathbf{w}_i\|$, which completes the proof of (14) and (15).

Now, assume that $\beta < 1$, and let $\mathbf{u} \in \mathbb{Z}^3$ such that $\langle \mathbf{u}, \mathbf{y} \rangle = 0$. By (3), we have

(23)
$$2\|\mathbf{u}\|\|\mathbf{y}_i \wedge \mathbf{y}\| \ge \|\langle \mathbf{u}, \mathbf{y} \rangle \mathbf{y}_i - \langle \mathbf{u}, \mathbf{y}_i \rangle \mathbf{y}\| = |\langle \mathbf{u}, \mathbf{y}_i \rangle| \|\mathbf{y}\|$$

for each $i \geq 0$. Since $\|\mathbf{y}_i \wedge \mathbf{y}\| \sim |\det(\mathbf{w}_i)|/\|\mathbf{w}_i\| \ll \|\mathbf{w}_i\|^{\beta-1}$ tends to 0 as $i \to \infty$, we deduce from (23) that the integer $\langle \mathbf{u}, \mathbf{y}_i \rangle$ must vanish for all sufficiently large values of i. This implies that $\mathbf{u} = 0$ because it follows from the hypothesis $\det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \neq 0$ and the formula in Proposition 4.1(d) that any three consecutive points of the sequence $(\mathbf{y}_i)_{i\geq 0}$ are linearly independent. Thus the coordinates of \mathbf{y} must be linearly independent over \mathbb{Q} . In particular, the first coordinate of \mathbf{y} is non-zero and, dividing \mathbf{y} by this coordinate, we may assume that it is equal to 1. Then, upon denoting by ξ the second coordinate of \mathbf{y} , the condition $\det(\mathbf{y}) = 0$ implies that $\mathbf{y} = (1, \xi, \xi^2)$ and thus $[\mathbb{Q}(\xi):\mathbb{Q}] > 2$.

7 Estimates for the Exponent $\widehat{\omega}_2$

We first prove the following result and then deduce from it our main theorem in $\S 1$.

Proposition 7.1 Let $(\mathbf{w}_i)_{i\geq 0}$ be an admissible Fibonacci sequence in \mathcal{M} , and let $(\mathbf{y}_i)_{i\geq 0}$ be a corresponding sequence of symmetric matrices in \mathcal{M} . Assume that $(\mathbf{w}_i)_{i\geq 0}$ is unbounded and satisfies

$$(24) \|\mathbf{w}_{i+1}\| \sim \|\mathbf{w}_i\|^{\gamma}, |\det(\mathbf{w}_{i+1})| \sim |\det(\mathbf{w}_i)|^{\gamma}, \|\mathbf{w}_i\|^{\alpha} \ll |\det(\mathbf{w}_i)| \ll \|\mathbf{w}_i\|^{\beta}$$

for real numbers α and β with $0 \le \alpha \le \beta < \gamma^{-2}$. Assume moreover that $\operatorname{tr}(\mathbf{w}_i)$ and $\det(\mathbf{w}_i)$ are relatively prime for i = 0, 1, 2, 3 and that $\det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \ne 0$. Then the real number ξ which comes out from the last assertion of Proposition 6.1 satisfies

$$\gamma^2 - \beta \gamma < \widehat{\omega}_2(\xi) < \gamma^2 - \alpha \gamma.$$

Proof Put $\mathbf{y} = (1, \xi, \xi^2)$ and define the sequence $(\mathbf{z}_i)_{i \geq 0}$ as in Proposition 4.1. Since $\|\mathbf{y}\| \geq 1$, the inequality (3) combined with the estimates of Proposition 6.1 shows that, for any point $\mathbf{z} \in \mathbb{Z}^3$ and any index $i \geq 1$, we have

$$(25) |\langle \mathbf{z}, \mathbf{y}_i \rangle| \leq \|\mathbf{y}_i\| |\langle \mathbf{z}, \mathbf{y} \rangle| + 2\|\mathbf{z}\| \|\mathbf{y}_i \wedge \mathbf{y}\| < c_5 \max \left\{ \|\mathbf{w}_i\| |\langle \mathbf{z}, \mathbf{y} \rangle|, \|\mathbf{z}\| \frac{|\det(\mathbf{w}_i)|}{\|\mathbf{w}_i\|} \right\},$$

with a constant $c_5 > 0$ which is independent of **z** and *i*. Suppose that a point **z** $\in \mathbb{Z}^3$ satisfies

(26)
$$0 < \|\mathbf{z}\| \le Z_i := c_6 \|\mathbf{w}_i\| \text{ and } |\langle \mathbf{z}, \mathbf{y} \rangle| \le \frac{|\det(\mathbf{w}_{i+1})|}{\|\mathbf{w}_{i+2}\|},$$

where $c_6 = c_5^{-1} |\det(\mathbf{y}_2)|^{-1}$. Using (25) with *i* replaced by i + 1, we find

$$|\langle \mathbf{z}, \mathbf{y}_{i+1} \rangle| \ll |\det(\mathbf{w}_i)|^{\gamma} ||\mathbf{w}_i||^{-1/\gamma}.$$

Since $|\det(\mathbf{w}_i)| \ll ||\mathbf{w}_i||^{\beta}$ with $\beta < \gamma^{-2}$, this gives $|\langle \mathbf{z}, \mathbf{y}_{i+1} \rangle| < 1$ provided that i is sufficiently large. Then the integer $\langle \mathbf{z}, \mathbf{y}_{i+1} \rangle$ must be zero and, by Proposition 4.1(e), we deduce that $\mathbf{z} = a\mathbf{z}_i + b\mathbf{z}_{i+1}$ for some $a, b \in \mathbb{Q}$ where b is given by

$$\mathbf{z}_i \wedge \mathbf{z} = b\mathbf{z}_i \wedge \mathbf{z}_{i+1} = (-1)^i b \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \det(\mathbf{w}_2)^{-1} \mathbf{y}_{i+1}.$$

Since $\det(\mathbf{w}_2)\mathbf{z}_i \wedge \mathbf{z} \in \mathbb{Z}^3$ and since, by Corollary 4.2(d), the content of \mathbf{y}_{i+1} divides $\det(\mathbf{y}_2)/\det(\mathbf{w}_2)$, this implies that $b \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \det(\mathbf{y}_2)/\det(\mathbf{w}_2)$ is an integer. So, if b is non-zero, it satisfies the lower bound

$$|b| \ge |\det(\mathbf{w}_2)/(\det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) \det(\mathbf{y}_2))|.$$

We note that $\langle \mathbf{z}_i, \mathbf{y}_i \rangle = 0$ and by Proposition 4.1(d) that

$$\langle \mathbf{z}_{i+1}, \mathbf{y}_i \rangle = \frac{\det(\mathbf{y}_i, \mathbf{y}_{i+1}, \mathbf{y}_{i+2})}{\det(\mathbf{w}_{i+1})} = (-1)^i \frac{\det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2)}{\det(\mathbf{w}_2)} \det(\mathbf{w}_i).$$

Therefore, if $b \neq 0$, the point $\mathbf{z} = a\mathbf{z}_i + b\mathbf{z}_{i+1}$ satisfies

$$|\langle \mathbf{z}, \mathbf{y}_i \rangle| = |b| |\langle \mathbf{z}_{i+1}, \mathbf{y}_i \rangle| \ge |\det(\mathbf{y}_2)|^{-1} |\det(\mathbf{w}_i)| = c_5 c_6 |\det(\mathbf{w}_i)|.$$

However, (25) and (26) give

$$|\langle \mathbf{z}, \mathbf{y}_i \rangle| < c_5 \max \left\{ \frac{|\det(\mathbf{w}_{i+1})| ||\mathbf{w}_i||}{||\mathbf{w}_{i+2}||}, c_6 |\det(\mathbf{w}_i)| \right\} = c_5 c_6 |\det(\mathbf{w}_i)|$$

if *i* is sufficiently large, because the ratio $|\det(\mathbf{w}_{i+1})| |\mathbf{w}_i| / ||\mathbf{w}_{i+2}|| \ll ||\mathbf{w}_i||^{\beta\gamma-\gamma}$ tends to 0 as $i \to \infty$. Comparison with the previous inequality then forces b = 0, and so we get $\mathbf{z} = a\mathbf{z}_i$ with $a \neq 0$. Since $\det(\mathbf{w}_2)\mathbf{z}_i$ is, by Corollary 4.2(e), an integer point whose content divides $\det(\mathbf{y}_2) \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2)$, we deduce that

$$a \det(\mathbf{y}_2) \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) / \det(\mathbf{w}_2)$$

is a non-zero integer and therefore, using the second part of (15) in Proposition 6.1, we find that

$$|\langle \mathbf{z}, \mathbf{y} \rangle| = |a| |\langle \mathbf{z}_i, \mathbf{y} \rangle| \ge \frac{|\det(\mathbf{w}_2)|}{|\det(\mathbf{y}_2) \det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2)|} |\langle \mathbf{z}_i, \mathbf{y} \rangle| \gg \frac{|\det(\mathbf{w}_{i+1})|}{\|\mathbf{w}_{i+2}\|}.$$

Since this holds for any point **z** satisfying (26) with *i* sufficiently large, we deduce that for any index $i \ge 0$ and any point $\mathbf{z} \in \mathbb{Z}^3$ with $0 < ||\mathbf{z}|| \le Z_i$ we have

$$|\langle \mathbf{z}, \mathbf{y} \rangle| \gg \frac{|\det(\mathbf{w}_{i+1})|}{\|\mathbf{w}_{i+2}\|} \gg \|\mathbf{w}_i\|^{\gamma \alpha - \gamma^2} \gg Z_i^{\gamma \alpha - \gamma^2}.$$

This shows that $\widehat{\omega}_2(\xi) \leq \gamma^2 - \gamma \alpha$.

Finally, for any real number $Z \ge \|\mathbf{z}_0\|$, there exists an index $i \ge 0$ such that $\|\mathbf{z}_i\| \le Z < \|\mathbf{z}_{i+1}\|$ and, for such choice of i, we find by Proposition 6.1 that

$$|\langle \mathbf{z}_i, \mathbf{y} \rangle| \ll \frac{|\det(\mathbf{w}_{i+1})|}{\|\mathbf{w}_{i+2}\|} \ll \|\mathbf{w}_i\|^{\beta\gamma - \gamma^2} \sim \|\mathbf{z}_{i+1}\|^{\beta\gamma - \gamma^2} \ll Z^{\beta\gamma - \gamma^2},$$

showing that $\widehat{\omega}_2(\xi) \geq \gamma^2 - \gamma \beta$.

Let us say that a real number ξ is of "Fibonacci type" if there exist an unbounded Fibonacci sequence $(\mathbf{w}_i)_{i\geq 0}$ in \mathcal{M} and a real number θ with $\theta>1/\gamma$ such that $\|(\xi,-1)\mathbf{w}_i\|\leq \|\mathbf{w}_i\|^{-\theta}$ for each sufficiently large index i. There are countably many such numbers, and any real number ξ obtained from Proposition 6.1 with $\beta<\gamma^{-2}$ is of this type. The following corollary shows that the exponents $\widehat{\omega}_2(\xi)$ attached to transcendental numbers of Fibonacci type are dense in the interval $[2,\gamma^2]$. By Jarník's formula (1), this implies our main theorem in $\S1$.

Corollary 7.2 Let t and ϵ be real numbers with $0 < t < \gamma^{-2}$ and $\epsilon > 0$. Then there exist a transcendental real number ξ and an unbounded Fibonacci sequence $(\mathbf{w}_i)_{i \geq 0}$ in M which satisfy

(a) $\|(\xi, -1)\mathbf{w}_i\| \le \|\mathbf{w}_i\|^{-1+t}$ for each sufficiently large i,

(b)
$$\gamma^2 - t\gamma \le \widehat{\omega}_2(\xi) \le \gamma^2 - (t - \epsilon)\gamma$$
.

Proof Since t < 1, there exist integers k and ℓ with $0 < \ell < k$ and $t - \epsilon \le \ell/(k+2) \le \ell/k < t$. For such a choice of k and ℓ , consider the Fibonacci sequence $(\mathbf{w}_i)_{i \ge 0}$ of Example 3.3 with parameters $a = 2^\ell$, $b = 2^{k-\ell} - 1$ and $c = 2^{k-\ell}$. According to Example 4.3, \mathbf{w}_i has relatively prime trace and determinant for each $i \ge 0$ and the corresponding sequence of symmetric matrices $(\mathbf{y}_i)_{i \ge 0}$ satisfies $\det(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2) = 2^{4\ell} \ne 0$. Moreover, Example 5.4 shows that $(\mathbf{w}_i)_{i \ge 0}$ is unbounded and satisfies the estimates (24) of Proposition 7.1 with $\alpha = \ell/(k+2)$ and $\beta = \ell/k$ (note that the example provides a slightly larger value for α). So, Proposition 7.1 applies and shows that the corresponding real number ξ constructed by Proposition 6.1 satisfies the above condition (b). In particular, ξ is transcendental since $\widehat{\omega}_2(\xi) > 2$. Moreover, since $\|(\xi, -1)\mathbf{w}_i\| \sim \|(\xi, -1)\mathbf{y}_i\| \sim \|\mathbf{y}_i \wedge \mathbf{y}\|$, the first estimate in (15) leads to (a).

https://doi.org/10.4153/CJM-2007-009-3 Published online by Cambridge University Press

Acknowlegments The author warmly thanks Yann Bugeaud for pointing out the results of Jarník in [7] which brought a notable simplification to the present paper.

References

- [1] J.-P. Allouche, J. L. Davison, M. Queffélec, L. Q. Zamboni, *Transcendence of Sturmian or morphic continued fractions*. J. Number Theory **91**(2001), no. 1, 39–66.
- [2] B. Arbour and D. Roy, A Gel'fond type criterion in degree two. Acta Arith. 11(2004), no. 1, 97-103.
- [3] Y. Bugeaud and M. Laurent, Exponents of Diophantine approximation and sturmian continued fractions. Ann Inst. Fourier (Grenoble) 55(2005), no. 3, 773–804.
- [4] H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic irrationals. Acta Arith. 13(1967), 169–176.
- [5] _____, Approximation to real numbers by algebraic integers. Acta Arith. 15(1969), 393–416.
- [6] S. Fischler, Spectres pour l'approximation d'un nombre réel et de son carré. C. R. Acad. Sci. Paris 339(2004), no. 10, 679–682.
- [7] V. Jarník, *Zum Khintchineschen Übertragungssatz*. Trudy Tbilisskogo mathematicheskogo instituta im. A. M. Razmadze = Travaux de l'Institut mathématique de Tbilissi **3**(1938), 193–212.
- [8] D. Roy, Approximation simultanée d'un nombre et de son carré. C. R. Acad. Sci., Paris 336(2003), no. 1, 1–6.
- [9] _____, Approximation to real numbers by cubic algebraic integers. I. Proc. London Math. Soc. 88(2004), no. 1, 42–62.
- [10] _____, Approximation to real numbers by cubic algebraic integers. II. Ann. of Math. 158(2003), no. 3, 1081–1087.
- [11] ______, *Diophantine approximation in small degree.* In: Number Theory, CRM Proceedings and Lecture Notes 36, American Mathematical Society, Providence, RI, 2004, pp. 269–285.
- [12] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics 785, Springer-Verlag, Berlin, 1980.

Département de Mathématiques Université d'Ottawa 585 King Edward Ottawa, ON K1N 6N5 e-mail: droy@uottawa.ca