On Two Exponents of Approximation Related to a Real Number and Its Square

Damien Roy

Abstract

For each real number ξ, let $\widehat{\lambda}_{2}(\xi)$ denote the supremum of all real numbers λ such that, for each sufficiently large X, the inequalities $\left|x_{0}\right| \leq X,\left|x_{0} \xi-x_{1}\right| \leq X^{-\lambda}$ and $\left|x_{0} \xi^{2}-x_{2}\right| \leq X^{-\lambda}$ admit a solution in integers x_{0}, x_{1} and x_{2} not all zero, and let $\widehat{\omega}_{2}(\xi)$ denote the supremum of all real numbers ω such that, for each sufficiently large X, the dual inequalities $\left|x_{0}+x_{1} \xi+x_{2} \xi^{2}\right| \leq X^{-\omega}$, $\left|x_{1}\right| \leq X$ and $\left|x_{2}\right| \leq X$ admit a solution in integers x_{0}, x_{1} and x_{2} not all zero. Answering a question of Y. Bugeaud and M. Laurent, we show that the exponents $\widehat{\lambda}_{2}(\xi)$ where ξ ranges through all real numbers with $[\mathbb{O}(\xi): \mathbb{O}]>2$ form a dense subset of the interval $[1 / 2,(\sqrt{5}-1) / 2]$ while, for the same values of ξ, the dual exponents $\widehat{\omega}_{2}(\xi)$ form a dense subset of $[2,(\sqrt{5}+3) / 2]$. Part of the proof rests on a result of V. Jarník showing that $\widehat{\lambda}_{2}(\xi)=1-\widehat{\omega}_{2}(\xi)^{-1}$ for any real number ξ with $[\mathbb{O}(\xi): \mathbb{O}]>2$.

1 Introduction

Let ξ and η be real numbers. Following the notation of Y. Bugeaud and M. Laurent [3], we define $\widehat{\lambda}(\xi, \eta)$ to be the supremum of all real numbers λ such that the inequalities

$$
\left|x_{0}\right| \leq X, \quad\left|x_{0} \xi-x_{1}\right| \leq X^{-\lambda} \quad \text { and } \quad\left|x_{0} \eta-x_{2}\right| \leq X^{-\lambda}
$$

admit a non-zero integer solution $\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{Z}^{3}$ for each sufficiently large value of X. Similarly, we define $\widehat{\omega}(\xi, \eta)$ to be the supremum of all real numbers ω such that the inequalities

$$
\left|x_{0}+x_{1} \xi+x_{2} \eta\right| \leq X^{-\omega}, \quad\left|x_{1}\right| \leq X \quad \text { and } \quad\left|x_{2}\right| \leq X
$$

admit a non-zero solution $\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{Z}^{3}$ for each sufficiently large value of X. An application of Dirichlet box principle shows that we have $1 / 2 \leq \hat{\lambda}(\xi, \eta)$ and $2 \leq \widehat{\omega}(\xi, \eta)$. Moreover, in the (non-degenerate) case where $1, \xi$ and η are linearly independent over \mathbb{O}_{0}, a result of V. Jarník, kindly pointed out to the author by Yann Bugeaud, shows that these exponents are related by the formula

$$
\begin{equation*}
\widehat{\lambda}(\xi, \eta)=1-\frac{1}{\widehat{\omega}(\xi, \eta)} \tag{1}
\end{equation*}
$$

with the convention that the right-hand side of this equality is 1 if $\widehat{\omega}(\xi, \eta)=\infty$ (see [7, Theorem 1]).

Received by the editors July 23, 2004; revised October 12, 2004.
Work partially supported by NSERC and CICMA
AMS subject classification: Primary: 11J13; secondary: 11J82.
(c)Canadian Mathematical Society 2007.

In the case where $\eta=\xi^{2}$, we use the shorter notation $\widehat{\lambda}_{2}(\xi):=\widehat{\lambda}\left(\xi, \xi^{2}\right)$ and $\widehat{\omega}_{2}(\xi):=\widehat{\omega}\left(\xi, \xi^{2}\right)$ of [3]. The condition that $1, \xi$ and ξ^{2} are linearly independent over (\mathbb{O}) simply means that ξ is not an algebraic number of degree at most 2 over $(\mathbb{O}$, a condition which we also write as $[\mathbb{O}(\xi): \mathbb{O}]>2$. Under this condition, it is known that these exponents satisfy

$$
\begin{equation*}
\frac{1}{2} \leq \widehat{\lambda}_{2}(\xi) \leq \frac{1}{\gamma}=0.618 \ldots \quad \text { and } \quad 2 \leq \widehat{\omega}_{2}(\xi) \leq \gamma^{2}=2.618 \ldots \tag{2}
\end{equation*}
$$

where $\gamma=(1+\sqrt{5}) / 2$ denotes the golden ratio. By virtue of W. M. Schmidt's subspace theorem, the lower bounds in (2) are achieved by any algebraic number ξ of degree at least 3 (see [12, Ch. VI, Corollaries 1C, 1E]). They are also achieved by almost all real numbers ξ, with respect to Lebesgue's measure (see [3, Theorem 2.3]). On the other hand, the upper bounds follow respectively from [5, Theorem 1a] and from [2]. They are achieved in particular by the so-called Fibonacci continued fractions (see [8, §2] or [9, §6]), a special case of the Sturmian continued fractions of [1]. Now, thanks to Jarník's formula (1), we recognize that each set of inequalities in (2) can be deduced from the other one.

Generalizing the approach of [8], Bugeaud and Laurent have computed the exponents $\widehat{\lambda}_{2}(\xi)$ and $\widehat{\omega}_{2}(\xi)$ for a general (characteristic) Sturmian continued fraction ξ. They found that, after $1 / \gamma$ and γ^{2}, the next largest values of $\widehat{\lambda}_{2}(\xi)$ and $\widehat{\omega}_{2}(\xi)$ for such numbers ξ are, respectively, $2-\sqrt{2} \simeq 0.586$ and $1+\sqrt{2} \simeq 2.414$, and they asked if there exists any transcendental real number ξ which satisfies either $2-\sqrt{2}<\widehat{\lambda}_{2}(\xi)<1 / \gamma$ or $1+\sqrt{2}<\widehat{\omega}_{2}(\xi)<\gamma^{2}$ (see [3, §8]). Our main result below shows that such numbers exist.

Theorem The points $\left(\widehat{\lambda}_{2}(\xi), \widehat{\omega}_{2}(\xi)\right)$ where ξ runs through all real numbers with $\left[\mathbb{O}(\xi):(\mathbb{O}]>2\right.$ form a dense subset of the curve $\mathcal{C}=\left\{\left(1-\omega^{-1}, \omega\right) ; 2 \leq \omega \leq \gamma^{2}\right\}$.

Since $\left(\widehat{\lambda}_{2}(\xi), \widehat{\omega}_{2}(\xi)\right)=(1 / 2,2)$ for any algebraic number ξ of degree at least 3 , it follows in particular that $\left(1 / \gamma, \gamma^{2}\right)$ is an accumulation point for the set of points $\left(\widehat{\lambda}_{2}(\xi), \widehat{\omega}_{2}(\xi)\right)$ with ξ a transcendental real number. Because of Jarník's formula (1), this theorem is equivalent to either one of the following two assertions.

Corollary The exponents $\widehat{\lambda}_{2}(\xi)$ attached to transcendental real numbers ξ form a dense subset of the interval $[1 / 2,1 / \gamma]$. The corresponding dual exponents $\widehat{\omega}_{2}(\xi)$ form a dense subset of $\left[2, \gamma^{2}\right]$.

The proof is inspired by the constructions of $[9, \S 6]$ and $[11, \S 5]$. We produce countably many real numbers ξ of "Fibonacci type" (see $\S 7$ for a precise definition) for which we show that the exponents $\widehat{\omega}_{2}(\xi)$ are dense in $\left[2, \gamma^{2}\right]$. By (1), this implies the theorem. One may then reformulate the question of Bugeaud and Laurent by asking if there exist transcendental real numbers ξ not of that type which satisfy $\widehat{\omega}_{2}(\xi)>1+\sqrt{2}$. The work of S. Fischler announced in [6] should shed some light on this question.

2 Notation and Equivalent Definitions of the Exponents

We define the norm of a point $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}$ as its maximum norm

$$
\|\mathbf{x}\|=\max _{0 \leq i \leq 2}\left|x_{i}\right|
$$

Given a second point $\mathbf{y} \in \mathbb{R}^{3}$, we denote by $\mathbf{x} \wedge \mathbf{y}$ the standard vector product of \mathbf{x} and \mathbf{y}, and by $\langle\mathbf{x}, \mathbf{y}\rangle$ their standard scalar product. Given a third point $\mathbf{z} \in \mathbb{R}^{3}$, we also denote by $\operatorname{det}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ the determinant of the 3×3 matrix whose rows are \mathbf{x}, \mathbf{y} and \mathbf{z}. Then we have the well-known relation

$$
\operatorname{det}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\langle\mathbf{x}, \mathbf{y} \wedge \mathbf{z}\rangle
$$

and we get the following alternative definition of the exponents $\widehat{\lambda}(\xi, \eta)$ and $\widehat{\omega}(\xi, \eta)$.
Lemma 2.1 Let $\xi, \eta \in \mathbb{R}$, and let $\mathbf{y}=(1, \xi, \eta)$. Then $\widehat{\lambda}(\xi, \eta)$ is the supremum of all real numbers λ such that, for each sufficiently large real number $X \geq 1$, there exists a point $\mathbf{x} \in \mathbb{Z}^{3}$ with

$$
0<\|\mathbf{x}\| \leq X \quad \text { and } \quad\|\mathbf{x} \wedge \mathbf{y}\| \leq X^{-\lambda}
$$

Similarly, $\widehat{\omega}(\xi, \eta)$ is the supremum of all real numbers ω such that, for each sufficiently large real number $X \geq 1$, there exists a point $\mathbf{x} \in \mathbb{Z}^{3}$ with

$$
0<\|\mathbf{x}\| \leq X \quad \text { and } \quad|\langle\mathbf{x}, \mathbf{y}\rangle| \leq X^{-\omega}
$$

In the sequel, we will need the following inequalities.
Lemma 2.2 For any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{3}$, we have

$$
\begin{gather*}
\|\langle\mathbf{x}, \mathbf{z}\rangle \mathbf{y}-\langle\mathbf{x}, \mathbf{y}\rangle \mathbf{z}\| \leq 2\|\mathbf{x}\|\|\mathbf{y} \wedge \mathbf{z}\| \tag{3}\\
\|\mathbf{y}\|\|\mathbf{x} \wedge \mathbf{z}\| \leq\|\mathbf{z}\|\|\mathbf{x} \wedge \mathbf{y}\|+2\|\mathbf{x}\|\|\mathbf{y} \wedge \mathbf{z}\| \tag{4}
\end{gather*}
$$

Proof Writing $\mathbf{y}=\left(y_{0}, y_{1}, y_{2}\right)$ and $\mathbf{z}=\left(z_{0}, z_{1}, z_{2}\right)$, we find

$$
\|\langle\mathbf{x}, \mathbf{z}\rangle \mathbf{y}-\langle\mathbf{x}, \mathbf{y}\rangle \mathbf{z}\|=\max _{i=0,1,2}\left|\left\langle\mathbf{x}, y_{i} \mathbf{z}-z_{i} \mathbf{y}\right\rangle\right| \leq 2\|\mathbf{x}\|\|\mathbf{y} \wedge \mathbf{z}\|,
$$

which proves (3). Similarly, one finds $\left\|y_{i} \mathbf{x} \wedge \mathbf{z}-z_{i} \mathbf{x} \wedge \mathbf{y}\right\| \leq 2\|\mathbf{x}\|\|\mathbf{y} \wedge \mathbf{z}\|$ for $i=0,1,2$, and this implies (4).

For any non-zero point \mathbf{x} of \mathbb{R}^{3}, let $[\mathbf{x}]$ denote the point of $\mathbb{P}^{2}(\mathbb{R})$ having \mathbf{x} as a set of homogeneous coordinates. Then (4) has a useful interpretation in terms of the projective distance defined for non-zero points \mathbf{x} and \mathbf{y} of \mathbb{R}^{3} by

$$
\operatorname{dist}([\mathbf{x}],[\mathbf{y}])=\operatorname{dist}(\mathbf{x}, \mathbf{y})=\frac{\|\mathbf{x} \wedge \mathbf{y}\|}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Indeed, for any triple of non-zero points $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{3}$, it gives

$$
\begin{equation*}
\operatorname{dist}([\mathbf{x}],[\mathbf{z}]) \leq \operatorname{dist}([\mathbf{x}],[\mathbf{y}])+2 \operatorname{dist}([\mathbf{y}],[\mathbf{z}]) \tag{5}
\end{equation*}
$$

3 Fibonacci Sequences in $\mathrm{GL}_{2}(\mathbb{C})$

A Fibonacci sequence in a monoid is a sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ of elements of that monoid such that $\mathbf{w}_{i+2}=\mathbf{w}_{i+1} \mathbf{w}_{i}$ for each index $i \geq 0$. Clearly, such a sequence is entirely determined by its first two elements \mathbf{w}_{0} and \mathbf{w}_{1}. We start with the following observation.

Proposition 3.1 There exists a non-empty Zariski open subset \mathcal{U} of $\mathrm{GL}_{2}(\mathbb{C})^{2}$ with the following property. For each Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ with $\left(\mathbf{w}_{0}, \mathbf{w}_{1}\right) \in \mathcal{U}$, there exists $N \in \mathrm{GL}_{2}(\mathbb{C})$ such that the matrix

$$
\mathbf{y}_{i}= \begin{cases}\mathbf{w}_{i} N & \text { if } i \text { is even }, \tag{6}\\ \mathbf{w}_{i}^{t} N & \text { if } i \text { is odd }\end{cases}
$$

is symmetric for each $i \geq 0$. Any matrix $N \in \mathrm{GL}_{2}(\mathbb{C})$ such that $\mathbf{w}_{0} N, \mathbf{w}_{1}{ }^{t} N$ and $\mathbf{w}_{1} \mathbf{w}_{0} N$ are symmetric satisfies this property. When \mathbf{w}_{0} and \mathbf{w}_{1} have integer coefficients, we may take N with integer coefficients.

Proof Let $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ be a Fibonacci sequence in $\mathrm{GL}_{2}(\mathbb{C})$ and let $N \in \mathrm{GL}_{2}(\mathbb{C})$. Defining \mathbf{y}_{i} by (6) for each $i \geq 0$, we find $\mathbf{y}_{i+3}=\mathbf{y}_{i+1}{ }^{t} S \mathbf{y}_{i} S \mathbf{y}_{i+1}$ with $S=N^{-1}$ if i is even and $S={ }^{t} N^{-1}$ if i is odd. Thus, \mathbf{y}_{i} is symmetric for each $i \geq 0$ if and only if it is so for $i=0,1,2$.

Now, for any given point $\left(\mathbf{w}_{0}, \mathbf{w}_{1}\right) \in \mathrm{GL}_{2}(\mathbb{C})^{2}$, the conditions that $\mathbf{w}_{0} N, \mathbf{w}_{1}{ }^{t} N$ and $\mathbf{w}_{1} \mathbf{w}_{0} N$ are symmetric represent a system of three linear equations in the four unknown coefficients of N. Let \mathcal{V} be the Zariski open subset of $\mathrm{GL}_{2}(\mathbb{C})^{2}$ consisting of all points $\left(\mathbf{w}_{0}, \mathbf{w}_{1}\right)$ for which this linear system has rank 3. Then, for each $\left(\mathbf{w}_{0}, \mathbf{w}_{1}\right) \in$ \mathcal{V}, the 3×3 minors of this linear system conveniently arranged into a 2×2 matrix provide a non-zero solution N of the system, whose coefficients are polynomials in those of \mathbf{w}_{0} and \mathbf{w}_{1} with integer coefficients. Then the condition $\operatorname{det}(N) \neq 0$ in turn determines a Zariski open subset \mathcal{U} of \mathcal{V}. To conclude, we note that \mathcal{U} is not empty as a short computation shows that it contains the point formed by $\mathbf{w}_{0}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and $\mathbf{w}_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Definition 3.2 Let $\mathcal{M}=\operatorname{Mat}_{2 \times 2}(\mathbb{Z}) \cap \mathrm{GL}_{2}(\mathbb{C})$ denote the monoid of 2×2 integer matrices with non-zero determinant. We say that a Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ in \mathcal{M} is admissible if there exists a matrix $N \in \mathcal{M}$ such that the sequence $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ given by (6) consists of symmetric matrices.

Since \mathcal{M} is Zariski dense in $\mathrm{GL}_{2}(\mathbb{C})$, Proposition 3.1 shows that almost all Fibonacci sequences in \mathcal{M} are admissible. The following example is an illustration of this.

Example 3.3 Fix integers a, b, c with $a \geq 2$ and $c \geq b \geq 1$, and define

$$
\mathbf{w}_{0}=\left(\begin{array}{cc}
1 & b \\
a & a(b+1)
\end{array}\right), \quad \mathbf{w}_{1}=\left(\begin{array}{cc}
1 & c \\
a & a(c+1)
\end{array}\right)
$$

and

$$
N=\left(\begin{array}{cc}
-1+a(b+1)(c+1) & -a(b+1) \\
-a(c+1) & a
\end{array}\right)
$$

These matrices belong to \mathcal{M} since $\operatorname{det}\left(\mathbf{w}_{0}\right)=\operatorname{det}\left(\mathbf{w}_{1}\right)=a$ and $\operatorname{det}(N)=-a$. Moreover, one finds that

$$
\mathbf{w}_{0} N=\left(\begin{array}{cc}
-1+a(c+1) & -a \\
-a & 0
\end{array}\right), \quad \mathbf{w}_{1}^{t} N=\left(\begin{array}{cc}
-1+a(b+1) & -a \\
-a & 0
\end{array}\right)
$$

and

$$
\mathbf{w}_{1} \mathbf{w}_{0} N=\left(\begin{array}{cc}
-1+a & -a \\
-a & -a^{2}
\end{array}\right)
$$

are symmetric matrices. Therefore, the Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i>0}$ constructed on \mathbf{w}_{0} and \mathbf{w}_{1} is admissible with an associated sequence of symmetric matrices $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ given by (6), the first three matrices of this sequence being the above products $\mathbf{y}_{0}=$ $\mathbf{w}_{0} N, \mathbf{y}_{1}=\mathbf{w}_{1}{ }^{t} N$ and $\mathbf{y}_{2}=\mathbf{w}_{1} \mathbf{w}_{0} N$.

4 Fibonacci Sequences of 2×2 Integer Matrices

In the sequel, we identify \mathbb{R}^{3} (resp., \mathbb{Z}^{3}) with the space of 2×2 symmetric matrices with real (resp., integer) coefficients under the map

$$
\mathbf{x}=\left(x_{0}, x_{1}, x_{2}\right) \longmapsto\left(\begin{array}{ll}
x_{0} & x_{1} \\
x_{1} & x_{2}
\end{array}\right) .
$$

Accordingly, it makes sense to define the determinant of a point $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}\right)$ of \mathbb{R}^{3} by $\operatorname{det}(\mathbf{x})=x_{0} x_{2}-x_{1}^{2}$. Similarly, given symmetric matrices \mathbf{x}, \mathbf{y} and \mathbf{z}, we write $\mathbf{x} \wedge \mathbf{y},\langle\mathbf{x}, \mathbf{y}\rangle$ and $\operatorname{det}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to denote respectively the vector product, scalar product and determinant of the corresponding points.

In this section we look at arithmetic properties of admissible Fibonacci sequences in the monoid \mathcal{M} of Definition 3.2. For this purpose, we define the content of an integer matrix $\mathbf{w} \in \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$ or of a point $\mathbf{y} \in \mathbb{Z}^{3}$ as the greatest common divisor of their coefficients. We say that such a matrix or point is primitive if its content is 1 .

Proposition 4.1 Let $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ be an admissible Fibonacci sequence of matrices in \mathcal{M} and let $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ be a corresponding sequence of symmetric matrices in \mathcal{M}. For each $i \geq 0$, define $\mathbf{z}_{i}=\operatorname{det}\left(\mathbf{w}_{i}\right)^{-1} \mathbf{y}_{i} \wedge \mathbf{y}_{i+1}$. Then, for each $i \geq 0$, we have
(a) $\operatorname{tr}\left(\mathbf{w}_{i+3}\right)=\operatorname{tr}\left(\mathbf{w}_{i+1}\right) \operatorname{tr}\left(\mathbf{w}_{i+2}\right)-\operatorname{det}\left(\mathbf{w}_{i+1}\right) \operatorname{tr}\left(\mathbf{w}_{i}\right)$,
(b) $\mathbf{y}_{i+3}=\operatorname{tr}\left(\mathbf{w}_{i+1}\right) \mathbf{y}_{i+2}-\operatorname{det}\left(\mathbf{w}_{i+1}\right) \mathbf{y}_{i}$,
(c) $\mathbf{z}_{i+3}=\operatorname{tr}\left(\mathbf{w}_{i+1}\right) \mathbf{z}_{i+1}+\operatorname{det}\left(\mathbf{w}_{i}\right) \mathbf{z}_{i}$,
(d) $\operatorname{det}\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}\right)=(-1)^{i} \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{w}_{2}\right)^{-1} \operatorname{det}\left(\mathbf{w}_{i+2}\right)$,
(e) $\mathbf{z}_{i} \wedge \mathbf{z}_{i+1}=(-1)^{i} \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{w}_{2}\right)^{-1} \mathbf{y}_{i+1}$.

Proof For each index $i \geq 0$, let N_{i} denote the element of \mathcal{M} for which $\mathbf{y}_{i}=\mathbf{w}_{i} N_{i}$. According to (6), we have $N_{i}=N$ if i is even and $N_{i}={ }^{t} N$ if i is odd. We first prove
(b) following the argument of the proof of [10, Lemma 2.5(i)]. Multiplying both sides of the equality $\mathbf{w}_{i+2}=\mathbf{w}_{i+1} \mathbf{w}_{i}$ on the right by $N_{i+2}=N_{i}$, we find

$$
\begin{equation*}
\mathbf{y}_{i+2}=\mathbf{w}_{i+1} \mathbf{y}_{i} \tag{7}
\end{equation*}
$$

which can be rewritten as $\mathbf{y}_{i+2}=\mathbf{y}_{i+1} N_{i+1}^{-1} \mathbf{y}_{i}$. Taking the transpose of both sides, this gives $\mathbf{y}_{i+2}=\mathbf{y}_{i} N_{i}^{-1} \mathbf{y}_{i+1}=\mathbf{w}_{i} \mathbf{y}_{i+1}$. Replacing i by $i+1$ in the latter identity and combining it with (7), we get

$$
\begin{equation*}
\mathbf{y}_{i+3}=\mathbf{w}_{i+1} \mathbf{y}_{i+2}=\mathbf{w}_{i+1}^{2} \mathbf{y}_{i} \tag{8}
\end{equation*}
$$

Then (b) follows from (7) and (8), using the fact that, by the Cayley-Hamilton theorem, we have $\mathbf{w}_{i+1}^{2}=\operatorname{tr}\left(\mathbf{w}_{i+1}\right) \mathbf{w}_{i+1}-\operatorname{det}\left(\mathbf{w}_{i+1}\right) I$. Multiplying both sides of (b) on the right by N_{i}^{-1} and taking the trace, we deduce that

$$
\operatorname{tr}\left(\mathbf{y}_{i+3} N_{i}^{-1}\right)=\operatorname{tr}\left(\mathbf{w}_{i+1}\right) \operatorname{tr}\left(\mathbf{w}_{i+2}\right)-\operatorname{det}\left(\mathbf{w}_{i+1}\right) \operatorname{tr}\left(\mathbf{w}_{i}\right)
$$

This gives (a) because $\operatorname{tr}\left(\mathbf{y}_{i+3} N_{i}^{-1}\right)=\operatorname{tr}\left({ }^{t} \mathbf{y}_{i+3}{ }^{t} N_{i}^{-1}\right)=\operatorname{tr}\left(\mathbf{w}_{i+3}\right)$. Taking the exterior product of both sides of (b) with \mathbf{y}_{i+1}, we also find

$$
\mathbf{y}_{i+1} \wedge \mathbf{y}_{i+3}=\operatorname{tr}\left(\mathbf{w}_{i+1}\right) \operatorname{det}\left(\mathbf{w}_{i+1}\right) \mathbf{z}_{i+1}+\operatorname{det}\left(\mathbf{w}_{i+1}\right) \operatorname{det}\left(\mathbf{w}_{i}\right) \mathbf{z}_{i}
$$

Similarly, replacing i by $i+1$ in (b) and taking the exterior product with \mathbf{y}_{i+3} gives

$$
\operatorname{det}\left(\mathbf{w}_{i+3}\right) \mathbf{z}_{i+3}=\operatorname{det}\left(\mathbf{w}_{i+2}\right) \mathbf{y}_{i+1} \wedge \mathbf{y}_{i+3}
$$

Then (c) follows upon noting that $\operatorname{det}\left(\mathbf{w}_{i+3}\right)=\operatorname{det}\left(\mathbf{w}_{i+2}\right) \operatorname{det}\left(\mathbf{w}_{i+1}\right)$.
The formula (d) is clearly true for $i=0$. If we assume that it holds for some integer $i \geq 0$, then using the formula for \mathbf{y}_{i+3} given by (b) and taking into account the multilinearity of the determinant we find

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{y}_{i+1}, \mathbf{y}_{i+2}, \mathbf{y}_{i+3}\right) & =-\operatorname{det}\left(\mathbf{w}_{i+1}\right) \operatorname{det}\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}\right) \\
& =(-1)^{i+1} \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \frac{\operatorname{det}\left(\mathbf{w}_{i+3}\right)}{\operatorname{det}\left(\mathbf{w}_{2}\right)} .
\end{aligned}
$$

This proves (d) by induction on i. Then (e) follows since, for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{Z}^{3}$, we have $(\mathbf{x} \wedge \mathbf{y}) \wedge(\mathbf{y} \wedge \mathbf{z})=\operatorname{det}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mathbf{y}$ which, in the present case, gives

$$
\mathbf{z}_{i} \wedge \mathbf{z}_{i+1}=\operatorname{det}\left(\mathbf{w}_{i+2}\right)^{-1} \operatorname{det}\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}\right) \mathbf{y}_{i+1}
$$

Corollary 4.2 The notation being as in the proposition, assume that $\operatorname{tr}\left(\mathbf{w}_{i}\right)$ and $\operatorname{det}\left(\mathbf{w}_{i}\right)$ are relatively prime for $i=0,1,2,3$ and that $\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \neq 0$. Then for each $i \geq 0$,
(a) the points $\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}$ are linearly independent,
(b) $\operatorname{tr}\left(\mathbf{w}_{i}\right)$ and $\operatorname{det}\left(\mathbf{w}_{i}\right)$ are relatively prime,
(c) the matrix \mathbf{w}_{i} is primitive,
(d) the content of \mathbf{y}_{i} divides $\operatorname{det}\left(\mathbf{y}_{2}\right) / \operatorname{det}\left(\mathbf{w}_{2}\right)$,
(e) the point $\operatorname{det}\left(\mathbf{w}_{2}\right) \mathbf{z}_{i}$ belongs to \mathbb{Z}^{3} and its content divides $\operatorname{det}\left(\mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)$.

Proof The assertion (a) follows from Proposition 4.1(d). Since (b) holds by hypothesis for $i=0,1,2,3$, and since $\operatorname{det}\left(\mathbf{w}_{2}\right)$ and $\operatorname{det}\left(\mathbf{w}_{i}\right)$ have the same prime factors for each $i \geq 2$, the assertion (b) follows, by induction on i, from the fact that Proposition 4.1(a) gives $\operatorname{tr}\left(\mathbf{w}_{i+1}\right) \equiv \operatorname{tr}\left(\mathbf{w}_{i}\right) \operatorname{tr}\left(\mathbf{w}_{i-1}\right)$ modulo $\operatorname{det}\left(\mathbf{w}_{2}\right)$ for each $i \geq 3$. Then (c) follows since the content of \mathbf{w}_{i} divides both $\operatorname{tr}\left(\mathbf{w}_{i}\right)$ and $\operatorname{det}\left(\mathbf{w}_{i}\right)$.

Let $N \in \mathcal{M}$ such that $\mathbf{y}_{2}=\mathbf{w}_{2} N$. For each i, we have $\mathbf{y}_{i}=\mathbf{w}_{i} N_{i}$ where $N_{i}=$ N if i is even and $N_{i}={ }^{t} N$ if i is odd. This gives $\mathbf{y}_{i} \operatorname{Adj}\left(N_{i}\right)=\operatorname{det}(N) \mathbf{w}_{i}$ where $\operatorname{Adj}\left(N_{i}\right) \in \mathcal{M}$ denotes the adjoint of N_{i}. Thus, by (c), the content of \mathbf{y}_{i} divides $\operatorname{det}(N)=\operatorname{det}\left(\mathbf{y}_{2}\right) / \operatorname{det}\left(\mathbf{w}_{2}\right)$, as claimed in (d).

The fact that $\operatorname{det}\left(\mathbf{w}_{2}\right) \mathbf{z}_{i}$ belongs to \mathbb{Z}^{3} is clear for $i=0,1,2$ because $\operatorname{det}\left(\mathbf{w}_{0}\right)$ and $\operatorname{det}\left(\mathbf{w}_{1}\right)$ divide $\operatorname{det}\left(\mathbf{w}_{2}\right)$. Then Proposition 4.1(c) shows, by induction on i, that $\operatorname{det}\left(\mathbf{w}_{2}\right) \mathbf{z}_{i} \in \mathbb{Z}^{3}$ for each $i \geq 0$. Moreover, the content of that point divides that of $\operatorname{det}\left(\mathbf{w}_{2}\right)^{2} \mathbf{z}_{i} \wedge \mathbf{z}_{i+1}$ which, by (d) and Proposition 4.1(e), divides $\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{y}_{2}\right)$. This proves (e).

Example 4.3 Let $\left(\mathbf{w}_{i}\right)_{i \geq 0}, N$ and $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ be as in Example 3.3. Since $\mathbf{w}_{0}, \mathbf{w}_{1}$ and N are congruent to matrices of the form $\left(\begin{array}{cc} \pm 1 & * \\ 0 & 0\end{array}\right)$ modulo a and have determinant $\pm a$, all matrices \mathbf{w}_{i} and \mathbf{y}_{i} are congruent to matrices of the same form modulo a and their determinant is, up to sign, a power of a. Thus these matrices have relatively prime trace and determinant, and so are primitive for each $i \geq 0$. Since $\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=$ $a^{4}(c-b)$, Proposition 4.1(e) shows that the points $\mathbf{z}_{i}=\operatorname{det}\left(\mathbf{w}_{i}\right)^{-1} \mathbf{y}_{i} \wedge \mathbf{y}_{i+1}$ satisfy $\mathbf{z}_{i} \wedge \mathbf{z}_{i+1}=(-1)^{i} a^{2}(c-b) \mathbf{y}_{i+1}$ for each $i \geq 0$. Moreover, we find that $a^{-1} \mathbf{z}_{0}=$ $(0,0, b-c), a^{-1} \mathbf{z}_{1}=(a,-1+a(b+1),-b)$ and $a^{-1} \mathbf{z}_{2}=(a,-1+a(c+1),-c)$ are integer points. Then Proposition 4.1(c) shows, by induction on i, that $a^{-1} \mathbf{z}_{i} \in \mathbb{Z}^{3}$ for each $i \geq 0$. In particular, if $c=b+1$, we deduce from the relation $a^{-1} \mathbf{z}_{i} \wedge a^{-1} \mathbf{z}_{i+1}=$ $\pm \mathbf{y}_{i+1}$ that $a^{-1} \mathbf{z}_{i}$ is a primitive integer point for each $i \geq 0$.

5 Growth Estimates

Define the norm of a 2×2 matrix $\mathbf{w}=\left(w_{k, \ell}\right) \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ as the largest absolute value of its coefficients $\|\mathbf{w}\|=\max _{1 \leq k, \ell \leq 2}\left|w_{k, \ell}\right|$, and define $\gamma=(1+\sqrt{5}) / 2$ as in the introduction. In this section, we provide growth estimates for the norm and determinant of elements of certain Fibonacci sequences in $\mathrm{GL}_{2}(\mathbb{R})$. We first establish two basic lemmas.

Lemma 5.1 Let $\mathbf{w}_{0}, \mathbf{w}_{1} \in \mathrm{GL}_{2}(\mathbb{R})$. Suppose that, for $i=0,1$, the matrix \mathbf{w}_{i} is of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $1 \leq a \leq \min \{b, c\}$ and $\max \{b, c\} \leq d$. Then all matrices of the Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ constructed on \mathbf{w}_{0} and \mathbf{w}_{1} have this form and for each $i \geq 0$, they satisfy

$$
\begin{equation*}
\left\|\mathbf{w}_{i}\right\|\left\|\mathbf{w}_{i+1}\right\|<\left\|\mathbf{w}_{i+2}\right\| \leq 2\left\|\mathbf{w}_{i}\right\|\left\|\mathbf{w}_{i+1}\right\| . \tag{9}
\end{equation*}
$$

Proof The first assertion follows by recurrence on i and is left to the reader. It implies that $\left\|\mathbf{w}_{i}\right\|$ is equal to the element of index $(2,2)$ of \mathbf{w}_{i} for each $i \geq 0$. Then (9) follows by observing that, for any 2×2 matrices $\mathbf{w}=\left(w_{k, \ell}\right)$ and $\mathbf{w}^{\prime}=\left(w_{k, \ell}^{\prime}\right)$ with positive real coefficients, the product $\mathbf{w}^{\prime} \mathbf{w}=\left(w_{k, \ell}^{\prime \prime}\right)$ satisfies $w_{2,2} w_{2,2}^{\prime}<w_{2,2}^{\prime \prime} \leq$ $2\|\mathbf{w}\|\left\|\mathbf{w}^{\prime}\right\|$.

Lemma 5.2 Let $\left(r_{i}\right)_{i \geq 0}$ be a sequence of positive real numbers. Assume that there exist constants $c_{1}, c_{2}>0$ such that $c_{1} r_{i} r_{i+1} \leq r_{i+2} \leq c_{2} r_{i} r_{i+1}$ for each $i \geq 0$. Then there also exist constants $c_{3}, c_{4}>0$ such that $\mathcal{c}_{3} r_{i}^{\gamma} \leq r_{i+1} \leq c_{4} r_{i}^{\gamma}$ for each $i \geq 0$.

Proof Define $c_{3}=c_{1}^{\gamma} /\left(c c_{2}\right)$ and $c_{4}=c c_{2}^{\gamma} / c_{1}$, where $c \geq 1$ is chosen so that the condition $c_{3} \leq r_{i+1} / r_{i}^{\gamma} \leq c_{4}$ holds for $i=0$. Assuming that the same condition holds for some index $i \geq 0$, we find

$$
\frac{r_{i+2}}{r_{i+1}^{\gamma}} \geq c_{1} \frac{r_{i}}{r_{i+1}^{1 / \gamma}} \geq c_{1} c_{4}^{-1 / \gamma}=c^{1 / \gamma^{2}} c_{3} \geq c_{3}
$$

and similarly $r_{i+2} / r_{i+1}^{\gamma} \leq c_{4}$. This proves the lemma by recurrence on i.

Proposition 5.3 Let $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ be a Fibonacci sequence in $\mathrm{GL}_{2}(\mathbb{R})$. Suppose that there exist real numbers $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
c_{1}\left\|\mathbf{w}_{i}\right\|\left\|\mathbf{w}_{i+1}\right\| \leq\left\|\mathbf{w}_{i+2}\right\| \leq c_{2}\left\|\mathbf{w}_{i}\right\|\left\|\mathbf{w}_{i+1}\right\| \tag{10}
\end{equation*}
$$

for each $i \geq 0$. Then there exist constants $c_{3}, c_{4}>0$ for which the inequalities
(11) $\quad c_{3}\left\|\mathbf{w}_{i}\right\|^{\gamma} \leq\left\|\mathbf{w}_{i+1}\right\| \leq c_{4}\left\|\mathbf{w}_{i}\right\|^{\gamma}, \quad c_{3}\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|^{\gamma} \leq\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right| \leq c_{4}\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|^{\gamma}$
hold for each $i \geq 0$. Moreover, if there exist $\alpha, \beta \geq 0$ such that

$$
\begin{equation*}
\left(c_{2}\left\|\mathbf{w}_{i}\right\|\right)^{\alpha} \leq\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| \leq\left(c_{1}\left\|\mathbf{w}_{i}\right\|\right)^{\beta} \tag{12}
\end{equation*}
$$

holds for $i=0,1$, then this relation extends to each $i \geq 0$.

Proof The first assertion of the proposition follows from Lemma 5.2 applied once with $r_{i}=\left\|\mathbf{w}_{i}\right\|$ and once with $r_{i}=\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|$. To prove the second assertion, assume that for some index $j \geq 0$ the condition (12) holds both with $i=j$ and $i=j+1$. We find

$$
\left|\operatorname{det}\left(\mathbf{w}_{j+2}\right)\right|=\left|\operatorname{det}\left(\mathbf{w}_{j+1}\right) \| \operatorname{det}\left(\mathbf{w}_{j}\right)\right| \geq\left(c_{2}\left\|\mathbf{w}_{j+1}\right\|\right)^{\alpha}\left(c_{2}\left\|\mathbf{w}_{j}\right\|\right)^{\alpha} \geq\left(c_{2}\left\|\mathbf{w}_{j+2}\right\|\right)^{\alpha}
$$

and similarly $\left|\operatorname{det}\left(\mathbf{w}_{j+2}\right)\right| \leq\left(c_{1}\left\|\mathbf{w}_{j+2}\right\|\right)^{\beta}$. Therefore, (12) holds with $i=j+2$. By recurrence on i, this shows that (12) holds for each $i \geq 0$ if it holds for $i=0,1$.

Example 5.4 Let the notation be as in Example 3.3. Since \mathbf{w}_{0} and \mathbf{w}_{1} satisfy the hypotheses of Lemma 5.1, the Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ that they generate fulfills for each $i \geq 0$ the condition (10) of Proposition 5.3 with $c_{1}=1$ and $c_{2}=2$. As $\operatorname{det}\left(\mathbf{w}_{0}\right)=\operatorname{det}\left(\mathbf{w}_{1}\right)=a$, we also note that for this choice of c_{1} and c_{2} the condition (12) holds for $i=0,1$ with

$$
\alpha=\frac{\log a}{\log (2 a(c+1))} \quad \text { and } \quad \beta=\frac{\log a}{\log (a(b+1))}
$$

Then, for an appropriate choice of $c_{3}, c_{4}>0$, both (11) and (12) hold for each $i \geq 0$. Moreover, the estimates (9) of Lemma 5.1 imply that the sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ is unbounded.

6 Construction of a Real Number

Given sequences of non-negative real numbers with general terms a_{i} and b_{i}, we write $a_{i} \ll b_{i}$ or $b_{i} \gg a_{i}$ if there exists a real number $c>0$ such that $a_{i} \leq c b_{i}$ for all sufficiently large values of i. We write $a_{i} \sim b_{i}$ when $a_{i} \ll b_{i}$ and $b_{i} \ll a_{i}$. With this notation, we now prove the following result (cf. [11, §5]).

Proposition 6.1 Let $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ be an admissible Fibonacci sequence in \mathcal{M} and let $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ be a corresponding sequence of symmetric matrices in \mathcal{M}. Assume that $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ is unbounded and satisfies the conditions

$$
\begin{equation*}
\left\|\mathbf{w}_{i+1}\right\| \sim\left\|\mathbf{w}_{i}\right\|^{\gamma}, \quad\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|^{\gamma} \quad \text { and } \quad\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| \ll\left\|\mathbf{w}_{i}\right\|^{\beta} \tag{13}
\end{equation*}
$$

for a real number β with $0<\beta<2$. Viewing each \mathbf{y}_{i} as a point in \mathbb{Z}^{3}, assume that $\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \neq 0$ and define $\mathbf{z}_{i}=\left(\operatorname{det}\left(\mathbf{w}_{i}\right)\right)^{-1} \mathbf{y}_{i} \wedge \mathbf{y}_{i+1}$ for each $i \geq 0$. Then we have

$$
\begin{equation*}
\left\|\mathbf{y}_{i}\right\| \sim\left\|\mathbf{w}_{i}\right\|, \quad\left|\operatorname{det}\left(\mathbf{y}_{i}\right)\right| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|, \quad\left\|\mathbf{z}_{i}\right\| \sim\left\|\mathbf{w}_{i-1}\right\| \tag{14}
\end{equation*}
$$

and there exists a non-zero point \mathbf{y} of \mathbb{R}^{3} with $\operatorname{det}(\mathbf{y})=0$ such that

$$
\begin{equation*}
\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\| \sim \frac{\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|}{\left\|\mathbf{w}_{i}\right\|} \text { and } \quad\left|\left\langle\mathbf{z}_{i}, \mathbf{y}\right\rangle\right| \sim \frac{\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|}{\left\|\mathbf{w}_{i+2}\right\|} \tag{15}
\end{equation*}
$$

If $\beta<1$, the coordinates of such a point \mathbf{y} are linearly independent over (\mathbb{O}) and we may assume that $\mathbf{y}=\left(1, \xi, \xi^{2}\right)$ for some real number ξ with $[\mathbb{O}(\xi):(\mathbb{O}]>2$.

Proof For each $i \geq 0$, let N_{i} denote the element of \mathcal{M} for which $\mathbf{y}_{i}=\mathbf{w}_{i} N_{i}$. Putting $N=N_{0}$, we have by hypothesis $N_{i}=N$ when i is even and $N_{i}={ }^{t} N$ otherwise. This implies that $\left\|\mathbf{y}_{i}\right\| \sim\left\|\mathbf{w}_{i}\right\|$ and $\left|\operatorname{det}\left(\mathbf{y}_{i}\right)\right| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|$. In the sequel, we will repeatedly use these relations as well as the hypothesis (13).

We claim that we have

$$
\begin{equation*}
\left\|\mathbf{y}_{i} \wedge \mathbf{y}_{i+1}\right\| \ll\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|\left\|\mathbf{w}_{i-1}\right\| \tag{16}
\end{equation*}
$$

To prove this, we define $J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and note that for each $i \geq 0$ the coefficients of the diagonal of $\mathbf{y}_{i} \int \mathbf{y}_{i+1}$ coincide with the first and third coefficients of $\mathbf{y}_{i} \wedge \mathbf{y}_{i+1}$ while the sum of the coefficients of $\mathbf{y}_{i} J \mathbf{y}_{i+1}$ outside of the diagonal is the middle coefficient of $\mathbf{y}_{i} \wedge \mathbf{y}_{i+1}$ multiplied by -1 . This gives

$$
\begin{equation*}
\left\|\mathbf{y}_{i} \wedge \mathbf{y}_{i+1}\right\| \leq 2\left\|\mathbf{y}_{i} J \mathbf{y}_{i+1}\right\| \tag{17}
\end{equation*}
$$

Since $\mathbf{y}_{i+1}=\mathbf{y}_{i} N_{i}^{-1} \mathbf{y}_{i-1}$ and since $\mathbf{x} J \mathbf{x}=\operatorname{det}(\mathbf{x}) J$ for any symmetric matrix \mathbf{x}, we also find that $\mathbf{y}_{i} J \mathbf{y}_{i+1}=\operatorname{det}\left(\mathbf{y}_{i}\right) J N_{i}^{-1} \mathbf{y}_{i-1}$ and therefore $\left\|\mathbf{y}_{i} J \mathbf{y}_{i+1}\right\| \ll \mid \operatorname{det}\left(\mathbf{w}_{i}\right)\| \| \mathbf{w}_{i-1} \|$. Combining this with (17) proves our claim (16), which can also be written in the form

$$
\begin{equation*}
\left\|\mathbf{z}_{i}\right\| \ll\left\|\mathbf{w}_{i-1}\right\| . \tag{18}
\end{equation*}
$$

As $\left\|\mathbf{y}_{i}\right\| \sim\left\|\mathbf{w}_{i}\right\|$ and $\left\|\mathbf{y}_{i+1}\right\| \sim\left\|\mathbf{w}_{i}\right\|^{\gamma}$, the estimate (16) shows, in the notation of $\S 2$, that

$$
\begin{equation*}
\operatorname{dist}\left(\left[\mathbf{y}_{i}\right],\left[\mathbf{y}_{i+1}\right]\right) \leq c \delta_{i}, \quad \text { where } \quad \delta_{i}=\frac{\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|}{\left\|\mathbf{w}_{i}\right\|^{2}} \tag{19}
\end{equation*}
$$

and where c is some positive constant which does not depend on i. Since by hypothesis we have $\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| \ll\left\|\mathbf{w}_{i}\right\|^{\beta}$ with $\beta<2$, we find that $\lim _{i \rightarrow \infty} \delta_{i}=0$. Since moreover, we have $\delta_{i+1} \sim \delta_{i}^{\gamma}$, we deduce that there exists an index $i_{0} \geq 1$ such that $\delta_{i+1} \leq \delta_{i} / 4$ for each $i \geq i_{0}$. Then, using (5), we deduce that

$$
\begin{equation*}
\operatorname{dist}\left(\left[\mathbf{y}_{i}\right],\left[\mathbf{y}_{j}\right]\right) \leq \sum_{k=i}^{j-1} 2^{k-i} \operatorname{dist}\left(\left[\mathbf{y}_{k}\right],\left[\mathbf{y}_{k+1}\right]\right) \leq c \sum_{k=i}^{j-1} 2^{k-i} \delta_{k} \leq 2 c \delta_{i} \tag{20}
\end{equation*}
$$

for each choice of i and j with $i_{0} \leq i<j$. Thus the sequence $\left(\left[\mathbf{y}_{i}\right]\right)_{i \geq 0}$ converges in $\mathbb{P}^{2}(\mathbb{R})$ to a point $[\mathbf{y}]$ for some non-zero $\mathbf{y} \in \mathbb{R}^{3}$. Since the ratio $\mid \operatorname{det}\left(\mathbf{y}_{i}\right)\|/\| \mathbf{y}_{i} \|^{2}$ depends only on the class $\left[\mathbf{y}_{i}\right]$ of \mathbf{y}_{i} in $\mathbb{P}^{2}(\mathbb{R})$ and tends to 0 like δ_{i} as $i \rightarrow \infty$, we deduce by continuity that $|\operatorname{det}(\mathbf{y})| /\|\mathbf{y}\|^{2}=0$ and thus that $\operatorname{det}(\mathbf{y})=0$. By continuity, (20) also leads to $\operatorname{dist}\left(\left[\mathbf{y}_{i}\right],[\mathbf{y}]\right) \leq 2 c \delta_{i}$ for each $i \geq i_{0}$, and so

$$
\begin{equation*}
\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\| \ll \frac{\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|}{\left\|\mathbf{w}_{i}\right\|} \tag{21}
\end{equation*}
$$

Applying (3) together with the above estimates (18) and (21), we find
$\left\|\left\langle\mathbf{z}_{i}, \mathbf{y}\right\rangle \mathbf{y}_{i+2}-\left\langle\mathbf{z}_{i}, \mathbf{y}_{i+2}\right\rangle \mathbf{y}\right\| \leq 2\left\|\mathbf{z}_{i}\right\|\left\|\mathbf{y}_{i+2} \wedge \mathbf{y}\right\| \ll\left\|\mathbf{w}_{i-1}\right\| \frac{\left|\operatorname{det}\left(\mathbf{w}_{i+2}\right)\right|}{\left\|\mathbf{w}_{i+2}\right\|} \ll\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right| \delta_{i}$.
Using Proposition 4.1(d), we also get

$$
\begin{equation*}
\left\|\left\langle\mathbf{z}_{i}, \mathbf{y}_{i+2}\right\rangle \mathbf{y}\right\|=\frac{\left|\operatorname{det}\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}\right)\right|}{\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|}\|\mathbf{y}\| \sim\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right| \tag{22}
\end{equation*}
$$

Combining the above two estimates, we deduce that $\left\|\left\langle\mathbf{z}_{i}, \mathbf{y}\right\rangle \mathbf{y}_{i+2}\right\| \sim\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|$ and therefore that $\left|\left\langle\mathbf{z}_{i}, \mathbf{y}\right\rangle\right| \sim\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right| / \| \mathbf{w}_{i+2} \mid$. The latter estimate is the second half of (15). It implies

$$
\left\|\left\langle\mathbf{z}_{i+1}, \mathbf{y}\right\rangle \mathbf{y}_{i}\right\| \sim \frac{\left|\operatorname{det}\left(\mathbf{w}_{i+2}\right)\right|}{\left\|\mathbf{w}_{i+3}\right\|}\left\|\mathbf{w}_{i}\right\| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| \delta_{i+1} .
$$

Since $\left\langle\mathbf{z}_{i+1}, \mathbf{y}_{i}\right\rangle=\operatorname{det}\left(\mathbf{w}_{i-1}\right)^{-1}\left\langle\mathbf{z}_{i}, \mathbf{y}_{i+2}\right\rangle$, the estimate (22) can also be written in the form $\left\|\left\langle\mathbf{z}_{i+1}, \mathbf{y}_{i}\right\rangle \mathbf{y}\right\| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|$. Then, applying (3) once again, we find

$$
2\left\|\mathbf{z}_{i+1}\right\|\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\| \geq\left\|\left\langle\mathbf{z}_{i+1}, \mathbf{y}\right\rangle \mathbf{y}_{i}-\left\langle\mathbf{z}_{i+1}, \mathbf{y}_{i}\right\rangle \mathbf{y}\right\| \gg\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| .
$$

Since, by (18) and (21), we have $\left\|\mathbf{z}_{i+1}\right\| \ll\left\|\mathbf{w}_{i}\right\|$ and $\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\| \ll\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| / /\left\|\mathbf{w}_{i}\right\|$, we conclude from this that $\left\|\mathbf{z}_{i+1}\right\| \sim\left\|\mathbf{w}_{i}\right\|$ and $\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| /\left\|\mathbf{w}_{i}\right\|$, which completes the proof of (14) and (15).

Now, assume that $\beta<1$, and let $\mathbf{u} \in \mathbb{Z}^{3}$ such that $\langle\mathbf{u}, \mathbf{y}\rangle=0$. By (3), we have

$$
\begin{equation*}
2\|\mathbf{u}\|\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\| \geq\left\|\langle\mathbf{u}, \mathbf{y}\rangle \mathbf{y}_{i}-\left\langle\mathbf{u}, \mathbf{y}_{i}\right\rangle \mathbf{y}\right\|=\mid\left\langle\mathbf{u}, \mathbf{y}_{i}\right\rangle\| \| \mathbf{y} \| \tag{23}
\end{equation*}
$$

for each $i \geq 0$. Since $\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| /\left\|\mathbf{w}_{i}\right\| \ll\left\|\mathbf{w}_{i}\right\|^{\beta-1}$ tends to 0 as $i \rightarrow \infty$, we deduce from (23) that the integer $\left\langle\mathbf{u}, \mathbf{y}_{i}\right\rangle$ must vanish for all sufficiently large values of i. This implies that $\mathbf{u}=0$ because it follows from the hypothesis $\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \neq 0$ and the formula in Proposition 4.1(d) that any three consecutive points of the sequence $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ are linearly independent. Thus the coordinates of \mathbf{y} must be linearly independent over $(\mathbb{O}$. In particular, the first coordinate of y is non-zero and, dividing y by this coordinate, we may assume that it is equal to 1 . Then, upon denoting by ξ the second coordinate of \mathbf{y}, the condition $\operatorname{det}(\mathbf{y})=0$ implies that $\mathbf{y}=\left(1, \xi, \xi^{2}\right)$ and thus $[\mathbb{O}(\xi): \mathbb{O}]>2$.

7 Estimates for the Exponent $\widehat{\omega}_{2}$

We first prove the following result and then deduce from it our main theorem in $\S 1$.

Proposition 7.1 Let $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ be an admissible Fibonacci sequence in \mathcal{M}, and let $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ be a corresponding sequence of symmetric matrices in \mathcal{M}. Assume that $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ is unbounded and satisfies

$$
\begin{equation*}
\left\|\mathbf{w}_{i+1}\right\| \sim\left\|\mathbf{w}_{i}\right\|^{\gamma},\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right| \sim\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|^{\gamma},\left\|\mathbf{w}_{i}\right\|^{\alpha} \ll\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| \ll\left\|\mathbf{w}_{i}\right\|^{\beta} \tag{24}
\end{equation*}
$$

for real numbers α and β with $0 \leq \alpha \leq \beta<\gamma^{-2}$. Assume moreover that $\operatorname{tr}\left(\mathbf{w}_{i}\right)$ and $\operatorname{det}\left(\mathbf{w}_{i}\right)$ are relatively prime for $i=0,1,2,3$ and that $\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \neq 0$. Then the real number ξ which comes out from the last assertion of Proposition 6.1 satisfies

$$
\gamma^{2}-\beta \gamma \leq \widehat{\omega}_{2}(\xi) \leq \gamma^{2}-\alpha \gamma .
$$

Proof Put $\mathbf{y}=\left(1, \xi, \xi^{2}\right)$ and define the sequence $\left(\mathbf{z}_{i}\right)_{i \geq 0}$ as in Proposition 4.1. Since $\|\mathbf{y}\| \geq 1$, the inequality (3) combined with the estimates of Proposition 6.1 shows that, for any point $\mathbf{z} \in \mathbb{Z}^{3}$ and any index $i \geq 1$, we have

$$
\begin{equation*}
\left|\left\langle\mathbf{z}, \mathbf{y}_{i}\right\rangle\right| \leq\left\|\mathbf{y}_{i}\right\||\langle\mathbf{z}, \mathbf{y}\rangle|+2\|\mathbf{z}\|\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\|<c_{5} \max \left\{\left\|\mathbf{w}_{i}\right\||\langle\mathbf{z}, \mathbf{y}\rangle|,\|\mathbf{z}\| \frac{\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|}{\left\|\mathbf{w}_{i}\right\|}\right\} \tag{25}
\end{equation*}
$$

with a constant $\mathcal{c}_{5}>0$ which is independent of \mathbf{z} and i. Suppose that a point $\mathbf{z} \in \mathbb{Z}^{3}$ satisfies

$$
\begin{equation*}
0<\|\mathbf{z}\| \leq Z_{i}:=c_{6}\left\|\mathbf{w}_{i}\right\| \quad \text { and } \quad|\langle\mathbf{z}, \mathbf{y}\rangle| \leq \frac{\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|}{\left\|\mathbf{w}_{i+2}\right\|} \tag{26}
\end{equation*}
$$

where $c_{6}=c_{5}^{-1}\left|\operatorname{det}\left(\mathbf{y}_{2}\right)\right|^{-1}$. Using (25) with i replaced by $i+1$, we find

$$
\left|\left\langle\mathbf{z}, \mathbf{y}_{i+1}\right\rangle\right| \ll\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|^{\gamma}\left\|\mathbf{w}_{i}\right\|^{-1 / \gamma}
$$

Since $\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| \ll\left\|\mathbf{w}_{i}\right\|^{\beta}$ with $\beta<\gamma^{-2}$, this gives $\left|\left\langle\mathbf{z}, \mathbf{y}_{i+1}\right\rangle\right|<1$ provided that i is sufficiently large. Then the integer $\left\langle\mathbf{z}, \mathbf{y}_{i+1}\right\rangle$ must be zero and, by Proposition 4.1(e), we deduce that $\mathbf{z}=a \mathbf{z}_{i}+b \mathbf{z}_{i+1}$ for some $a, b \in \mathbb{O}$) where b is given by

$$
\mathbf{z}_{i} \wedge \mathbf{z}=b \mathbf{z}_{i} \wedge \mathbf{z}_{i+1}=(-1)^{i} b \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{w}_{2}\right)^{-1} \mathbf{y}_{i+1}
$$

Since $\operatorname{det}\left(\mathbf{w}_{2}\right) \mathbf{z}_{i} \wedge \mathbf{z} \in \mathbb{Z}^{3}$ and since, by Corollary 4.2(d), the content of \mathbf{y}_{i+1} divides $\operatorname{det}\left(\mathbf{y}_{2}\right) / \operatorname{det}\left(\mathbf{w}_{2}\right)$, this implies that $b \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{y}_{2}\right) / \operatorname{det}\left(\mathbf{w}_{2}\right)$ is an integer. So, if b is non-zero, it satisfies the lower bound

$$
|b| \geq\left|\operatorname{det}\left(\mathbf{w}_{2}\right) /\left(\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{y}_{2}\right)\right)\right|
$$

We note that $\left\langle\mathbf{z}_{i}, \mathbf{y}_{i}\right\rangle=0$ and by Proposition 4.1(d) that

$$
\left\langle\mathbf{z}_{i+1}, \mathbf{y}_{i}\right\rangle=\frac{\operatorname{det}\left(\mathbf{y}_{i}, \mathbf{y}_{i+1}, \mathbf{y}_{i+2}\right)}{\operatorname{det}\left(\mathbf{w}_{i+1}\right)}=(-1)^{i} \frac{\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)}{\operatorname{det}\left(\mathbf{w}_{2}\right)} \operatorname{det}\left(\mathbf{w}_{i}\right) .
$$

Therefore, if $b \neq 0$, the point $\mathbf{z}=a \mathbf{z}_{i}+b \mathbf{z}_{i+1}$ satisfies

$$
\left|\left\langle\mathbf{z}, \mathbf{y}_{i}\right\rangle\right|=|b|\left|\left\langle\mathbf{z}_{i+1}, \mathbf{y}_{i}\right\rangle\right| \geq\left|\operatorname{det}\left(\mathbf{y}_{2}\right)\right|^{-1}\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|=c_{5} c_{6}\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right| .
$$

However, (25) and (26) give

$$
\left|\left\langle\mathbf{z}, \mathbf{y}_{i}\right\rangle\right|<c_{5} \max \left\{\frac{\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|\left\|\mathbf{w}_{i}\right\|}{\left\|\mathbf{w}_{i+2}\right\|}, c_{6}\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|\right\}=c_{5} c_{6}\left|\operatorname{det}\left(\mathbf{w}_{i}\right)\right|
$$

if i is sufficiently large, because the ratio $\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|\left\|\mathbf{w}_{i}\right\| /\left\|\mathbf{w}_{i+2}\right\| \ll\left\|\mathbf{w}_{i}\right\|^{\beta \gamma-\gamma}$ tends to 0 as $i \rightarrow \infty$. Comparison with the previous inequality then forces $b=0$, and so we get $\mathbf{z}=a \mathbf{z}_{i}$ with $a \neq 0$. Since $\operatorname{det}\left(\mathbf{w}_{2}\right) \mathbf{z}_{i}$ is, by Corollary 4.2(e), an integer point whose content divides $\operatorname{det}\left(\mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)$, we deduce that

$$
a \operatorname{det}\left(\mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) / \operatorname{det}\left(\mathbf{w}_{2}\right)
$$

is a non-zero integer and therefore, using the second part of (15) in Proposition 6.1, we find that

$$
|\langle\mathbf{z}, \mathbf{y}\rangle|=|a|\left|\left\langle\mathbf{z}_{i}, \mathbf{y}\right\rangle\right| \geq \frac{\left|\operatorname{det}\left(\mathbf{w}_{2}\right)\right|}{\left|\operatorname{det}\left(\mathbf{y}_{2}\right) \operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)\right|}\left|\left\langle\mathbf{z}_{i}, \mathbf{y}\right\rangle\right| \gg \frac{\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|}{\left\|\mathbf{w}_{i+2}\right\|}
$$

Since this holds for any point \mathbf{z} satisfying (26) with i sufficiently large, we deduce that for any index $i \geq 0$ and any point $\mathbf{z} \in \mathbb{Z}^{3}$ with $0<\|\mathbf{z}\| \leq Z_{i}$ we have

$$
|\langle\mathbf{z}, \mathbf{y}\rangle| \gg \frac{\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|}{\left\|\mathbf{w}_{i+2}\right\|} \gg\left\|\mathbf{w}_{i}\right\|^{\gamma \alpha-\gamma^{2}} \gg Z_{i}^{\gamma \alpha-\gamma^{2}}
$$

This shows that $\widehat{\omega}_{2}(\xi) \leq \gamma^{2}-\gamma \alpha$.
Finally, for any real number $Z \geq\left\|\mathbf{z}_{0}\right\|$, there exists an index $i \geq 0$ such that $\left\|\mathbf{z}_{i}\right\| \leq Z<\left\|\mathbf{z}_{i+1}\right\|$ and, for such choice of i, we find by Proposition 6.1 that

$$
\left|\left\langle\mathbf{z}_{i}, \mathbf{y}\right\rangle\right| \ll \frac{\left|\operatorname{det}\left(\mathbf{w}_{i+1}\right)\right|}{\left\|\mathbf{w}_{i+2}\right\|} \ll\left\|\mathbf{w}_{i}\right\|^{\beta \gamma-\gamma^{2}} \sim\left\|\mathbf{z}_{i+1}\right\|^{\beta \gamma-\gamma^{2}} \ll Z^{\beta \gamma-\gamma^{2}}
$$

showing that $\widehat{\omega}_{2}(\xi) \geq \gamma^{2}-\gamma \beta$.
Let us say that a real number ξ is of "Fibonacci type" if there exist an unbounded Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ in \mathcal{M} and a real number θ with $\theta>1 / \gamma$ such that $\left\|(\xi,-1) \mathbf{w}_{i}\right\| \leq\left\|\mathbf{w}_{i}\right\|^{-\theta}$ for each sufficiently large index i. There are countably many such numbers, and any real number ξ obtained from Proposition 6.1 with $\beta<\gamma^{-2}$ is of this type. The following corollary shows that the exponents $\widehat{\omega}_{2}(\xi)$ attached to transcendental numbers of Fibonacci type are dense in the interval [2, $\left.\gamma^{2}\right]$. By Jarník's formula (1), this implies our main theorem in $\S 1$.

Corollary 7.2 Let t and ϵ be real numbers with $0<t<\gamma^{-2}$ and $\epsilon>0$. Then there exist a transcendental real number ξ and an unbounded Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ in \mathcal{N} which satisfy
(a) $\left\|(\xi,-1) \mathbf{w}_{i}\right\| \leq\left\|\mathbf{w}_{i}\right\|^{-1+t}$ for each sufficiently large i,
(b) $\gamma^{2}-t \gamma \leq \widehat{\omega}_{2}(\xi) \leq \gamma^{2}-(t-\epsilon) \gamma$.

Proof Since $t<1$, there exist integers k and ℓ with $0<\ell<k$ and $t-\epsilon \leq \ell /(k+2) \leq$ $\ell / k<t$. For such a choice of k and ℓ, consider the Fibonacci sequence $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ of Example 3.3 with parameters $a=2^{\ell}, b=2^{k-\ell}-1$ and $c=2^{k-\ell}$. According to Example 4.3, \mathbf{w}_{i} has relatively prime trace and determinant for each $i \geq 0$ and the corresponding sequence of symmetric matrices $\left(\mathbf{y}_{i}\right)_{i \geq 0}$ satisfies $\operatorname{det}\left(\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=$ $2^{4 \ell} \neq 0$. Moreover, Example 5.4 shows that $\left(\mathbf{w}_{i}\right)_{i \geq 0}$ is unbounded and satisfies the estimates (24) of Proposition 7.1 with $\alpha=\ell /(k+2)$ and $\beta=\ell / k$ (note that the example provides a slightly larger value for α). So, Proposition 7.1 applies and shows that the corresponding real number ξ constructed by Proposition 6.1 satisfies the above condition (b). In particular, ξ is transcendental since $\widehat{\omega}_{2}(\xi)>2$. Moreover, since $\left\|(\xi,-1) \mathbf{w}_{i}\right\| \sim\left\|(\xi,-1) \mathbf{y}_{i}\right\| \sim\left\|\mathbf{y}_{i} \wedge \mathbf{y}\right\|$, the first estimate in (15) leads to (a).

Acknowlegments The author warmly thanks Yann Bugeaud for pointing out the results of Jarník in [7] which brought a notable simplification to the present paper.

References

[1] J.-P. Allouche, J. L. Davison, M. Queffélec, L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions. J. Number Theory 91(2001), no. 1, 39-66.
[2] B. Arbour and D. Roy, A Gel'fond type criterion in degree two. Acta Arith. 11(2004), no. 1, 97-103.
[3] Y. Bugeaud and M. Laurent, Exponents of Diophantine approximation and sturmian continued fractions. Ann Inst. Fourier (Grenoble) 55(2005), no. 3, 773-804.
[4] H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic irrationals. Acta Arith. 13(1967), 169-176.
[5] , Approximation to real numbers by algebraic integers. Acta Arith. 15(1969), 393-416.
[6] S. Fischler, Spectres pour l'approximation d'un nombre réel et de son carré. C. R. Acad. Sci. Paris 339(2004), no. 10, 679-682.
[7] V. Jarník, Zum Khintchineschen Übertragungssatz. Trudy Tbilisskogo mathematicheskogo instituta im. A. M. Razmadze = Travaux de l'Institut mathématique de Tbilissi 3(1938), 193-212.
[8] D. Roy, Approximation simultanée d'un nombre et de son carré. C. R. Acad. Sci., Paris 336(2003), no. 1, 1-6.
[9] $\xrightarrow{\mathbf{8 8}(2004)}$ Approximation to real numbers by cubic algebraic integers. I. Proc. London Math. Soc. 88(2004), no. 1, 42-62.
[10] \longrightarrow Approximation to real numbers by cubic algebraic integers. II. Ann. of Math. 158(2003), no. 3, 1081-1087.
[11] , Diophantine approximation in small degree. In: Number Theory, CRM Proceedings and Lecture Notes 36, American Mathematical Society, Providence, RI, 2004, pp. 269-285.
[12] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics 785, Springer-Verlag, Berlin, 1980.

Département de Mathématiques
Université d'Ottawa
585 King Edward
Ottawa, ON
K1N 6N5
e-mail: droy@uottawa.ca

