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Local VMO and Weak Convergence in h1

Galia Dafni

Abstract. A local version of VMO is defined, and the local Hardy space h1 is shown to be its dual. An
application to weak-∗ convergence in h1 is proved.

1 Introduction

This paper is concerned with the local case of the duality between the Hardy space
H1 and the spaces BMO and VMO. As proved by C. Fefferman [F], BMO is the
dual of the real Hardy space H1. On the other hand, H1 itself is the dual of VMO.
This space was originally defined by Sarason as the subspace of BMO whose elements
have vanishing mean oscillation, but needs to be modified in the case of Rn in order
for duality to hold. The paper begins with a survey of these results, together with
complete proofs of the duality of H1 and VMO in the cases of the circle and of Rn.

In Section 3, a local version of VMO is defined as a subspace of the local BMO
space bmo, defined by Goldberg [G], whose elements are characterized by two van-
ishing mean oscillation conditions. It is shown that this space is in fact the closure
of C0(Rn) in bmo(Rn), and hence that the local Hardy space h1 is the dual of this
space. This allows the study of weak-∗ convergence in h1. In particular, in Section 4,
a version of the Jones-Journé theorem [JJ] for h1 is proved, which is useful in the
application of Hardy spaces to compensated compactness (see [CLMS].)

2 Survey of Known Results

Recall that a (locally) integrable function on the circle T (respectively on the line R)
is said to have bounded mean oscillation if

‖ f ‖∗
def
= sup

I

1

|I|

∫
I
| f (x)− fI | dx <∞.

Here and in the following I denotes a finite interval, |I| its length and fI =
1
|I|

∫
I f (x) dx is the average of f over I. Modulo constants, ‖ · ‖∗ defines a norm

and the Banach space of such functions is denoted by BMO(T) (resp. BMO(R)).

Definition 1 (Sarason [Sa]) A function f in BMO(T) (or BMO(R)) is said to have
vanishing mean oscillation if

(i)

lim
δ→0

sup
|I|≤δ

1

|I|

∫
I
| f (x)− fI | dx = 0.
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Weak Convergence in h1 47

The space of such functions, modulo constants, is denoted by VMO(T) (resp.
VMO(R)), with the norm defined as the BMO norm ‖ · ‖∗.

Theorem 1 (Sarason [Sa]) VMO is the closure in the BMO norm of UC∩BMO,
where UC is the space of uniformly continuous functions.

Theorem 2 (Sarason [Sa]) f ∈ VMO if and only if f = u+ṽ, where u, v are bounded
uniformly continuous functions and ṽ is the conjugate function (Hilbert transform) of v.
Moreover, by varying f by a constant, we can take u and v with ‖u‖∞ + ‖v‖∞ ≤ ‖ f ‖∗.

Recall that the complex Hardy space H1(T) is defined as the boundary values F(t)
of those holomorphic functions F(reit ) in the unit disk satisfying

‖F‖H1
def
= sup

r<1

∫
T
|F(reit )| dt <∞.

Define
Re H1(T) := {Re F : F ∈ H1(T)}

with norm
‖Re F‖Re H1

def
= ‖F‖H1 ≈ ‖Re F‖L1 + ‖ Im F‖L1

and the real Hardy space H1(T) by

H1(T) := { f : Re f , Im f ∈ Re H1(T)}

with norm
‖ f ‖H1

def
= ‖Re f ‖Re H1 + ‖ Im f ‖Re H1 .

Theorem 3 The dual of VMO(T) is

H1
0(T) :=

{
f : f ∈ H1(T),

∫
T

f (t) dt = 0

}
.

More precisely, every function f ∈ H1
0(T) defines a bounded linear functional L f on

VMO(T) by

L f (g) =

∫
T

f g(1)

with ‖L f ‖ ≤ ‖ f ‖H1 . Conversely, every bounded linear functional L on VMO(T) cor-
responds to a function f ∈ H1

0(T) with L = L f , ‖ f ‖H1 ≤ C‖L‖.

Proof We follow the proof given by Garcia-Cuerva and Rubio de Francia [GCRdF].
Since VMO(T) ⊂ BMO(T) which is the dual of H1

0(T) (C. Fefferman, [F]), each
f ∈ H1

0(T) defines a bounded linear functional L f on VMO(T) as in (1), of norm
bounded by ‖ f ‖H1 .
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Conversely, suppose L is a bounded linear functional on VMO. By taking real and
imaginary parts, we may assume L is real-valued without changing its norm. Note
that for φ ∈ C(T),

|L(φ)| ≤ ‖L‖ ‖φ‖∗ ≤ ‖L‖ ‖φ‖∞,

so L acts on C(T) by integration against a finite Borel measure µ, with ‖µ‖ ≤ ‖L‖.
By Theorem 2, the conjugate function of a continuous function is in VMO, so we

can define the linear functional L̃ acting on C(T) by

L̃(φ)
def
= −L(φ̃).

Then
|L̃(φ)| ≤ ‖L‖ ‖φ̃‖∗ ≤ C‖L‖ ‖φ‖∞

by the boundedness of the conjugate function operator from L∞ to BMO. Thus L̃ is
given by integration against a finite Borel measure ν, with ‖ν‖ ≤ C‖L‖.

Let φ = eint , n > 0. Then φ̃ = −ieint so L̃(φ) = iL(φ) and hence

0 = L(φ) + iL̃(φ) =

∫
eint (dµ + idν).

Since this holds for all n > 0, we can apply the F. and M. Riesz theorem to conclude
thatµ+iν is absolutely continuous with respect to Lebesgue measure andµ+iν = Fdt
for some F ∈ H1(T). Note that since L vanishes on constants,

∫
F = 0. Writing

f = Re F, we have that f ∈ Re H1
0, Im F = f̃ and

‖ f ‖H1 = ‖F‖L1 ≤ ‖µ‖ + ‖ν‖ ≤ C‖L‖.

Taking a real-valued φ ∈ C(T),

L(φ) + iL̃(φ) =

∫
φ( f + i f̃ ) dt

and since L is real-valued,

L(φ) =

∫
φ f dt and L̃(φ) =

∫
φ f̃ dt.

By linearity this extends to all φ ∈ C(T), and since C(T) is dense in VMO, we see that
L is given by integration against f ∈ Re H1 with ‖ f ‖Re H1 ≤ C‖L‖. Dropping the
assumption that L is real-valued, we have that a general complex-valued bounded
linear functional on VMO(T) is given by a integration against a function f = f1 +
i f2 ∈ H1

0(T), f1, f2 ∈ Re H1(T), with

‖ f ‖H1 = ‖ f1‖Re H1 + ‖ f2‖Re H1 ≤ 2C‖L‖.
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We now turn to the situation in Rn. The space BMO(Rn) is defined analogously
to BMO(R), replacing intervals with cubes. This is the dual of the real Hardy space
H1(Rn), which can be defined (Fefferman and Stein, [FS]) by requiring that the max-

imal function Mψ( f ) be in L1, with ‖ f ‖H1
def
= ‖Mψ( f )‖L1 , where

Mψ( f )(x) = sup
t>0
|( f ∗ ψt )(x)|,

ψ is some fixed function in S(Rn),
∫
ψ �= 0, and ψt denotes the dilation ψt (x) =

t−nψ(t−1x).
In order to represent H1(Rn) as a dual space, we must define a slightly different

version of VMO (see Coifman and Weiss [CW].)

Definition 2 The space VMO0(Rn) is the closure of C0(Rn) in BMO(Rn).

Clearly VMO0 is a subspace of Sarason’s VMO space, the closure of the uniformly
continuous functions in BMO. However, it is easy to see that in addition to satisfying
the vanishing mean oscillation condition (i), VMO0 functions must also satisfy the
following “vanishing mean oscillation” conditions:

(ii)

lim
N→∞

sup

(Q)≥N

1

|Q|

∫
Q
| f (x)− fQ| dx = 0

(iii)

lim
R→∞

sup
Q∩B(0,R)=∅

1

|Q|

∫
Q
| f (x)− fQ| dx = 0.

Here and in the following Q denotes a cube, 
(Q) its sidelength, |Q| its measure,
fQ =

1
|Q|

∫
Q f (x) dx the average of f over Q, and B(0,R) the ball centered at the

origin with radius R.
For example, when n = 1, the function f (x) = sin x is in VMO but not in VMO0.

Moreover, conditions (ii) and (iii) are both necessary. For example, the continuous
function

f (x) =
∞∑

k=1

(1− |x − 2k|)+

satisfies conditions (i) and (ii) but not (iii), while the continuous function

f (x) = −χ(−∞,−1] + xχ[−1,1] + χ[1,∞)

satisfies conditions (i) and (iii) but not (ii).

Lemma 1 The Riesz transforms R j map C0(Rn) into VMO0(Rn).
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Proof We use the fact that the Riesz transforms are bounded operators from L∞ to
BMO. Since C0 is the closure of the Schwartz space S in L∞, R j(C0) lies in the closure
of R j(S) in BMO. But R j(S) ⊂ C0 since for every φ ∈ S,

R̂ j(φ)(ξ) = −i
ξ j

|ξ|
φ̂(ξ)

is in L1. Thus R j(C0) ⊂ R j(S)
BMO
⊂ C0

BMO
= VMO0.

Theorem 4 The dual of VMO0(Rn) is the real Hardy space H1(Rn).

Proof (see also Chang [Ch], Coifman and Weiss [CW]) The proof is similar to the
case of the circle. Again, since VMO0(Rn) is a subspace of BMO(Rn), which is the
dual of H1, every function f in H1 determines a bounded linear functional on VMO0

of norm bounded by ‖ f ‖H1 .
Conversely, given a bounded linear functional L on VMO0, we see as above that

it acts on C0 by means of a finite Borel measure µ. We can also define, thanks to
Lemma 1, the “Riesz transforms” of L by

R j(L)(φ)
def
= L
(

R j(φ)
)

whenever φ ∈ C0, j = 1, . . . , n. Again the boundedness of the Riesz transforms R j

from L∞ to BMO shows that each R j(L) is given by a finite Borel measure ν j . An
n-dimensional version of the F. and M. Riesz theorem (see Stein [S, VII.3.2 Corol-
lary 1]), applied to the n-tuple of measures (µ, ν1, . . . , νn), gives that each is abso-
lutely continuous with respect to Lebesgue measure on Rn, with

dµ = f dx

and
dν j = R j( f )dx

for some f ∈ H1(Rn). Furthermore,

‖ f ‖H1 ≈ ‖ f ‖L1 +
∑
‖R j( f )‖L1 ≤ ‖L‖ +

∑
‖R j(L)‖ ≤ C‖L‖.

3 Local Version of Duality

Fix a function ψ ∈ S(Rn),
∫
ψ �= 0. For f ∈ L1(Rn), define the local maximal

function
mψ( f )(x) = sup

0<t<1
|( f ∗ ψt )(x)|,

where ψt denotes the dilation ψt (x) = t−nψ(t−1x).

Definition 3 (Goldberg [G]) A function f belongs to the local Hardy space h1(Rn)
if and only if mψ( f ) ∈ L1(Rn), and

‖ f ‖h1 ≈ ‖mψ( f )‖L1 .
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Definition 4 (Goldberg [G]) bmo(Rn) is the space of locally integrable functions f
on Rn satisfying

‖ f ‖bmo
def
= sup
|Q|<1

1

|Q|

∫
Q
| f (x)− fQ| dx + sup

|Q|≥1

1

|Q|

∫
Q
| f (x)| dx <∞.

Note that ‖ · ‖∗ ≤ 2‖ · ‖bmo so bmo ⊂ BMO, but in bmo constants are no longer
identified to zero.

Theorem 5 (Goldberg [G]) The space bmo(Rn) is the dual of the local Hardy space
h1(Rn).

Definition 5 The space vmo(Rn) is the subspace of bmo(Rn) consisting of those
functions f on Rn satisfying

(i ′)

lim
δ→0

sup

(Q)≤δ

1

|Q|

∫
Q
| f (x)− fQ| dx = 0

and
(ii ′)

lim
R→∞

sup

(Q)≥1,Q∩B(0,R)=∅

1

|Q|

∫
Q
| f (x)| dx = 0.

Theorem 6 vmo(Rn) is the closure of C0(Rn) in bmo(Rn).

Proof For φ ∈ C0, uniform continuity implies that

lim
δ→0

sup

(Q)≤δ

1

|Q|

∫
Q
|φ(x)− φQ| dx = lim

δ→0
sup

(Q)≤δ

1

|Q|

∫
Q
|φ(x)− φ(xQ)| dx

≤ lim
δ→0

sup
|x−y|<δ

|φ(x)− φ(y)|

= 0.

The vanishing of φ at infinity implies that

lim
R→∞

sup

(Q)≥1,Q∩B(0,R)=∅

1

|Q|

∫
Q
|φ(x)| dx ≤ lim

R→∞
sup
|x|≥R

|φ(x)| = 0.

We have shown C0 ⊂ vmo. Moreover, the space vmo is closed in bmo since for
f , g ∈ bmo, δ < 1,

sup

(Q)≤δ

1

|Q|

∫
Q
| f (x)− fQ| dx ≤ sup


(Q)≤δ

1

|Q|

∫
Q
|g(x)− gQ| dx + ‖ f − g‖bmo
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and

sup

(Q)≥1,Q∩B(0,R)=∅

1

|Q|

∫
Q
| f (x)| dx ≤ sup


(Q)≥1,Q∩B(0,R)=∅

1

|Q|

∫
Q
|g(x)| dx + ‖ f − g‖bmo.

Conversely, suppose f ∈ vmo. Take φ continuous with compact support in
B(0, 1), 0 ≤ φ ≤ 1, and

∫
φ �= 0. For every ε > 0, set φε(x) = ε−nφ(ε−1x)

and
f ε = f ∗ φε.

We first show f ε ∈ C0 for every ε > 0. In fact, f ε is uniformly continuous since
by the duality of H1 and BMO,

| f ε(x)− f ε(y)| =

∣∣∣∣
∫
|t|<ε

f (t)[φε(x − t)− φε(y − t)] dt

∣∣∣∣
≤ C‖ f ‖BMO ‖φε(x − ·)− φε(y − ·)‖H1

≤ C‖ f ‖bmo |Bx,y,ε| ‖φε(x − ·)− φε(y − ·)‖∞

≤ C(ε + |x − y|/2)n‖ f ‖bmo ‖φε(x − ·)− φε(y − ·)‖∞

→ 0

as |x− y| → 0. Here we’ve used the fact that φε(x− ·)− φε(y − ·) is a multiple of an
H1-atom supported in Bx,y,ε, the smallest ball containing B(x, ε) and B(y, ε).

Moreover, for a fixed ε > 0,

| f ε(x)| ≤

∫
|t|<ε
| f (x − t)|φε(t) dt

≤ ε−n

∫
B(x,ε)
| f (t)| dt

≤ ε−n

∫
Qx,ε,1

| f (t)| dt

= Cε
1

|Qx,ε,1|

∫
Qx,ε,1

| f (t)| dt

→ 0

as |x| → ∞. Here Qx,ε,1 is a cube centered at x with sidelength max{1, 2ε}. By
condition (ii ′) in the definition of vmo, the average of f over such a cube tends to
zero as |x| → ∞.

It remains to show that f ε → f in bmo. As a preliminary step we compute, for a
cube Q,

1

|Q|

∫
Q
| f ε(x)− f εQ| dx

=
1

|Q|

∫
Q

∣∣∣∣
∫

f (x − t)φε(t) dt −
1

|Q|

∫
Q

∫
f (y − t)φε(t) dt dy

∣∣∣∣ dx
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=
1

|Q|

∫
Q

∣∣∣∣
∫ [

f (x − t)−
1

|Q|

∫
Q

f (y − t) dy

]
φε(t) dt

∣∣∣∣ dx

≤

∫
1

|Q|

∫
Q

∣∣∣∣ f (x − t)−
1

|Q|

∫
Q

f (y − t) dy

∣∣∣∣ dx φε(t) dt

=

∫
1

|Q− t|

∫
Q−t
| f (x)− fQ−t | dxφε(t) dt

≤ sup
|t|<ε

1

|Q− t|

∫
Q−t
| f (x)− fQ−t | dx

and

1

|Q|

∫
Q
| f ε(x)| dx =

1

|Q|

∫
Q

∣∣∣∣
∫

f (x − t)φε(t) dt

∣∣∣∣ dx

≤

∫
1

|Q|

∫
Q
| f (x − t)| dx φε(t) dt

≤ sup
|t|<ε

1

|Q− t|

∫
Q−t
| f (x)| dx.

Here Q − t denotes the cube which is the translate of Q by −t . Note that we have
used Minkowski’s integral inequality in both estimates.

Let η > 0 be given. We want to show ‖ f − f ε‖bmo < η for all sufficiently small ε.
Take δ < 1 such that

sup

(Q)≤δ

1

|Q|

∫
Q
| f (x)− fQ| dx < η/2.

Then for cubes Q with 
(Q) ≤ δ,

1

|Q|

∫
Q
|( f − f ε)(x)− ( f − f ε)Q| dx

≤
1

|Q|

∫
Q
| f (x)− fQ| dx +

1

|Q|

∫
Q
| f ε(x)− f εQ| dx

≤
1

|Q|

∫
Q
| f (x)− fQ| dx + sup

|t|<ε

1

|Q− t|

∫
Q−t
| f (x)− fQ−t | dx

< η.

Let R >
√

n be such that

sup

(Q)≥1,Q∩B(0,R)=∅

1

|Q|

∫
Q
| f (x)| dx <

δnη

4
.
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Then for ε < R−
√

n, if 
(Q) ≥ δ and Q ∩ B(0, 2R) = ∅,

1

|Q|

∫
Q
|( f − f ε)(x)| dx ≤

1

|Q|

∫
Q
| f (x)| dx +

1

|Q|

∫
Q
| f ε(x)| dx

≤
1

|Q|

∫
Q
| f (x)| dx + sup

|t|<ε

1

|Q− t|

∫
Q−t
| f (x)| dx

≤ 2 sup
|Q ′|=|Q|,Q ′∩B(0,R+

√
n)=∅

1

|Q ′|

∫
Q ′
| f (x)| dx

≤ 2δ−n sup

(Q∗)≥1,Q∗∩B(0,R)=∅

1

|Q∗|

∫
Q∗
| f (x)| dx

<
η

2
.

In particular, this also implies that for Q as above with 
(Q) < 1,

1

|Q|

∫
Q
|( f − f ε)(x)− ( f − f ε)Q| dx ≤ 2

1

|Q|

∫
Q
|( f − f ε)(x)| dx < η.

Thus the only case remaining is that in which 
(Q) ≥ δ and Q ∩ B(0, 2R) �= ∅. If

(Q) ≥ 1, write Q as a finite union of cubes Q j with disjoint interiors and sidelengths
< 1. Then

1

|Q|

∫
Q
|( f − f ε)(x)| dx

=
1

|Q|

[ ∑
Q j⊂B(0,2R+

√
n)

∫
Q j

|( f − f ε)(x)| dx +
∑

Q j\B(0,2R+
√

n)=∅

∫
Q j

|( f − f ε)(x)| dx

]

≤ δ−n‖ f − f ε‖L1(B(0,2R+
√

n)) +
1

|Q|

∑
Q j∩B(0,2R)=∅

η

2
|Q j |

≤ δ−n‖ f − f ε‖L1(B(0,2R+
√

n)) +
η

2
.

Since f is locally in L1 and φ has compact support, we know that f ε = f ∗φε → f in
L1 on any finite ball, hence we can make ε sufficiently small so that

‖ f − f ε‖L1(B(0,2R+
√

n)) < δn η

2
.

With this choice of ε we also have that if δ ≤ 
(Q) < 1,

1

|Q|

∫
Q
|( f − f ε)(x)− ( f − f ε)Q| dx ≤ 2

1

|Q|

∫
Q
|( f − f ε)(x)| dx

< 2δ−n‖ f − f ε‖L1(B(0,2R+
√

n) < η.
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This finishes all the cases of the proof.

To see that vmo �= C0, consider the following example on R1: for α > 0 set

fα(x) = min
(

1, (−α log |x|)+

)
.

Note that fα is continuous, supported in [−1, 1], 0 ≤ fα ≤ 1, f (0) = 1 and for
x �= 0, fα(x)→ 0 as α→ 0. Moreover,

‖ fα‖∗ ≤ C‖(−α log |x|)+‖∗ ≤ Cα‖ log |x| ‖∗ ≤ Cα.

Let

f (x) =
∞∑

n=1

f1/n(x − 2n).

Since 0 ≤ f ≤ 1, f ∈ bmo. Condition (i’) is satisfied because f is continuous,
‖ f1/n(· − 2n)‖∗ → 0 as n → ∞ and f → 0 on [2n + 1/2, 2n + 3/2] uniformly as
n→∞. Moreover, f satisfies condition (ii’) since the average of f on any interval of
length ≥ 1 tends to zero at infinity. However, it is not true that f (x) → 0 as x → ∞
since f (2n) = 1 for all n.

Definition 6 (Goldberg [G]) The local Riesz transforms r j can be defined on any
tempered distribution f on Rn by

(r j f )ˆ= −i(ξ j/|ξ|) tanh(π|ξ|) f̂ .

Theorem 7 (Goldberg [G]) The local Riesz transforms r j are bounded operators from
L∞(Rn) to bmo(Rn).

Lemma 2 The local Riesz transforms r j map C0(Rn) into vmo(Rn).

The proof is the same as for Lemma 1.

Theorem 8 A finite Borel measure µ on Rn whose local Riesz transforms r j µ, 1 ≤
j ≤ n, are also finite Borel measures on Rn is absolutely continuous with respect to
Lebesgue measure on Rn. Moreover, dµ = f dx, and d(r j µ) = f jdx with f ∈ h1(Rn),
f j = r j f ∈ h1(Rn).

Proof The proof proceeds as in the case of the upper half-space. Let µ0 = µ,
µ j = r jµ. As in Goldberg [G], convolution with the kernel Py , given by its Fourier
transform

P̂y(ξ) =
cosh(1− 2y)π|ξ|

cosh π|ξ|
,

converts the n-tuple of Borel measures (µ0, µ1, . . . , µn) into a system of conjugate
harmonic functions (u0, u1, . . . , un) in the strip S = {(x1, . . . , xn, y) : 0 < y < 1},
even with respect to the line y = 1/2. Since

‖Py ∗ µ j‖L1(Rn) ≤ ‖Py‖L1(Rn) ‖µ j‖ =

∫
Rn

|dµ j | <∞,
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this system satisfies Goldberg’s h1 condition

sup
0<y<1

∫
Rn

√
|u0|2 + · · · + |un|2 dx <∞,

and therefore has boundary values ( f0, f1, . . . , fn) with f0 ∈ L1, f j = r j f0 ∈ L1,
1 ≤ j ≤ n, and u j = Py ∗ f j . By uniqueness of the Poisson integral representation in
the strip, dµ j = f jdx.

Theorem 9 The dual of vmo(Rn) is the local Hardy space h1(Rn).

Proof The proof is similar to the case of VMO and H1. Again, since vmo(Rn) is a
subspace of bmo(Rn), which is the dual of h1, every function f in h1 determines a
bounded linear functional on vmo of norm bounded by ‖ f ‖h1 .

Let L be a bounded linear functional on vmo. Since the bmo norm is bounded by
the L∞ norm, L acts on C0 by means of a finite Borel measure µ. As above, Lemma 2
allows us to define the “local Riesz transforms” of L by

r j(L)(φ)
def
= L
(

r j(φ)
)

whenever φ ∈ C0, j = 1, . . . , n. Using the boundedness in Theorem 7, we get that
each r j(L) is given by a finite Borel measure ν j . Theorem 8 gives

dµ = f dx

and
dν j = r j f dx

for some f ∈ h1(Rn). Furthermore,

‖ f ‖h1 ≈ ‖ f ‖L1 +
∑
‖ r j f ‖L1 ≤ ‖L‖ +

∑
‖r j(L)‖ ≤ C‖L‖.

4 The Jones-Journé Theorem for h1

We first quote the result for the Hardy space H1(Rn) and then give the version for
h1(Rn).

Theorem 10 (Jones-Journé [JJ]) If { fn} is a bounded sequence in H1(Rn) and

fn(x)→ f (x) almost everywhere, then f ∈ H1(Rn) and fn
∗
⇀ f in H1, i.e.,

∫
Rn

fnφ dx→

∫
Rn

fφ dx

for all φ ∈ VMO0(Rn).
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Theorem 11 If { fn} is a bounded sequence in h1(Rn) and fn(x) → f (x) almost ev-

erywhere, then f ∈ h1(Rn) and fn
∗
⇀ f in h1, i.e.,

∫
Rn

fnφ dx→

∫
Rn

fφ dx(2)

for all φ ∈ vmo(Rn).

Proof We follow the proof of the Jones-Journé theorem given by Coifman, Lions,
Meyer and Semmes in [CLMS] and make changes appropriate to the local case.

Since C∞c is dense in vmo, it suffices to prove equation (2) for φ ∈ C∞(Rn) with
compact support in B(0,R) for some R > 0. By Egorov’s theorem applied to { fn} in
B(0,R), for every ε > 0 there exists a measurable set E ⊂ B(0,R) with |E| < ε and
fn → f uniformly on B(0,R) \ E. We want to write

∫
( fn − f )φ dx =

∫
B(0,R)\E

( fn − f )φ dx +

∫
E

fnφ dx−

∫
E

fφ dx.

The first term on the right tends to zero as n → ∞, and we can estimate the third
term by ‖φ‖∞

∫
E f dx, which tends to zero with ε (since by Fatou’s lemma f ∈ L1.)

The duality of h1 and bmo and the boundedness of { fn} in h1 allows us to bound
the second term by a constant multiple of ‖χEφ‖bmo, but unfortunately this is not
controlled by ε.

As in [CLMS], we fix λ > 0 and replace the characteristic function χE by the
function

wλ =
(

1 + λ log M(χE)
)

+
,

where M(·) denotes the Hardy-Littlewood maximal function. Since χE ≤ M(χE) ≤
1 almost everywhere, we have also that χE ≤ wλ ≤ 1 almost everywhere, and hence
1− wλ vanishes on E. Writing

∫
( fn − f )φ dx =

∫
( fn − f )(1− wλ)φ dx +

∫
fnwλφ dx−

∫
f wλφ dx,(3)

we can estimate the first term on the right by

∣∣∣∣
∫

( fn − f )(1− wλ)φ dx

∣∣∣∣ ≤ ‖φ‖L1 sup
x∈B(0,R)\E

| fn(x)− f (x)|,

which tends to zero as n→∞, with ε fixed.
The third term on the right of equation (3) can be bounded as follows:

∣∣∣∣
∫

f wλφ dx

∣∣∣∣ ≤ ‖φ‖∞
∫
{wλ>0}

| f | dx.

Note that
|{wλ > 0}| = |{M(χE) > e−1/λ}| ≤ Cεe1/λ
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by the weak L1 boundedness of the maximal function. Thus the third term can be
made arbitrarily small if we fix λ and let ε go to zero.

As for the second term on the right of equation (3), again by the duality of h1 and
bmo and the boundedness of { fn} in h1,

∣∣∣∣
∫

fnwλφ dx

∣∣∣∣ ≤ C‖wλφ‖bmo

= C sup
|Q|<1

1

|Q|

∫
Q
|φwλ(x)− (φwλ)Q| dx + C sup

|Q|≥1

1

|Q|

∫
Q
|φwλ(x)| dx

≤ C sup
|Q|<1

1

|Q|

∫
Q
|φ(x)wλ(x)− φ(x)(wλ)Q| dx

+ C sup
|Q|<1

1

|Q|

∫
Q
|φ(x)(wλ)Q − φQ(wλ)Q| dx + C‖φ‖∞ ‖wλ‖L1

≤ C[‖φ‖∞ ‖wλ‖∗ + |(wλ)Q| ‖∇φ‖∞ diam(Q) + |φ‖∞ ‖wλ‖L1 ].

As in [CLMS], we can estimate

‖wλ‖BMO =
∥∥(1 + λ log M(χE)

)
+

∥∥
∗
≤
∥∥(1 + λ log M(χE)

)∥∥
∗

= λ‖ log M(χE)‖∗ ≤ Cnλ

by a result of Coifman and Rochberg [CR]. Moreover,

‖wλ‖L1 ≤ |{wλ > 0}| ≤ Cεe1/λ

as above. Finally, fixing δ > 0, we have

|(wλ)Q| ‖∇φ‖∞ diam(Q) ≤ ‖∇φ‖∞δ

if diam(Q) ≤ δ and

|(wλ)Q| ‖∇φ‖∞ diam(Q) ≤ C‖∇φ‖∞δ
1−n|{wλ > 0}| ≤ C‖∇φ‖∞δ

1−nεe1/λ

if diam(Q) > δ.
Thus all in all we can make the right-hand-side of equation (3) arbitrarily small

by first letting n → ∞, then ε → 0, then δ → 0 and λ → 0. This proves (2) for all
φ ∈ C∞c (Rn).

By weak-∗ compactness of the ball in h1(Rn), there exists a g ∈ h1(Rn) such that

fnk

∗
⇀ g for some subsequence fnk . Thus

∫
fφ =

∫
gφ for all φ ∈ C∞c (Rn), hence

f = g ∈ h1(Rn) and fn
∗
⇀ f in h1.
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