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ON JOINT SPECTRA OF NON-COMMUTING NORMAL OPERATORS

ALAN J. PRYDE AND ANDRZEJ SOLTYSIAK

The purpose of the paper is to show that the Harte spectrum and the bicommutant
spectrum of an arbitrary n-tuple of normal Hilbert space operators can be obtained
from the spectral set 7 introduced by Mclntosh and Pryde. It is also proved that
many commonly used joint spectra of an n-tuple of normal m by m matrices are
equal. These results are non-commutative variants of some theorems proved by
Mclntosh, Pryde, and Bicker for commuting sets of operators.

Let H be a complex Hilbert space. All operators considered in the sequel are
assumed to be bounded linear operators on H. In [7, 8] Mclntosh and Pryde introduced
a notion of a spectral set ~f(T) associated to each n-tuple T = (Ti , . . . , Tn) of operators
and defined as follows:

n

7(T) = |(Aj,. . . , An) £ Kn : Y^ iTi ~ *j? is n o t avertible in £(#)}•
i=i

(Here we write for simplicity Tj — Xj instead of Tj — Xjl.) This set has proved useful

not only in the spectral theory of self-adjoint operators but also in comparing various

types of joint spectra of commuting n-tuples of operators (see [9]). One advantage of

the set 7(T) over other joint spectra is that it can be easily computed.

In this paper we show that the spectral set ~y(T) is also useful in the multiparameter

spectral theory of normal (not necessarily commuting) operators. Moreover we prove

that many known joint spectra coincide on the n-tuples of normal m by m matrices.

We recall some definitions of joint spectra. Let, as before, T = ( 2 \ , . . . ,Tn) be
an n-tuple of operators. A point A = (Ai , . . . ,A n ) of Cn is not in the left spectrum

n
of T if there exist operators S1,...,Sn £ B(H) such that £ Sj(Tj - Xj) = I. The

i=i
left spectrum of T will be denoted by <ri(T). The right spectrum, ar(T), is defined
analogously. The Harte spectrum of T (in B(H)) is the union of the left and right
joint spectra; in symbols

= <n(T) U ar{T).
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164 A.J. Pryde and A. Sohysiak [2]

It is well-known (see [6, Theorems 2.5 and 2.4]) that

<r,(T) = {A £ C : ̂  £ IK^ " A*H =

(the approximate point spectrum) and

aT{T) = {A £ C» : £ ((T,- - A,-)(iT)) # #

i

(the defect spectrum).

Let <S be a non-empty subset of B(H). The commutant 5 ' of S is the set of all
operators that commute with every element of S. The bicommutant S" is the commu-
tant of <S'. It is clear from the definition that S" is a closed, unital, and inverse-closed
subalgebra of B(H) containing the set 5. The bicommutant spectrum of an n-tuple
T = (T i , . . . , Tn), denoted by <r"{T), is the Harte spectrum of T in its bicommutant
{T i , . . . , T n }" . One can also consider the Harte spectrum of T - (Ti , . . . , Tn) in the
Banach algebra [ 2 \ , . . . , Tn] generated by T i , . . . ,T n and the identity. Let us denote
this spectrum by a(T).

To define the last joint spectrum to be used in this paper we require "non-
commutative polynomials" (see [6, pp. 98-99]). By •£>(") we denote the algebra
of all polynomials over C in non-commutative indeterminates Xi,... ,Xn. In other
words, V^n' is the free associative complex unital algebra generated by the symbols
X\ ,. • •, Xn . An n-tuple of operators (Ti , . . . , Tn) £ B(H)n induces a homomorphism
/ H-> / ( T i , . . . , r n ) from 7?(n) to B(H) which preserves the identity and sends each
Xj to the corresponding Tj (j - l , . . . , n ) . A system ( / i , . . . , /m) £ ("P(n))m will be
identified with a polynomial map / : B(H)n —> B(H)m which sends (Ti , . . . ,Tn) to
(/i (T i , . . . , Tn),..., fm{Ti ,•••, Tnf) . The restriction of this mapping to the scalar mul-
tiples of the unit Cn C B(H)n takes its values in Cm C B(H)m and reduces to the
system of "numerical" polynomials.

The Waelbroeck spectrum of an n-tuple T = (Ti , . . . ,Tn) (sometimes called the ra-
tional, polynomial or rationally convex joint spectrum, see [1, 9], and [10] respectively)
is defined to be the set:

an(T) = {A G Cn : /(A) <= tr(f(T)) for every / £ ?><">}.

It is known (see [10]) that for an arbitrary n-tuple T = (Ti , . . . , Tn) of operators
the following inclusions are true:

(1) *H(T) C *"{T) C *
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[3] Non-commuting normal operators 165

Moreover all these spectra are compact (possibly empty) subsets of C 1 (see [6, 10],

and [11]). Notice also that for a single operator T the sets <TH(T), <r"(T), and <rv.(T)

coincide and are equal to the usual spectrum of this element denoted by cr(T).

For convenience of the reader we shall state the following result (see [2, Lemma

2.4]) which will be used repeatedly in the course of the paper.

DASH'S LEMMA. Let T = (Ti,...,Tn) be an arbitrary n-tuple of operators.

Then

(a) A G <r,(T) if and only if 0 S a( £) (T,- - A , ) * ^ - A,-)) ,

(b) A 6 <TT{T) if and only if 0 £ <r ( £ (Tj - Ai)(Ti - A,-)*) .

This lemma immediately implies

COROLLARY 1 . If T = (Tx,..., Tn) is an n-tuple of normal operators, then

<rt{T) = vr{T) = <rH{T).

For n-tuples of self-adjoint operators we can prove more.

PROPOSITION 1 . Let T = (Z i , . . . ,Tn) be an arbitrary n-tuple of self-adjoint

operators. Then

(2) <r,(r) = <rr(T) = <rH{T) = cr"{T) = *K{T) = *{T) = 7 (T) .

PROOF: From Dash's lemma we get

<r,(T) = *r(T) = <rH(T) = 7(T).

It is also clear that

?(T)c<r(T!)x • • • x <r(Tn) C Kn.

Hence, in view of (1), it is enough to show that ?(T) C ~f{T).
n

Suppose A ^ l{T). This implies that the operator 5 = £2 (^i ~ ^j) *s invertible

in B(H). As [Ti,. . . , Tn] is a C*-algebra and S £ [7 \ , . . . , Tn] there exists V in

[Ti,.. .,Tn] such that VS = I. But this gives £ V(Tj - Ai)(T7- - A,) = / . So A g

5(T) and the proof is complete. D

REMARKS. 1. The equality o-,(T) = j(T) for T an n-tuple of self-adjoint operators
was proved in [4, Proposition 2].

2. For a commuting n-tuple T = ( 7 \ , . . . , Tn) of Banach space operators, equali-
ties (2) imply that the spectra <r(Tj) (j = 1, . . . ,n) are real (see [9, Theorem 1]). This
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is no longer true if the operators Tj do not commute. To see this take the follow-

ing 2 by 2 matrices: ^ = ( J and A 2 = (%' ) . Then a{Ax) = {0,1},

<r(A2) = {-\/l5/4 + i/4,v/r5/4 + i/4},but <n{AltAa) = ar(AltAa) = aH(A1,A2) =
tr"(Ai,A2) = <r-R.{A1,A3) = d{AuA2)=1{AuA2) = 0.

Now we proceed to the case of normal operators. We start with

LEMMA . Let T = (Z\ , . . . , Tn) be an arbitrary n-tuple of normal operators. Then

*H{T,T*) = {(A,A) G C2n : X S trH(T)},

where T* = (T*,... ,T*) and X = (AT,..

PROOF: By Theorem 3.4(i) of [6] we have

<TH{T,T*) C {(A,A) G C2" : X £ <TH{T)}.

The reverse inclusion follows from the identity

and Dash's lemma. D

COROLLARY 2 . If T = ( 1 \ , . . . , Tn) is an arbitrary n-tuple of normal operators,
then

{f{X,X):Xe<rH(T)}c<rH(f(T,T*))

for every polynomial map f 6 ("p(2n))m .

PROOF: This is an immediate consequence of the Lemma and Theorem 3.4(ii) of
[6]. D

Now observe that if T = (Ti, . . . ,Tn) is an n-tuple of normal operators and Tj =
ReTj + i ImTj , j = 1 , . . . , n, then, in view of Corollary 2,

X 6 <TH{T) implies (ReA,ImA) e aH(ReT,lmT),

where ReT = (ReTj,.. . , ReTn), ImT = (ImTi,..., ImTn), ReA = (ReAj,..., ReAn),
and ImA = (ImAi,..., ImAn).

Let us introduce the following notation (see [9]):

n (T) - (ReT, ImT) and p(Zl,..., z2n) = (Zl + izn+1 ,...,zn+ iz2n).
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THEOREM 1 . Let T = ( T i , . . . , Tn) be an arbitrary n-tuple of normal operators.
Then

PROOF: First we prove that crH{T) = p(j(U(T))} . By the one-way spectral

mapping property of <TH (see [6, Theorem 3.2]) and Proposition 1 we get

p(7(n(T))) =p(*H(U(T))) C aH(p(U(T))) = *H{T).

On the other hand, if A £ <TH{T), then (ReA,ImA) £ <rH(lL(T)) , and therefore

A = P(ReA,ImA) 6 p(aH(U(T))) =

as was to be proved.
To obtain the equality <rH{T) = <r"(T) it is enough to show that <T"{T) C VH{T)

as the reverse inclusion is obvious (see (1)). Suppose A ^ <TH(T). By Dash's lemma the
n

operator 5 = ]>3 (Tj — \j)*(Tj — Xj) has an inverse V in B{H). Since the operators

Ti , . . . , Tn are normal, it follows from Fuglede's theorem that 5 G {7 \ , . . . , Tn}". Hence

V £ {Tu...,Tn}" and from £ V(Tj - XjTiTj - A,-) = / we conclude that A £

cr"(T). This completes the proof. D

REMARKS. 1. Theorem 1 can be viewed as a generalisation of Theorem 2 and Lemma
2 of [9] to non-commuting n-tuples of normal operators.

2. Example 4.2, pp. 212-213 in [1], shows that even for a commuting pair of normal
operators (Ti,T2) the inclusion

can be proper.
3. One can easily modify Taylor's example [12, pp.189-191] to obtain two com-

muting Hilbert space operators Ti, T^ (one of them not being normal) with

So, Theorem 1 is not true when the operators 1 \ , . . . , Tn are not normal.
4. Since Dash's lemma and Theorem 3.4 of [6] are valid for an arbitrary C*-algebra

the same is true for the results presented above.
In the finite dimensional case we can prove the following:
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THEOREM 2 . Let A = (Ai,... ,An) be an arbitrary n-tuple of normal m by m
matrices with complex entries. Then

tr,(A) = oT{A) = <rH(A) = <T"(A) = a

= phf(U(A))J = {joint eigenvalues of Alt..., An}.

PROOF: By Theorem 2.6 in [6]

cri(A) = {joint eigenvalues of A\,..., An}.

In view of Theorem 1, Corollary 1, and (1) it is enough to show that a{A) C (TH(A).

If &(A) = 0, then we are done. If, on the other hand, <r(A) ^ 0, then by Theorem
1 of [11] (see also Proposition 2 of [3])

&(A) = < (ip{Ai),... , ip(An)) : ip a multiplicative linear functional on [Ai,..., An] >•

We always assume that multiphcative linear functionals are non-zero. Notice also that
A*j £ [Ai,...,An] for j = l,...,n as A*j = fj(Aj) for some polynomial fj (see [5,

p.172, Exercise 3(a)]). Therefore for an arbitrary multiplicative linear functional <p on
the algebra [A\,... ,An] we obtain

4,- - •fi(Aj))*(Aj - <p(Ajj) C kernel <p±[Au.. .,An}.

Thus the element Ẑ {Aj — p(Aj)) (Aj — ip(Aj)} is not invertible in [Ai,... ,An] and

consequently not invertible in the algebra of all m by m matrices. An application of
Dash's lemma concludes the proof. Q

REMARKS. 1. In [4, Proposition 5], it is shown that for self-adjoint matrices A =

(A!,..., An), •y(A) = {joint eigenvalues of ^ , . . . , An}.

2. To show that Theorem 2 is not true when the matrices are not normal take the
following two 5 by 5 matrices:

/ 0 1 0 0 0 \
0 0 0 0 0

0 0 0 1 0
0 0 0 0 1

\0 0 0 0 0/

and A2 =

/ 0 0 1 0 0 \
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

\0 0 0 1 0/
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Then (see [10, Example 1])

p(j{U(AuA3))) = <n(AuA2) = ar(A1,A2) = <rH(AuA2) = <r"(AuA2) = 0

while

*K(AUA2) = *(AUA2) = {(0,0)}.

3. To give another example showing that it can happen that <TH(AI,A2) ^

<T"(AI,A2), consider the following two 3 by 3 matrices:

( 1 - 1 0\ / 0 0 0

0 1 0 I and A2 = I 0 1 - 1 | .
0 0 0 / \ 0 0 2

It is a matter of simple computation to show that
= 0, <n{AltA2) = {(1,0)}, <rr{AuA2) = {(0,2)},

U A2) = {(l,0),(0,2)} # <rl'(A1,A2) = an{A1,A2)

Finally we prove

PROPOSITION 2 . For an arbitrary n-tuple A = (Ai,..., An) of m by m com-

plex matrices, ^ ( . A ) = S(A).

PROOF: From the proof of Theorem 2 it is clear that it is enough to show

< (ip(Ai),... ,<p(An)) : ip a multiph'cative linear functional on [A\,..., An] > C cr-ji(A).

Let f : \A\,..., An] —> C be an arbitrary multiplicative linear functional and / an

arbitrary polynomial in V^. Then we get

) = <p{f(Au..., An)) € a(f{Alt..., An)) = *(f(Alt..., An)),

and the result follows. D
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