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A Brunn-Minkowski Type Theorem
on the Minkowski Spacetime

Hyoungsick Bahn and Paul Ehrlich

Abstract. In this article, we derive a Brunn-Minkowski type theorem for sets bearing some relation to the
causal structure on the Minkowski spacetime Ln+1. We also present an isoperimetric inequality in the Min-
kowski spacetime Ln+1 as a consequence of this Brunn-Minkowski type theorem.

1 Introduction

The Brunn-Minkowski theorem states that, for non-empty compact sets A,B in the Eu-
clidean space En,

V
1
n (A + B) ≥ V

1
n (A) + V

1
n (B)(1.1)

and equality holds for A,B ⊂ En with V (A),V (B) 6= 0 if and only if A and B are homo-
thetic convex bodies (i.e., convex and compact sets), where A + B is the Minkowski sum
or vector sum of A and B given by A + B = {a + b : a ∈ A, b ∈ B}; and V (D) is the
n-dimensional volume of D ⊂ En (See [BF], [BZ], [F], [W]). This is the core result of the
Brunn-Minkowski theory in the theory of convex bodies and many prototypes of geomet-
ric inequalities originate from this, for example, the classical isoperimetric inequality and
the Minkowski inequality of mixed volumes.

Our aim is to derive a Brunn-Minkowski type inequality in the Minkowski spacetime
Ln+1. Even though the Minkowski spacetime Ln+1 is a vector space as is the Euclidean
space, the nature of Ln+1 is quite different from that of the Euclidean space; especially,
the causality conditions of General Relativity are important in the differential geometry of
the Minkowski spacetime. Thus, it is natural to try to find a Brunn-Minkowski type in-
equality in the Minkowski spacetime for sets bearing some relation to the causal structure.
Our Brunn-Minkowski type theorem is not strongly related to convexity. In particular, the
optimal situation does not occur for the convex case, cf. Remark 6.2. Let S be a compact,
simply connected, achronal, piecewise smooth spacelike hypersurface of Ln+1 contained in
the chronological future I+(O) of the origin O of Ln+1.

The (upper) hyperbolic space H(r) of radius r > 0 in Ln+1 is

H(r) = {x = (x0, x1, . . . , xn) ∈ Ln+1 : d(O, x) = r},
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where d is the Lorentzian distance on Ln+1. Now H(r) is a smooth spacelike hypersurface of
Ln+1 with constant curvature −1/r2. Let µ(S) be the subset of H(1) defined by

µ(S) =

{
x

‖x‖
∈ H(1) : x ∈ S

}
.

Also let t∗ > 0 be defined as t∗ = d(O, S) = supq∈S d(O, q). The infinite cone ΩS of S is
defined by

ΩS = {λy ∈ Ln+1 : y ∈ µ(S), λ ≥ 0}.

By the cone K = C(S) of S (with respect to O) we mean the compact set enclosed by S and
ΩS in Ln+1. Explicitly,

K = C(S) = {λq : q ∈ S, 0 ≤ λ ≤ 1}.

The (past) parallel St of S with distance t is then given by

St = {p ∈ C(S) : d(p, S) = t}.

For the cone K = C(S) of S, we let Kt = C(St ) and BK(t) = C
(
tµ(S)

)
, where tµ(S) = {tq :

q ∈ µ(S)} ⊂ H(t). Clearly, S0 = S and K0 = K. Let B̃−p (t) = B−p (t) ∩C(S) for 0 < t < t∗

and p ∈ S, where B−p (t) = {q ∈ J−(p) : d(q, p) ≥ t}, the past outer ball of radius t > 0
centered at p (cf. [BEE, p. 145]). Then from the definitions of St and Kt , we can see that

Kt = C(St ) = {x ∈ C(S) : d(x, S) ≥ t} =
⋃
p∈S

B̃−p (t).

Throughout this paper, we will employ the following:

Convention 1.1 A hypersurface in Ln+1 will always be a compact, simply connected,
achronal, piecewise smooth spacelike hypersurface of Ln+1 with piecewise smooth bound-
ary contained in the chronological future I+(O) of the origin O of Ln+1 unless explicitly
mentioned.

We can now state our main result.

Brunn-Minkowski Type Theorem Let S be a hypersurface in the Minkowski spacetime Ln+1

with t∗ = d(O, S) > 0 and let K = C(S) be the cone of S. Let V (B) be the (n+1)-dimensional
Lorentzian volume of B ⊂ Ln+1. Then, for 0 ≤ t ≤ t∗,

V
1

n+1 (Kt ) ≥ V
1

n+1 (K)−V
1

n+1
(

BK(t)
)
.(1.2)

Moreover, equality holds for some t (0 < t ≤ t∗) if and only if S ⊂ H(t∗).

As an application of this result, we will derive an isoperimetric inequality for cones in
the Minkowski spacetime:

Isoperimetric Inequality Let S be a hypersurface in the Minkowski spacetime Ln+1 with
t∗ = d(O, S) and let K = C(S) be the cone of S. Let A(S) be the n-dimensional Lorentzian
volume of S and ω = V

(
BK(1)

)
. Then,

An+1(S) ≤ (n + 1)n+1ωV n(K)

with equality only when S ⊂ H(t∗).
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This last result is a Lorentzian version of the isoperimetric inequality for convex cones
of P. L. Lions and F. Pacella [LP].

In Section 2, we recall some aspects of the Minkowski spacetime Ln+1 needed in this pa-
per. In Section 3, we present the k-dimensional Lorentzian volume systematically from the
vector space structure of Ln+1 and compare the k-dimensional Lorentzian volume with the
k-dimensional Euclidean volume. In Section 4, we introduce an elementary cone of a PL-
hypersurface in Ln+1 and derive a Brunn-Minkowski type inequality for a PL-hypersurface
by induction (Proposition 4.2). In Section 5, we present an approximation of a hypersur-
face by elementary cones (Proposition 5.2). In Section 6, we prove a Brunn-Minkowski type
theorem for a hypersurface (Theorem 6.1). Finally, in Section 7, as an application of our
Brunn-Minkowski type theorem, we prove an isoperimetric inequality for a hypersurface
in Ln+1 (Theorem 7.1).

2 Preliminaries

By the Minkowski (n + 1)-spacetime Ln+1 (n ≥ 1) we mean Rn+1 with the scalar product g
of index 1;

g(x, y) = x · y = −x0 y0 +
n∑

i=1

xi yi

for x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1. We shall consider x, y, . . . not only as
points but also vectors. The tangent vectors v ∈ TLn+1 are classified by the causal character;
timelike if g(v, v) < 0, spacelike if g(v, v) > 0 or v = 0 and null if g(v, v) = 0 and v 6= 0.
A smooth submanifold M of Ln+1 is said to be spacelike provided all tangent vectors to M
are spacelike. We assume that Ln+1 is time-oriented by e0 = (1, 0, . . . , 0); thus, we say that
a nonspacelike tangent vector v to Ln+1 is future-directed if g(e0, v) < 0. The norm of a
vector v is defined by ‖v‖ =

√
|g(v, v)|. A curve γ : [0, c] → Ln+1 is said to be timelike

(spacelike, null, nonspacelike, respectively) if γ ′(t) for all 0 ≤ t ≤ c is timelike (spacelike,
null, nonspacelike, respectively). A nonspacelike curve γ is said to be future-directed if γ ′(t)
for all 0 ≤ t ≤ c is future-directed. The arc length of γ is given by

L(γ) =

∫ c

0
‖γ ′(t)‖ dt.

For two points p, q ∈ Ln+1, p � q means that there is a smooth future-directed timelike
curve from p to q, and p ≤ q means that either p = q or there is a smooth future-directed
nonspacelike curve from p to q. The chronological future (respectively, past) of p is the
set I+(p) = {q ∈ Ln+1 : p � q} (respectively, I−(p) = {q ∈ Ln+1 : q � p}). The
causal future (respectively, past) of p is the set J+(p) = {q ∈ Ln+1 : p ≤ q} (respectively,
J−(p) = {q ∈ Ln+1 : q ≤ p}). For a point p ∈ Ln+1, I(p) = I+(p) ∪ I−(p) and
J(p) = J+(p) ∪ J−(p), and for a set A ⊂ Ln+1, I(A) =

⋃
p∈A I(p) and J(A) =

⋃
p∈A J(p).

A set B ⊂ Ln+1 is said to be achronal if the relation p � q never holds for p, q ∈ B. Given
p, q ∈ Ln+1 with p ≤ q, let Ωp,q denote the space of all future-directed piecewise smooth
nonspacelike curves from p to q. The Lorentzian distance d : Ln+1 × Ln+1 → R ∪ {∞} is
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defined as follows; for any p ∈ M,

d(p, q) :=

{
0 for q /∈ J+(p),

supγ∈Ωp,q
L(γ) for q ∈ J+(p).

For two sets A and B in Ln+1, the Lorentzian distance d(A,B) from A to B is defined by

d(A,B) := sup
p∈A,q∈B

d(p, q).(2.1)

Sometimes, we will use the notations d(x,B) and d(A, y) instead of d({x},B) and d(A, {y}).
All geodesics in Ln+1 are of the form α(s) = x + sy for x, y ∈ Ln+1 and, if α is a future-

directed timelike geodesic, α realizes the distance from α(0) = x to α(s) = x + sy. Es-
pecially, let α : [0, 1] → Ln+1 be the curve defined by α(s) = sx for x ∈ I+(O). Then
d(O, x) = L(α) = ‖x‖. The Lorentzian distance d is continuous on Ln+1 × Ln+1 and
the reverse triangle inequality holds for the Lorentzian distance d (cf. [BEE, p. 140]): If
p ≤ r ≤ q, then

d(p, q) ≥ d(p, r) + d(r, q).(2.2)

In the remaining part of this section, we present some properties of the cone and parallel
of a hypersurface S needed later.

Lemma 2.1 Let K = C(S) be the cone of a hypersurface S in Ln+1 with d(O, S) = t∗. Then
K ⊂ BK(t∗).

Proof Suppose that x ∈ K ⊂ ΩS. Since d(O, S) = t∗, ‖x‖ ≤ t∗. By definition, BK(t∗) =
{y ∈ ΩS : ‖y‖ ≤ t∗}. Thus, we have K ⊂ BK(t∗).

Lemma 2.2 Let K = C(S) be the cone of a hypersurface S in Ln+1 with d(O, S) = t∗. If
V (K) = V

(
BK(t∗)

)
, then K = BK(t∗), so S ⊂ H(t∗).

Proof By Lemma 2.1, K ⊂ BK(t∗). Since both K and BK (t∗) are compact sets and V (K) =
V
(

BK(t∗)
)

, K = BK(t∗).

Lemma 2.3 Suppose that S is a hypersurface in Ln+1 with d(O, S) = t∗. Let x ∈ S such that
‖x‖ = t∗ and let ξ : [0, t∗]→ [0, 1] be the function given by

ξ(t) =
t∗ − t

t∗
.

Then ξ(t)x ∈ St for 0 ≤ t ≤ t∗.

Proof Since d
(
ξ(t)x, x

)
= t , d

(
ξ(t)x, S

)
≥ t . Suppose that d

(
ξ(t)x, S

)
> t . Then since d

is continuous and S is compact, there exists y ∈ S so that d
(
ξ(t)x, y

)
= d
(
ξ(t)x, S

)
> 0.

By the reverse triangle inequality (2.2) for the Lorentzian distance d,

d(O, y) ≥ d
(
O, ξ(t)x

)
+ d
(
ξ(t)x, y

)
> t∗.

This contradicts that d(O, S) = t∗. Therefore, we have d
(
ξ(t)x, S

)
= t and ξ(t)x ∈ St .
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Lemma 2.4 Let S be a hypersurface in Ln+1 such that S = S1∪S2, where Si are hypersurfaces
in Ln+1 and Si may have common boundary points but their interiors do not intersect. Let
K = C(S) and Ki = C(Si) for i = 1, 2. Then

K1
t ∪ K2

t ⊂ Kt .

Proof Suppose that x ∈ K1
t ∪K2

t . Then x belongs to one of K1
t or K2

t , say, K1
t . So, d(x, S1) ≥

t . Since S = S1 ∪ S2,

t ≤ d(x, S1) = sup
y∈S1

d(x, y) ≤ sup
z∈S

d(x, z) = d(x, S).

Thus, x ∈ Kt .

Suppose that St is the past parallel of a hypersurface S of Ln+1 with t∗ = d(O, S) and
0 < t < t∗. Then by the reverse triangle inequality (2.2), St is achronal. Let S̃−p (t) =
S−p (t) ∩C(S) for 0 < t < t∗ and p ∈ S, where S−p (t) = {q ∈ I−(p) : d(q, p) = t}, the past
sphere of radius t > 0 centered at p. Then St can be regarded as the envelope of the family
of S̃−p (t) for p ∈ S. Using the continuity of f (m) = d(m, S), the basic geometric properties
of the family St are readily established:

Proposition 2.5 Let S be a hypersurface in Ln+1 with t∗ = d(O, S). Then, for 0 < t < t∗, St

is also a hypersurface in Ln+1 with d(O, St ) = t∗ − t and µ(St ) = µ(S).

3 The Minkowski Spacetime as a Vector Space

In this section, we will define the Lorentzian volume in Ln+1 systematically using elementary
facts from linear algebra.

Let e0, e1, . . . , en be the standard orthonormal basis of Ln+1 as a vector space; e0 =
(1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) ∈ Ln+1. Let Π(a1, . . . , am) be
the space spanned by the m linearly independent vectors a1, . . . , am ∈ Ln+1, 1 ≤ m ≤ n +1.
We may considerΠ(a1, . . . , am) as an m-dimensional smooth submanifold of Ln+1 with the
embedding X : Rm → Ln+1 defined by

X(ξ1, . . . , ξm) =
m∑

i=1

ξiai ∈ Ln+1.

Then the induced metric onΠ(a1, . . . , am) from Ln+1 is given by

g =
m∑

i, j=1

gi j dξi dξ j,

where
gi j = Xξi · Xξ j = ai · a j .
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The volume element ofΠ(a1, . . . , am) is

dV =
√
|g|dξ1 · · · dξm,

where |g| denotes the absolute value of the determinant of the matrix (gi j). From this
observation, we define the Lorentzian volume of the parallelotope:

Definition 3.1 The m-dimensional Lorentzian volume Vm(P) of the m-dimensional
parallelotope P = P(a1, . . . , am) whose edges are a1, . . . , am in Ln+1 is given by

Vm(P) = | det(ai · a j)|
1
2 .

By a slight modification of a vector product of the (n − 1) vectors in the Euclidean
n-space (cf. [Bl], [Hs]), we define a vector product of the n vectors in the Minkowski
(n + 1)-spacetime as follows:

Definition 3.2 Suppose that a1, . . . , an are linearly independent vectors in Ln+1. Then the
vector product a1 × · · · × an of the n vectors a1, . . . , an is defined by

a1 × · · · × an = det




e0 e1 · · · en

−a0
1 a1

1 · · · an
1

...
...

...
−a0

n a1
n · · · an

n


 ,(3.1)

where ai = (a0
i , a

1
i , . . . , a

n
i ) for i = 1, . . . , n.

We denote by R(u1, . . . , um) the matrix with row vectors u1, . . . , um and we let ū =
(−u0, u1, . . . , un) for u = (u0, u1, . . . , un). For convenience, we denote (e0, . . . , en) by e as
for a row vector. Then

a1 × · · · × an = det R(e, ā1, . . . , ān).

Lemma 3.3 Let a = a1 × · · · × an and b ∈ Ln+1. Then

det R(b̄, ā1, . . . , ān) = b · a.

Proof Let A = R(e, ā1, . . . , ān) = (ai j)0≤i, j≤n. Then

a = A00e0 + A01e1 + · · · + A0nen,

where Ai j is the cofactor of ai j . Let B = R(b̄, ā1, . . . , ān) = (bi j)0≤i, j≤n, where b =
(b0, b1, . . . , bn). Then

det B = −b0B00 + b1B01 + · · · + bnB0n,

where Bi j is the cofactor of bi j . Since A0 j = B0 j for j = 0, 1, . . . , n, we have

det B = −b0A00 + b1A01 + · · · + bnA0n = b · a.

By Lemma 3.3, we have
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Corollary 3.4 a1× · · · × an is normal to the n-dimensional space spanned by the n linearly
independent vectors a1, . . . , an in Ln+1.

Let D be an m × (n + 1) matrix over R, m, n ≥ 1, and let u j = (u0
j , u

1
j , . . . , u

n
j ) be the

j-th row vector of D. We set D · Dt = DεDt , where ε is the diagonal (n + 1)-matrix with
diagonal entries−1, 1, . . . , 1. Explicitly,

D · Dt =
(
−u0

i u0
j +

n∑
k=1

uk
i uk

j

)
= (ui · u j).

Lemma 3.5 For any m× (n + 1) matrix D over R, m, n ≥ 1,

det D · Dt = −
∑

B

(det B)2 +
∑

C

(detC)2,(3.2)

where the first sum is taken over all m×m submatrices B of D containing the first column of D
and the second sum is taken over all m×m submatrices C of D not containing the first column
of D.

Proof See the Appendix.

Lemma 3.6 The norm of a1 × · · · × an is equal to the n-dimensional Lorentzian volume of
the n-dimensional parallelotope whose edges are the vectors a1, . . . , an ∈ Ln+1.

Proof Let P = P(a1, . . . , an) be the n-dimensional parallelotope whose edges are the vec-
tors a1, . . . , an. Then by Definition 3.1

Vn(P) = | det(ai · a j)|
1
2 .

Let D = R(a1, . . . , an). Then, by Lemma 3.5,

det(ai · a j) = (det B0)2 −
n∑

j=1

(det B j)
2,(3.3)

where Bk is the n× n matrix obtained from D by deleting the (k + 1)-th column. Note that
the right hand side of (3.3) is

−(a1 × · · · × an · a1 × · · · × an).

Thus
Vn(P) = ‖a1 × · · · × an‖.

Remark 3.7 (Lorentzian Volume vs. Euclidean Volume) We denote by V E
m the m-dimen-

sional Euclidean volume, 1 ≤ m ≤ n + 1.
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1. Let P = P(u1, . . . , un+1) be an (n + 1)-dimensional parallelotope whose edges are the
vectors u1, . . . , un+1 in Rn+1, where u j = (u0

j , u
1
j , . . . , u

n
j ). Then

V E
n+1(P) = | det(〈ui , u j〉)|

1
2 = | det R(u1, . . . , un+1)|,

where 〈ui, u j〉 =
∑n

k=0 uk
i uk

j is the Euclidean metric. On the other hand, the (n + 1)-
dimensional Lorentzian volume of P is

Vn+1(P) = | det(ui · u j)|
1
2 = | det R(ū1, . . . , ūn+1)|,

where ui · u j = −u0
i u0

j +
∑n

k=1 uk
i uk

j is the Minkowski metric. Notice that

det R(ū1, . . . , ūn+1) = − det R(u1, . . . , un+1).

Thus Vn+1(P) and V E
n+1(P) coincide for an (n + 1)-dimensional parallelotope P.

2. Let P = P(u1, . . . , um) be an m-dimensional parallelotope in Rn+1, 1 ≤ m ≤ n. Let
D = R(u1, . . . , um). Then

V E
m(P) =

√
det DDt =

√∑
A

(det A)2,

where the sum is taken over all m × m submatrices A of D. On the other hand, by Defini-
tion 3.1 and Lemma 3.5, we have

Vm(P) =
√
| det D · Dt | =

√∣∣∣−∑
B

(det B)2 +
∑

C

(det C)2
∣∣∣,

where the first sum is taken over all m×m submatrices B of D containing the first column
of D and the second sum is taken over all m × m submatrices C of D not containing the
first column of D. Thus, the Lorentzian volume of the m-dimensional parallelotope P is
quite different from the Euclidean volume of P for 1 ≤ m ≤ n. For example, let P =
P
(

(1, 1, 1), (0, 1, 1)
)

in R3; then V E
2 (P) =

√
5 6= V2(P) =

√
2. Furthermore, one can

find an example having a positive Euclidean volume, but a zero Lorentzian volume, say,
P
(

(0, 1, 0), (1, 0, 1)
)
. Comparing these two formulas, we have

Vm(P) ≤ V E
m(P)

for an m-dimensional parallelotope in Rn+1, 1 ≤ m ≤ n.

Let Π = Π(a1, . . . , an) be the n-dimensional space spanned by the n linearly indepen-
dent spacelike vectors a1, . . . , an ∈ Ln+1, which will be called a spacelike hyperplane in Ln+1.
Then by Corollary 3.4 the vector a1 × · · · × an is normal to Π, so it is timelike. Let σ be a
permutation on the n numbers 1, . . . , n; then by definition,

aσ(1) × · · · × aσ(n) = (sgn σ)a1 × · · · × an,
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where sgn σ is +1 or−1 according as the permutation σ is even or odd. So, we may assume
that a1×· · ·×an is future-directed by reordering ai ’s if necessary. Let P = P(cn, a1, . . . , an)
be an (n + 1)-dimensional parallelotope whose edges are cn, a1, . . . , an, where c is a positive
constant and

n =
a1 × · · · × an

‖a1 × · · · × an‖
.

Then by Lemma 3.3

Vn+1(P) = c‖a1 × · · · × an‖.(3.4)

4 Elementary Cones

In this section, we introduce elementary cones in Ln+1 and prove a Brunn-Minkowski type
inequality (1.2) for elementary cones by induction.

We first consider the simplest case of our hypersurfaces in Ln+1. Let P ⊂ I+(O) be an
n-dimensional convex polytope in the spacelike hyperplaneΠ ⊂ Ln+1, which will be called
a spacelike convex polytope in Ln+1. Then P is clearly a hypersurface in Ln+1 in the sense of
Convention 1.1. (For convenience, we denote by Π(P) the hyperplane Π containing P.)
We define a simple cone K to be the cone K = C(P) for a spacelike convex polytope P.
Note that a simple cone K = C(P) is convex. For convenience, we will denote by V (K)
the (n + 1)-dimensional Lorentzian volume for a cone K and by A(S) the n-dimensional
Lorentzian volume for a hypersurface S in Ln+1. By the height of P (or K = C(P)) we mean
the Lorentzian distance d

(
O,Π(P)

)
from O to Π(P). Note that the (n + 1)-dimensional

Lorentzian and Euclidean volumes of an (n + 1)-dimensional parallelotope are equivalent
(Remark 3.7). Thus, from (3.4), we have

V (K) = V
(
C(P)

)
=

1

n + 1
h A(P),(4.1)

where h is the height of K. Recall that BK(t) = C
(
tµ(P)

)
for K = C(P).

Lemma 4.1 Let K = C(P) be a simple cone with d(O, P) = t∗ and Kt = C(Pt ). Then

ξ(t)K ⊂ Kt ,
(
1− ξ(t)

)
K ⊂ BK(t)

for each t ∈ [0, t∗].

Proof The second relation follows Lemma 2.1. The first relation is clear for t = 0, t∗,
since ξ(0)K = 1K = K = K0 and ξ(t∗)K = O = Kt∗ . Since a spacelike convex polytope
P is compact and the Lorentzian distance d is continuous, there exists w∗ ∈ P such that
d(O,w∗) = ‖w∗‖ = d(O, P). Then by Lemma 2.3, ξ(t)w∗ ∈ Pt ∩ ξ(t)P for t ∈ [0, t∗]. For
z ∈ Pt , let ηt (z) = c ∈ [0, 1] if z ∈ cP. To prove the first relation, it suffices to show that for
z ∈ Pt , 0 < t < t∗, ηt (ξ(t)w∗) = ξ(t) ≤ ηt (z). Suppose that there exists z ∈ Pt such that
ηt (z) < ξ(t) ≤ 1. Let γ : [0, 1− ηt (z)]→ Ln+1 be the curve given by

γ(s) = z + sw∗.
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Then γ is a future-directed timelike geodesic. Clearly, γ(0) = z ∈ ηt (z)P ⊂ ηt (z)K and(
1 − ηt (z)

)
w∗ ∈

(
1 − ηt (z)

)
P ⊂
(
1 − ηt (z)

)
K. From convexity, K = λK + (1 − λ)K for

0 ≤ λ ≤ 1. So, γ
(

1− ηt (z)
)
= z +

(
1− ηt (z)

)
w∗ ∈ K and γ

(
[0, 1− ηt (z)]

)
⊂ K. Notice

that ΩP + ΩP = ΩP. Thus, we have

d(z, P) ≥ d
(

z, γ
(
1− ηt (z)

))
≥ L(γ) =

(
1− ηt (z)

)
t∗ >

(
1− ξ(t)

)
t∗ = t.

This contradicts that z ∈ Pt .

Let Q be a hypersurface of Ln+1 such that

Q =
m⋃

j=1

P j ,

where each P j is a spacelike convex polytope in Ln+1, and P j may have common boundary
points but their interiors do not intersect; such a Q will be called a PL-hypersurface in Ln+1.
By an elementary cone we mean a cone K = C(Q) for a PL-hypersurface Q. Note that

K = C(Q) =
m⋃

j=1

K j =

m⋃
j=1

C(P j ).

Let h j be the height of P j . Then by (4.1) we have

V (K) = V
(
C(Q)

)
=

1

n + 1

n∑
j=1

h j A(P j).(4.2)

Proposition 4.2 Let Q be a PL-hypersurface in Ln+1 with t∗ = d(O,Q) and let K = C(Q)
be the elementary cone of Q. Then

V
1

n+1 (Kt ) ≥ V
1

n+1 (K)−V
1

n+1
(

BK(t)
)
.(4.3)

for 0 ≤ t ≤ t∗.

Proof Notice that (4.3) is clear for t = 0, t∗ from the definitions Kt , BK(t) and Lemma 2.1.
We now prove (4.3) by induction on the number of constituent spacelike convex poly-
topes of a PL-hypersurface Q in Ln+1. Suppose that Q consists of only one spacelike con-
vex polytope, that is, K = C(Q) is a simple cone. Then K = C(Q) is a convex body,
so K = λK + (1 − λ)K for λ ∈ [0, 1], and V (cK) = cn+1V (K) for c ≥ 0. From the
original Brunn-Minkowski theorem (1.1) for convex bodies in the Euclidean space and Re-
mark 3.7(1),

V
1

n+1 (K) = V
1

n+1 (ξ(t)K) + V
1

n+1

((
1− ξ(t)

)
K
)

and by Lemma 4.1, for each t ∈ [0, t∗],

ξ(t)K ⊂ Kt ,
(
1− ξ(t)

)
K ⊂ BK(t).
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Thus, we have

V
1

n+1 (K) ≤ V
1

n+1 (Kt ) + V
1

n+1
(

BK (t)
)
.

Suppose that (4.3) is true when the number of constituent spacelike polytopes of a PL-
hypersurface in Ln+1 is≤ m−1. Let K = C(Q) be an elementary cone of a PL-hypersurface
Q whose number of constituent spacelike polytopes is m. We can split Q =

⋃m
j=1 P j into

PL-hypersurfaces Q1 and Q2 so that the numbers of constituent spacelike convex polytopes
of each Q1 and Q2 are < m. Let Ki = C(Qi) with d(O,Qi) = t∗i for i = 1, 2. By induction
hypothesis,

V
1

n+1 (K1
t ) ≥ V

1
n+1 (K1)−V

1
n+1
(

BK1 (t)
)

(4.4)

for 0 ≤ t ≤ t∗1 and

V
1

n+1 (K2
t ) ≥ V

1
n+1 (K2)−V

1
n+1
(

BK2 (t)
)

(4.5)

for 0 ≤ t ≤ t∗2 . By the definitions of Kt , BK(t) and Lemma 2.1, we see that V (Ki) ≤
V
(

BKi (t)
)

and Ki
t = ∅ for t ≥ t∗i . So, the inequalities (4.4) and (4.5) hold for 0 ≤ t ≤ t∗.

Thus, for 0 ≤ t ≤ t∗, we have

V (K) = V (K1) + V (K2)

≤
[
V

1
n+1 (K1

t ) + V
1

n+1
(

BK1 (t)
)]n+1

+
[
V

1
n+1 (K2

t ) + V
1

n+1
(

BK2 (t)
)]n+1

.

We recall an inequality of Minkowski (See [BB, Section 1.22]): If ai, bi ≥ 0 and 0 < p < 1,
then

( m∑
i=1

ap
i

) 1
p

+
( m∑

i=1

bp
i

) 1
p
≤
[ m∑

i=1

(ai + bi)
p
] 1

p
(4.6)

with equality only when (a1, . . . , an) = λ(b1, . . . , bn) for some constant λ. By the inequal-
ity of Minkowski (4.6), we have

V (K) ≤
[(

V (K1
t ) + V (K2

t )
) 1

n+1 +
(

V
(

BK1 (t)
)

+ V
(

BK2 (t)
)) 1

n+1
]n+1
.

Since BK1 (t) ∪ BK2 (t) = BK(t) and K1
t ∪ K2

t ⊂ Kt by Lemma 2.4,

V (K) ≤
[
V

1
n+1 (Kt ) + V

1
n+1
(

BK(t)
)]n+1

.

Thus, the inequality (4.3) is proved.
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5 Approximation

Let A, B be compact sets in Rn with the Euclidean distance d0 : Rn × Rn → R given by

d0(x, y) =

√√√√ n∑
i=1

(xi − yi)2,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. The Euclidean distance d0(x,A) between a
set A and a point x in Rn is defined by

d0(x,A) = min
y∈A

d0(x, y)

and the (Euclidean) diameter diam0(A) of A ⊂ Rn is defined by

diam0(A) = max
x,y∈A

d0(x, y).

The Hausdorff distance dH
0 (A,B) of A and B in Rn is defined by

dH
0 (A,B) = inf{ρ : A ⊂ Bρ,B ⊂ Aρ},

where Aρ = {x ∈ Rn : d0(x,A) ≤ ρ}. If dH
0 (A,Ai) → 0, one says that the sequence of

compact sets Ai converges to A in the Hausdorff distance. Note that dH
0 (A,B) = 0 if and

only if A = B (cf. [W, pp. 92–93]).
For sets A and B in the Minkowski spacetime Ln+1, we let

dJ(A,B) = sup
x∈A,y∈B

d(x, y) + d(y, x),(5.1)

where d denotes the Lorentzian distance in Ln+1. Then clearly dJ(A,B) = dJ(B,A) and
dJ(A,B) ≥ 0. Notice that dJ(A,A) 6= 0 in general. Moreover, dJ(A,B) does not give any
information about how close A is to B in general. For example, let A = {(0, x) ∈ L2 : 0 ≤
x ≤ 1} and By = {(0, z) ∈ L2 : y ≤ z ≤ y + 1} for y ∈ R, then dJ(A,By) = 0 for all
y ∈ R. Inspired by this observation and restricting our attention to hypersurfaces A and
B in Ln+1 satisfying not only Convention 1.1, but also the further causality condition (5.2),
we have the following properties for dJ, which are similar to those for dH

0 :

Lemma 5.1 Suppose that A and B are hypersurfaces in Ln+1 such that

A ⊂ J(B), B ⊂ J(A).(5.2)

For a hypersurface D in Ln+1 and t ≥ 0, let

J(D, t) = {x ∈ J(D) : d(x,D) + d(D, x) ≤ t}.

Then, if d J(A,B) ≤ ε for ε ≥ 0,

A ⊂ J(B, ε), B ⊂ J(A, ε)

and dJ(A,B) = 0 if and only if A = B.
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Proof Suppose that dJ(A,B) ≤ ε and x ∈ A. Then d(x, y) + d(y, x) ≤ ε for all y ∈ B.
Thus, d(x,B) + d(B, x) = supy∈B d(x, y) + d(y, x) ≤ ε. Hence, x ∈ J(B, ε), so A ⊂ J(B, ε).
Similarly, we have B ⊂ J(A, ε).

Suppose that A = B. Then d(x, y) = 0 for x, y ∈ A since A is achronal. Thus, dJ(A,B) =
0.

Suppose that dJ(A,B) = 0. Then A ⊂ J(B, 0). Note that J(B, 0) can be written as

J(B, 0) = B ∪̇
(

J(B) \
(
I(B) ∪ B

))
,

where, as usual, ∪̇ stands for a disjoint union. Using this, we may write

J(B) = J(B, 0) ∪̇B ∪̇ I(B).

Let x ∈ A such that x ∈ J(B) \
(
I(B) ∪ B

)
. Then since A is simply connected and piece-

wise smooth spacelike, there exists y 6= x ∈ A ⊂ J(B) such that y ∈ I(B) ∪ B. If
y ∈ I(B), then d J(A,B) > 0. If y ∈ B, then there must be z ∈ A such that z ∈ I(B)
since A is simply connected and piecewise smooth spacelike, and dJ(A,B) > 0. Thus, A ∩(

J(B) \
(
I(B) ∪ B

))
= ∅, so A ⊂ B. Similarly, we have B ⊂ A. Therefore A = B.

We now approximate a hypersurface S by a sequence of PL-hypersurfaces Qε. The
achronality of S implies that S may be considered as a graph of a function f : D ⊂ Rn → R,
and also plays a critical role for the estimation of the distance between S and Qε in our
approximation.

Proposition 5.2 Let S be a hypersurface in Ln+1. Then there is a sequence of PL-hyper-
surfaces Qε in Ln+1 converging to S.

Proof Since S is a hypersurface in Ln+1 (See Convention 1.1), there are a simply con-
nected, compact set D ∈ Rn and a piecewise smooth function f : D → R so that S may
be parametrized as

S = {
(

f (x), x
)
∈ Ln+1 : x = (x1, . . . , xn) ∈ D}.

Let f̄ = maxx∈D f (x), f = minx∈D f (x) and c = 3( f̄ − f ). Since D ⊂ Rn is compact, given

ε > 0, we can approximate D from inside by a polytope Dε ⊂ Rn with dH
0 (D,Dε) < ε.

Since f is continuous on D and Dε ⊂ D is compact, f is uniformly continuous on Dε.
Thus, for each ε > 0, there exists δ = δ(ε) so that for x, y ∈ Dε, if d0(x, y) < δ, then

| f (x)− f (y)| <
ε2

c
.(5.3)

Consider a triangulation Γε = {σεj}
jε
j=1 of Dε, where σεj are n-simplexes in Rn such that

diam0(σεj ) < δ. Let F(σεj ) be the convex hull of the (n + 1)-points
(

f (y0), y0

)
,
(

f (y1), y1

)
,
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. . . ,
(

f (yn), yn

)
in Ln+1, where yk’s are the vertices of σεj . Then F(σεj ) are spacelike convex

polytopes in Ln+1. Set

Qε =

jε⋃
j=1

F(σεj ), Sε = {
(

f (x), x
)
∈ S : x ∈ Dε}.

Then from construction, we see that Qε is a PL-hypersurface in Ln+1 with µ(Qε) = µ(Sε) ⊂
µ(S) and there exists a piecewise smooth function f̃ : Dε → R such that

Qε = {
(

f̃ (x), x
)
∈ Ln+1 : x ∈ Dε}.

Notice that for each x ∈ Dε, there is a simplex σεj ∈ Γ
ε such that x ∈ σεj , and since

diam0(σεj ) < δ,

| f̃ (x)− f (x)| ≤ max
x∈σεj

f (x)−min
y∈σεj

f (y) <
ε2

c
.(5.4)

Let Jε = {(x, y) ∈ Dε × Dε : d0(x, y) ≤ | f̃ (x)− f (y)|}. Then

dJ(Qε, Sε)2 = sup
(x,y)∈ Jε

| f̃ (x)− f (y)|2 − d0(x, y)2.(5.5)

Note that for (x, y) ∈ Jε,

| f̃ (x)− f (y)|2 − d0(x, y)2 ≤ | f̃ (x)− f (x)|2 + 2| f̃ (x)− f (x)| | f (x)− f (y)|

+ | f (x)− f (y)|2 − d0(x, y)2

≤ | f̃ (x)− f (x)|2 + 2| f̃ (x)− f (x)| | f (x)− f (y)|,

where the last inequality comes from the achronality of S. Thus,

dJ(Qε, Sε)2 ≤ sup
(x,y)∈ Jε

| f̃ (x)− f (x)|2 + 2| f̃ (x)− f (x)| | f (x)− f (y)|

≤ sup
(x,y)∈ Jε

| f̃ (x)− f (x)|
(
| f̃ (x)− f (x)| + 2| f (x)− f (y)|

)
≤ sup

x,y∈Dε
3( f̄ − f )| f̃ (x)− f (x)|

< c
ε2

c
= ε2.

Thus, we have

dJ(Qε, Sε) < ε.(5.6)

Upon letting ε→ 0, we have dJ(Qε, Sε)→ 0 and Sε → S. Note that Sε ⊂ R × Dε ⊂ J(Qε)
and Qε ⊂ R × Dε ⊂ J(Sε). Thus, we have Sε ⊂ J(Qε) and Qε ⊂ J(Sε). By Lemma 5.1, we
have Qε → S as ε→ 0.

By Proposition 5.2 and the continuity of the Lorentzian distance, we have the following:
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Corollary 5.3 Let Qε be a sequence of PL-hypersurfaces with Kε = C(Qε) in Ln+1 converg-
ing to a hypersurface S in Ln+1 with K = C(S). Then V (Kε)→ V (K), V (Kεt ) → V (Kt ) and
V
(

BKε(t)
)
→ V

(
BK(t)

)
.

6 A Brunn-Minkowski Type Theorem

We now prove the main result.

Theorem 6.1 (Brunn-Minkowski Type Theorem) Let S be a hypersurface in the Minkow-
ski spacetime Ln+1 with t∗ = d(O, S) and let K = C(S) be the cone of S. Then, for 0 ≤ t ≤ t∗,

V
1

n+1 (Kt ) ≥ V
1

n+1 (K)−V
1

n+1
(

BK(t)
)
.(6.1)

Moreover, equality holds in (6.1) for some t (0 < t ≤ t∗) if and only if S ⊂ H(t∗).

Proof The inequality (6.1) for a hypersurface S in Ln+1 follows from Propositions 4.2, 5.2
and Corollary 5.3. Suppose that S ⊂ H(t∗). Then St = (t∗ − t)µ(S) and Kt = C(St ) =
C
(
(t∗ − t)µ(S)

)
= BK(t∗ − t) = (t∗ − t)BK (1) for 0 ≤ t ≤ t∗. Thus we have

V (Kt ) = (t∗ − t)n+1V
(

BK(1)
)
, V

(
BK(t)

)
= tn+1V

(
BK(1)

)
for 0 ≤ t ≤ t∗. Thus, equality holds in (6.1) for 0 ≤ t ≤ t∗.

Suppose that equality holds in (6.1) for t = t∗. Then V (K) = V
(

BK(t∗)
)

since
V (Kt∗) = 0. Then by Lemma 2.2, S ⊂ H(t∗). So, we assume that

V
1

n+1 (Kt0 ) = V
1

n+1 (K)−V
1

n+1
(

BK(t0)
)

(6.2)

for some t0 ∈ (0, t∗). Then, we have

V
1

n+1
(

BK(t∗ − t0)
)
−V

1
n+1 (Kt0 ) = V

1
n+1
(

BK (t∗)
)
−V

1
n+1 (K).(6.3)

Let us consider a decomposition S = S1 ∪ S2 with Ki = C(Si), V (Ki) > 0 as in Lemma 2.4.
Employing the arguments as in the proof of Proposition 4.2, we have

V (K) = V (K1) + V (K2)

≤
[
V

1
n+1 (K1

t0
) + V

1
n+1
(

BK1 (t0)
)]n+1

+
[
V

1
n+1 (K2

t0
) + V

1
n+1
(

BK2 (t0)
)]n+1

(6.4)

≤
[(

V (K1
t0

) + V (K2
t0

)
) 1

n+1 + V
1

n+1
(

BK(t0)
)]n+1

≤
[
V

1
n+1 (Kt0 ) + V

1
n+1
(

BK(t0)
)]n+1

.

By the assumption (6.2) and the condition for equality of the first inequality in (6.4), we
have

V
1

n+1 (Ki) = V
1

n+1 (Ki
t0

) + V
1

n+1
(

BKi (t0)
)

(6.5)
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and

V
1

n+1
(

BKi (t∗ − t0)
)
−V

1
n+1 (Ki

t0
) = V

1
n+1
(

BKi (t∗)
)
−V

1
n+1 (Ki)(6.6)

for i = 1, 2. By the condition for equality of the last inequality in (6.4), we have V (K1
t0

) +
V (K2

t0
) = V (Kt0 ) and so K1

t0
∪K2

t0
= Kt0 by Lemma 2.4. By the condition for equality of the

second inequality in (6.4), we have

V (Ki
t0

) = λiV (Kt0 ), V
(

BKi (t0)
)
= λiV

(
BK(t0)

)
(6.7)

where λi ∈ (0, 1) such that λ1 + λ2 = 1. Finally, from (6.3), (6.6) and (6.7), we have

V
1

n+1
(

BKi (t∗)
)
−V

1
n+1 (Ki) = λ

1
n+1
i

(
V

1
n+1
(

BK(t∗)
)
−V

1
n+1 (K)

)
.(6.8)

This means that for any two hypersurfaces S ′, S ′′ ⊂ S in Ln+1 with K ′ = C(S ′) and
K ′ ′ = C(S ′ ′), if V

(
BK ′(t∗)

)
= V
(

BK ′ ′(t∗)
)

, then V (K ′) = V (K ′ ′). Suppose that S is
not contained in H(t∗). Consider the function f : S → R defined by f (x) = ‖x‖. Since f
is continuous and S is compact, there exist w∗,w∗ ∈ S so that f (w∗) = t∗ = minx∈S f (x),
f (w∗) = t∗ = maxx∈S f (x) and t∗ < t∗. Since f is continuous on S, there exist open
neighborhoods U of w∗ and V of w∗ in S such that f (w∗) − f (x) < 1

3 (t∗ − t∗) for x ∈ U
and f (y) − f (w∗) <

1
3 (t∗ − t∗) for y ∈ V . Then we can find hypersurfaces S ′, S ′′ ⊂ S

in Ln+1 such that S ′ ⊂ U , S ′ ′ ⊂ V and V
(

BK ′(t∗)
)
= V
(

BK ′ ′(t∗)
)

, where K ′ = C(S ′),
K ′ ′ = C(S ′ ′). Let t̄ = t∗ + 1

2 (t∗ − t∗). Then BK ′(t̄) ( K ′ and K ′ ′ ( BK ′ ′(t̄). So,
V (K ′ ′) < V (K ′). This is a contradiction. Thus, f is a constant function on S, that is,
f (x) = t∗ for all x ∈ S. Hence, S ⊂ H(t∗).

Remark 6.2 Let A be a compact set and BE(t) the Euclidean ball of radius t ≥ 0 in Rn+1.
Let At be the parallel body of A with distance t given by

At = {x + t y ∈ Rn+1 : x ∈ A, y ∈ BE(1)}.

Then the original Brunn-Minkowski theorem says that

V
1

n+1
E (At ) ≥ V

1
n+1

E (A) + V
1

n+1
E

(
BE(t)

)
,(6.9)

where VE denotes the (n + 1)-dimensional Euclidean volume. On the other hand, our
Brunn-Minkowski type theorem may be written as

V
1

n+1 (K) ≤ V
1

n+1 (Kt ) + V
1

n+1
(

BK(t)
)
.(6.10)

In view of inequalities (6.9) and (6.10) and recalling the inclusion that Kt ⊂ K but A ⊂ At ,
we may say that the direction of the inequality of our Brunn-Minkowski type theorem is
opposite to that of the original Brunn-Minkowski theorem. Non-trivial optimal cases of the
original Brunn-Minkowski theorem occur only for convex bodies. However, our Brunn-
Minkowski type theorem is not strongly related to convexity even though some properties
of convexity are used in the proof. For example, our optimal case occurs only when S ⊂
H(t), but K = C(S) is not convex.
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7 An Isoperimetric Inequality

Let Q =
⋃m

j=1 P j be a PL-hypersurface in Ln+1 with K = C(Q) and n j the unit past-directed

normal vector of the spacelike convex polytope P j . Set

[tn j , P
j] = {sn j + x : x ∈ P j , 0 ≤ s ≤ t}.

Then by (3.4),

V ([tn j , P
j]) = tA(P j ).(7.1)

Let R1 be the set of points of K \ Kt which are not contained in any [tn j , P j], R2 the set of
points of K \ Kt which are contained in some [tn j , P j] ∩ [tnk, Pk], j 6= k, and R3 the set of
points of [tn j , P j] which are not included in K \ Kt . Then, for a sufficiently small t > 0,

V (K)−V (Kt ) = tA(Q) + F,(7.2)

where the remainder F is V (R1)−V (R2)−V (R3). For ν, r ≥ 0, let

B−(ν, r) = {x ∈ J−(O) : ‖x‖ ≤ r, ϕ(x) ≤ ν},

where ϕ(x) is the hyperbolic angle between e0 and x (cf. [BH] or [On, p. 144]). Let
B−p (ν, r) = p + B−(ν, r), which will be called the past spherical cone of radius r, center
p and angle ν. Then every point of R1,R2 and R3 is contained in the union of all past
spherical cones B−p (ν, t) of radius t , center p contained in the (n − 1)-dimensional face
of P j and angle ν of some large, but finite ν. Thus, the remainder F is ≤ ct2, where c is
a constant that is independent of t . For a fixed K = C(Q), we may consider V (Kt ) as a
function of t . Then by (7.2) we have

lim
t→0

V (Kt )−V (K)

t
= −A(Q).(7.3)

Let S be a hypersurface in Ln+1 with K = C(S). Then we may consider a decomposition

S =
m⋃

k=1

Sk,

where each Sk is a smooth spacelike hypersurface in Ln+1 and Sk may have common bound-
ary points but their interiors do not intersect. Let dAk be the volume element on Sk. Then
the n-dimensional volume of Sk is defined by

A(Sk) =

∫
Sk

dAk

and the n-dimensional volume of S is given by

A(S) =
m∑

k=1

A(Sk).
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Let Qε be a sequence of PL-hypersurfaces constructed as in the proof of Proposition 5.2.
Then A(Qε)→ A(S) as ε→ 0. By Proposition 5.2 and Corollary 5.3, we have

lim
t→0

V (Kt )−V (K)

t
= −A(S).(7.4)

Theorem 7.1 (Isoperimetric Inequality) Let S be a hypersurface in Ln+1 with t∗ = d(O, S)
and let K = C(S) be the cone of S. Then,

An+1(S) ≤ (n + 1)n+1ωV n(K)(7.5)

with equality only when S ⊂ H(t∗), where ω = V
(

BK(1)
)

.

Proof Let S be a hypersurface in Ln+1 and K = C(S), the cone of S. Then by Theorem 6.1,

V (Kt ) ≥ [V
1

n+1 (K)− (ωtn+1)
1

n+1 ]n+1

= V (K)− (n + 1)ω
1

n+1 V
n

n+1 (K)t + o(t).

So, we have

lim
t→0

V (Kt )−V (K)

t
≥ −(n + 1)ω

1
n+1 V

n
n+1 (K).

By (7.4),

A(S) ≤ (n + 1)ω
1

n+1 V
n

n+1 (K),

which is equivalent to (7.5).
Suppose that S ⊂ H(t∗). Then we have

V (K) = t∗n+1
ω, A(S) = (n + 1)ωt∗n

.

Thus,

An+1(S) = (n + 1)n+1ωn+1t∗n(n+1) = (n + 1)n+1ω(ωt∗n+1)n

= (n + 1)n+1ωV n(K).

Suppose that equality holds in (7.5). Consider a decomposition S = S1 ∪ S2 with Ki =
C(Si) and V (Ki) > 0 as in Lemma 2.4 and let ωi = V

(
BKi (1)

)
for i = 1, 2. Then we have

A(S) = A(S1) + A(S2)

≤ (n + 1)
[(
ω1V n(K1)

) 1
n+1 +

(
ω2V n(K2)

) 1
n+1
]

≤ (n + 1)
(
ωV n(K)

) 1
n+1 ,

in view of another inequality of Minkowski (See [BB, Section 1.21]): for ai, bi ≥ 0,

( n∏
i=1

ai

) 1
n

+
( n∏

i=1

bi

) 1
n
≤
[ n∏

i=1

(ai + bi)
] 1

n
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with equality only when (a1, . . . , an) = λ(b1, . . . , bn) for some constant λ. Since equality
holds in (7.5), we have

ωi = λiω, V (Ki) = λiV (K)

for λi ∈ (0, 1) such that λ1 + λ2 = 1. These imply (6.8). Therefore, we have S ⊂ H(t∗).

Remark 7.2 This isoperimetric inequality in the Minkowski spacetime corresponds to the
isoperimetric inequality for convex cones of P. L. Lions and F. Pacella [LP] in the Euclidean
space. Notice that the isoperimetric inequality of P. L. Lions and F. Pacella does not hold
for nonconvex infinite cones (See Remark 1.3 in [LP]), and moreover its direction of in-
equality is opposite to that of our isoperimetric inequality in the Minkowski spacetime. The
isoperimetric inequality (7.5) for the 2-dimensional case has been already established [BH],
which corresponds to an isoperimetric inequality of C. Bandle for the Euclidean plane [Ba,
Theorem 1.1]. The result in [BH] has been extended to a general Lorentzian surface in [B].

Appendix

Here, we give a proof of Lemma 3.5. One can find a similar proof of the Euclidean case
in [Bl].

Lemma A.1 If R is a row operation, then (3.2) in Lemma 3.5 holds for a given m×n matrix
D if and only if it holds for the matrix R(D) in the place of D.

Proof Let C be the column operation which does the same thing to columns that R does
to rows. (Here, we use the right-hand notation for C.) Then there is a constant k 6= 0 such
that

k2 det D · Dt = k2 det(DεDt ) = det
(
[R(DεDt )]C

)
= det(RD)ε(DtC) = det(RD) · (DtC)

= det(RD) · (RD)t .

Let B ′ be an m×m submatrix of RD containing the first column of RD and let C ′ be m×m
submatrix of RD not containing the first column of RD. Assume that (3.2) holds for RD
in the place of D. Then we have

k2 det D · Dt = det(RD) · (RD)t

= −
∑

B ′

(det B ′)2 +
∑
C ′

(det C ′)2

= −
∑

B

(k det B)2 +
∑

C

(k det C)2

= k2
(
−
∑

B

(det B)2 +
∑

C

(detC)2
)
.
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Since k 6= 0, (3.2) holds for D. Similarly, if (3.2) holds for D, then it holds for RD.

For convenience, we will denote the k × k submatrices of a square matrix A containing
the first column of A by B(k,A) and the k × k submatrices of A not containing the first
column of A by C(k,A). Then, Lemma 3.5 may be written as follows:

Lemma A.2 For any m× (n + 1) matrix D over R, m, n ≥ 1,

det D · Dt = −
∑(

det B(m,D)
)2

+
∑(

detC(m,D)
)2
,(A.1)

where the first sum is taken over all B(m,D) of D and the second sum is taken over all C(m,D)
of D.

Proof We will prove (A.1) by induction on n. If n = 1 and m = 1, then (A.1) is just the
standard flat Lorentzian metric on L2. If n = 1 and m = 2, then it is trivial since B(2,D) =
D is the only 2×2 submatrix of D and det(D·Dt ) = det(DεDt ) = − det(DDt ) = −(det D)2.
If n = 1 and m > 2, the row vectors of D are linearly dependent, so are the rows of D · Dt .
Thus, det(D · Dt ) = 0. The right hand side of (A.1) is also zero since there are no m × m
submatrices of D. Hence, (A.1) holds for n = 1. Assume that (A.1) holds for n = k. Let D
be an m × (k + 1) matrix. We may assume that some column D( j) of D, 1 ≤ j ≤ k + 1, is
non-zero. (Otherwise, the proof is trivial since D is the zero matrix.) Then, by Lemma A.1,
we may assume without loss of generality that

D( j) =




1
0
...
0


 .

Let D ′ be the matrix obtained from D by deleting the column D( j). Then, a straightforward
computation from the definition of D · Dt gives

D · Dt = D ′ · (D ′)t +




1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


 .

Thus, we have

det(D · Dt ) = det
(
D ′ · (D ′)t

)
+ det E,(A.2)

where E is the (1, 1) minor of D ′ · (D ′)t . Now there are two types of m×m submatrices of
D; (1) those of D ′ and (2) the consisting of the column D( j) together with an m× (m− 1)
submatrix of D ′. Let D∗ be the matrix obtained from D ′ by deleting the first row. If we
compute the determinant of an m×m matrix of type (2) using minors of the column D( j),
we obtain±1 times the determinant of an (m− 1)× (m− 1) submatrix of D∗. Thus,∑(

det B(m,D)
)2
=
∑(

det B(m,D ′)
)2

+
∑(

det B(m− 1,D∗)
)2
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and ∑(
detC(m,D)

)2
=
∑(

detC(m,D ′)
)2

+
∑(

det C(m− 1,D∗)
)2
.

Notice that D ′ and D∗ have k columns. So, we have

−
∑(

det B(m,D)
)2

+
∑(

detC(m,D)
)2
= det

(
D ′ · (D ′)t

)
+ det

(
D∗ · (D∗)t

)
(A.3)

by induction hypothesis. By the definitions of D∗ and E,

D∗ · (D∗)t = E.

From (A.2) and (A.3) we see that (A.1) holds for an m× (k + 1) matrix D.
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