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Abstract

The aim of the paper is to prove an elliptic analogue of a deep theorem of Iwasawa on
cyclotomic fields.
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Introduction

Let Us) denote the Riemann zeta function. Euler showed that (2TTJ— l)~k £(&) is
rational for each even integer Jfc>0. Subsequently, Kummer discovered two
remarkable connections between these special values of £(s) and the arithmetic of
cyclotomic fields. The best known of these is Kummer's criterion for the irregu-
larity of a prime number p. The second, which we now describe, has received less
attention. Let Q be the rational field, p an odd prime number, and /ip the group
of p-th roots of unity. Let Fo = Q(^p), and write Go for the Galois group of F0

over Q. We denote by x the canonical character, with values in the p-adic integers
Zp, giving the action of Go on fip. There is a unique prime p0 of Fo above p, and
we write Uo for the local units of the completion of FQ at p0, which are = 1 mod p0.
Let Co be the group of classical cyclotomic units of Fo which are = 1 mod p0, and
Co the closure of Co in Uo in the po-adic topology. For each integer i modulo (p— 1),
we write (UJCO)H) for the eigenspace of UJCQ on which Go acts via xi- Kummer
proved that, for each even integer k with 1 < k <p— 1, the eigenspace (UJC^)™ is
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2 J. Coates and A. Wiles [2]

non-zero if and only if (2n^—l)-k £(k)=0modp. In two important papers,
Iwasawa (1964, 1969) established a deep generalization of Kummer's theorem.
Let Foo be the field obtained by adjoining all p-power roots of unity to Q, and let
F be any finite extension of Q contained in Fx. Then Iwasawa's work gave an
explicit description as modules over the group ring ZP[G(F/Q)], of the analogous
quotient for F of local units modulo the closure of the cyclotomic units, in terms
of the p-adic L-functions of Kubota-Leopoldt.

In our previous paper (Coates-Wiles, 1977), we established an elliptic analogue
of Kummer's theorem (see Theorem 29 of that paper), and used it to prove part
of the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex
multiplication. It is natural to ask whether there is also an elliptic analogue of
Iwasawa's generalization of Kummer's theorem. The aim of the present paper is
to show that this is, in fact, the case. Our method of proof is quite different from
that given by Iwasawa, and can be used to give a substantially simpler proof in the
cyclotomic case (for an account of our method in the cyclotomic case, see Lang
(to appear)). Let K be an imaginary quadratic field with class number 1, and 0
the ring of integers of K. Let E be an elliptic curve defined over K, with complex
multiplication by 0, and let ifi be the Grossencharacter of E over K. Throughout
this paper, S will denote the set consisting of 2,3 and all rational primes q such
that E has a bad reduction at at least one prime of K above q. Choose p to be a
rational prime, which is not in the finite exceptional set S, and which splits in K,
say (p) = pp. We fix one of the factors p of p in K. Put IT = ^(p), so that -n is a
generator of p. Now, as E has complex multiplication by 0, we can also view n
as an endomorphism of E. For each «3sO, let £„„+! be the kernel of the endo-
morphism nn+1 of E, and let Fn = K(Enn+i). Then p is totally ramified in Fn,
and we write p n for the unique prime of Fn lying above p. Let Un be the local
units of the completion of Fn at pn, which are = 1 mod pn. Let Cn be Robert's
group of elliptic units for the field Fn (for the precise definition, see Section 3), and
Cn the closure of Cn in Un in the pm-adic topology. Write Go for the Galois group
of Fo over K. Denote by x the canonical character, with values in Zp, giving the
action of Go on En. For each integer i modulo (p— 1), we write (Un/Cn)

{i) for
the eigenspace of Un/Cn on which Go acts via xi- We henceforth assume that
i&O modulo (p— 1), because the case /=0 modulo (/>— 1) is both less interesting
and requires a slightly different treatment. Let F^ = \Jn>0Fn, and write F for the
Galois group of Fx over Fo. Our aim is to determine the structure of

where the protective limit is taken relative to the norm maps, as a module over P.
Let A = Zp[[r]] be the ring of formal power series in an indeterminate T with
coefficients in Zp. Fix a topological generator y0 of T. Then the T-module structure
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[3] p-adic L-functions

on yjj' gives rise to a unique A-module structure satisfying (l+T)y = yoy for all
y in yjj'. Now it is not very difficult to show that Yl£ is pseudo-isomorphic as a
A-module to some quotient module of A. However, much deeper arguments are
required to determine explicitly which quotient actually occurs. The remarkable
fact, first discovered by Iwasawa in the cyclotomic case, is that the answer involves
/7-adic /.-functions. Fix a Weierstrass model for E

(1) y* = 4x?-gax-ga

such that g2,g3 belong to <P, and the discriminant of (1) is divisible only by primes
of flying above primes in S. Let L be the period lattice of the Weierstrass p-function
associated with this model. Since K has class number 1, there exists QeZ, such
that L = Q.6. For each integer k^l, let L{ifik,s) be the complex Hecke /.-function
of $*, where ijik is viewed as a (not necessarily primitive) Grossencharacter modulo
the .conductor of <}j. It has been shown by Hurwitz, Birch and Swinnerton-Dyer,
and Damerell that the numbers Cl-kL(fk,k)(k= 1,2,...) belong to K. We can
therefore view these numbers as lying not only in the complex field, but also in
the completion Kv of K at the non-archimedean prime p. Let Qp denote the
completion of the maximal unramified extension of Kp, and Jp the ring of integers
of Qp. For each non-zero residue class i modulo (j>— 1), we prove the existence of a
power series G£T) in ^p[[r]], with the following interpolation property (see
Theorem 18). Let K be the canonical character giving the action of V on iv+i
(n = 0,1,...), and put u = /c(y0). Write f for the conductor of ifi, and \etfeK be
a fixed generator of f. For each integer k^l, write

(2) _ pk=l2(-l)'>

Then

(3) <?<(«*-1) = / - * /

for all integers k>0 with k=i modulo (p— 1); here y is a certain unit in Jv,
which should be viewed intuitively as the p-adic analogue of the period £2 of E.
In fact, the existence of such power series G^T) is already contained in earlier
work of Katz (1977), Lichtenbaum (to appear) and Manin-Vishik (1974). The
novelty of the present paper is to relate G^T) to the Iwasawa module Y£\ We
say that p is anomalous for is if TT+WS 1 raodp, where IT = ^(p) (see Lemma 12 of
Coates-Wiles (1977)). For each nSsO, write o>n(l + J ) P * - 1 .

THEOREM 1. Assume that (i) p does not belong to S, (ii) p splits in K, say (p) = pp,
and (iii) p is not anomalous for E. Then, for each non-zero residue class i modulo
(/»—1), Fj*' is isomorphic as a A-module to A/(^f(r)), where 'S&T) & a power
series in A, which generates the same ideal in Sp[[T]] as the power series G^T)
satisfying (3). Moreover, Y^jwn Y™ is A-isomorphic to (UjCj^for alln^O.
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4 J. Coates and A. Wiles [4]

As is crucial in the proof of the main result of Coates-Wiles (1977), there are
always infinitely many primes/) satisfying conditions (i), (ii) and (iii) of Theorem 1.
However, it should be noted that Theorem 1 remains valid if we remove condition
(iii) on the prime p, provided we only insist that Y{£ be pseudo-isomorphic to
A/(^(r)), but still require that Yl£ be A-isomorphic to Yl£ for all j#0,1 modulo
(p— 1). We hope to give a detailed proof of this in a subsequent paper.

Finally, we mention an unsolved problem, which was one of our main motivations
in proving Theorem 1. Let M^ be the maximal abelian/^-extension of Fx, which is
unramified outside the unique prime of Fx above p. Write Xa for the Galois
group of Mo, over FK, and Goo for the Galois group of Fx over K. Then Gx = Go x F
operates on X^ in the natural way, via inner automorphisms. If we write Xjj*
for the eigenspace of X^ on which Go acts via x*, then Xjj> is a compact F-module,
and hence also a A-module. Let i be a non-zero residue class modulo (p— 1).
Is it true that Xjj' has the same characteristic power series as y<j> ? A positive
answer to this question in the case i s 1 modulo (/>— 1) would, in view of Theorem
1, have deep consequences for the study of the arithmetic of the elliptic curve E.
We see no way of settling this problem at present. Also the cyclotomic analogue
(see the Main Conjecture in Coates (1977)) is still unsolved.

1. Notation

We mainly use the notation of our earlier paper (Coates-Wiles, 1977). In
particular, K will denote an imaginary quadratic field, with class number 1,
lying inside the complex field C, and G the ring of integers of K. We let E be an
elliptic curve defined over K, whose endomorphism ring is isomorphic to 0. The
finite set S of rational primes is defined as in the Introduction, and we fix a
Weierstrass model (1) for E such that gz,g$ belong to 0, and the discriminant
of (1) is prime to S. Let p(z) be the Weierstrass function associated with (1), and
L the period lattice of p(z). Put £(z) = (p(z), p'(z)). As usual, we identify 0 with
the endomorphism ring of E in such a way that the endomorphism corresponding
to a in 0 is given by |(z) H> |(az). Let ifi be the Grossencharacter of E over K
in the sense defined in Shimura (1971), Section 7.8. As before, we write f for the
conductor of ip. We denote by £2 an element of the period lattice L such that

We fix, for the rest of the paper, a rational prime p satisfying conditions (i),
(ii) and (iii) of Theorem 1. Put n = ^r(p). For each n^O, let E^,+i be the kernel of
the endomorphism irn+1 of E, and let Fn = K(Enn+i). Then p is totally ramified
in Fn, and we write p n for the unique prime of Fn lying above p. Let On be the
completion of Fn at pn. Our assumption that/? is not anomalous for £ is equivalent
to the assertion that <S>n contains no nontrivial p-th root of unity for all integers

(cf. Lemma 12 of Coates-Wiles (1977)). Let Un be the group of units of On,
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[5] p-adic L-functions 5

which are = 1 mod pn. Of course, Un is a Zp-module in the natural way. Put

<J>co = U ®n, F0O=U Fn

Write Cn for the Galois group of F^ over K or, equivalently, the Galois group of
Oo, over Kv. Let £„ = Unso-*V+»» a n ( l let * : G^Z* be the character giving the
action of Gm on Ex, i.e. M* = K{O)U for all ireC,, and ueEm. Plainly GB = r x Go,
where F = G(FJF0), and where Go is cyclic of order p— 1 and can be identified
with the Galois group of Fo over K. Let x denote the restriction of #c to Go, so that
X generates Hom(G0,Zp. If A is any Zp[G0]-module, we define AH) to be the
submodule of A on which Go acts via xi- Thus we have the canonical decomposition

A = © 4(<).

Let A be the ring of formal power series in an indeterminate T, with coefficients in
Zp. Let B be a compact Zp-module, on which F operates continuously. Fix a
topological generator y0 of F. Then, as usual, B has a unique A-module structure
such that yojc = (1+T) JC for all x in B. If 2? and C are A-modules, we say that B
is pseudo-isomorphic to C if there exists a A-homomorphism from 5 to C with
finite kernel and cokernel. For each n>0, write a>n = (1 +r)p*— 1.

Let £ be the formal group giving the kernel of reduction modulo p on E. The
parameter of £ is

(4) t = -2x/y = -2V(zW(z).

We can view z as being the parameter of the formal additive group Ga, and then
(4) is the exponential map of E. Let 0v be the ring of integers of Kp (of course, we
can identify 0p with Zp). We write E for the unique formal group defined over Op

such that the endomorphism [n] of E is given by [77] (w) = irw+wp. By Lubin-Tate
theory, there is a unique isomorphism from E to E over 0v, of the form

(5) w = t k

We write

(6) A:E~G a and <p:Ga~E

for the logarithm and exponential maps, respectively, of E. Of course, the map
w = <p(z) is just the composition of (4) and (5). Finally, E^ will denote the kernel
of the endomorphism [nn] of E.

2. The local theory

We remind the reader that we are assuming throughout that p is not anomalous
for E, or equivalently that the field <!><„ contains no non-trivial />-power roots of
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6 J. Coates and A. Wiles [6]

unity. The principal result of this section is Theorem 5, which is the key to the
whole paper. It is curious that it seems to have been overlooked prior to this.
In fact, Theorem 5 remains true both when p is anomalous for E, and also
for the eigenspace given by i==0 modulo (/>—1), but the proof is more difficult
in these cases, and we have omitted it. The theorem has been considerably
generalized by R. Coleman (to appear), who has also given a more conceptual
method of proof.

Let 4>* be the multiplicative group of non-zero elements of <!>„. For each m ^ n,
we write Nmn for the norm map from <bm to On, and we put

K = n Nm>n(<f>*j.

It is easy to see (cf. Lemma 8 of Coates-Wiles (1977)) that &J, is the subgroup of
$£ consisting of all elements whose norm to -Kp is a power of IT = ^(p). For each
n ^ 0, we define

the projective limit being taken relative to the obvious maps. If m^n, the norm
map from $ m to On clearly gives rise to a map from Xm to Xn .which we also
denote by Nmn. Let Xm = limXn, where the projective limit is taken relative to

the JVOT n. We endow Xm with its natural structure as a G^-module. In particular,
Xm is a compact F-module, and thus also a A-module. Recall that

Recall also that Un denotes the units of On, which are = 1 mod pn.

LEMMA 2. (i) For all /#0 modulo (p—1), we have

where the projective limit on the right is taken relative to the norm maps.
(ii) For all i modulo (p—1), and all integers w^O, we have X^lu>nX

{^ is iso-
morphic as a A-module to

PROOF. It is easy to see (cf. formula (47) of Coates-Wiles (1977)) that we have
an exact sequence of Goo-modules

where U'n denotes the elements in Un with norm 1 to K- here Gx operates trivially
on Zp. Hence
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[7] p-adic L-functions 7

for all i^O modulo (p— 1). This is the first assertion of (i), and the second assertion
follows immediately. Assertion (ii) follows from the interpretation of Xm and Xn

as Galois groups, via the local Artin map. Indeed, let Mx be the maximal abelian
/̂ -extension of <&«,, and Mn the maximal abelian />-extension of <i>n. Since M<,JKp

is a Galois extension, (?«, operates on the abelian normal subgroup G^Mco/O )̂ of
GiMn/Kp) in the natural way, via inner automorphisms (cf. Coates (1977)). By
local class field theory, the local Artin map defines a Goo-isomorphism from Xn to
G(MJQ>n) for all n > 0, and consequently a Goo-isomorphism from Xm to GiMJ^a,)
on passing to the projective limit. Now it is plain that Mn is the maximal abelian
extension of $ n contained in Moo- From this, it follows easily (cf. Coates (1977))
that we must have XJcjn Xx = Xn for all «^0. This completes the proof of the
lemma.

COROLLARY 3. Assume that i^O modulo (p—1). Then X(J> is a free A-module of
rank 1.

PROOF. Since p is not anomalous for E, Un has no torsion for all n > 0, and so
£/<*> is a free Zp-module of finite rank for all / modulo (p— 1). Let <Pn be the ring
of integers of On, Gn the Galois group of On over Kp, and log the/>-adic logarithm.
Now there is a submodule Vn of finite index in Un such that log Vn is contained in
<Bn as a submodule of finite index. On the other hand, it is clear that <Pn contains
as a submodule of finite index a free module of rank 1 over the group ring Zp[Gn].
These two remarks clearly imply that C/"*** is a free Zp-module of rank pn for all
i modulo (p — 1).

By Lemma 2, X^/canX^ is isomorphic to UlJ;\ where we now assume that
MO modulo (p— 1). It follows from the structure theory of finitely generated A-
modules that X™ must be pseudo-isomorphic to A. But X™ = lim C/J*' has no

•-

Zp-torsion, because each t/J*' has no torsion. Hence there is an exact sequence of
A-modules

0->*<*>-> A->.D->0,

where D is a finite A-module. Let Tn = G(^J^>n). Since D is finite, we have
Dr« = D for all sufficiently large n. However, the snake lemma implies that DVn

injects into X^/con X™ = U™ for all n^O. Hence D must be 0 because £/<*> has
no torsion. This completes the proof of the corollary.

We now explicitly construct a basis for X™ over A, for all / ^ 0 modulo (p— 1).
Write et for the orthogonal idempotent of x* in Zp[G0], i.e.

e( = G»-l)-1Sx-<(")ff.
ere Go
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8 J. Coates and A. Wiles [8]

We now fix, for the rest of the paper, a vector (un) (n = 0,1,...) such that (i) each
un is a generator of E^+i, and (ii) Nmn(u^) = un for all m^n. In other words,
(un) is a basis of the Tate module Tn = limEff»+i as a module over Zp.

THEOREM 4. Let ]8 denote the unique (p— l)-th root of 1 -IT satisfying p=l mod/?.
Then we have Nmn(fi — « J = /J — unfor allm^n. Moreover, for i^0 modulo (p — 1),
the element (Q3-«„)**)(n = 0,1,...) is a basis of X^ over A.

PROOF. TO prove the first assertion, it suffices to show that JVre>w_1(/3 - un) = /3 - un_r

for all rt5s 1. Since the minimal equation for un over <!>„_! is XP+TTX— un_x = 0,
it follows that the minimal equation for jS—un is

Thus Nn>n_1(fi—un) = pp+irfi—un_v> and this last quantity is equal to P—un_x,
because J8P+(TT- 1))3 = 0 (by the definition of /}).

Suppose now that l^i<p-l. Now (j3-un)
e< belongs to l/J*' for all «>0. We

claim that Q3-M0)
e' generates C/ '̂ as a Zp-module. Indeed, as C/$° is a free Zp-

module of rank 1, it suffices to show that the image of (jS-i/,,)** in Utf)fUtf}p is
non-zero. As is explained in Section 4 of Coates-Wiles (1977) (cf. Lemmas 9 and
10), this latter assertion is true if and only if

?M ~ "a)*) = <Pi(P - «o) ^0 mod p,

where tpi is the homomorphism defined in Section 4 of Coates-Wiles (1977). We
can compute <Pi(fi—u0) as follows. A suitable power series for j3—u0 is/(»v) = j3—w
(note that we do not have to assume that/(w) has constant term 1 because i<p— 1).
Hence

and so p/jS—uo)= — j8~*^0 modp, as required.
Let a be the element of Xg given by a = ((jS-wJ*), and put Yl£ = Aot. Now

X{£ and yjj* are compact T-modules. Hence, to show that Y{£ = X™, it suffices
to verify that Zg/TZ™ = 0, where Z«» = JIT**'/ Yg. This is equivalent to showing
that the canonical map g from Yg/TYg to A^V^A^' is surjective. But, by Lemma
2, the projection of A"*** onto its 0-th factor induces an isomorphism from X^/TX™
to UtfK The projection of Y™ to its 0-th factor thus induces a homomorphism
from Yg/TY™ to Ul0, and by the result of the previous paragraph this homo-
morphism is surjective. Hence g is surjective, and this completes the proof of
Theorem 4.
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[9] p-adic /.-functions 9

THEOREM 5. Assume that MO modulo (p— 1). For each <x = (an) belonging to
= lim C/J*', there exists a unique power series fa(T) in A such thatfa(un) = <xn

for

PROOF. The uniqueness is obvious from the Weierstrass preparation theorem.
As for the existence, we note first that the element a = ((]8—«„)**) (n = 0,1,...) of
Theorem 4 satisfies the assertion of Theorem 5. Indeed, recalling Lemma 6 of
Coates-Wiles (1977), we can plainly take

<reOo

Secondly, we observe that the set B of all elements a of X™ satisfying the assertion
of Theorem 5 is a A-submodule. Indeed, B is clearly a Zp-submodule. It is also a
A-siibmodule because, if a e B and a e V, the power series associated with a? = (a£)
is/ao[*c(c7)]. Thus Theorem 5 is plain from Theorem 4.

3. Elliptic units

In this section, we establish a number of basic results about the elliptic units
of Robert (1973), which will subsequently play a central role in the proof of
Theorem 1.

If JS? is any lattice in the complex plane, let

be the Weierstrass <r-function of JSf. Let

where A(.£?) is the discriminant function of 3C, and s2(l£) is as defined at the
beginning of Section 5 of Coates-Wiles (1977).

Recall that L = £10 is the period lattice of our elliptic curve (1). If a is an arbitrary
integral ideal of K, we define

where Na is the absolute norm of a, and ar^L denotes the lattice Qo""1. In fact, it
is not difficult to see that ®(z, a) is an elliptic function for the lattice L (for an
explicit expression for 0(z, o) as a rational function of p(z), see formula (23) of
Coates-Wiles (1977)).

We now establish a basic property of the function 0(z, a). First, we introduce
some notation, which will be used repeatedly throughout the rest of the paper.
Let g be an arbitrary integral ideal of K. We define ^ to be the set consisting of
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10 J. Coates and A. Wiles [10]

all pairs

(7) s = (A,JT),

where A = {a , : ; e /} and JT = {nfjeJ}; here J is an arbitrary finite index set,
the Oj are integral ideals of K prime to 6g, and the «,• are rational integers satisfying

(8) 2«A-l) = 0.

Given any such pair s = (A, ̂ Y~) in S^, we define

(9) 9(:,t)=nW,
jej

and, for each integer k ^ 0, we put

(10) M

We shall only use the symbol 5 to denote elements of 6^, so that there will be no
danger of confusion between the function 0(z, s) defined by (9) and the function
0(z, a) defined in the preceding paragraph for an integral ideal a of K.

LEMMA 6. Let g be any generator of the ideal g. Then, for each s in 6^s, we have

where the product on the left is taken over a set {17} of representatives modulo L of
the ^-division points ofL.

PROOF. It follows from the definition of 0(z, a}) that the zeros of 0(z, a3) occur
precisely at the elements of L, each with multiplicity l2(NOj—1). Similarly, the poles
of 0(z, a,) are each of order 12, and occur precisely at the elements of ajxL, which
are not in L. Using this remark, one sees easily that the functions on the right- and
left-hand sides of (11) have the same zeros and poles, counted with multiplicity.
Since both sides are elliptic functions, it follows that the ratio of the right- and
left-hand sides of (11) must be a constant C. To evaluate C, we let z->-0 on both
sides of (11). Let y,- be a generator of the ideal a,-. Now 0(z, ai)lz

a(Ifci-1) tends to
A(L)iV(y/A(aTiL) = A(I,)JV°'-1y712 as z->0. In view of (8), it follows that the
right-hand side of (11) tends to Hjejyj12ni as z->0. Similarly, the left-hand side
of (11) tends to ^Xij€jyJlini, where s = n,=H>0C>?> sX * e product being taken
over all non-zero r\ modulo L. For any non-zero g-division point TJ of L, Robert
(1973) has shown that 0(TJ, S) is a unit in the ray class field H of K modulo g.
Moreover, in view of (8), it follows from Proposition 9 of Robert (1973) that
0(ij, s) is the 12-th power of an element of H. Further, if b = (b) is an integral
ideal of K prime to g, it is easy to see either from Proposition 9 of Robert (1973)
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[11] />-adic L-functions 11

or from formula (27) of Coates-Wiles (1977) that

where ab is the Artin symbol of b for H/K. It follows easily that

where NH/K denotes the norm from H to K, and r is an integer ^ 1. As 0(ij, s) is
a 12-th power in H, and the group of units of K has exponent 12, we conclude
that e = l. This completes the proof of the lemma.

We now return to our elliptic curve E given by equation (1). Recall that f
denotes the conductor of the Grossencharacter ifi of E. Fix a generator/in K of
the, ideal f, and put p = Q/f. Thus f (/>) = (p(/>), p'(/>)) is a generator as an 0-module
of the group £f of/-division points of E. Let B denote an arbitrary set of repre-
sentatives, which are integral and prime to f, of the ray class group of K modulo f.
If o is an arbitrary integral ideal of K prime to 6f, we define

A(z,a)=

LEMMA 7. A(z, a) does not depend on the choice of the set B of representatives of
the ray class group of K modulo f.

PROOF. Let b, c be integral ideals of K, prime to f, which belong to the same ray
class modulo f, i.e. b = (y) c, where y= 1 mod* f. Then, as f is the conductor of ip,
we have r̂(b) = y^(c). Thus </<b) - </>(c) = (y— l)^(c) is an integer in K, which is
divisible by f. Consequently, ^(b) p and ^(c) p differ by an element of the period
lattice L, whence the assertion of the lemma is plain.

From now on, we write ̂  for the index set S^p, consisting of all pairs s = (A, JT),
where A = {dj-.jeJ} and Jf = {nfjeJ}; here J is an arbitrary finite index set,
the Oij are integral ideals of K prime to 6f p, and the «,• are rational integers satisfying
(8). Note that in our 1977 paper we insisted that the ideals a,- had to be prime to
both S and p. However, it is easy to see that all the arguments of that paper remain
valid if we require only that the a,- be prime to 6f p, as in the present paper. For
each pair s = {A,JV~) in y , we define

A(z,s)= nA( : , f l ,A
ieJ

LEMMA 8. Let w = ^(p). Then, for each integer n^0,we have
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12 J. Coates and A. Wiles [12]

where the product on the left is taken over a set {rj} of representatives modulo L of
the TTn-division points ofL.

PROOF. Since nn is a generator of the ideal pn, it follows from Lemma 6 that

p, s) = 0(wn z+i/<pn b) p, s).

But, as b runs over a set of representatives, integral and prime to f, of the ray
class group modulo f, so does pnb. Thus Lemma 8 is plain from Lemma 7.

Recall that in Section 2, we fixed a generator un of E^+i for all n ̂  0, with the
property that [7rm-n](«m) = un for all m^n. Now choose rn modulo L such that
-2p(rn)/p'(Tn) is the image in E^+i of un under the isomorphism (5) from E
to E. When there is no danger of confusion, we briefly express the relation between
un and Tn as un = 9?(rn), where <p is the exponential map of E. Plainly, we have
•nm~n rm= rn modZ, for all m ̂  n.

It is shown in Coates-Wiles (1977) that A(z, s) is a rational function of p(z)
and p'(z) with coefficients in K, for each seS^. Moreover, as is explained in
detail in that paper the numbers A(rn, s), for s ranging over y , form a subgroup
Cn of the group of global units of Fn = K(E,^+i). We recall that, as explained
above, y is now a slightly larger index set than that used in Coates-Wiles (1977),
but the arguments remain the same. These units were first defined by Robert (1973)
and will be called the elliptic units of Fn. It is not difficult to verify (see Lemma 20
of our paper) that Cn is independent of the choice of the primitive 7rm+1-division
point Tm of L, and is stable under the action of the Galois of Fn over K. Ifm^n,
we write Nmn for the norm map from Fm to Fn.

LEMMA 9. For each s in SP, and each m^n, we have

In particular, the map Nmn: Cm^-Cn is surjective.

PROOF. For each n^O, let 0ln be the ray class field of K modulo fn = fpn+1.
By Lemma 4 of Coates-Wiles (1977), we have @n = ^(^^,-fi), where £^,+1
denotes the group of f7rn+1-division points of E. Now fix integers m^n^O. Take
c to be any integral ideal of K, prime to f p, whose Artin symbol ac = {t,£%JK)
fixes the subfield 3tn of 3im. Then we claim that

(12) A(rro,s)"c = A(rm+SC)s),

where 8C is a wm~n-division point of L (which depends on c). Suppose this is true
for the moment. Since we can identify the Galois group of&lJ3ln with the Galois
group of F,JFn, and since -nm~nTm=Tn modL, it follows that every conjugate of
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[13] p-adic i-functions 13

A(rm, s) over Fn is given by A(y, s), where v is some 7rm~m-division point modulo
L of Tn. But, as [Fm : Fn] = pm~n, the number of conjugates of A(TTO, S) over Fn is
equal to the number of 7rm~"-division points modulo L of rn. Hence we must have

(13) Nmjn(A(rro)S)) = nA(v,s),

where v runs over a set of representatives modulo L of the 7rm~m-division points
of rn. But, by Lemma 8, the right-hand side of (13) is equal to A(rn, s), and so
(13) is just the assertion of Lemma 9.

To complete the proof, we must establish (12). By hypothesis, the Artin symbol
<rc fixes &n = K(Efn.+i). Now, by the definition of tfi, we have ^(a)^ = £(^(c) a)
for all a in E^n+i. Hence we must have

(14) I/J(C)= 1 mod fpn+1.

In particular, for each beB, we conclude from (14) that (cf. formula (27) of
Coates-Wiles (1977))

p, s).

Taking the product over all b in B, and noting that (14) implies that

" " ^ O T . - T J S O mod A

(12) follows, as required. This completes the proof of Lemma 9.

We can interpret Lemma 9 as asserting that, for each s in Sf, the vector
(A(Tm,s))(n = 0,1,...) belongs to liml/n, where the projective limit is taken

relative to the norm maps. More importantly, if et is the orthogonal idempotent
of x* in ZP[GO], we also know the unique power series in A = Zp[[w]] (often we
shall take w instead of T to be the variable in the ring A of formal power series
with coefficients in Zp), which is attached to (A(rn, s)**) by Theorem 5. Indeed,
define the power series R(w, s) by

(15) *(w,s) = A(A(a»),s),

where A is the logarithm map of the formal group E. By Lemma 24 of Coates-
Wiles (1977), R(w, s) has coefficients in Zp and constant term equal to 1. Moreover,
as A(z, s) is a rational function of p(z) and p'(z) with coefficients in K, it is plain
that

(16) R(un, ») = A ( T . , » )

for all n ̂  0. Since the formal group E has the property that [x(<r)] (w) = x(.a)w

for all a in Go (see Lemma 6 of our paper), we have therefore proven the following
theorem.
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14 J. Coates and A. Wiles [14]

THEOREM 10. For each i modulo (p— 1), and each s in Sf, define the power series
R(w,$)™by

R(w,s)H) = II W H - . S
<reG0

Then R(w, s)(i) has coefficients in Zp, and satisfies

R(un,s)'" = A(rn,s)*" for

Finally, we give a slightly modified form of Lemma 21 of our paper, which is of
fundamental importance in the proof of Theorem 1.

THEOREM 11. For each i modulo (p— 1), and each s in £f, we have

(17) £log*(rfz),s)«> = £
az k=1

lt=imod (JJ—1)
where ck(s) = 12(- \)*-ip-khk(s)L$\k) (k = 1,2,...),

and Afc(s) is given by (10).

PROOF. By the chain rule, the left-hand side of (17) is given by

KU'di
where £ = x(°)z- The assertion of the theorem is now plain from Lemma 21 of
Coates and Wiles (1977).

4. p-adic logarithmic derivatives

A central role in the proof of Theorem 29 of Coates-Wiles (1977) is given by a
type of p-adic logarithmic derivative (cf. the maps ipt defined on p. 230). This
notion seems to have its origin in Kummer's work on cyclotomic fields. The
purpose of this section is to give a refinement of this notion, which is of vital
importance for the proof of Theorem 1. This refinement was first suggested to us
by the explicit reciprocity law given in Wiles (1978).

Recall that K denotes the canonical character giving the action of G^ = G(^JKV)
on Eoo = U£U*V+i- Let A and B be two Goo-modules, which are also Zp-modules.
If j is an integer ^0, we say that a Zp-homomorphism g: A^-B is a /c'-homo-
morphism if g(aT) = Ki(T)g(a)T for all aeA and reG^. Suppose now that A is
a compact Goo-module, and so, in particular, a compact F-module. As usual, A
has a unique A-module structure satisfying yox = (1 +T)x for all x in A; here
y0 is our fixed topological generator of F. Put u = *(y0). Suppose now that B = Zp,
with the trivial action of Goo- Then, if g is any »c3-homomorphism from A to B,
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we claim that

(18) g(h(T)<x) = h(ui-l)g(<x)

for all a in A and h(T) in A. Indeed, this is plain when h(T) = T, and it follows in
general by linearity and continuity.

Recall that w denotes the parameter of the formal group E, and z the parameter
of the formal additive group Ga. These parameters are related by

(19) z = A(w), w = rfz),

where A and q> are the logarithm and exponential maps of E, respectively. As
before, we shall often use w instead of T as the variable in the ring A = Zp[[T]].
By a basic property of the logarithm map of formal groups, the derivative A'(w)
of \(w) both belongs to A, and is a unit in A. Hence

belongs to A for each/(w) in A, and

belongs to A for each unit/(w) in A. Let A; be an integer > 1. Combining the two
previous remarks, we conclude that, for each unit f(w) in A, the value

w)

belongs to Zp.
For the rest of this section, i will denote an arbitrary non-zero residue class

modulo (p— 1). As in Section 2, we write XlJ? = lim If™. Let a = (an) be an

arbitrary element of XQK By Theorem 5, there is a unique power series fjw) in
A such that/a(wn) = an for all n > 0. For each integer k > 1, we define the map

by

Note that Sk(<x) belongs to Zp by the remarks made in the previous paragraph,
because fa(w) is plainly a unit in A. It is clear also that Sk is a Zp-homomorphism.
If a e Go,, the power series for a? = (a£) is/ao [K(<T)]. Since

[/c(ff)]o9?(z) = 9>(K(ff)z),
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16 J. Coates and A. Wiles [16]

it follows that 8k is a Kfc-homomorphism from X™ to Zp. In particular, we conclude
that 8k(a) = 0 unless k=i modulo (p — 1).

There is a second natural #cfc-homomorphism

Dk: X$^Zp,

which occurs in our work. If a. = (an) is an arbitrary element of XlJ?, we write, as
above, /a(w) for the power series in A such that / a(«n) = an for all n ̂  0. Let To

denote the trace map from O0 to Qp. For each integer k^l, we define

«><2)=«0

Again it is easy to see that Dk(<x) belongs to Zp, and that Dk is a /cfc-homomorphism
from X{£ to Zp. As X^ is a free A-module of rank 1, it is plain that a Zp-multiple
of 8k must be equal to a Z^-multiple of Dk. The following more precise result is
true.

LEMMA 12. For each integer k^l with k=i modulo (p—l), we have
Dk = (77fc— 1) 8k, where n =

PROOF. It plainly suffices to show that

(20)

for some a in Xl£ such that Dk(a) and 8k(a) are both non-zero. Curiously, it does
not seem easy to prove this without appealing to the elliptic unitsf. Suppose first
that s = (A,JV) is an arbitrary element of SP. Take a = (an), where a.n = A(rn, s)6*
(« = 0,1,...). By Theorem 10, the corresponding power series is/a(w) = R(w, s)( i ),
whence we conclude from Theorem 11 that

where \LH is given by (2). Next we compute Dk(a). Let M be a set of representatives
modulo L of the non-zero 7r-division points of L. One sees easily that

, s)( i )

Appealing to the definition of R(w, s ) ( i \ we conclude that

ere C

As 17 ranges over M, it is clear that x(cr) 17 also ranges over a set of representatives
modulo L of the non-zero 7r-division points of L. Recalling that k=i modulo

t R. Coleman has pointed out to us a simple local proof of Lemma 12.

https://doi.org/10.1017/S1446788700011459 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011459


[17] p-adic /.-functions 17

Q ? - l ) , it follows that

,s) | .

But, by Lemma 8, we have

,, s) = (^)*(log(A0r£ s)/A(£, s))).

It is now plain from Theorem 11 that

(22) />*(«) = ̂ (n*- l)hk(5)L(P<, k).

The formulae (21) and (22) are valid for all s in £f, and for all integers k^\ with
k=i modulo (p — l). The argument now breaks up into cases. Suppose first that
k ^ 3 . Under this assumption, L{ifik,k) is given by the convergent infinite product

uP,k)= n o-^MM))*)-1.
<t),f)=i

and hence is non-zero. Also, we can choose s in £f such that Aft(s)# 0 (cf. Lemma 28
of Coates-Wiles (1977), where it is shown that we can even choose s in £f such
that Afc(s) ^0 mod p, because i is not the zero residue class modulo (p— 1)). Thus
8k(<x) and Dk(a) are both non-zero, and (20) is valid for this choice of a. To handle
the cases k = 1 and k = 2, we must use the elements of X^, which are constructed
in Theorem 4. We first make some general remarks about these elements, which are
valid for all non-zero residue classes i modulo (p— 1). Let £ be the unique (p—l)-th
root of 1 — it satisfying fi= 1 modp. Let a = (an), where an = (j3—uj"1. By Theorem
4, a belongs to X™, and, as remarked in the proof of Theorem 5, the power series
corresponding to <x is plainly

/»= n (p-
a e Go

Hence

(23)
fc=o

k=i—1 mod (p—1)

Without loss of generality, we can suppose that i is an integer satisfying K i <p — 1.
We claim that, for this choice of a, we have

(24) 5i(a) = - 0 - l ) ! j 3 - (1 </</>-1).

To prove this, we recall that the formal group E has the property that [£] (w) = £w>
for all (/>- l)-th roots of unity £ (cf. Lemma 6 of Coates-Wiles (1977)). Thus the
power series w = <p(z) must satisfy ?>(£z) = £??(z) for all (/>— l)-th roots of unity X,,
whence f>(z) must be of the form <p(z) = z+S»=2a»z"» where an = 0 unless
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18 J. Coates and A. Wiles [18]

n= 1 modCp-1). It follows easily that

where g(z) is some power series in /Tp[[z]]. Thus (24) is plain from this last equation.
By contrast, we see no easy way of computing Df(a) for all i with K i < p - 1 .
Fortunately, to prove Lemma 12, we need only calculate I>i(a) and D2(<x), and we
now proceed to do this by a tedious direct calculation. If we differentiate both
sides of the equation

with respect to w, it follows that

Differentiating again with respect to w, we obtain

77 A » = («• +pWv-1f A"(M (w)) +p(p -1 ) wf-2 A'(M (w)).

Substituting w = u0 into these last two equations, and recalling that

t$-1 = -n, A'(0) = l, A"(0) = 0,

we conclude that

(25) A'(«0)=l-A X"(uo) = -p(p-

From the first of these equations and (23), we obtain

£>!(«) = /H(/>-1)"1 To( 5
fc=Omod (p-1)

Using the facts MJ"1 = —IT and jS""1 = 1 — TT, it follows easily that, in this c"ase,
D^a) = -(n—l)p-\ Hence (20) holds for k = 1 and this choice of a. Finally,
consider the case k = 2. Differentiating both sides of (23) with respect to z, we
obtain

where

telmod (p-1)
and

fc=o
*^l mod (p-1
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Using equations (25) and again the fact that /8 P - 1 = 1 — TT, we conclude easily that

TO(B(UO)) = (1 -ir)p-\n-{p- I)-*)

and

Adding these last two equations, we obtain £>2(<x) = — (7r2—I)j9~2. Hence (20)
holds for k = 2 and this choice of a, and so the proof of Lemma 12 is complete.

We now establish a remarkable connection between the homomorphisms Sk,
on the one hand, and Leopoldt's F-transform, on the other hand. For a similar
idea, see the paper by Katz (1977b). This connection is the key to the proof of
Theorem 1. We need a slightly more general version of the F-transform than that
given by Leopoldt, and we refer to Lichtenbaum (to appear) for a complete
discussion of this generalization. Here we only state, without proof, the results we
shall use from Lichtenbaum (to appear). As in the Introduction, let Dp be the
completion of the maximal unramified extension of Kv, and let Jv denote the ring
of integers of Qp. Write | |p for the valuation of Qp, normalized so that |/>|p — p~x.
Let v be an indeterminate, and let M denote the subring of £2p[[t>]] consisting of all
power series h = 2"= oanfn satisfying \n\ an\p-+0 as n->co. We can make Minto
a normed vector space by denning \\h\\ = max|«! an\p. Write & for the set of
continuous functions on Zp with values in iip. Thus 3? is also a normed vector
space if we endow it with the supremum norm. Let j denote an arbitrary residue
class modulo (/>— 1). Following Leopoldt (1975), Lichtenbaum (to appear) has
shown that there is a unique continuous linear map

satisfying

(26) i {^

for all non-negative integers k with k=j modulo (p— 1). Here h(v) is defined by
the formula

(27) h(v) = Kv)-p-^Kt,(v+1)-1),
5

where the sum on the right is taken over all p-th. roots of unity £. Apart from the
existence of the map J,-, we shall need only one additional property of it. Recall
that y0 denotes our fixed topological generator of the Galois group F, and that
u = #c(y0). We shall say that a function f(s) in 3F is an Iwasawa function if there
exists a power series g(w) in ./p[[w]] such that/(s) = g{us— 1) for all s in Zp.

LEMMA 13. Ifh is in « ,̂[[t>]], then J,(/J) is an Iwasawa function.
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For the proof of this lemma, see Lichtenbaum (to appear). A discussion of these
basic properties of the F-transform is also given in Lang (to appear).

Let Gm denote the formal multiplicative group. Since E is a formal group of
height 1 over Zp, it is shown in Lubin (1964) that there is an isomorphism

(28) V-Gm~E,

which is defined over the ring *fp of integers of Op. We fix one such isomorphism rj.
Recall that <p denotes the exponential map of E. We see easily that there exists
a unique unit y in Jv such that

(29) w = tp(z) = -W-\).

We write wx * w2 for the sum of two elements wt and w2 under the group law of E.

LEMMA 14. Given g(w) in Jp[[w]], define h(v) = g(r)(v)). Let h(v) be given by (27).
Then, for each integer k^O, we have

d\ -
!• )*(*•- 1) = y-*(_) (g(w) -

6s
g{W * b))

z=0

PROOF. Let £ be a p-th root of unity, and let b = •>?(£— 1) be the corresponding
point in En under the isomorphism (28). Recall that w and z are related by (29).
Since rj is a group homomorphism, and tfit*— 1 is the product of £— 1 and ef— 1
on Gm, it follows that

-1) = ij(£-1) * e- l) = b*w.

Thus, by the chain rule,

2=0

and so the assertion of the lemma is plain from (27).

LEMMA 15. Given g(w) in Jp[[w]] andb in En, then, for each integer k^O, we have

PROOF. By the chain rule, it suffices to verify that, for each integer k ^ 0, we have

(30) = \-r\ W
w=b

To this end, let zx be a variable independent of z, and put wx = ̂ (Zj). Thus
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w*w1 = piz + Zi). It is now obvious that

= I — I w

whence (30) is plain on taking wx = b.
We now return to the situation described earlier in this section. Let / be a fixed,

non-zero, residue class modulo (p— 1). Let a = (<xn) be an arbitrary element of
XQ, and let fjjv) be the unique power series in A satisfying fa(un) = a.n for all
n ̂  0. Then, as is explained at the beginning of this section,

(3i) s»=4iog/» =/»/(/>:

also belongs to A. We further define

(32) ha(v) = iM»))>

where -q is the isomorphism (28).

THEOREM 16. Assume that i^O modulo (/>— 1). Let a. = (an) 6e an arbitrary
element of X(®, and letfa(w) be the power series in A satisfying fa(un) = ocnfor all
n>0. Define ha(v) by equations (31) and (32). Then, for all integers k>0 with
k=i—l modulo (p— 1), we have

(33)

PROOF. Combining Lemmas 14 and 15, we obtain

and so (33) follows from (26) and Lemma 12. This completes the proof of the
theorem.

COROLLARY 17. The notation being the same as in Theorem 16, there exists an
Iwasawa function qa(s) such that, for all integers k>0 with k=i—l modulo (/>— 1),
we have

PROOF. This is immediate from Lemma 13 and Theorem 16.

We now make a special choice of a = (am) in X™. Take s = (A,^) to be an
arbitrary element of the index set y . Then, by Lemma 9,
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belongs to X^K Moreover, by Theorem 10, the corresponding power series is
given by R(w, s)( i ) . For a = j3(s), the value St(a) is given by (21) for all integers
k^O with k=i modulo (p— 1). We conclude from Corollary 17 that there exists
a unique power series rAw; s) in ^ [ [ H * ] ] satisfying

rluf- 1; s) = y

for all integers k^O with k=i— 1 modulo (/>— 1). Here /jfc(s) is given by (10), and
ixk by (2). It is convenient to make a change of variable in the power series r/w; 5).
Put

(34) Z>i(w;s) = ri(M

Clearly bAw; 5) also belongs to J ^ M ] , and satisfies

(35) *«(«*-1; s) = / - ^ ^

for all integers k^O with / : = / modulo (/> — 1).
We can also interpret the numbers hk(5), for ksi modulo (p— 1), as the values

of an Iwasawa function. If x is any unit in Kp, we write, as usual, x = w(x) <;t>,
where co(x) is a ( p - l ) - t h root of unity, and <*>= 1 mod p. Since (^(o^)) = 0,-,
and a3- is prime to p by hypothesis, the number i/»(a,) is a unit in Kv when viewed
under the canonical inclusion of K in Kp. Define r{a}) in Z,v by the equation

We then define aAw; 5) in A by the equation

(36) aAw; s) = 2 «

Clearly aAuk—\; 5) = Afc(s) for all integers jt^O with k=i modulo (p— 1). Write
^ i for the subset of £f consisting of all s such that aAw; s) is not identically zero.
Note that &l is certainly non-empty. In fact, since / ^ 0 modulo (p— 1), Lemma 28
of Coates-Wiles (1977) shows that we can choose s in S? such that aAuk- 1; 5)
is a unit in A^, and thus aAw; s) is itself a unit in A. Given s in 6r°t, we define

(37) GAw) = blw;s)laAw;s).

It is plain from (35) and (36) that GAuk-1) is given by equation (38) below for all
integers k ^ 0 with k = i modulo (p — 1). In particular, as the right-hand side of (38)
is independent of the choice of s in Sf\, and GAus— 1) is a continuous function,
it follows that GAw) itself is independent of the choice of 5 in Sr\. Since we can
choose s in ^ such that aAw; s) is a unit in A, we have therefore proven the
following theorem.
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THEOREM 18. Assume that i^O modulo (p—l). Then there exists a power series
Giiw) in <fv[[w]] satisfying

(38) GJu*-l) = / - V

for all integers k^O with k=i modulo (p — 1).

For a more detailed study of these functions, see Cassou-Nogues (to appear).

5. Proof of Theorem 1

We now relate the power series Gi(w), constructed in the previous section, to the
Iwasawa module

Y£ = lim U«>lC«\

where the projective limit is taken relative to the norm maps. Throughout, we
suppose that / is an arbitrary, non-zero, residue class modulo (p—l).

As before, let /8 be the unique (p— l)-th root of 1 — -n satisfying )3s 1 mod/?, and
let 0n = ( j8-wje i f o r all «2=0. Then, by Theorem 4, 0 = (0n) is a basis of X™
over A. After making a change of variable similar to that in (34), we conclude
from Corollary (17) that there is a unique power series Hjiyv) in ^[[w]] satisfying

(39) H^u*-

for all integers k ^ 0 with k=i modulo (p — 1).

LEMMA 19. H^w) is a unit in

PROOF. Without loss of generality, we can suppose that i is an integer satisfying
> - 1 . Then, by formula (24), 8^0) = - ( / - I ) ! j8-f. Also, the Euler factor

is obviously a unit in Kp if 1 <i<p — 1. It is also a unit for i = 1,
because p is not anomalous for E, by hypothesis. Hence H^u1— 1) is a unit in ^fp,
and thus H^w) is a unit in J [[w]], as required.

For each s in Sf, let j8(s) be the element of X™ given by £(s) = (A(rn, s)*). We
define £><*' to be the A-submodule of X(J,\ which is generated as a A-module by
the j8(s) for s ranging over £f. In fact, it is plain that D(£ is a A-submodule of

THEOREM 20. Assume that j ^ O modulo (p-1).

(40) D%

https://doi.org/10.1017/S1446788700011459 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011459


24 J. Coates and A. Wiles [24]

where &£T) is a power series in A, which generates the same ideal in ̂ V[[T\] as
the power series G^T) appearing in Theorem 18.

PROOF. Let s be an arbitrary element of Sf. Since 6 is a A-basis of X™, there is
a uniquely determined power series <p(T, s) in A such that

Applying the homomorphism 8k to both sides of this equation, and recalling (18),
we conclude that

for all integers k^O with k=i modulo (p— 1). It now follows from (21), (35) and
(39) that

6«(II* - 1 ; s) = ?>(«* -1, s) Ht(u
k -1)

for all integers £>0 with k=i modulo (j>— 1). Recalling (37) and Lemma 19,
we deduce that

(41) rfT, 5) = GIT) off1; s) H^T)-\

This last equation holds for all s in Sf. But now choose s' in Sf such that a£T; s')
is a unit in A. We deduce from (41) that <p(T, s') divides <p(T, s) in A, for each s
in £f. It is therefore plain that D{£ = A<p(T, s') 6. Moreover, (41) also implies that
<p(T, s') generates the same ideal in ^.[[T]] as G^T). Thus we can take ^(T) to
be <p(T, s'), and the proof of the theorem is complete.

COROLLARY 21. Put Zg = XgfD™. Then Z<j> is isomorphic as a A-module to

We can now complete the proof of Theorem 1. Indeed, in view of Corollary 21,
Theorem 1 is a consequence of the following result.

THEOREM 22. Assume that i^O modulo (/>-l). Let Z<*> = Xg/D™. For each
n^O, Z™l<i>nZ™ is isomorphic as a A-module to U^/C^. In particular,
y<j» = lim UM/C™ is isomorphic as a A-module to Z«>.

PROOF. For each n > 0, let pn: X1^ -» C/J*' be the canonical projection. By Lemma
2, pn is surjective, and its kernel is precisely wn X£\ Moreover, it is clear from the
definitions of Cn and Dl» that

(42)

Letyn be the composition ofpn with the canonical surjection of i/J*' onto
Thus7n is surjectivc. Also, m view of (42), it is plain that the kernel of/n is precisely
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). Alsojn is a A-homomorphism. But

Z«>/«nZ«> =

The first assertion of Theorem 22 is therefore clear, and the second assertion
follows on passing to the projective limit. This completes the proof of Theorem 22.
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