ON p-ADIC L-FUNCTIONS AND ELLIPTIC UNITS

J. COATES and A. WILES
Dedicated to Kurt Mahler on his 75th birthday

(Received 2 December 1977)
Communicated by J. B. Miller

Abstract

The aim of the paper is to prove an elliptic analogue of a deep theorem of Iwasawa on cyclotomic fields.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 12 A 35, 12 A 65.

Introduction

Let $\zeta(s)$ denote the Riemann zeta function. Euler showed that $(2 \pi \sqrt{ }-1)^{-k} \zeta(k)$ is rational for each even integer $k>0$. Subsequently, Kummer discovered two remarkable connections between these special values of $\zeta(s)$ and the arithmetic of cyclotomic fields. The best known of these is Kummer's criterion for the irregularity of a prime number p. The second, which we now describe, has received less attention. Let \mathbf{Q} be the rational field, p an odd prime number, and μ_{p} the group of p-th roots of unity. Let $F_{0}=\mathbf{Q}\left(\mu_{p}\right)$, and write G_{0} for the Galois group of F_{0} over Q. We denote by χ the canonical character, with values in the p-adic integers Z_{p}, giving the action of G_{0} on μ_{p}. There is a unique prime \mathfrak{p}_{0} of F_{0} above p, and we write U_{0} for the local units of the completion of F_{0} at \mathfrak{p}_{0}, which are $\equiv 1 \bmod \mathfrak{p}_{0}$. Let C_{0} be the group of classical cyclotomic units of F_{0} which are $\equiv 1 \bmod p_{0}$, and \bar{C}_{0} the closure of C_{0} in U_{0} in the p_{0}-adic topology. For each integer i modulo $(p-1)$, we write $\left(U_{0} / \bar{C}_{0}\right)^{(i)}$ for the eigenspace of U_{0} / \bar{C}_{0} on which G_{0} acts via χ^{i}. Kummer proved that, for each even integer k with $1<k<p-1$, the eigenspace $\left(U_{0} / \bar{C}_{0}\right)^{(k)}$ is

[^0]non-zero if and only if $(2 \pi \sqrt{ }-1)^{-k} \zeta(k) \equiv 0 \bmod p$. In two important papers, Iwasawa (1964, 1969) established a deep generalization of Kummer's theorem. Let F_{∞} be the field obtained by adjoining all p-power roots of unity to \mathbf{Q}, and let F be any finite extension of \mathbf{Q} contained in F_{∞}. Then Iwasawa's work gave an explicit description as modules over the group ring $\mathbf{Z}_{p}[G(F / \mathbf{Q})]$, of the analogous quotient for F of local units modulo the closure of the cyclotomic units, in terms of the p-adic L-functions of Kubota-Leopoldt.
In our previous paper (Coates-Wiles, 1977), we established an elliptic analogue of Kummer's theorem (see Theorem 29 of that paper), and used it to prove part of the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication. It is natural to ask whether there is also an elliptic analogue of Iwasawa's generalization of Kummer's theorem. The aim of the present paper is to show that this is, in fact, the case. Our method of proof is quite different from that given by Iwasawa, and can be used to give a substantially simpler proof in the cyclotomic case (for an account of our method in the cyclotomic case, see Lang (to appear)). Let K be an imaginary quadratic field with class number 1 , and \mathcal{O} the ring of integers of K. Let E be an elliptic curve defined over K, with complex multiplication by \mathcal{O}, and let ψ be the Grossencharacter of E over K. Throughout this paper, S will denote the set consisting of 2,3 and all rational primes q such that E has a bad reduction at at least one prime of K above q. Choose p to be a rational prime, which is not in the finite exceptional set S, and which splits in K, say $(p)=\mathfrak{p p}$. We fix one of the factors \mathfrak{p} of p in K. Put $\pi=\psi(\mathfrak{p})$, so that π is a generator of \mathfrak{p}. Now, as E has complex multiplication by \mathcal{O}, we can also view π as an endomorphism of E. For each $n \geqslant 0$, let $E_{\pi^{n+1}}$ be the kernel of the endomorphism π^{n+1} of E, and let $F_{n}=K\left(E_{\pi^{n+1}}\right)$. Then \mathfrak{p} is totally ramified in F_{n}, and we write \mathfrak{p}_{n} for the unique prime of F_{n} lying above \mathfrak{p}. Let U_{n} be the local units of the completion of F_{n} at \mathfrak{p}_{n}, which are $\equiv 1 \bmod \mathfrak{p}_{n}$. Let C_{n} be Robert's group of elliptic units for the field F_{n} (for the precise definition, see Section 3), and \bar{C}_{n} the closure of C_{n} in U_{n} in the \mathfrak{p}_{n}-adic topology. Write G_{0} for the Galois group of F_{0} over K. Denote by χ the canonical character, with values in Z_{p}, giving the action of G_{0} on E_{π}. For each integer i modulo ($p-1$), we write $\left(U_{n} / C_{n}\right)^{(i)}$ for the eigenspace of U_{n} / \bar{C}_{n} on which G_{0} acts via χ^{i}. We henceforth assume that $i \neq 0$ modulo ($p-1$), because the case $i \equiv 0$ modulo ($p-1$) is both less interesting and requires a slightly different treatment. Let $F_{\infty}=\bigcup_{n \geqslant 0} F_{n}$, and write Γ for the Galois group of F_{∞} over F_{0}. Our aim is to determine the structure of
$$
Y_{\infty}^{(i)}=\lim _{\leftarrow}\left(U_{n} / \bar{C}_{n}\right)^{(i)},
$$
where the projective limit is taken relative to the norm maps, as a module over Γ. Let $\Lambda=\mathbf{Z}_{p}[[T]]$ be the ring of formal power series in an indeterminate T with coefficients in \mathbf{Z}_{p}. Fix a topological generator γ_{0} of Γ. Then the Γ-module structure
on $Y_{\infty}^{(i)}$ gives rise to a unique Λ-module structure satisfying $(1+T) y=\gamma_{0} y$ for all y in $Y_{\infty}^{(i)}$. Now it is not very difficult to show that $Y_{\infty}^{(i)}$ is pseudo-isomorphic as a Λ-module to some quotient module of Λ. However, much deeper arguments are required to determine explicitly which quotient actually occurs. The remarkable fact, first discovered by Iwasawa in the cyclotomic case, is that the answer involves p-adic L-functions. Fix a Weierstrass model for E
\[

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2} x-g_{3} \tag{1}
\end{equation*}
$$

\]

such that g_{2}, g_{3} belong to \mathcal{O}, and the discriminant of (1) is divisible only by primes of K lying above primes in S. Let L be the period lattice of the Weierstrass \mathfrak{p}-function associated with this model. Since K has class number 1 , there exists $\Omega \in L$ such that $L=\Omega \mathcal{O}$. For each integer $k \geqslant 1$, let $L\left(\psi^{k}, s\right)$ be the complex Hecke L-function of ψ^{k}, where ψ^{k} is viewed as a (not necessarily primitive) Grossencharacter modulo the conductor of ψ. It has been shown by Hurwitz, Birch and Swinnerton-Dyer, and Damerell that the numbers $\Omega^{-k} L\left(\bar{\psi}^{k}, k\right)(k=1,2, \ldots)$ belong to K. We can therefore view these numbers as lying not only in the complex field, but also in the completion K_{p} of K at the non-archimedean prime \mathfrak{p}. Let $\Omega_{\mathfrak{p}}$ denote the completion of the maximal unramified extension of K_{p}, and $\mathscr{I}_{\mathfrak{p}}$ the ring of integers of $\Omega_{\mathfrak{p}}$. For each non-zero residue class i modulo $(p-1)$, we prove the existence of a power series $G_{i}(T)$ in $\mathscr{I}_{p}[[T]]$, with the following interpolation property (see Theorem 18). Let κ be the canonical character giving the action of Γ on $E_{\pi^{n+1}}$ ($n=0,1, \ldots$), and put $u=\kappa\left(\gamma_{0}\right)$. Write f for the conductor of ψ, and let $f \in K$ be a fixed generator of f . For each integer $k \geqslant 1$, write

$$
\begin{equation*}
\therefore \mu_{k}=12(-1)^{k-1}(k-1)!(\Omega / f)^{-k} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
G_{i}\left(u^{k}-1\right)=\gamma^{1-k} \mu_{k}\left(1-\frac{\psi(\mathfrak{p})^{k}}{N \mathfrak{p}}\right) L\left(\psi^{k}, k\right) \tag{3}
\end{equation*}
$$

for all integers $k>0$ with $k \equiv i$ modulo ($p-1$); here γ is a certain unit in \mathscr{I}_{p}, which should be viewed intuitively as the \mathfrak{p}-adic analogue of the period Ω of E. In fact, the existence of such power series $G_{i}(T)$ is already contained in earlier work of Katz (1977), Lichtenbaum (to appear) and Manin-Vishik (1974). The novelty of the present paper is to relate $G_{i}(T)$ to the Iwasawa module $Y_{\infty}^{(i)}$. We say that p is anomalous for E if $\pi+\bar{\pi} \equiv 1 \bmod p$, where $\pi=\psi(p)$ (see Lemma 12 of Coates-Wiles (1977)). For each $n \geqslant 0$, write $\omega_{n}(1+T)^{p^{n}}-1$.

Theorem 1. Assume that (i) p does not belong to S, (ii) p splits in K, say $(p)=\mathfrak{p} \bar{p}$, and (iii) p is not anomalous for E. Then, for each non-zero residue class i modulo $(p-1), Y_{\infty}^{(i)}$ is isomorphic as a Λ-module to $\Lambda /\left(\mathscr{G}_{i}(T)\right)$, where $\mathscr{G}_{i}(T)$ is a power series in Λ, which generates the same ideal in $\mathscr{I}_{p}[[T]]$ as the power series $G_{i}(T)$ satisfying (3). Moreover, $Y_{\infty}^{(i)} / \omega_{n} Y_{\infty}^{(i)}$ is Λ-isomorphic to $\left(U_{n} / \bar{C}_{n}\right)^{(i)}$ for all $n \geqslant 0$.

As is crucial in the proof of the main result of Coates-Wiles (1977), there are always infinitely many primes p satisfying conditions (i), (ii) and (iii) of Theorem 1. However, it should be noted that Theorem 1 remains valid if we remove condition (iii) on the prime p, provided we only insist that $Y_{\infty}^{(1)}$ be pseudo-isomorphic to $\Lambda /\left(\mathscr{G}_{1}(T)\right)$, but still require that $Y_{\infty}^{(i)}$ be Λ-isomorphic to $Y_{\infty}^{(i)}$ for all $i \neq 0,1$ modulo $(p-1)$. We hope to give a detailed proof of this in a subsequent paper.

Finally, we mention an unsolved problem, which was one of our main motivations in proving Theorem 1. Let M_{∞} be the maximal abelian p-extension of F_{∞}, which is unramified outside the unique prime of F_{∞} above \mathfrak{p}. Write X_{∞} for the Galois group of M_{∞} over F_{∞}, and G_{∞} for the Galois group of F_{∞} over K. Then $G_{\infty}=G_{0} \times \Gamma$ operates on X_{∞} in the natural way, via inner automorphisms. If we write $X_{\infty}^{(i)}$ for the eigenspace of X_{∞} on which G_{0} acts via χ^{i}, then $\mathrm{X}_{\infty}^{(i)}$ is a compact Γ-module, and hence also a Λ-module. Let i be a non-zero residue class modulo ($p-1$). Is it true that $\mathrm{X}_{\infty}^{(i)}$ has the same characteristic power series as $Y_{\infty}^{(i)}$? A positive answer to this question in the case $i \equiv 1$ modulo ($p-1$) would, in view of Theorem 1 , have deep consequences for the study of the arithmetic of the elliptic curve E. We see no way of settling this problem at present. Also the cyclotomic analogue (see the Main Conjecture in Coates (1977)) is still unsolved.

1. Notation

We mainly use the notation of our earlier paper (Coates-Wiles, 1977). In particular, K will denote an imaginary quadratic field, with class number 1 , lying inside the complex field \mathbf{C}, and \mathcal{O} the ring of integers of K. We let E be an elliptic curve defined over K, whose endomorphism ring is isomorphic to \mathcal{O}. The finite set S of rational primes is defined as in the Introduction, and we fix a Weierstrass model (1) for E such that g_{2}, g_{3} belong to \mathcal{O}, and the discriminant of (1) is prime to S. Let $p(z)$ be the Weierstrass function associated with (1), and L the period lattice of $\mathfrak{p}(z)$. Put $\xi(z)=\left(\mathfrak{p}(z), p^{\prime}(z)\right)$. As usual, we identify \mathcal{O} with the endomorphism ring of E in such a way that the endomorphism corresponding to α in \mathcal{O} is given by $\xi(z) \mapsto \xi(\alpha z)$. Let ψ be the Grossencharacter of E over K in the sense defined in Shimura (1971), Section 7.8. As before, we write f for the conductor of ψ. We denote by Ω an element of the period lattice L such that $L=\Omega \mathcal{O}$.

We fix, for the rest of the paper, a rational prime p satisfying conditions (i), (ii) and (iii) of Theorem 1. Put $\pi=\psi(\mathfrak{p})$. For each $n \geqslant 0$, let $E_{\pi^{n+1}}$ be the kernel of the endomorphism π^{n+1} of E, and let $F_{n}=K\left(E_{\pi^{n+1}}\right)$. Then \mathfrak{p} is totally ramified in F_{n}, and we write \mathfrak{p}_{n} for the unique prime of F_{n} lying above \mathfrak{p}. Let Φ_{n} be the completion of F_{n} at \mathfrak{p}_{n}. Our assumption that p is not anomalous for E is equivalent to the assertion that Φ_{n} contains no nontrivial p-th root of unity for all integers $n \geqslant 0$ (cf. Lemma 12 of Coates-Wiles (1977)). Let U_{n} be the group of units of Φ_{n},
which are $\equiv 1 \bmod \mathfrak{p}_{n}$. Of course, U_{n} is a \mathbf{Z}_{p}-module in the natural way. Put

$$
\Phi_{\infty}=\bigcup_{n \geqslant 0} \Phi_{n}, \quad F_{\infty}=\bigcup_{n \geq 0} F_{n}
$$

Write G_{∞} for the Galois group of F_{∞} over K or, equivalently, the Galois group of Φ_{∞} over K_{p}. Let $E_{\infty}=\mathrm{U}_{n \geqslant 0} E_{\pi^{n+1}}$, and let $\kappa: G_{\infty} \rightarrow \mathbf{Z}_{p}^{x}$ be the character giving the action of G_{∞} on E_{∞}, i.e. $u^{\sigma}=\kappa(\sigma) u$ for all $\sigma \in G_{\infty}$ and $u \in E_{\infty}$. Plainly $G_{\infty}=\Gamma \times G_{0}$, where $\Gamma=G\left(F_{\infty} / F_{0}\right)$, and where G_{0} is cyclic of order $p-1$ and can be identified with the Galois group of F_{0} over K. Let χ denote the restriction of κ to G_{0}, so that χ generates $\operatorname{Hom}\left(G_{0}, \mathbf{Z}_{p}^{x}\right)$. If A is any $\mathbf{Z}_{p}\left[G_{0}\right]$-module, we define $A^{(i)}$ to be the submodule of A on which G_{0} acts via χ^{i}. Thus we have the canonical decomposition

$$
A=\underset{i=1}{\oplus-1} A^{(i)}
$$

Let Λ be the ring of formal power series in an indeterminate T, with coefficients in \mathbf{Z}_{p}. Let B be a compact \mathbf{Z}_{p}-module, on which Γ operates continuously. Fix a topological generator γ_{0} of Γ. Then, as usual, B has a unique Λ-module structure such that $\gamma_{0} x=(1+T) x$ for all x in B. If B and C are Λ-modules, we say that B is pseudo-isomorphic to C if there exists a Λ-homomorphism from B to C with finite kernel and cokernel. For each $n \geqslant 0$, write $\omega_{n}=(1+T)^{p^{n}}-1$.

Let \hat{E} be the formal group giving the kernel of reduction modulo \mathfrak{p} on E. The parameter of \hat{E} is

$$
\begin{equation*}
t=-2 x / y=-2 \mathfrak{p}(z) / p^{\prime}(z) \tag{4}
\end{equation*}
$$

We can view z as being the parameter of the formal additive group G_{a}, and then (4) is the exponential map of \hat{E}. Let $\mathcal{O}_{\mathfrak{p}}$ be the ring of integers of $K_{\mathfrak{p}}$ (of course, we can identify $\mathcal{O}_{\mathfrak{p}}$ with \mathbf{Z}_{p}). We write E for the unique formal group defined over $\mathcal{O}_{\mathfrak{p}}$ such that the endomorphism [π] of E is given by $[\pi](w)=\pi w+w^{p}$. By Lubin-Tate theory, there is a unique isomorphism from \hat{E} to E over $\mathcal{O}_{\mathfrak{p}}$, of the form

$$
\begin{equation*}
w=t+\sum_{k=2}^{\infty} h_{k} t^{k} . \tag{5}
\end{equation*}
$$

We write

$$
\begin{equation*}
\lambda: \mathrm{E} \simeq G_{a} \text { and } \varphi: G_{a} \simeq \mathrm{E} \tag{6}
\end{equation*}
$$

for the logarithm and exponential maps, respectively, of E . Of course, the map $w=\varphi(z)$ is just the composition of (4) and (5). Finally, $\mathrm{E}_{\boldsymbol{\pi}^{n}}$ will denote the kernel of the endomorphism [π^{n}] of E.

2. The local theory

We remind the reader that we are assuming throughout that p is not anomalous for E, or equivalently that the field Φ_{∞} contains no non-trivial p-power roots of
unity. The principal result of this section is Theorem 5 , which is the key to the whole paper. It is curious that it seems to have been overlooked prior to this. In fact, Theorem 5 remains true both when p is anomalous for E, and also for the eigenspace given by $i \equiv 0$ modulo ($p-1$), but the proof is more difficult in these cases, and we have omitted it. The theorem has been considerably generalized by R. Coleman (to appear), who has also given a more conceptual method of proof.

Let Φ_{n}^{x} be the multiplicative group of non-zero elements of Φ_{n}. For each $m \geqslant n$, we write $N_{m, n}$ for the norm map from Φ_{m} to Φ_{n}, and we put

$$
\Phi_{n}^{\prime}=\bigcap_{m \geqslant n} N_{m, n}\left(\Phi_{m}^{x}\right)
$$

It is easy to see (cf. Lemma 8 of Coates-Wiles (1977)) that Φ_{n}^{\prime} is the subgroup of Φ_{n}^{x} consisting of all elements whose norm to $K_{\mathfrak{p}}$ is a power of $\pi=\psi(p)$. For each $n \geqslant 0$, we define

$$
X_{n}=\lim _{\leftarrow} \Phi_{n}^{\prime} / \Phi_{n}^{\prime p},
$$

the projective limit being taken relative to the obvious maps. If $m \geqslant n$, the norm map from Φ_{m} to Φ_{n} clearly gives rise to a map from X_{m} to X_{n}, which we also denote by $N_{m, n}$. Let $X_{\infty}=\lim _{\leftarrow} X_{n}$, where the projective limit is taken relative to the $N_{m, n}$. We endow X_{∞} with its natural structure as a G_{∞}-module. In particular, X_{∞} is a compact Γ-module, and thus also a Λ-module. Recall that

$$
\omega_{n}=(1+T)^{p^{n}}-1
$$

Recall also that U_{n} denotes the units of Φ_{n}, which are $\equiv 1 \bmod p_{n}$.

Lemma 2. (i) For all $i \neq 0$ modulo $(p-1)$, we have

$$
X_{n}^{(i)}=U_{n}^{(i)}, \quad X_{\infty}^{(i)}=\lim _{\rightarrow} U_{n}^{(i)}
$$

where the projective limit on the right is taken relative to the norm maps.
(ii) For all i modulo ($p-1$), and all integers $n \geqslant 0$, we have $X_{\infty}^{(i)} / \omega_{n} X_{\infty}^{(i)}$ is isomorphic as a Λ-module to $X_{n}^{(i)}$.

Proof. It is easy to see (cf. formula (47) of Coates-Wiles (1977)) that we have an exact sequence of G_{∞}-modules

$$
0 \rightarrow U_{n}^{\prime} \rightarrow X_{n} \rightarrow \mathbf{Z}_{p} \rightarrow 0
$$

where U_{n}^{\prime} denotes the elements in U_{n} with norm 1 to K_{p}; here G_{∞} operates trivially on \mathbf{Z}_{p}. Hence

$$
X_{n}^{(i)}=U_{n}^{\prime(i)}=U_{n}^{(i)}
$$

for all $i \not \equiv 0$ modulo ($p-1$). This is the first assertion of (i), and the second assertion follows immediately. Assertion (ii) follows from the interpretation of X_{∞} and X_{n} as Galois groups, via the local Artin map. Indeed, let M_{∞} be the maximal abelian p-extension of Φ_{∞}, and M_{n} the maximal abelian p-extension of Φ_{n}. Since M_{∞} / K_{p} is a Galois extension, G_{∞} operates on the abelian normal subgroup $G\left(M_{\infty} / \Phi_{\infty}\right)$ of $G\left(M_{\infty} / K_{p}\right)$ in the natural way, via inner automorphisms (cf. Coates (1977)). By local class field theory, the local Artin map defines a G_{∞}-isomorphism from X_{n} to $G\left(M_{n} / \Phi_{n}\right)$ for all $n \geqslant 0$, and consequently a G_{∞}-isomorphism from X_{∞} to $G\left(M_{\infty} / \Phi_{\infty}\right)$ on passing to the projective limit. Now it is plain that M_{n} is the maximal abelian extension of Φ_{n} contained in M_{∞}. From this, it follows easily (cf. Coates (1977)) that we must have $X_{\infty} / \omega_{n} X_{\infty}=X_{n}$ for all $n \geqslant 0$. This completes the proof of the lemma.

Corollary 3. Assume that $i \neq 0$ modulo $(p-1)$. Then $X_{\infty}^{(i)}$ is a free Λ-module of rank 1.

Proof. Since p is not anomalous for E, U_{n} has no torsion for all $n \geqslant 0$, and so $U_{n}^{(i)}$ is a free \mathbf{Z}_{p}-module of finite rank for all i modulo $(p-1)$. Let \mathcal{O}_{n} be the ring of integers of Φ_{n}, G_{n} the Galois group of Φ_{n} over K_{p}, and \log the p-adic logarithm. Now there is a submodule V_{n} of finite index in U_{n} such that $\log V_{n}$ is contained in \mathcal{O}_{n} as a submodule of finite index. On the other hand, it is clear that \mathcal{O}_{n} contains as a submodule of finite index a free module of rank 1 over the group ring $\mathbf{Z}_{p}\left[G_{n}\right]$. These two remarks clearly imply that $U_{n}^{(i)}$ is a free \mathbf{Z}_{p}-module of rank $p^{\boldsymbol{n}}$ for all i modulo ($p-1$).

By Lemma 2, $X_{\infty}^{(i)} / \omega_{n} X_{\infty}^{(i)}$ is isomorphic to $U_{n}^{(i)}$, where we now assume that $i \neq 0$ modulo ($p-1$). It follows from the structure theory of finitely generated Λ modules that $X_{\infty}^{(i)}$ must be pseudo-isomorphic to Λ. But $X_{\infty}^{(i)}=\lim U_{n}^{(i)}$ has no \mathbf{Z}_{p}-torsion, because each $U_{n}^{(i)}$ has no torsion. Hence there is an exact sequence of Λ-modules

$$
0 \rightarrow X_{\infty}^{(i)} \rightarrow \Lambda \rightarrow D \rightarrow 0,
$$

where D is a finite Λ-module. Let $\Gamma_{n}=G\left(\Phi_{\infty} / \Phi_{n}\right)$. Since D is finite, we have $D^{\Gamma_{n}}=D$ for all sufficiently large n. However, the snake lemma implies that $D^{\Gamma_{n}}$ injects into $X_{\infty}^{(i)} / \omega_{n} X_{\infty}^{(i)}=U_{n}^{(i)}$ for all $n \geqslant 0$. Hence D must be 0 because $U_{n}^{(i)}$ has no torsion. This completes the proof of the corollary.

We now explicitly construct a basis for $X_{\infty}^{(i)}$ over Λ, for all $i \neq 0$ modulo ($p-1$). Write e_{i} for the orthogonal idempotent of χ^{i} in $\mathbf{Z}_{p}\left[G_{0}\right]$, i.e.

$$
e_{i}=(p-1)^{-1} \sum_{\sigma \in G_{0}} \chi^{-i}(\sigma) \sigma
$$

We now fix, for the rest of the paper, a vector $\left(u_{n}\right)(n=0,1, \ldots)$ such that (i) each u_{n} is a generator of $\mathrm{E}_{\pi^{n+1}}$, and (ii) $N_{m, n}\left(u_{m}\right)=u_{n}$ for all $m \geqslant n$. In other words, $\left(u_{n}\right)$ is a basis of the Tate module $T_{\pi}=\lim \mathrm{E}_{\pi^{n+1}}$ as a module over \mathbf{Z}_{p}.

Theorem 4. Let β denote the unique $(p-1)$-th root of $1-\pi$ satisfying $\beta \equiv 1 \bmod p$. Then we have $N_{m, n}\left(\beta-u_{m}\right)=\beta-u_{n}$ for all $m \geqslant n$. Moreover, for $i \neq 0$ modulo $(p-1)$, the element $\left(\left(\beta-u_{n}\right)^{e_{i}}\right)(n=0,1, \ldots)$ is a basis of $X_{\infty}^{(i)}$ over Λ.

Proof. To prove the first assertion, it suffices to show that $N_{n, n-1}\left(\beta-u_{n}\right)=\beta-u_{n-1}$ for all $n \geqslant 1$. Since the minimal equation for u_{n} over Φ_{n-1} is $X^{p}+\pi X-u_{n-1}=0$, it follows that the minimal equation for $\beta-u_{n}$ is

$$
(\beta-X)^{p}+\pi(\beta-X)-u_{n-1}=0
$$

Thus $N_{n, n-1}\left(\beta-u_{n}\right)=\beta^{p}+\pi \beta-u_{n-1}$, and this last quantity is equal to $\beta-u_{n-1}$, because $\beta^{p}+(\pi-1) \beta=0$ (by the definition of β).

Suppose now that $1 \leqslant i<p-1$. Now $\left(\beta-u_{n}\right)^{e_{i}}$ belongs to $U_{n}^{(i)}$ for all $n \geqslant 0$. We claim that $\left(\beta-u_{0}\right)^{e_{i}}$ generates $U_{0}^{(i)}$ as a \mathbf{Z}_{p}-module. Indeed, as $U_{0}^{(i)}$ is a free $\mathbf{Z}_{p^{-}}$ module of rank 1 , it suffices to show that the image of $\left(\beta-u_{0}\right)^{e_{i}}$ in $U_{0}^{(i)} / U_{0}^{(i) p}$ is non-zero. As is explained in Section 4 of Coates-Wiles (1977) (cf. Lemmas 9 and 10), this latter assertion is true if and only if

$$
\varphi_{i}\left(\left(\beta-u_{0}\right)_{i}^{e_{i}}\right)=\varphi_{i}\left(\beta-u_{0}\right) \not \equiv 0 \quad \bmod p,
$$

where φ_{i} is the homomorphism defined in Section 4 of Coates-Wiles (1977). We can compute $\varphi_{i}\left(\beta-u_{0}\right)$ as follows. A suitable power series for $\beta-u_{0}$ is $f(w)=\beta-w$ (note that we do not have to assume that $f(w)$ has constant term 1 because $i<p-1$). Hence

$$
w \frac{d}{d w} \log f(w)=-\sum_{k=1}^{\infty}(w / \beta)^{k},
$$

and so $\varphi_{i}\left(\beta-u_{0}\right) \equiv-\beta^{-i} \not \equiv 0 \bmod p$, as required.
Let α be the element of $X_{\infty}^{(i)}$ given by $\alpha=\left(\left(\beta-u_{n}\right)^{e_{i}}\right)$, and put $Y_{\infty}^{(i)}=\Lambda \alpha$. Now $X_{\infty}^{(i)}$ and $Y_{\infty}^{(i)}$ are compact Γ-modules. Hence, to show that $Y_{\infty}^{(i)}=X_{\infty}^{(i)}$, it suffices to verify that $Z_{\infty}^{(i)} / T Z_{\infty}^{(i)}=0$, where $Z_{\infty}^{(i)}=X_{\infty}^{(i)} / Y_{\infty}^{(i)}$. This is equivalent to showing that the canonical map g from $Y_{\infty}^{(i)} / T Y_{\infty}^{(i)}$ to $X_{\infty}^{(i)} / T X_{\infty}^{(i)}$ is surjective. But, by Lemma 2, the projection of $X_{\infty}^{(i)}$ onto its 0-th factor induces an isomorphism from $X_{\infty}^{(i)} / T X_{\infty}^{(i)}$ to $U_{0}^{(i)}$. The projection of $Y_{\infty}^{(i)}$ to its 0-th factor thus induces a homomorphism from $Y_{\infty}^{(i)} / T Y_{\infty}^{(i)}$ to $U_{0}^{(i)}$, and by the result of the previous paragraph this homomorphism is surjective. Hence g is surjective, and this completes the proof of Theorem 4.

Theorem 5. Assume that $i \neq 0$ modulo ($p-1$). For each $\alpha=\left(\alpha_{n}\right)$ belonging to $X_{\infty}^{(i)}=\lim U_{n}^{(i)}$, there exists a unique power series $f_{\alpha}(T)$ in Λ such that $f_{\alpha}\left(u_{n}\right)=\alpha_{n}$ for all $n \geqslant 0$.

Proof. The uniqueness is obvious from the Weierstrass preparation theorem. As for the existence, we note first that the element $\alpha=\left(\left(\beta-u_{n}\right)^{e_{i}}\right)(n=0,1, \ldots)$ of Theorem 4 satisfies the assertion of Theorem 5. Indeed, recalling Lemma 6 of Coates-Wiles (1977), we can plainly take

$$
f_{\alpha}(w)=\prod_{\sigma \in G_{0}}(\beta-\chi(\sigma) w)^{x^{-i}(\sigma) /(p-1)}
$$

Secondly, we observe that the set B of all elements α of $X_{\infty}^{(i)}$ satisfying the assertion of Theorem 5 is a Λ-submodule. Indeed, B is clearly a \mathbf{Z}_{p}-submodule. It is also a Λ-submodule because, if $\alpha \in B$ and $\sigma \in \Gamma$, the power series associated with $\alpha^{\sigma}=\left(\alpha_{n}^{\sigma}\right)$ is $f_{\alpha} \circ[\kappa(\sigma)]$. Thus Theorem 5 is plain from Theorem 4.

3. Elliptic units

In this section, we establish a number of basic results about the elliptic units of Robert (1973), which will subsequently play a central role in the proof of Theorem 1.

If \mathscr{L} is any lattice in the complex plane, let

$$
\sigma(z, \mathscr{L})=z \underset{\substack{\omega \in \mathscr{Q} \\ \omega \neq 0}}{ }(1-z / \omega) \exp \left(\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}\right)
$$

be the Weierstrass σ-function of \mathscr{L}. Let

$$
\theta(z, \mathscr{L})=\Delta(\mathscr{L}) \exp \left(-6 s_{2}(\mathscr{L}) z^{2}\right) \sigma(z, \mathscr{L})^{12}
$$

where $\Delta(\mathscr{L})$ is the discriminant function of \mathscr{L}, and $s_{2}(\mathscr{L})$ is as defined at the beginning of Section 5 of Coates-Wiles (1977).

Recall that $L=\Omega \mathcal{O}$ is the period lattice of our elliptic curve (1). If \mathfrak{a} is an arbitrary integral ideal of K, we define

$$
\Theta(z, \mathfrak{a})=\theta(z, L)^{N a} / \theta\left(z, a^{-1} L\right)
$$

where $N a$ is the absolute norm of \mathfrak{a}, and $\mathfrak{a}^{-1} L$ denotes the lattice $\Omega \mathfrak{a}^{-1}$. In fact, it is not difficult to see that $\Theta(z, \mathfrak{a})$ is an elliptic function for the lattice L (for an explicit expression for $\Theta(z, a)$ as a rational function of $\mathfrak{p}(z)$, see formula (23) of Coates-Wiles (1977)).

We now establish a basic property of the function $\Theta(z, \mathfrak{a})$. First, we introduce some notation, which will be used repeatedly throughout the rest of the paper. Let \mathfrak{g} be an arbitrary integral ideal of K. We define $\mathscr{S}_{\mathfrak{g}}$ to be the set consisting of
all pairs

$$
\begin{equation*}
\mathfrak{s}=(A, \mathscr{N}) \tag{7}
\end{equation*}
$$

where $A=\left\{a_{j}: j \in J\right\}$ and $\mathcal{N}=\left\{n_{j}: j \in J\right\}$; here J is an arbitrary finite index set, the \mathfrak{a}_{j} are integral ideals of K prime to $6 \mathfrak{g}$, and the n_{j} are rational integers satisfying

$$
\begin{equation*}
\sum_{j \in J} n_{j}\left(N a_{j}-1\right)=0 \tag{8}
\end{equation*}
$$

Given any such pair $\mathfrak{s}=(A, \mathscr{N})$ in \mathscr{S}_{g}, we define

$$
\begin{equation*}
\Theta(z, \mathfrak{s})=\prod_{j \in J} \Theta\left(z, \mathfrak{a}_{j}\right)^{n_{j}} \tag{9}
\end{equation*}
$$

and, for each integer $k \geqslant 0$, we put

$$
\begin{equation*}
h_{k}(\mathfrak{s})=\sum_{j \in J} n_{j}\left(N \mathfrak{a}_{j}-\psi^{k}\left(\mathfrak{a}_{j}\right)\right) \tag{10}
\end{equation*}
$$

We shall only use the symbol s to denote elements of \mathscr{S}_{g}, so that there will be no danger of confusion between the function $\Theta(z, 5)$ defined by (9) and the function $\Theta(z, a)$ defined in the preceding paragraph for an integral ideal a of K.

Lemma 6. Let g be any generator of the ideal g. Then, for each 5 in \mathscr{S}_{g}, we have

$$
\begin{equation*}
\prod_{\eta} \Theta(z+\eta, \mathfrak{s})=\Theta(g z, \mathfrak{s}) \tag{11}
\end{equation*}
$$

where the product on the left is taken over a set $\{\eta\}$ of representatives modulo L of the \mathbf{g}-division points of L.

Proof. It follows from the definition of $\Theta\left(z, a_{j}\right)$ that the zeros of $\Theta\left(z, a_{j}\right)$ occur precisely at the elements of L, each with multiplicity $12\left(N a_{j}-1\right)$. Similarly, the poles of $\Theta\left(z, a_{j}\right)$ are each of order 12 , and occur precisely at the elements of $a_{j}^{-1} L$, which are not in L. Using this remark, one sees easily that the functions on the right- and left-hand sides of (11) have the same zeros and poles, counted with multiplicity. Since both sides are elliptic functions, it follows that the ratio of the right- and left-hand sides of (11) must be a constant C. To evaluate C, we let $z \rightarrow 0$ on both sides of (11). Let γ_{j} be a generator of the ideal \mathfrak{a}_{j}. Now $\Theta\left(z, \mathfrak{a}_{j}\right) / z^{12(N a j-1)}$ tends to $\Delta(L)^{N a j} / \Delta\left(a_{j}^{-1} L\right)=\Delta(L)^{N a j-1} \gamma_{j}^{-12}$ as $z \rightarrow 0$. In view of (8), it follows that the right-hand side of (11) tends to $\Pi_{j \in J} \gamma_{j}^{-12 n_{j}}$ as $z \rightarrow 0$. Similarly, the left-hand side of (11) tends to $\varepsilon \prod_{j \in J} \gamma_{j}^{-12 n_{j}}$, where $\varepsilon=\prod_{\eta \neq 0} \Theta(\eta, s)$, the product being taken over all non-zero η modulo L. For any non-zero g-division point η of L, Robert (1973) has shown that $\Theta(\eta, 5)$ is a unit in the ray class field H of K modulo \mathfrak{g}. Moreover, in view of (8), it follows from Proposition 9 of Robert (1973) that $\Theta(\eta, 5)$ is the 12 -th power of an element of H. Further, if $\mathfrak{b}=(b)$ is an integral ideal of K prime to \mathfrak{g}, it is easy to see either from Proposition 9 of Robert (1973)
or from formula (27) of Coates-Wiles (1977) that

$$
\Theta(\eta, \mathfrak{s})^{\sigma}=\Theta(b \eta, \mathfrak{s})
$$

where $\sigma_{\mathfrak{b}}$ is the Artin symbol of \mathfrak{b} for H / K. It follows easily that

$$
\varepsilon=\left(N_{H / K} \Theta(\eta, \mathfrak{s})\right)^{r},
$$

where $N_{H / K}$ denotes the norm from H to K, and r is an integer $\geqslant 1$. As $\Theta(\eta, s)$ is a 12-th power in H, and the group of units of K has exponent 12, we conclude that $\varepsilon=1$. This completes the proof of the lemma.

We now return to our elliptic curve E given by equation (1). Recall that \mathfrak{f} denotes the conductor of the Grossencharacter ψ of E. Fix a generator f in K of the ideal \mathfrak{f}, and put $\rho=\Omega / f$. Thus $\xi(\rho)=\left(\mathfrak{p}(\rho), p^{\prime}(\rho)\right)$ is a generator as an \mathcal{O}-module of the group E_{f} of f-division points of E. Let B denote an arbitrary set of representatives, which are integral and prime to \mathfrak{f}, of the ray class group of K modulo f. If \mathfrak{a} is an arbitrary integral ideal of K prime to $6 \mathfrak{f}$, we define

$$
\Lambda(z, \mathfrak{a})=\prod_{\mathfrak{b} \in B} \Theta(z+\psi(\mathfrak{b}) \rho, \mathfrak{a}) .
$$

Lemma 7. $\Lambda(z, a)$ does not depend on the choice of the set B of representatives of the ray class group of K modulo \mathfrak{f}.

Proof. Let b, c be integral ideals of K, prime to \mathfrak{f}, which belong to the same ray class modulo \mathfrak{f}, i.e. $\mathfrak{b}=(\gamma) \mathfrak{c}$, where $\gamma \equiv 1 \bmod ^{*} \mathfrak{f}$. Then, as \mathfrak{f} is the conductor of ψ, we have $\psi(\mathbf{b})=\gamma \psi(\mathrm{c})$. Thus $\psi(\mathrm{b})-\psi(\mathrm{c})=(\gamma-1) \psi(\mathrm{c})$ is an integer in K, which is divisible by \mathfrak{f}. Consequently, $\psi(\mathfrak{b}) \rho$ and $\psi(\mathfrak{c}) \rho$ differ by an element of the period lattice L, whence the assertion of the lemma is plain.

From now on, we write \mathscr{S} for the index set $\mathscr{S}_{\text {tp }}$, consisting of all pairs $\mathfrak{s}=(A, \mathcal{N})$, where $A=\left\{\mathfrak{a}_{j}: j \in J\right\}$ and $\mathscr{N}=\left\{n_{j}: j \in J\right\}$; here J is an arbitrary finite index set, the \mathfrak{a}_{j} are integral ideals of K prime to $6 \mathfrak{f p}$, and the n_{j} are rational integers satisfying (8). Note that in our 1977 paper we insisted that the ideals \mathfrak{a}_{j} had to be prime to both S and p. However, it is easy to see that all the arguments of that paper remain valid if we require only that the \mathfrak{a}_{j} be prime to $6 \mathfrak{f p}$, as in the present paper. For each pair $\mathfrak{s}=(A, \mathcal{N})$ in \mathscr{S}, we define

$$
\Lambda(z, \mathfrak{s})=\prod_{j \in J} \Lambda\left(z, a_{j}\right)^{n_{j}}
$$

Lemma 8. Let $\pi=\psi(\mathfrak{p})$. Then, for each integer $n \geqslant 0$, we have

$$
\prod_{\eta} \Lambda(z+\eta, 5)=\Lambda\left(\pi^{n} z, 5\right),
$$

where the product on the left is taken over a set $\{\eta\}$ of representatives modulo L of the π^{n}-division points of L.

Proof. Since $\pi^{\boldsymbol{n}}$ is a generator of the ideal $\mathfrak{p}^{\boldsymbol{n}}$, it follows from Lemma 6 that

$$
\prod_{\eta} \Theta(z+\eta+\psi(\mathfrak{b}) \rho, \mathfrak{s})=\Theta\left(\pi^{n} z+\psi\left(\mathfrak{p}^{n} \mathfrak{b}\right) \rho, \mathfrak{s}\right)
$$

But, as \mathfrak{b} runs over a set of representatives, integral and prime to \mathfrak{f}, of the ray class group modulo \mathfrak{f}, so does $\mathfrak{p}^{\boldsymbol{n}} \mathfrak{b}$. Thus Lemma 8 is plain from Lemma 7.

Recall that in Section 2, we fixed a generator u_{n} of $\mathrm{E}_{\pi^{n+1}}$ for all $n \geqslant 0$, with the property that $\left[\pi^{m-n}\right]\left(u_{m}\right)=u_{n}$ for all $m \geqslant n$. Now choose τ_{n} modulo L such that $-2 \mathfrak{p}\left(\tau_{n}\right) / \mathfrak{p}^{\prime}\left(\tau_{n}\right)$ is the image in $\hat{E}_{\pi^{n+1}}$ of u_{n} under the isomorphism (5) from \hat{E} to E. When there is no danger of confusion, we briefly express the relation between u_{n} and τ_{n} as $u_{n}=\varphi\left(\tau_{n}\right)$, where φ is the exponential map of E. Plainly, we have $\pi^{m-n} \tau_{m} \equiv \tau_{n} \bmod L$ for all $m \geqslant n$.

It is shown in Coates-Wiles (1977) that $\Lambda(z, s)$ is a rational function of $p(z)$ and $\mathfrak{p}^{\prime}(z)$ with coefficients in K, for each $s \in \mathscr{S}$. Moreover, as is explained in detail in that paper the numbers $\Lambda\left(\tau_{n}, \mathfrak{s}\right)$, for \mathfrak{s} ranging over \mathscr{S}, form a subgroup C_{n} of the group of global units of $F_{n}=K\left(E_{\pi^{n+1}}\right)$. We recall that, as explained above, \mathscr{S} is now a slightly larger index set than that used in Coates-Wiles (1977), but the arguments remain the same. These units were first defined by Robert (1973) and will be called the elliptic units of F_{n}. It is not difficult to verify (see Lemma 20 of our paper) that C_{n} is independent of the choice of the primitive π^{n+1}-division point τ_{n} of L, and is stable under the action of the Galois of F_{n} over K. If $m \geqslant n$, we write $N_{m, n}$ for the norm map from F_{m} to F_{n}.

Lemma 9. For each 5 in \mathscr{P}, and each $m \geqslant n$, we have

$$
N_{m, n}\left(\Lambda\left(\tau_{m}, \mathfrak{s}\right)\right)=\Lambda\left(\tau_{n}, \mathfrak{s}\right)
$$

In particular, the map $N_{m, n}: C_{m} \rightarrow C_{n}$ is surjective.
Proof. For each $n \geqslant 0$, let \mathscr{R}_{n} be the ray class field of K modulo $\mathfrak{f}_{n}=\mathfrak{f p}^{n+1}$. By Lemma 4 of Coates-Wiles (1977), we have $\mathscr{R}_{n}=K\left(E_{\uparrow \pi^{n+1}}\right)$, where $E_{f \pi^{n+1}}$ denotes the group of $\mathfrak{f} \pi^{n+1}$-division points of E. Now fix integers $m \geqslant n \geqslant 0$. Take c to be any integral ideal of K, prime to $\mathfrak{f p}$, whose Artin symbol $\sigma_{c}=\left(c, \mathscr{R}_{m} / K\right)$ fixes the subfield \mathscr{R}_{n} of \mathscr{R}_{m}. Then we claim that

$$
\begin{equation*}
\Lambda\left(\tau_{m}, \mathfrak{s}\right)^{\sigma_{\mathrm{c}}}=\Lambda\left(\tau_{m}+\delta_{c}, \mathfrak{s}\right) \tag{12}
\end{equation*}
$$

where δ_{c} is a π^{m-n}-division point of L (which depends on c). Suppose this is true for the moment. Since we can identify the Galois group of $\mathscr{R}_{m} / \mathscr{R}_{n}$ with the Galois group of F_{m} / F_{n}, and since $\pi^{m-n} \tau_{m} \equiv \tau_{n} \bmod L$, it follows that every conjugate of
$\Lambda\left(\tau_{m}, \mathfrak{s}\right)$ over F_{n} is given by $\Lambda(\nu, \mathfrak{s})$, where ν is some π^{m-n}-division point modulo L of τ_{n}. But, as $\left[F_{m}: F_{n}\right]=p^{m-n}$, the number of conjugates of $\Lambda\left(\tau_{m}, \mathfrak{s}\right)$ over F_{n} is equal to the number of π^{m-n}-division points modulo L of τ_{n}. Hence we must have

$$
\begin{equation*}
N_{m, n}\left(\Lambda\left(\tau_{m}, \mathfrak{s}\right)\right)=\prod_{\nu} \Lambda(\nu, \mathfrak{s}) \tag{13}
\end{equation*}
$$

where ν runs over a set of representatives modulo L of the π^{m-n}-division points of τ_{n}. But, by Lemma 8 , the right-hand side of (13) is equal to $\Lambda\left(\tau_{n}, \mathfrak{s}\right)$, and so (13) is just the assertion of Lemma 9.

To complete the proof, we must establish (12). By hypothesis, the Artin symbol σ_{c} fixes $\mathscr{R}_{n}=K\left(E_{f \pi^{n+1}}\right)$. Now, by the definition of ψ, we have $\xi(\alpha)^{\sigma} \mathbf{c}=\xi(\psi(c) \alpha)$ for all α in $E_{f^{n+1}}$. Hence we must have

$$
\begin{equation*}
\psi(c) \equiv 1 \quad \bmod f p^{n+1} \tag{14}
\end{equation*}
$$

In particular, for each $\mathfrak{b} \in B$, we conclude from (14) that (cf. formula (27) of Coates-Wiles (1977))

$$
\Theta\left(\tau_{m}+\psi(\mathrm{b}) \rho, \mathfrak{s}\right)^{\sigma} c=\Theta\left(\psi(\mathrm{c}) \tau_{m}+\psi(\mathfrak{b}) \rho, \mathfrak{s}\right)
$$

Taking the product over all \mathfrak{b} in B, and noting that (14) implies that

$$
\pi^{m-n}\left(\psi(\mathrm{c}) \tau_{m}-\tau_{m}\right) \equiv 0 \quad \bmod L
$$

(12) follows, as required. This completes the proof of Lemma 9.

We can interpret Lemma 9 as asserting that, for each s in \mathscr{S}, the vector $\left(\Lambda\left(\tau_{n}, \mathfrak{s}\right)\right)(n=0,1, \ldots)$ belongs to $\lim U_{n}$, where the projective limit is taken relative to the norm maps. More importantly, if e_{i} is the orthogonal idempotent of χ^{i} in $\mathbf{Z}_{p}\left[G_{0}\right]$, we also know the unique power series in $\Lambda=\mathbf{Z}_{p}[[w]]$ (often we shall take w instead of T to be the variable in the ring Λ of formal power series with coefficients in \mathbf{Z}_{p}), which is attached to ($\Lambda\left(\tau_{n}, \mathfrak{s}\right)^{e_{1}}$) by Theorem 5 . Indeed, define the power series $R(w, \mathfrak{s})$ by

$$
\begin{equation*}
R(w, \mathfrak{s})=\Lambda(\lambda(\omega), \mathfrak{s}) \tag{15}
\end{equation*}
$$

where λ is the logarithm map of the formal group E. By Lemma 24 of CoatesWiles (1977), $R(w, 5)$ has coefficients in \mathbf{Z}_{p} and constant term equal to 1 . Moreover, as $\Lambda(z, s)$ is a rational function of $\mathfrak{p}(z)$ and $\mathfrak{p}^{\prime}(z)$ with coefficients in K, it is plain that

$$
\begin{equation*}
R\left(u_{n}, \mathfrak{s}\right)=\Lambda\left(\tau_{n}, \mathfrak{s}\right) \tag{16}
\end{equation*}
$$

for all $n \geqslant 0$. Since the formal group E has the property that $[\chi(\sigma)](w)=\chi(\sigma) w$ for all σ in G_{0} (see Lemma 6 of our paper), we have therefore proven the following theorem.

Theorem 10. For each i modulo $(p-1)$, and each \mathfrak{s} in \mathscr{S}, define the power series $R(w, \mathfrak{s})^{(i)}$ by

$$
R(w, \mathfrak{s})^{(i)}=\prod_{\sigma \in G_{0}} R(\chi(\sigma) w, \mathfrak{s})^{\chi^{-i}(\sigma) /(p-1)}
$$

Then $R(w, \mathfrak{s})^{(i)}$ has coefficients in \mathbf{Z}_{p}, and satisfies

$$
R\left(u_{n}, \mathfrak{s}\right)^{(i)}=\Lambda\left(\tau_{n}, \mathfrak{s}\right)^{e_{i}} \text { for all } n \geqslant 0
$$

Finally, we give a slightly modified form of Lemma 21 of our paper, which is of fundamental importance in the proof of Theorem 1.

Theorem 11. For each i modulo ($p-1$), and each \mathfrak{s} in \mathscr{P}, we have

$$
\begin{equation*}
\frac{d}{d z} \log R(p(z), \mathfrak{s})^{(i)}=\sum_{\substack{k=1 \\ k=i \bmod (p-1)}}^{\infty} c_{k}(\mathfrak{s}) z^{k-1} \tag{17}
\end{equation*}
$$

where

$$
c_{k}(\mathfrak{s})=12(-1)^{k-1} \rho^{-k} h_{k}(\mathfrak{s}) L\left(\bar{\psi}^{k}, k\right) \quad(k=1,2, \ldots)
$$

and $h_{k}(\mathfrak{s})$ is given by (10).
Proof. By the chain rule, the left-hand side of (17) is given by

$$
(p-1)^{-1} \sum_{\sigma \in G_{0}} x^{1-i}(\sigma) \frac{d}{d \xi} \log \Lambda(\xi, \mathfrak{s})
$$

where $\xi=\chi(\sigma) z$. The assertion of the theorem is now plain from Lemma 21 of Coates and Wiles (1977).

4. p-adic logarithmic derivatives

A central role in the proof of Theorem 29 of Coates-Wiles (1977) is given by a type of p-adic logarithmic derivative (cf. the maps φ_{i} defined on p. 230). This notion seems to have its origin in Kummer's work on cyclotomic fields. The purpose of this section is to give a refinement of this notion, which is of vital importance for the proof of Theorem 1. This refinement was first suggested to us by the explicit reciprocity law given in Wiles (1978).

Recall that κ denotes the canonical character giving the action of $G_{\infty}=G\left(\Phi_{\infty} / K_{\mathfrak{p}}\right)$ on $\mathrm{E}_{\infty}=\bigcup_{n=0}^{\infty} \mathrm{E}_{\pi^{n+1}}$. Let A and B be two G_{∞}-modules, which are also \mathbf{Z}_{p}-modules. If j is an integer $\geqslant 0$, we say that a \mathbf{Z}_{p}-homomorphism $g: A \rightarrow B$ is a κ^{j}-homomorphism if $g\left(a^{\tau}\right)=\kappa^{j}(\tau) g(a)^{\tau}$ for all $a \in A$ and $\tau \in G_{\infty}$. Suppose now that A is a compact G_{∞}-module, and so, in particular, a compact Γ-module. As usual, A has a unique Λ-module structure satisfying $\gamma_{0} x=(1+T) x$ for all x in A; here γ_{0} is our fixed topological generator of Γ. Put $u=\kappa\left(\gamma_{0}\right)$. Suppose now that $B=\mathbf{Z}_{p}$, with the trivial action of G_{∞}. Then, if g is any κ^{j}-homomorphism from A to B,
we claim that

$$
\begin{equation*}
g(h(T) \alpha)=h\left(u^{j}-1\right) g(\alpha) \tag{18}
\end{equation*}
$$

for all α in A and $h(T)$ in Λ. Indeed, this is plain when $h(T)=T$, and it follows in general by linearity and continuity.

Recall that w denotes the parameter of the formal group E, and z the parameter of the formal additive group G_{a}. These parameters are related by

$$
\begin{equation*}
z=\lambda(w), \quad w=\varphi(z) \tag{19}
\end{equation*}
$$

where λ and φ are the logarithm and exponential maps of E, respectively. As before, we shall often use w instead of T as the variable in the ring $\Lambda=\mathbf{Z}_{p}[[T]]$. By a basic property of the logarithm map of formal groups, the derivative $\lambda^{\prime}(w)$ of $\lambda(w)$ both belongs to Λ, and is a unit in Λ. Hence

$$
\frac{d}{d z} f(w)=f^{\prime}(w) /\left(\lambda^{\prime}(w)\right)
$$

belongs to Λ for each $f(w)$ in Λ, and

$$
\frac{d}{d z} \log f(w)=f^{\prime}(w) /\left(f(w) \lambda^{\prime}(w)\right)
$$

belongs to Λ for each unit $f(w)$ in Λ. Let k be an integer $\geqslant 1$. Combining the two previous remarks, we conclude that, for each unit $f(w)$ in Λ, the value

$$
\left.\left(\frac{d}{d z}\right)^{k} \log f(w)\right|_{z=0}
$$

belongs to \mathbf{Z}_{p}.
For the rest of this section, i will denote an arbitrary non-zero residue class modulo ($p-1$). As in Section 2, we write $X_{\infty}^{(i)}=\lim _{\leftarrow} U_{n}^{(i)}$. Let $\alpha=\left(\alpha_{n}\right)$ be an arbitrary element of $X_{\infty}^{(i)}$. By Theorem 5 , there is a unique power series $f_{\alpha}(w)$ in Λ such that $f_{\alpha}\left(u_{n}\right)=\alpha_{n}$ for all $n \geqslant 0$. For each integer $k \geqslant 1$, we define the map
by

$$
\delta_{k}: X_{\infty}^{(i)} \rightarrow \mathbf{Z}_{p}
$$

$$
\delta_{k}(\alpha)=\left.\left(\frac{d}{d z}\right)^{k} \log f_{\alpha}(\varphi(z))\right|_{z=0}
$$

Note that $\delta_{k}(\alpha)$ belongs to \mathbf{Z}_{p} by the remarks made in the previous paragraph, because $f_{\alpha}(w)$ is plainly a unit in Λ. It is clear also that δ_{k} is a \mathbf{Z}_{p}-homomorphism. If $\sigma \in G_{\infty}$, the power series for $\alpha^{\sigma}=\left(\alpha_{n}^{\sigma}\right)$ is $f_{\alpha} \circ[\kappa(\sigma)]$. Since

$$
[\kappa(\sigma)] \circ \varphi(z)=\varphi(\kappa(\sigma) z)
$$

it follows that δ_{k} is a κ^{k}-homomorphism from $X_{\infty}^{(i)}$ to \mathbf{Z}_{p}. In particular, we conclude that $\delta_{k}(\alpha)=0$ unless $k \equiv i$ modulo ($p-1$).

There is a second natural κ^{k}-homomorphism

$$
D_{k}: X_{\infty}^{(i)} \rightarrow \mathbf{Z}_{p}
$$

which occurs in our work. If $\alpha=\left(\alpha_{n}\right)$ is an arbitrary element of $X_{\infty}^{(i)}$, we write, as above, $f_{\alpha}(w)$ for the power series in Λ such that $f_{\alpha}\left(u_{n}\right)=\alpha_{n}$ for all $n \geqslant 0$. Let T_{0} denote the trace map from Φ_{0} to \mathbf{Q}_{p}. For each integer $k \geqslant 1$, we define

$$
D_{k}(\alpha)=T_{0}\left\{\left.\left(\frac{d}{d z}\right)^{k} \log f_{\alpha}(\varphi(z))\right|_{\varphi(z)=u_{0}}\right\}
$$

Again it is easy to see that $D_{k}(\alpha)$ belongs to \mathbf{Z}_{p}, and that D_{k} is a κ^{k}-homomorphism from $X_{\infty}^{(i)}$ to \mathbf{Z}_{p}. As $X_{\infty}^{(i)}$ is a free Λ-module of rank 1 , it is plain that a \mathbf{Z}_{p}-multiple of δ_{k} must be equal to a \mathbf{Z}_{p}-multiple of D_{k}. The following more precise result is true.

Lemma 12. For each integer $k \geqslant 1$ with $k \equiv i$ modulo ($p-1$), we have $D_{k}=\left(\pi^{k}-1\right) \delta_{k}$, where $\pi=\psi(\mathfrak{p})$.

Proof. It plainly suffices to show that

$$
\begin{equation*}
D_{k}(\alpha)=\left(\pi^{k}-1\right) \delta_{k}(\alpha) \tag{20}
\end{equation*}
$$

for some α in $X_{\infty}^{(i)}$ such that $D_{k}(\alpha)$ and $\delta_{k}(\alpha)$ are both non-zero. Curiously, it does not seem easy to prove this without appealing to the elliptic units \dagger. Suppose first that $\mathfrak{s}=(A, \mathscr{N})$ is an arbitrary element of \mathscr{S}. Take $\alpha=\left(\alpha_{n}\right)$, where $\alpha_{n}=\Lambda\left(\tau_{n}, \mathfrak{s}\right)^{e_{i}}$ ($n=0,1, \ldots$). By Theorem 10 , the corresponding power series is $f_{\alpha}(w)=R(w, \mathfrak{s})^{(i)}$, whence we conclude from Theorem 11 that

$$
\begin{equation*}
\delta_{k}(\alpha)=\mu_{k} h_{k}(\mathfrak{s}) L\left(\psi^{k}, k\right) \tag{21}
\end{equation*}
$$

where μ_{k} is given by (2). Next we compute $D_{k}(\alpha)$. Let M be a set of representatives modulo L of the non-zero π-division points of L. One sees easily that

$$
D_{k}(\alpha)=\left.\sum_{\eta \in M}\left(\frac{d}{d z}\right)^{k} \log R(\varphi(z), \mathfrak{s})^{(i)}\right|_{z=\eta}
$$

Appealing to the definition of $R(w, \mathfrak{s})^{(i)}$, we conclude that

$$
D_{k}(\alpha)=\left.(p-1)^{-1} \sum_{\sigma \in G_{0}} \chi^{k-i}(\sigma) \sum_{\eta \in M}\left(\frac{d}{d \xi}\right)^{k} \log \Lambda(\xi, 5)\right|_{\xi=\chi(\sigma) \eta}
$$

As η ranges over M, it is clear that $\chi(\sigma) \eta$ also ranges over a set of representatives modulo L of the non-zero π-division points of L. Recalling that $k \equiv i$ modulo

[^1]($p-1$), it follows that
$$
D_{k}(\alpha)=\left.\sum_{\eta \in M}\left(\frac{d}{d \xi}\right)^{k} \log \Lambda(\xi+\eta, \mathfrak{s})\right|_{\xi=0}
$$

But, by Lemma 8, we have

$$
\sum_{\eta \in M}\left(\frac{d}{d \xi}\right)^{k} \log \Lambda(\xi+\eta, \mathfrak{s})=\left(\frac{d}{d \xi}\right)^{k}(\log (\Lambda(\pi \xi, \mathfrak{s}) / \Lambda(\xi, \mathfrak{s})))
$$

It is now plain from Theorem 11 that

$$
\begin{equation*}
D_{k}(\alpha)=\mu_{k}\left(\pi^{k}-1\right) h_{k}(5) L\left(\psi^{k}, k\right) \tag{22}
\end{equation*}
$$

The formulae (21) and (22) are valid for all \mathfrak{s} in \mathscr{P}, and for all integers $k \geqslant 1$ with $k \equiv i$ modulo ($p-1$). The argument now breaks up into cases. Suppose first that $k \geqslant 3$. Under this assumption, $L\left(\psi^{k}, k\right)$ is given by the convergent infinite product

$$
L\left(\bar{\psi}^{k}, k\right)=\prod_{(\mathfrak{y}, f)=1}\left(1-\bar{\psi}^{k}(\mathfrak{y}) /(N \mathfrak{y})^{k}\right)^{-1}
$$

and hence is non-zero. Also, we can choose \mathfrak{s} in \mathscr{S} such that $h_{k}(5) \neq 0$ (cf. Lemma 28 of Coates-Wiles (1977), where it is shown that we can even choose \mathfrak{s} in \mathscr{S} such that $h_{k}(\mathfrak{s}) \neq 0 \bmod \mathfrak{p}$, because i is not the zero residue class modulo $(p-1)$). Thus $\delta_{k}(\alpha)$ and $D_{k}(\alpha)$ are both non-zero, and (20) is valid for this choice of α. To handle the cases $k=1$ and $k=2$, we must use the elements of $X_{\infty}^{(i)}$, which are constructed in Theorem 4. We first make some general remarks about these elements, which are valid for all non-zero residue classes i modulo ($p-1$). Let β be the unique ($p-1$)-th root of $1-\pi$ satisfying $\beta \equiv 1 \bmod p$. Let $\alpha=\left(\alpha_{n}\right)$, where $\alpha_{n}=\left(\beta-u_{n}\right)^{\text {ef }}$. By Theorem $4, \alpha$ belongs to $X_{\infty}^{(i)}$, and, as remarked in the proof of Theorem 5, the power series corresponding to α is plainly

$$
f_{\alpha}(w)=\prod_{\alpha \in \mathcal{Q}_{0}}(\beta-\chi(\sigma) w)^{-i(\sigma) /(p-1)}
$$

Hence

$$
\begin{equation*}
\log f_{\alpha}(w)=\left(-\beta^{-1} \sum_{\substack{k=0 \\ k=i-1 \\ \bmod (p-1)}}^{\infty} w^{k} / \beta^{k}\right) \cdot 1 /\left(\lambda^{\prime}(w)\right) . \tag{23}
\end{equation*}
$$

Without loss of generality, we can suppose that i is an integer satisfying $1 \leqslant i<p-1$. We claim that, for this choice of α, we have

$$
\begin{equation*}
\delta_{i}(\alpha)=-(i-1)!\beta^{-i} \quad(1 \leqslant i<p-1) . \tag{24}
\end{equation*}
$$

To prove this, we recall that the formal group E has the property that $[\zeta](w)=\zeta w$ for all $(p-1)$-th roots of unity ζ (cf. Lemma 6 of Coates-Wiles (1977)). Thus the power series $w=\varphi(z)$ must satisfy $\varphi(\zeta z)=\zeta \varphi(z)$ for all $(p-1)$-th roots of unity ζ, whence $\varphi(z)$ must be of the form $\varphi(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, where $a_{n}=0$ unless
$n \equiv 1 \bmod (p-1)$. It follows easily that

$$
\frac{d}{d z} \log f_{\alpha}(w)=-z^{i-1} / \beta^{i}+z^{p-1} g(z)
$$

where $g(z)$ is some power series in $K_{\mathrm{p}}[[z]]$. Thus (24) is plain from this last equation. By contrast, we see no easy way of computing $D_{i}(\alpha)$ for all i with $1 \leqslant i<p-1$. Fortunately, to prove Lemma 12, we need only calculate $D_{1}(\alpha)$ and $D_{2}(\alpha)$, and we now proceed to do this by a tedious direct calculation. If we differentiate both sides of the equation

$$
\lambda([\pi](w))=\pi \lambda(w)
$$

with respect to w, it follows that

$$
\pi \lambda^{\prime}(w)=\left(\pi+p w^{p-1}\right) \lambda^{\prime}([\pi](w))
$$

Differentiating again with respect to w, we obtain

$$
\pi \lambda^{\prime \prime}(w)=\left(\pi+p w^{p-1}\right)^{2} \lambda^{\prime \prime}([\pi](w))+p(p-1) w^{p-2} \lambda^{\prime}([\pi](w))
$$

Substituting $w=u_{0}$ into these last two equations, and recalling that

$$
u_{0}^{p-1}=-\pi, \quad \lambda^{\prime}(0)=1, \quad \lambda^{\prime \prime}(0)=0
$$

we conclude that

$$
\begin{equation*}
\lambda^{\prime}\left(u_{0}\right)=1-p, \quad \lambda^{\prime \prime}\left(u_{0}\right)=-p(p-1) u_{0}^{-1} \tag{25}
\end{equation*}
$$

From the first of these equations and (23), we obtain

$$
D_{1}(\alpha)=\beta^{-1}(p-1)^{-1} T_{0}\left(\sum_{\substack{k=0 \\ k=0 \bmod (p-1)}}^{\infty} u_{0}^{k} / \beta^{k}\right)
$$

Using the facts $u_{0}^{p-1}=-\pi$ and $\beta^{p-1}=1-\pi$, it follows easily that, in this case, $D_{1}(\alpha)=-(\pi-1) \beta^{-1}$. Hence (20) holds for $k=1$ and this choice of α. Finally, consider the case $k=2$. Differentiating both sides of (23) with respect to z, we obtain

$$
\left(\frac{d}{d z}\right)^{2} \log f_{\alpha}(w)=B(w)+C(w)
$$

where

$$
B(w)=\left(-\beta^{-1} \sum_{\substack{k=0 \\ k=1 \bmod (p-1)}}^{\infty} k w^{k-1} / \beta^{k}\right) \cdot 1 /\left(\lambda^{\prime}(w)\right)^{2}
$$

and

$$
C(w)=\left(\beta^{-1} \sum_{\substack{k=0 \\ k=1 \\ \bmod (p-1)}}^{\infty} w^{k} / \beta^{k}\right) \lambda^{n}(w) /\left(\lambda^{\prime}(w)\right)^{3}
$$

Using equations (25) and again the fact that $\beta^{p-1}=1-\pi$, we conclude easily that

$$
T_{0}\left(B\left(u_{0}\right)\right)=(1-\pi) \beta^{-2}\left(\pi-(p-1)^{-1}\right)
$$

and

$$
T_{0}\left(C\left(u_{0}\right)\right)=(1-\pi) p \beta^{-2}(p-1)^{-1} .
$$

Adding these last two equations, we obtain $D_{2}(\alpha)=-\left(\pi^{2}-1\right) \beta^{-2}$. Hence (20) holds for $k=2$ and this choice of α, and so the proof of Lemma 12 is complete.

We now establish a remarkable connection between the homomorphisms δ_{k}, on the one hand, and Leopoldt's Γ-transform, on the other hand. For a similar idea, see the paper by Katz (1977b). This connection is the key to the proof of Theorem 1. We need a slightly more general version of the Γ-transform than that given by Leopoldt, and we refer to Lichtenbaum (to appear) for a complete discussion of this generalization. Here we only state, without proof, the results we shall use from Lichtenbaum (to appear). As in the Introduction, let $\Omega_{\mathfrak{p}}$ be the completion of the maximal unramified extension of $K_{\mathfrak{p}}$, and let $\mathscr{I}_{\mathfrak{p}}$ denote the ring of integers of $\Omega_{\mathfrak{p}}$. Write $\|_{\mathfrak{p}}$ for the valuation of $\Omega_{\mathfrak{p}}$, normalized so that $|p|_{\mathfrak{p}}=p^{-1}$. Let v be an indeterminate, and let M denote the subring of $\Omega_{p}[[v]]$ consisting of all power series $h=\sum_{n=0}^{\infty} a_{n} v^{n}$ satisfying $\left|n!a_{n}\right|_{p} \rightarrow 0$ as $n \rightarrow \infty$. We can make M into a normed vector space by defining $\|h\|=\max \left|n!a_{n}\right|_{\mathfrak{p}}$. Write \mathscr{F} for the set of continuous functions on Z_{p} with values in $\Omega_{\mathfrak{p}}$. Thus \mathscr{F} is also a normed vector space if we endow it with the supremum norm. Let j denote an arbitrary residue class modulo ($p-1$). Following Leopoldt (1975), Lichtenbaum (to appear) has shown that there is a unique continuous linear map

$$
J_{j}: M \rightarrow \mathscr{F}
$$

satisfying

$$
\begin{equation*}
J_{j}(h)(k)=\left.\left(\frac{d}{d z}\right)^{k} \tilde{h}\left(e^{z}-1\right)\right|_{z=0} \tag{26}
\end{equation*}
$$

for all non-negative integers k with $k \equiv j$ modulo ($p-1$). Here $\tilde{h}(v)$ is defined by the formula

$$
\begin{equation*}
\tilde{h}(v)=h(v)-p^{-1} \sum_{\zeta} h(\zeta(v+1)-1), \tag{27}
\end{equation*}
$$

where the sum on the right is taken over all p-th roots of unity ζ. Apart from the existence of the map J_{j}, we shall need only one additional property of it. Recall that γ_{0} denotes our fixed topological generator of the Galois group Γ, and that $u=\kappa\left(\gamma_{0}\right)$. We shall say that a function $f(s)$ in \mathscr{F} is an Iwasawa function if there exists a power series $g(w)$ in $\mathscr{I}_{\mathrm{p}}[[w]]$ such that $f(s)=g\left(u^{s}-1\right)$ for all s in \mathbf{Z}_{p}.

Lemma 13. If h is in $\mathscr{I}_{p}[[v]]$, then $J_{j}(h)$ is an Iwasawa function.

For the proof of this lemma, see Lichtenbaum (to appear). A discussion of these basic properties of the Γ-transform is also given in Lang (to appear).

Let G_{m} denote the formal multiplicative group. Since E is a formal group of height 1 over \mathbf{Z}_{p}, it is shown in Lubin (1964) that there is an isomorphism

$$
\begin{equation*}
\eta: G_{m} \xrightarrow{\sim} \mathrm{E} \tag{28}
\end{equation*}
$$

which is defined over the ring \mathscr{I}_{p} of integers of Ω_{p}. We fix one such isomorphism η. Recall that φ denotes the exponential map of E . We see easily that there exists a unique unit γ in $\mathscr{F}_{\mathbf{p}}$ such that

$$
\begin{equation*}
w=\varphi(z)=\eta\left(e^{\gamma z}-1\right) \tag{29}
\end{equation*}
$$

We write $w_{1} * w_{2}$ for the sum of two elements w_{1} and w_{2} under the group law of E.

Lemma 14. Given $g(w)$ in $\mathscr{I}_{p}[[w]]$, define $h(v)=g(\eta(v))$. Let $\tilde{h}(v)$ be given by (27). Then, for each integer $k \geqslant 0$, we have

$$
\left.\left(\frac{d}{d z}\right)^{k} \tilde{h}\left(e^{z}-1\right)\right|_{z=0}=\left.\gamma^{-k}\left(\frac{d}{d z}\right)^{k}\left(g(w)-p^{-1} \sum_{b \in \mathrm{E}_{\pi}} g(w * b)\right)\right|_{z=0}
$$

Proof. Let ζ be a p-th root of unity, and let $b=\eta(\zeta-1)$ be the corresponding. point in E_{π} under the isomorphism (28). Recall that w and z are related by (29). Since η is a group homomorphism, and $\zeta e^{\gamma z}-1$ is the product of $\zeta-1$ and $e^{\gamma z}-1$ on G_{m}, it follows that

$$
\eta\left(\zeta e^{\gamma z}-1\right)=\eta(\zeta-1) * \eta\left(e^{\gamma z}-1\right)=b * w .
$$

Thus, by the chain rule,

$$
\left.\gamma^{-k}\left(\frac{d}{d z}\right)^{k} g(w * b)\right|_{z=0}=\left.\left(\frac{d}{d z}\right)^{k} g\left(\eta\left(\zeta e^{z}-1\right)\right)\right|_{z=0}
$$

and so the assertion of the lemma is plain from (27).

Lemma 15. Given $g(w)$ in $\mathscr{I}_{\mathrm{p}}[[w]]$ and b in E_{π}, then, for each integer $k \geqslant 0$, we have

$$
\left.\left(\frac{d}{d z}\right)^{k} g(w * b)\right|_{w=0}=\left.\left(\frac{d}{d z}\right)^{k} g(w)\right|_{w=b}
$$

Proof. By the chain rule, it suffices to verify that, for each integer $k \geqslant 0$, we have

$$
\begin{equation*}
\left.\left(\frac{d}{d z}\right)^{k}(w * b)\right|_{w=0}=\left.\left(\frac{d}{d z}\right)^{k} w\right|_{w=b} \tag{30}
\end{equation*}
$$

To this end, let z_{1} be a variable independent of z, and put $w_{1}=\varphi\left(z_{1}\right)$. Thus
$w * w_{1}=\varphi\left(z+z_{1}\right)$. It is now obvious that

$$
\left.\left(\frac{\partial}{\partial z}\right)^{k}\left(w * w_{1}\right)\right|_{w=0}=\left.\left(\frac{d}{d z}\right)^{k} w\right|_{w=w_{1}}
$$

whence (30) is plain on taking $w_{1}=b$.
We now return to the situation described earlier in this section. Let i be a fixed, non-zero, residue class modulo ($p-1$). Let $\alpha=\left(\alpha_{n}\right)$ be an arbitrary element of $X_{\infty}^{(i)}$, and let $f_{\alpha}(w)$ be the unique power series in Λ satisfying $f_{\alpha}\left(u_{n}\right)=\alpha_{n}$ for all $n \geqslant 0$. Then, as is explained at the beginning of this section,

$$
\begin{equation*}
g_{\alpha}(w)=\frac{d}{d z} \log f_{\alpha}(w)=f_{\alpha}^{\prime}(w) /\left(f_{\alpha}(w) \lambda^{\prime}(w)\right) \tag{31}
\end{equation*}
$$

also belongs to Λ. We further define

$$
\begin{equation*}
h_{\alpha}(v)=g_{\alpha}(\eta(v)) \tag{32}
\end{equation*}
$$

where η is the isomorphism (28).
Theorem 16. Assume that $i \neq 0$ modulo $(p-1)$. Let $\alpha=\left(\alpha_{n}\right)$ be an arbitrary element of $X_{\infty}^{(i)}$, and let $f_{\alpha}(w)$ be the power series in Λ satisfying $f_{\alpha}\left(u_{n}\right)=\alpha_{n}$ for all $n \geqslant 0$. Define $h_{\alpha}(v)$ by equations (31) and (32). Then, for all integers $k \geqslant 0$ with $k \equiv i-1$ modulo $(p-1)$, we have

$$
\begin{equation*}
J_{i-1}\left(h_{\alpha}\right)(k)=\gamma^{-k}\left(1-\frac{\psi(\mathfrak{p})^{k+1}}{N \mathfrak{p}}\right) \delta_{k+1}(\alpha) \tag{33}
\end{equation*}
$$

Proof. Combining Lemmas 14 and 15, we obtain

$$
\left(\frac{d}{d z}\right)^{k} \tilde{h}_{\alpha}\left(e^{z}-1\right)=\gamma^{-k}\left(1-p^{-1}\right) \delta_{k+1}(\alpha)-\gamma^{-k} p^{-1} D_{k+1}(\alpha)
$$

and so (33) follows from (26) and Lemma 12. This completes the proof of the theorem.

Corollary 17. The notation being the same as in Theorem 16, there exists an Iwasawa function $q_{\alpha}(s)$ such that, for all integers $k \geqslant 0$ with $k \equiv i-1$ modulo ($p-1$), we have

$$
q_{\alpha}(k)=\gamma^{-k}\left(1-\frac{\psi(\mathfrak{p})^{k+1}}{N \mathfrak{p}}\right) \delta_{k+1}(\alpha)
$$

Proof. This is immediate from Lemma 13 and Theorem 16.
We now make a special choice of $\alpha=\left(\alpha_{n}\right)$ in $X_{\infty}^{(i)}$. Take $s=(A, \mathcal{N})$ to be an arbitrary element of the index set \mathscr{S}. Then, by Lemma 9 ,

$$
\beta(\mathfrak{s})=\left(\Lambda\left(\tau_{n}, \mathfrak{s}\right)^{e_{i}}\right)
$$

belongs to $X_{\infty}^{(i)}$. Moreover, by Theorem 10, the corresponding power series is given by $R(w, \mathfrak{s})^{(i)}$. For $\alpha=\beta(\mathfrak{s})$, the value $\delta_{k}(\alpha)$ is given by (21) for all integers $k \geqslant 0$ with $k \equiv i$ modulo $(p-1)$. We conclude from Corollary 17 that there exists a unique power series $r_{i}(w ; \mathfrak{s})$ in $\mathscr{I}_{\mathrm{p}}[[w]]$ satisfying

$$
r_{i}\left(u^{k}-1 ; \mathfrak{s}\right)=\gamma^{-k} \mu_{k+1} h_{k+1}(\mathfrak{s})\left(1-\frac{\psi(\mathfrak{p})^{k+1}}{N \mathfrak{p}}\right) L\left(\bar{\psi}^{k+1}, k+1\right)
$$

for all integers $k \geqslant 0$ with $k \equiv i-1 \operatorname{modulo}(p-1)$. Here $h_{k}(\mathfrak{s})$ is given by (10), and μ_{k} by (2). It is convenient to make a change of variable in the power series $r_{i}(w ; \mathfrak{s})$. Put

$$
\begin{equation*}
b_{i}(w ; s)=r_{i}\left(u^{-1}(w+1)-1 ; s\right) \tag{34}
\end{equation*}
$$

Clearly $b_{i}(w ; \mathfrak{s})$ also belongs to $\mathscr{I}_{p}[[w]]$, and satisfies

$$
\begin{equation*}
b_{i}\left(u^{k}-1 ; \mathfrak{s}\right)=\gamma^{1-k} \mu_{k} h_{k}(\mathfrak{s})\left(1-\frac{\psi(\mathfrak{p})^{k}}{N \mathfrak{p}}\right) L\left(\psi^{k}, k\right) \tag{35}
\end{equation*}
$$

for all integers $k \geqslant 0$ with $k \equiv i$ modulo ($p-1$).
We can also interpret the numbers $h_{k}(\mathfrak{s})$, for $k \equiv i$ modulo ($p-1$), as the values of an Iwasawa function. If x is any unit in $K_{\mathfrak{p}}$, we write, as usual, $x=\omega(x)\langle x\rangle$, where $\omega(x)$ is a $(p-1)$-th root of unity, and $\langle x\rangle \equiv 1 \bmod p$. Since $\left(\psi\left(\mathfrak{a}_{j}\right)\right)=\mathfrak{a}_{j}$, and \mathfrak{a}_{j} is prime to \mathfrak{p} by hypothesis, the number $\psi\left(\mathfrak{a}_{j}\right)$ is a unit in $K_{\mathfrak{p}}$ when viewed under the canonical inclusion of K in $K_{\mathfrak{p}}$. Define $\tau\left(\mathfrak{a}_{j}\right)$ in \mathbf{Z}_{p} by the equation

$$
\left\langle\psi\left(a_{j}\right)\right\rangle=u^{\tau\left(a_{j}\right)}
$$

We then define $a_{i}(w ; \mathfrak{s})$ in Λ by the equation

$$
\begin{equation*}
a_{i}(w ; \mathfrak{s})=\sum_{j \in J} n_{j}\left(N \mathfrak{a}_{j}-\omega^{i}\left(\psi\left(\mathfrak{a}_{j}\right)\right)(1+w)^{\tau\left(\mathfrak{a}_{j}\right)}\right) \tag{36}
\end{equation*}
$$

Clearly $a_{i}\left(u^{k}-1 ; \mathfrak{s}\right)=h_{l i}(\mathfrak{s})$ for all integers $k \geqslant 0$ with $k \equiv i$ modulo ($p-1$). Write \mathscr{S}_{i} for the subset of \mathscr{S} consisting of all \mathfrak{s} such that $a_{i}(w ; \mathfrak{s})$ is not identically zero. Note that \mathscr{S}_{i} is certainly non-empty. In fact, since $i \neq 0$ modulo ($p-1$), Lemma 28 of Coates-Wiles (1977) shows that we can choose \mathfrak{s} in \mathscr{S} such that $a_{i}\left(u^{k}-1 ; \mathfrak{s}\right)$ is a unit in K_{p}, and thus $a_{i}(w ; \mathfrak{s})$ is itself a unit in Λ. Given \mathfrak{s} in \mathscr{S}_{i}, we define

$$
\begin{equation*}
G_{i}(w)=b_{i}(w ; \mathfrak{s}) / a_{i}(w ; \mathfrak{s}) \tag{37}
\end{equation*}
$$

It is plain from (35) and (36) that $G_{i}\left(u^{k}-1\right)$ is given by equation (38) below for all integers $k \geqslant 0$ with $k \equiv i$ modulo ($p-1$). In particular, as the right-hand side of (38) is independent of the choice of \mathfrak{s} in \mathscr{S}_{i}, and $G_{i}\left(u^{s}-1\right)$ is a continuous function, it follows that $G_{i}(w)$ itself is independent of the choice of s in \mathscr{S}_{i}. Since we can choose \mathfrak{s} in \mathscr{S}_{i} such that $a_{i}(w ; \mathfrak{s})$ is a unit in Λ, we have therefore proven the following theorem.

Theorem 18. Assume that $i \neq 0$ modulo $(p-1)$. Then there exists a power series $G_{i}(w)$ in $\mathscr{I}_{p}[[w]]$ satisfying

$$
\begin{equation*}
G_{i}\left(u^{k}-1\right)=\gamma^{1-k} \mu_{k}\left(1-\frac{\psi(\mathfrak{p})^{k}}{N \mathfrak{p}}\right) L\left(\psi^{k}, k\right) \tag{38}
\end{equation*}
$$

for all integers $k \geqslant 0$ with $k \equiv i$ modulo $(p-1)$.
For a more detailed study of these functions, see Cassou-Nogues (to appear).

5. Proof of Theorem 1

We now relate the power series $G_{i}(w)$, constructed in the previous section, to the Iwasawa module

$$
Y_{\infty}^{(i)}=\lim _{\leftarrow} U_{n}^{(i)} / \bar{C}_{n}^{(i)},
$$

where the projective limit is taken relative to the norm maps. Throughout, we suppose that i is an arbitrary, non-zero, residue class modulo ($p-1$).

As before, let β be the unique $(p-1)$-th root of $1-\pi$ satisfying $\beta \equiv 1 \bmod p$, and let $\theta_{n}=\left(\beta-u_{n}\right)^{e_{i}}$ for all $n \geqslant 0$. Then, by Theorem $4, \theta=\left(\theta_{n}\right)$ is a basis of $X_{\infty}^{(i)}$ over Λ. After making a change of variable similar to that in (34), we conclude from Corollary (17) that there is a unique power series $H_{i}(w)$ in $\mathscr{I}_{p}[[w]]$ satisfying

$$
\begin{equation*}
H_{i}\left(u^{k}-1\right)=\gamma^{1-k}\left(1-\frac{\psi(\mathfrak{p})^{k}}{N \mathfrak{p}}\right) \delta_{k}(\theta) \tag{39}
\end{equation*}
$$

for all integers $k \geqslant 0$ with $k \equiv i$ modulo ($p-1$).

Lemma 19. $H_{i}(w)$ is a unit in $\mathscr{I}_{p}[[w]]$.
Proof. Without loss of generality, we can suppose that i is an integer satisfying $1 \leqslant i<p-1$. Then, by formula (24), $\delta_{i}(\theta)=-(i-1)!\beta^{-i}$. Also, the Euler factor $1-\psi(\mathfrak{p})^{i} / N p$ is obviously a unit in $K_{\mathfrak{p}}$ if $1<i<p-1$. It is also a unit for $i=1$, because p is not anomalous for E, by hypothesis. Hence $H_{i}\left(u^{i}-1\right)$ is a unit in \mathscr{I}_{p}, and thus $H_{i}(w)$ is a unit in $\mathscr{I}[[w]]$, as required.

For each \mathfrak{s} in \mathscr{S}, let $\beta(\mathfrak{s})$ be the element of $X_{\infty}^{(i)}$ given by $\beta(\mathfrak{s})=\left(\Lambda\left(\tau_{n}, \mathfrak{s}\right)^{e_{i}}\right)$. We define $D_{\infty}^{(i)}$ to be the Λ-submodule of $X_{\infty}^{(i)}$, which is generated as a Λ-module by the $\beta(\mathfrak{s})$ for 5 ranging over \mathscr{S}. In fact, it is plain that $D_{\infty}^{(i)}$ is a Λ-submodule of $\bar{C}_{\infty}^{(i)}=\lim _{\leftarrow} \bar{C}_{n}^{(i)}$.

Theorem 20. Assume that $i \neq 0$ modulo ($p-1$). Then

$$
\begin{equation*}
D_{\infty}^{(i)}=\Lambda \mathscr{G}_{i}(T) \theta \tag{40}
\end{equation*}
$$

where $\mathscr{G}_{i}(T)$ is a power series in Λ, which generates the same ideal in $\mathscr{I}_{p}[[T]]$ as the power series $G_{i}(T)$ appearing in Theorem 18.

Proof. Let \mathfrak{s} be an arbitrary element of \mathscr{S}. Since θ is a Λ-basis of $X_{\infty}^{(i)}$, there is a uniquely determined power series $\varphi(T, \mathfrak{s})$ in Λ such that

$$
\beta(\mathfrak{s})=\varphi(T, \mathfrak{s}) \theta
$$

Applying the homomorphism δ_{k} to both sides of this equation, and recalling (18), we conclude that

$$
\delta_{k}(\beta(\mathfrak{s}))=\varphi\left(u^{k}-1, \mathfrak{s}\right) \delta_{k}(\theta)
$$

for all integers $k \geqslant 0$ with $k \equiv i$ modulo ($p-1$). It now follows from (21), (35) and (39) that

$$
b_{i}\left(u^{k}-1 ; 5\right)=\varphi\left(u^{k}-1,5\right) H_{i}\left(u^{k}-1\right)
$$

for all integers $k \geqslant 0$ with $k \equiv i$ modulo ($p-1$). Recalling (37) and Lemma 19, we deduce that

$$
\begin{equation*}
\varphi(T, \mathfrak{s})=G_{i}(T) a_{i}(T ; \mathfrak{s}) H_{i}(T)^{-1} \tag{41}
\end{equation*}
$$

This last equation holds for all \mathfrak{s} in \mathscr{S}. But now choose s^{\prime} in \mathscr{S} such that $a_{i}\left(T ; s^{\prime}\right)$ is a unit in Λ. We deduce from (41) that $\varphi\left(T, \mathfrak{s}^{\prime}\right)$ divides $\varphi(T, \mathfrak{s})$ in Λ, for each \mathfrak{s} in \mathscr{S}. It is therefore plain that $D_{\infty}^{(i)}=\Lambda \varphi\left(T, s^{\prime}\right) \theta$. Moreover, (41) also implies that $\varphi\left(T, s^{\prime}\right)$ generates the same ideal in $\mathscr{I}_{\mathrm{p}}[[T]]$ as $G_{i}(T)$. Thus we can take $\mathscr{G}_{i}(T)$ to be $\varphi\left(T, s^{\prime}\right)$, and the proof of the theorem is complete.

Corollary 21. Put $Z_{\infty}^{(i)}=X_{\infty}^{(i)} / D_{\infty}^{(i)}$. Then $Z_{\infty}^{(i)}$ is isomorphic as a Λ-module to $\Lambda /\left(\mathscr{G}_{i}(T)\right)$.

We can now complete the proof of Theorem 1. Indeed, in view of Corollary 21, Theorem 1 is a consequence of the following result.

THEOREM 22. Assume that $i \neq 0$ modulo $(p-1)$. Let $Z_{\infty}^{(i)}=X_{\infty}^{(i)} / D_{\infty}^{(i)}$. For each $n \geqslant 0, Z_{\infty}^{(i)} / \omega_{n} Z_{\infty}^{(i)}$ is isomorphic as a Λ-module to $U_{n}^{(i)} / \bar{C}_{n}^{(i)}$. In particular, $Y_{\infty}^{(i)}=\underset{\leftarrow}{\lim } U_{n}^{(i)} / \bar{C}_{n}^{(i)}$ is isomorphic as a Λ-module to $Z_{\infty}^{(i)}$.

Proof. For each $n \geqslant 0$, let $p_{n}: X_{\infty}^{(i)} \rightarrow U_{n}^{(i)}$ be the canonical projection. By Lemma $2, p_{n}$ is surjective, and its kernel is precisely $\omega_{n} X_{\infty}^{(i)}$. Moreover, it is clear from the definitions of C_{n} and $D_{\infty}^{(i)}$ that

$$
\begin{equation*}
p_{n}\left(D_{\infty}^{(i)}\right)=\bar{C}_{n}^{(i)} \tag{42}
\end{equation*}
$$

Let j_{n} be the composition of p_{n} with the canonical surjection of $U_{n}^{(i)}$ onto $U_{n}^{(i)} / \bar{C}_{n}^{(i)}$. Thus j_{n} is surjective. Also, in view of (42), it is plain that the kernel of j_{n} is precisely
$D_{\infty}^{(i)} \omega_{n} X_{\infty}^{(i)}$. Also j_{n} is a Λ-homomorphism. But

$$
Z_{\infty}^{(i)} / \omega_{n} Z_{\infty}^{(i)}=X_{\infty}^{(i)} /\left(D_{\infty}^{(i)} \omega_{n} X_{\infty}^{(i)}\right)
$$

The first assertion of Theorem 22 is therefore clear, and the second assertion follows on passing to the projective limit. This completes the proof of Theorem 22.

References

P. Cassou-Nogues (to appear), " p-adic L-functions for elliptic curves with complex multiplication I."
J. Coates (1977), " p-adic L-functions and Iwasawa's theory", in Algebraic Number Fields, edited by A. Frohlich (Academic Press, New York).
J. Coates and A. Wiles (1977), "On the conjecture of Birch and Swinnerton-Dyer", Invent. Math. 39, 223-251.
R. Coleman (to appear), "Some modules attached to Lubin-Tate groups".
K. Iwasawa (1964), "On some modules in the theory of cyclotomic fields", J. Math. Soc. Japan 16, 42-82.
K. Iwasawa (1969), "On p-adic L-functions", Ann. Math. 89, 198-205.
N. Katz (1977), "The Eisenstein measure and p-adic interpolation", Amer. J. Math. 99, 238-311.
N. Katz (1977), "Formal groups and p-adic interpolation", Asterisque 41-42, 55-65.
S. Lang, Introduction to Cyclotomic Fields (to be published by Springer Verlag).
H. Leopoldt (1975), "Eine p-adische Theorie der Zetawerte II", J. reine angew. Math. 274-275, 224-239.
S. Lichtenbaum (to appear), "On p-adic L-functions associated to elliptic curves".
J. Lubin (1964), "One parameter formal Lie groups over p-adic integer rings", Ann. Math. 80, 464-484.
J. Manin and M. Vishik (1974), " p-adic Hecke series for imaginary quadratic fields", Math. Sbornik 95, 357-383.
G. Robert (1973), "Unités elliptiques", Bull. Soc. Math. France Mémoire 36.
G. Shimura (1971), Introduction to the Arithmetic Theory of Automorphic Functions (Pub. Math.

Soc. Japan) 11, 1971.
A. Wiles (1978), "Higher explicit reciprocity laws", Ann. Math., 107, 235-254.

Department of Mathematics
Institute of Advanced Studies
Australian National University
Canberra, Australia

Department of Mathematics
Harvard University
Cambridge, Mass. 02138, USA

[^0]: (C) Copyright Australian Mathematical Society 1978

 Copyright. Apart from any fair dealing for scholarly purposes as permitted under the Copyright Act, no part of this JOURNAI may be reproduced by any process without written permission from the Treasurer of the Australian Mathematical Society.

[^1]: t R. Coleman has pointed out to us a simple local proof of Lemma 12.

