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Abstract

Execution of functional programs on distributed-memory multiprocessors gives rise to the

problem of evaluating expressions that are shared between several Processing Elements (PEs).

One of the main difficulties of solving this problem is that, for a given shared expression, it

is not known in advance whether realizing the sharing is more cost effective than duplicating

its evaluation. Realizing the sharing requires coordination between the sharing PEs to ensure

that the shared expression is evaluated only once. This coordination involves relatively

high communication costs, and is therefore only worthwhile when the shared expressions

require much computation time to evaluate. In contrast, when the shared expression is not

computation intensive, it is more cost effective to duplicate the evaluation, and thus avoid the

communication overhead costs. This dilemma of deciding whether to duplicate the work or

to realize the sharing stems from the unknown computation time that is required to evaluate

a shared expression. This computation time is difficult to estimate due to unknown run-time

evolution of loops and recursion that may be part of the expression. This paper presents an

on-line (run-time) algorithm that decides which of the expressions that are shared between

several PEs should be evaluated only once, and which expressions should be evaluated locally

by each sharing PE. By applying competitive considerations, the algorithm manages to exploit

sharing of computation-intensive expressions, while it duplicates the evaluation of expressions

that require little time to compute. The algorithm accomplishes this goal even though it has

no a priori knowledge of the amount of computation that is required to evaluate the shared

expression. We show that this algorithm is competitive with a hypothetical optimal off-line

algorithm, which does have such knowledge, and we prove that the algorithm is deadlock

free. Furthermore, this algorithm does not require any programmer intervention, it has low

overhead, and it is designed to run on a wide variety of distributed systems.

Capsule Review

In a sequential lazy functional programming language, call-by-need combines the advantages

of call-by-value and call-by-name (ignoring time overheads and space considerations). An

argument to a function is evaluated only if needed and never more than once, no matter how

often its value is used. When the argument is first evaluated, the unevaluated expression is

overwritten with the computed value, thereby sharing the result and avoiding recomputation.

However, in a distributed implementation of a functional programming language, this sharing
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of a value may introduce significant synchronization and communication costs. In many

cases, for example when the argument is a simple numerical expression, the costs of sharing

may be far greater than the cost of evaluating the argument.

This paper proposes a simple optimization that reduces the above problem. Each shared

value has an executive process. When a shared value with an executive process on another

processor is required, a little bit of time is invested in trying to re-evaluate the expression

locally before a request for its value is sent to the executive process. The time spent trying

to re-evaluate the expression locally is at most a lower bound on the time required to obtain

the value from another processor. This ensures that there is at most a constant factor cost

for this method. On the other hand, if the value can be quickly computed locally, then a

significant amount of time may be saved.

The paper contains some analytical and experimental results, indicating that the proposed

method is likely to be of value in practice.

1 Introduction

One of the advantages of functional programs is their inherent implicit parallelism,

which facilitates execution on parallel systems. During the execution of such pro-

grams many tasks may be created, some of which may be sent for parallel execution

to other Processing Elements (PE). This paper addresses a problem that occurs after

tasks are sent for parallel execution, namely that of managing the evaluation of

expressions that are shared between several PEs.

In shared-memory parallel systems, in which all the PEs share the same address

space, it is not difficult to avoid duplication of work on shared expressions. In such

systems, as soon as an expression is evaluated by one PE, the result is immediately

visible to the other PEs. Exploiting the sharing of expressions is thus a desirable

and cost-effective feature in shared-memory systems. However, in loosely-coupled

distributed-memory systems, exploiting such sharing becomes a non-trivial problem.

Ensuring that when an expression is evaluated by one PE, it is not evaluated

again by other PEs, requires cooperation between the PEs sharing the expression.

This cooperation incurs communication costs that are relatively high in distributed

systems. Therefore, in such systems there are cases in which it is more cost effective

to duplicate the work by evaluating the shared expression locally on each of the

PEs that share it, rather than incurring the cost of negotiating with the other PEs

to exploit sharing.

In general, exploiting sharing is effective only when the amount of computation

involved in evaluating the shared expression is larger than the cost of coordinating

between the PEs. The problem is that, while the communication costs are generally

known, there is usually no a priori knowledge of the costs of evaluating an expres-

sion. This paper addresses the question of which shared expression should actually

be shared, without knowing the amount of computation involved in the evaluation

of the shared expression.

In this paper we concentrate on graph-reduction-based models that are imple-

mented on loosely-coupled distributed systems. An algorithm for managing the

sharing of expressions in such a model should address the following issues:
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• How to identify a shared expression and how to determine who is sharing it.

• How to decide whether to realize the sharing (effective only when the evalu-

ation of the expression requires much computation time, because of the high

communication costs), or whether to duplicate the evaluation of the shared

expression (effective only when the expression is computationally small), with-

out having information about the amount of work required to evaluate the

shared expression.

• How to realize the sharing efficiently, in terms of minimizing the number of

messages passed in the system, and their length.

• How to guarantee a low overhead of the algorithm.

Early implementations of parallel functional models were on shared-memory

systems (Darlington, 1981). Such systems enable the synchronizations between the

PEs to be mediated via the shared memory. Later implementations were and are

based on loosely-coupled distributed-memory systems (Flanagan and Nikhil, 1996;

Goldberg, 1988; Kelly, 1989; Kesseler, 1996; Plasmeijer and van Eekelen, 1993;

Raber et al., 1987; Trinder et al., 1996), which facilitate the scalability of the system,

i.e. the ability to increase the number of PEs without degrading the performance.

However, the cost of cooperation between the PEs in such systems may be rather

high due to the potential high communication overhead.

Existing distributed-graph-reduction systems solve the sharing problem by avoid-

ing the sending of shared subgraphs from one PE to another. Instead, remote

pointers that reference the shared subgraphs in the source PE’s address space are

sent. (Some systems, for example the GRIP machine (Peyton Jones et al. 1990), do

send shared subgraphs if they are in Weak Head Normal Form.) This scheme incurs

the communication overhead costs for each access of a remote pointer. In other

words, this scheme forces the system to realize the sharing regardless of the amount

of computation involved in evaluating the expression. No attempt has been made

to optimize the sharing procedure in a way that avoids the heavy communication

costs for shared expressions that require little time to compute.

We solve the dilemma of whether to duplicate the work or to realize sharing by

using competitive considerations (Sleator and Tarjan, 1985) that avoid the commu-

nication overhead when the shared expressions are computationally small. Let E be

some shared expression whose value is needed, and let C be the estimated cost of

realizing the sharing. The algorithm first applies (at most) C local evaluation steps

to E. Then, if E is not evaluated within these C steps, the sharing is realized. This

strategy is highly effective since, in the worst case, it incurs only twice the optimal

cost. (This case occurs when the evaluation of E requires C+ 1 steps.) Note that the

optimal cost can only be achieved if the cost of evaluating expression E were known

a priori, which is not the case here because E might include loops and recursion. We

call this strategy the Competitive Sharing Management (CSM) algorithm. We are

able to show the effectiveness of this algorithm in comparison to the hypothetical

optimal algorithm, and its deadlock-free nature.

The CSM algorithm assumes that the PEs support a bounded form of speculative

computation (Mattson, 1993; Partridge 1991). This support is required in case the
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initial C local evaluation steps do not fully evaluate the expression, and the expres-

sion’s graph should revert to its original form. The detailed description of the CSM

algorithm (Section 4) refers to this case as the ‘draw-back’ mode of the algorithm,

and provides a brief explanation of how to perform this operation efficiently.

Our model of computation captures the main issue in deciding when to realize

sharing, i.e. the communication overhead. But it makes some simplifying assump-

tions that avoid some of the complexities of real-life situations. For example, we

assume that the overhead costs of the communication are known, whereas in real

systems it is sometimes difficult to predict the total communication costs in advance,

and we ignore various costs that arise from supporting speculative computation.

Nevertheless, the simplicity of the model enables us to provide formal proofs about

the presented algorithm, while taking all the details into account would make the

analysis intractable.

This paper is organized as follows. A brief description of distributed graph re-

duction is presented in section 2. The computational model is defined in section 3.

section 4 introduces the CSM algorithm. Section 5 gives three schemes for appointing

executive processes, which are needed for efficient realization of sharing. Section 6

discusses a modification of the CSM algorithm. Section 7 proves that the CSM

algorithm is deadlock free. Section 8 analyses the algorithm’s performance. Sec-

tion 9 presents experimental performance results of the CSM algorithm. Section 10

addresses the implementation of the CSM algorithm in optimized graph-reduction-

based models. Finally, section 11 concludes the paper.

2 Graph reduction

In the graph reduction model, reduction rules are repeatedly applied to the graph

representing the program, until the graph is reduced to Weak Head Normal Form

(WHNF), at which point it represents the result of the evaluation. The graph

contains four types of nodes: Constants, Functions, Formal Variables and Apply

nodes.

Let N denote the root of a subgraph (an expression). If N is a constant or a

function, then the graph is already in WHNF. If N is an Apply node, that is,

N is in the form Apply(F, E1, . . . , Ek) then the function F is reduced next. Let F ′

denote the reduced function F , then after the reduction of F , node N is in the

form Apply(F ′, E1, . . . , Ek). If F ′ is a primitive function then the strict arguments

of F ′ are reduced, followed by applying F ′, and finally updating node N with the

result. If function F ′ is not a primitive function (it is a lambda expression), then the

graph-reduction algorithm makes a copy of the body of the function F ′, substituting

pointers to the formal arguments in the copy with pointers to the actual arguments

E1 . . . Ek . The root of the copy of the body of F ′ is reduced next, the result of

which updates node N. Note that the lazy semantics of the model often increases

the number of shared expressions. This brief description of graph reduction is given

here mainly for terminology purposes. A detailed description of (iterative) graph

reduction and its implementation can be found in Field and Harrison (1988) and

Peyton Jones (1987).
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2.1 Distributed graph reduction

One of the advantages of graph reduction is that it is inherently a parallel activity,

since very often several reduction rules can be applied to the graph at the same time.

Since the meaning of a functional expression does not depend on the environment,

the evaluation may be performed in parallel and thus accelerate the computation.

Graph-reduction-based models are especially suitable for execution on distributed-

memory systems, where several processes simultaneously evaluate different portions

of the graph. Each such evaluator process keeps the set of all reducible nodes in a

local task pool.

2.2 Sharing in graph reduction based models

Sharing occurs in the application of a function with a formal parameter that

appears more than once in the body of the function, to some arguments. The graph

reduction model prevents the duplication of work on shared subexpressions by using

pointers. Since all the expressions that share the subexpression point to the same

subexpression, once this subexpression is fully evaluated all the sharing expressions

are updated with the result. To identify a shared expression, a reference count

(reference bit) is maintained at each node. The reference count holds the number

of pointers pointing at that node. Shared expressions have a reference count that is

larger than one.

Such sharing management is difficult on distributed-memory systems. Copies of

various shared expressions may reach different PEs, and preventing duplication of

work involves relatively expensive communication between the PEs. If the shared

expressions require little time to compute, then it may be more worthwhile to dupli-

cate the computation than to incur the communication cost. The CSM algorithms

presented in this paper solves this problem.

3 The computational model

We assume a loosely-coupled distributed-memory system with a bounded number

of PEs, which communicate via messages. Each PE may evaluate several functional

expressions, and may migrate them from one PE to another according to various load

and demand considerations. More formally, each PE may run several graph-reducers,

which we shall call evaluators . Each evaluator is spawned to reduce a functional

expression to WHNF. We shall refer to an evaluator as an independent (light weight)

processes having its own task pool and message queue. Note that this is a logical

view of the system made to simplify the description and the analysis of the system.

The actual implementation may take into account other design considerations, and

may for example choose to share resources such as queues between evaluators.

During reduction, an evaluator p may decide to spawn another evaluator p′ for

reducing some subgraph E ′ in parallel. The spawn includes creating a child process

p′, and copying subgraph E′ into the address space of the child evaluator (see

optimizations in section 10). Evaluator p′ is responsible for reducing E ′. When p′
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Fig. 1. Example sharing program.

finishes the evaluation, it returns the result of the reduction to p and terminates. The

parent p overwrites the root of the spawned subgraph E ′ with the result that it has

received. This form of spawning can be described by a tree of processes, where each

node represents an evaluator. The root of this tree is the evaluator that is spawned

to reduce the top-level expression (the program).

Realizing the sharing is achieved in our model by appointing one of the sharing

processes to evaluate the shared expression and then having the other sharing

processes turn to this process when they need the result of the evaluation. More

specifically, for each shared expression E, the algorithm nominates an executive

process (evaluator) PE such that E belongs to the graph of PE , and every evaluator

that would need to evaluate E would be a descendant of PE .

Each evaluator process has a single message queue from which it receives messages.

When an evaluator needs the result of a spawned expression, it waits (sleeps) on its

message queue until a message arrives.

The model assumes that the evaluator processes can exchange messages, where

the cost of sending and receiving each message is D. We assume a fixed cost D in

order to simply the analysis. See section 10 for further discussion about possible

optimizations.

Two messages are required for the realization of a shared expression E: a request

for the value of E, which is sent to the executive process of E, and the reply,

which contains the result of the evaluation of E. Therefore, the overall cost of

communication incurred by realizing sharing is C = 4D (see section 8). Note that it

is assumed that both messages are of equal cost.

The computational model that is assumed here normally has more evaluator

processes than PEs. This way, when an evaluator is suspended (e.g. waiting for a

message), the PE holding this evaluator can run other processes. This paper does

not address questions of when a process should be spawned and where to place the

process, but rather presents a solution to a problem that occurs after tasks have

been sent.

3.1 An example

Consider the program in figure 1. Let p be a process evaluating the expression

E = (F 7 8 (W 9)). Note that p does not know in advance whether it is going

to evaluate the expression (W 9). The first step in the evaluation is to apply β

reduction, which gives: (+ (H 7 (W 9)) (G 8 (W 9))). Note first that the expressions
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E1 = (H 7 (W 9)) and E2 = (G 8 (W 9)) may be evaluated in parallel. Also note

that the expression E3 = (W 9) has become shared.

Assume that process p decides to evaluate E1 itself and send E2 for parallel

evaluation. A process p′ is created and given that task of evaluating expression E2.

When p finishes its evaluation of E1, it needs the result of E2 in order to complete

the whole evaluation. If p′ finished its evaluation, the result already exists on the

message queue of p; otherwise, p would need to wait till p′ finishes and in the

meantime the PE running p can execute other processes.

Now consider the shared expression E3. Before the sending of E2, both pointers

to E3 pointed at the same location in the graph. If E3 were evaluated, both E1

and E2 would have the result and duplicated evaluation of E3 would have been

prevented. However, once expression E3 was sent unevaluated, taking advantage

of the sharing requires expensive communication between the processes. Hence,

exploiting the sharing of E3 is worthwhile only if it turns out that E3 = (W 9) is a

‘heavy’ expression. The problem is that the weight of the expression is not known

in advance.

4 The CSM algorithm

Consider a subgraph E that is shared between two different PEs. Let Rp(E) be the

reduction cost of subgraph E by an evaluator process p, and let C be the cost of

realizing the sharing of E. If Rp(E) < C , then it is more cost effective to duplicate

the reduction of the shared subgraph on the PEs that share it, than to incur the cost

of communicating the result of the reduction to the sharing PEs. However, while C

is usually known, or can be estimated fairly accurately, the value of Rp(E) cannot, in

general, be determined because it relies on the run-time behaviour of the program

for which there is no a priori information. Therefore, it is not generally possible

to decide in advance whether it is more cost effective to duplicate the work or to

negotiate for the shared value.

The CSM algorithm suggests a solution to this dilemma of when to duplicate work,

and when to request the value of a shared subgraph. The algorithm performs up to

C local reduction steps on each shared expression; then, if the shared expression is

in WHNF, no communication is required. If the shared expression is not reduced

within C reduction steps, then the value of the shared expression is requested from

the executive process. The outcome of such a strategy is that computationally small

expressions are reduced locally without incurring communication overheads, while

the reduction of computation-intensive expressions is not duplicated.

We now describe the details of the CSM algorithm by using the state transition

diagram depicted in figure 2. An evaluator process in the system may be in either of

four states (modes): Normal, Sharing, Request or Draw-back. The following describes

the actions taken in each state of the algorithm, and the transitions between the

modes:

• Normal: this is the initial state of the algorithm. In this state the evaluator pro-

cess performs ordinary graph reduction, during which tasks are accumulated

in the task pool. Some of these tasks may be spawned for parallel execution.
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Fig. 2. A state-transition diagram describing the CSM algorithm.

• Sharing: this state is entered when an evaluator process begins to evaluate

a shared expression E, whose executive process resides on another PE. In

this state, (at most) C reduction steps are applied to E, where C is the cost

of realizing the sharing of E. If E is fully reduced within C steps, then

the evaluator returns to operate in Normal Mode. Note that in this case

the evaluator process performs the optimal scheme, which is duplicating the

evaluation. Otherwise, if E is still not fully reduced after C steps, then the

evaluator process enters the Request Mode. It is important to emphasize that

in this state at most C reduction steps are applied to the shared subgraph, that

is, if during these C reduction steps another shared node needs to be reduced,

then the Sharing state is not entered again.

• Request: in this state the evaluator process requests the value of E from the

executive process of E. Note that while the evaluator is waiting for the result to

arrive, the PE on which the evaluator process resides can run other evaluators.

When the executive process of E returns the result of the shared expression,

the evaluator process enters the Draw-back Mode.

• Draw-back: in this mode node E is overwritten with the result received from

the executive evaluator, the task pool and the stack are restored to their

previous state (before the Sharing Mode). The Depth-First Search (DFS)

nature of graph reduction can be used to perform this action in constant

(O(1)) time.

While some evaluator process p waits on its message queue, a request to evaluate

some expression E might arrive, where p is executive process of E (that is, PE = p).

In such a case the evaluator first checks in its local-graph space if E is already

reduced. If so, then p can return the result immediately. Otherwise, if E is currently

under evaluation, then the request is registered and the result is sent once E is fully

reduced. If E is not evaluated at all, then p reduces E and returns the result when

E is fully reduced. To implement recursion in this case the algorithm uses a stack

of states. The current state S is pushed into the state stack, the algorithm enters
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Normal Mode, evaluates E, returns the result to the requesting process, and returns

to state S , which is at the top of stack.

Now let us return to the example presented in figure 1. Recall that p′ is an

evaluator process evaluating an expression E2, and that E3 = (W 9) is a shared

expression (subgraph) of E2. For the purpose of this example assume that p′ does

indeed need the value of E3, that E3 is the only shared expression, and that the

executive process of E3 is located on another PE. When p′ begins to evaluate E3 it

moves from Normal Mode to Sharing Mode, initializes the counter that counts the

number of steps to zero, and stores the position of the evaluation stack and the task

pool. There are two possibilities; if p′ finished evaluating E3 in less than C steps, it

returns to Normal Mode. In such a case, p′ performs the optimal action (duplicating

work). If, on the other hand, the counter has reached C+ 1 steps and the evaluation

has not ended, p′ sends the executive process of E3 a request to evaluate it. Process

p′ now begins to wait on its message queue for the result, during which p′ may

be suspended and other processes can run in its place. Once the result arrives, p′

updates the result in the root E′, restores the head of the evaluation stack and the

task pool, and returns to Normal Mode. Note that in the worst case p′ finishes the

reduction in C + 1 steps, in which case the cost incurred by p′ is only a factor of

two of the optimal hypothetical cost.

5 Appointing executing processes

To allow efficient realization of sharing between processes, the algorithm appoints

each shared expression E an executive process PE such that:

1. E belongs to the subgraph of PE .

2. Each process p wishing to evaluate E is a descendant of PE .

When a process needs the result of a shared expression E, it turns to the executive

process of E. This scheme avoids duplication of work since all the requests for the

value of E pass through the executive process PE . The scheme has several important

advantages:

• Natural use of identifiers: since E belongs to the subgraph of PE , PE can

give E an identifier. This identifier is inherited to all the descendants of PE .

Any process p that needs E is a descendant of PE , hence p can send a

request message for evaluating E that includes only the identifier of E. In fact,

the use of identifiers is mandatory since E could have gone through several

transformations both in p and in PE .

• Immediate access to PE: since p is a descendant of PE , p does not need to

search the system for the executive process of E.

These are important advantages, as they considerably reduce the size and number of

messages sent in the system. An additional advantage is a convenient synchronization

between the life spans of the evaluator processes. Once a process ends its work, it

is known that no more requests for nodes will arrive at that process and it can

therefore safely terminate.
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The remainder of this section suggests three schemes for appointing an executive

process. The correctness of these schemes (that is, the fact that duplication of work

is avoided) is proven in Ronen (1993). In general, there exists a trade-off between the

simplicity and efficiency of a scheme, and the scheme’s ability to select an executive

process that is deeper (closer to the leaves) in the tree of processes. The higher the

executive process is, the more danger there is of it becoming a serializing bottle neck;

the deeper the executive process is, the more room there is for exploiting parallelism.

5.1 Creator-process scheme

This scheme is the simplest of the three schemes proposed. In this scheme a process

that creates a new node (expression) marks itself as the executive process of that

node. A process p that finishes its task, traverses the result that it is about to return

and marks the parent process as the executive process of all the nodes that are

marked with p as their executive process. This scheme does not add any significant

overhead, as the result needs to be traversed anyway in order to return it. A process

receiving a result of a shared expression from the executive process, does not change

the marks. The important advantage of this scheme is in its low overhead. This

scheme is especially suitable for systems that perform Unix-like fork spawning. That

is, systems in which the child process receives parts of the graph when it needs them.

5.2 Sharing-process scheme

In this scheme a node is marked (the executive process of the node is determined)

when it becomes shared. This scheme is more complex than the previous creator-

process scheme, but it sometimes chooses an executive process that is deeper in the

tree of processes.

Consider a process performing a substitution operation (β reduction) in the form

Apply((λx.M), E1, . . . Ek, . . . En)
β
→ M ′, where argument Ek becomes shared. In this

scheme, the process traverses Ek ’s subgraph and marks itself as the executive process

of all non-marked nodes. As in the previous scheme, a process p that finishes its

task, marks its parent process as the executive process of all the nodes marked with

p as their executive process, and a process receiving a result does not change the

markings.

Marking a shared argument is performed by a Depth-First Search (DFS) of the

argument’s graph. An interesting question that arises is whether there is a need to

mark the whole subgraph. Consider the two expressions in figure 3. Informally, the

only type of operation that can be performed on e1 is the evaluation of the whole

expression. Therefore, it is sufficient to avoid the duplication of work on e1. In

other words, only e1 should be marked. However, evaluating e2 does not prevent

the possibility of the evaluation of one of its subexpressions. Preventing duplication

in this case requires the marking of e3 and e4 as well.

Definition 5.1

A function F is said to be an NF function if F always returns an expression in
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Fig. 3. Examples of an NF expression (e1) and a non NF expression (e2).

Fig. 4. An outline of the marking algorithm of the sharing-process scheme.

Normal Form (NF). An expression E is said to be an NF expression if E applies an

NF function (on some arguments).

If E is an NF expression there is no need to mark its subexpressions. Determining

whether some expression is an NF expression should be performed at compile time.

Much of this analysis can be handled via type checking. In particular, a function

that returns a simple type is an NF function. The details of such an optimizing

analysis is a topic that is left for future research.

An outline of the marking function of a shared argument in this scheme is given

in figure 4.

5.3 Sending-process scheme

Most existing systems realize sharing by sending remote pointers to the shared

expressions as part of a spawned task. The third scheme presented here adopts a

similar approach.

When a process p spawns a task (expression) T it traverses T ’s graph: if it

contains an unmarked shared expression E that is shared outside of T , then the

process marks itself as the executive process of E. As in the sharing-process scheme,

the marking procedure can stop once an NF expression is reached. As in the previous

schemes, a process p that is about to return a result marks its parent process as

the executive process of the nodes that have p marked as the executive process, and

upon receiving a result the process does not change the markings. This scheme is

most suitable for systems that spawn tasks by packing the whole task and sending it.
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Fig. 5. A state-transition diagram of the CSM algorithm that handles do-it-yourself

messages.

6 Do-it-yourself messages

The CSM algorithm, as described so far, avoids the duplication of work on

computation-intensive shared expressions. Nevertheless, it may cause contention

to occur in the executive processes. Such a situation may arise when one evaluator

is the executive process of many shared expressions, and many evaluators request

values of different expressions at the same time. If these shared expressions are not

already reduced, then their executive process becomes a serializing-bottleneck, which

may inhibit parallelism.

To alleviate such potential contention, the CSM algorithm may be modified to

allow some of the requesting evaluators to reduce the shared expressions on their

own. That is, when executive process PE receives a request from evaluator p for the

value of E, it checks the status of E. If E is evaluated, then the result is returned

immediately. If E is under evaluation, then the result is returned when the evaluation

ends. Otherwise, PE replies with a do-it-yourself message and marks E as blocked

(‘under evaluation’). Then, p evaluates E and returns the result of this evaluation

to PE . A state-transition diagram describing the modified algorithm is depicted in

figure 5.

This modification may involve a rather high overhead to ensure that work is

not inadvertently duplicated. The following scenario explains how such duplication

can occur: an evaluator process p encounters a shared expression E, performs C

reduction steps on E, and then sends a request for the value of E to the executive

process of E. According to the modification above, the executive process sends back
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a do-it-yourself message to ask p to reduce E. Two reasonable actions may now be

taken by p:

1. Continue the reduction from the place that p had stopped, that is, after C

reduction steps.

2. Start the reduction of E from the root node E.

Both possibilities may lead to duplication of work if p had encountered shared

nodes during the first C reduction steps of E. Let s be a shared node that was

visited by p during the first C reduction steps. The visit to s did not activate the

sharing procedure again (as noted in the description of the Sharing Mode above). If

p chooses the first option and starts from where it had finished, then the information

that s was a shared node would now be lost, causing p to reduce s by itself and thus

duplicating the work on it. If p chooses the second option and starts the reduction

from node E, then the work previously performed on reducing s is duplicated once

node s is encountered again.

The duplication problem caused by this modification can be overcome, but the

solutions seem to hinder the simplicity of the do-it-yourself mechanism and may

lead to high overheads.

7 The CSM algorithm avoids deadlock

This section proves that the CSM algorithm is deadlock free. Assume by contradic-

tion that the system does reach a deadlock state. Note that there are two cases in

which a process in the system waits for another process:

1. When a process waits for a result of expression E that it spawned.

2. When a process waits for the result of a shared expression E, which is evaluated

by the expression’s executive process PE .

Definition 7.1

Let Ep → E ′p′ denote a situation where a process p, which is evaluating an expression

E, is waiting for the evaluation of E′ by p′.

Since Ep → E ′p′ implies that E is computationally dependent on E′, the following

claim is an immediate outcome:

Claim 7.1

If there exists a cycle of the form E1p1 → E2p2 → · · · → Enpn → E1q , then the

evaluation of E1 does not terminate.

Such a situation is not difficult to detect, and we therefore assume that such a cycle

does not exist.

Definition 7.2

A dependency Ep → E ′p′ is said to be a last dependency if there does not exist a

dependency of the form E ′p′ → E ′′p′′ in the system.

Let d = Ep → E ′p′ be a last dependency (because there are no cycles, there exists

at least one such last dependency).
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Claim 7.2

E ′ is not a task that was spawned by p.

Proof

If p did spawn E ′ then p′ would have been created to evaluate E ′. Since the

evaluation E ′ does not depend on anything, it continues uninterrupted, which

stands in contradiction to the deadlock state that the system is assumed to be in.

Hence, E ′ is a shared expression that is evaluated by its executive process p′, and

p is waiting for the result of this evaluation. Process p′ is a ancestor of p in the

tree of processes, and therefore cannot terminate before p terminates. Specifically,

p′ cannot terminate before the request to evaluate E′ arrives at its message queue.

Since each process has a single message queue on which it receives messages, and

since a process can be deadlocked only when it waits on its queue, p′ must have

received the request and began to evaluate E ′. Since d is a last dependency, the

evaluation of E ′ continues uninterrupted, in contradiction to the system being in a

deadlock state.

8 Performance analysis of the CSM algorithm

This section analyses the performance of the CSM algorithm and compares it with

the performance of a hypothetical optimal off-line algorithm. We note that an off-

line algorithm has complete knowledge of the shape of the graph and its future

evolution, while in practice this information is not available, and on-line algorithms

(such as the CSM algorithm) have to be developed to operate without knowledge of

the future. The ratio between these two algorithms varies according to the ability of

the system to take advantage of the time in which processes wait for the evaluation

of a shared expression. We shall analyse the two extreme cases: the case in which the

system is unable to utilize this time at all (i.e. the PE remains idle while the process

waits for the result) and the case in which the system fully utilizes this time (i.e. the

PE always has a runnable process that can execute while the process is waiting for

the result).

Let S be a set of evaluator processes that are sharing some expression E. Let

R(E) be the number of reduction steps required to reduce E to WHNF (without loss

of generality, assume that this reduction cost is equal in all the evaluator processes

of the system). Let #S be the number of evaluators in the set S , and let p be the

number of PEs in the system. Recall that D is the cost of sending one message, and

that C = 4D is the amount of work duplicated at each evaluator that is not the

executive process for each shared expression. Let Topt(E) be the overall time spent

by the optimal algorithm for evaluating expression E, and let Tcsm(E) be the time

spent by the CSM algorithm. All costs are in units of reduction steps.

First consider the case in which the system does not utilize the time the processes

wait for the evaluation of the shared expression. That is, when a process waits for

the evaluation of a shared expression, there is no other process that can take its

place and run on the PE. The worst possible ratio between the performance of the

CSM algorithm and the optimal algorithm occurs when R(E) > C and #S ≤ p.
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In this case, each evaluator in S that is not the executive process duplicates the

evaluation of the shared expression E for C time units, and then requests the value

of E from the executive evaluator. These #S − 1 requests for the value of the shared

expression are handled serially by the executive evaluator, where the parallel time

required by each request-reply operation is 2D. Therefore, in this case the ratio

between the CSM algorithm and the optimal algorithm is given by:

Tcsm(E)

Topt(E)
≤ C + R(E) + (#S − 1)2D

R(E)
≤ p+ 3

2

We note that the CSM algorithm can be enhanced with an optimization that would

overcome the difficulty presented in this case. That is, the algorithm could be changed

so that when a value of a shared expression is required, the process would continue

to duplicate work as long as there is no other runnable process on its PE. However,

in practice, it may not be worthwhile to incur the overhead of this optimization

scheme; for example this optimization keeps the PE artificially busy, which may

prevent more useful processes migrating to it.

Now consider the case where there are enough runnable processes to fully utilize

the system. That is, if a process waits for the result of a shared expression there

is always another evaluator that takes its place and runs on the PE. In such a

case, the system performs useful work while the process waits for the result, and

this waiting time is not ‘wasted’. Hence, the computation time is (approximately)

equal to the total work performed by all the PEs divided by the number of PEs

(p). Note that this approximation does not refer to scheduling anomalies, such as

described in Burton and Rayward-Smith (1994). Let Time(E1, E2, . . . , En) be the

time to compute all expressions E1 . . . En, and let Work(E) denote the total work

performed on expression E. Work(E) is an additive function and therefore:

Time(E1, E2, . . . , En) ≈
Work(E1 . . . En)

p
=

∑
Work(Ei)

p

Recall that requesting the value of a shared expression from the executive process

involves the sending and receiving of two messages, where the cost of each message

is D. The evaluator sending the request ‘wastes’ D computation power while sending

the request message, and similarly the executive process receiving the request. Hence,

2D of work are ‘lost’ during sending of the request message. Similarly for the reply

message, where the executive process and the evaluator ‘waste’ another 2D of work.

Therefore, the overall work for requesting a shared expression is 4D. Note, however,

that the time spent on handling these two messages is only 2D, because the executive

process and the evaluator process wait D time in parallel for the request message,

and another D in parallel for the reply message.

Since at least one process needs to perform the evaluation, the optimal cost is

bounded by R(E) + (#S − 1)min(R(E), C). If R(E) ≤ C , then both the optimal

algorithm and the CSM algorithm have each of the evaluators in S reduce E

independently, and do not incur any communication overheads. Hence, when R(E) ≤
C , Workopt = Workcsm = #SR(E). If R(E) > C , then the CSM algorithm duplicates

the evaluation of E at each evaluator in S that is not the executive process for a

duration of C reduction steps, and only then requests the result of the reduction
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from the executive process. The ratio between the times of the CSM algorithm and

the optimal algorithm in this case is therefore given by:

Timecsm(E)

Timeopt(E)
≈ Workcsm(E)

Workopt(E)
≤ R(E) + (#S − 1)2C

R(E) + (#S − 1)C
< 2.

Hence, the ratio between the overall time of the CSM algorithm and the optimal

algorithm is bounded by:

overall time of CSM

overall time of OPT
≈ Workcsm(E1 . . . En)

Workopt(E1 . . . En)
=

∑
Workcsm(Ei)∑
Workopt(Ei)

< 2.

9 Experimental measurements

This section presents performance results of the CSM algorithm. The execution plat-

form is the MOSIX system (Barak et al., 1993), a distributed operating system with

a built-in dynamic process migration mechanism. The MOSIX system integrates a

cluster of loosely-coupled, independent processors to a virtual, single machine UNIX

environment. The specific configuration used includes eight NS32532 microproces-

sor based computers, each with its own local memory and communication devices.

These computers are arranged in two identical enclosures, each with four processors

that communicate via a shared VME bus. The two enclosures are connected by a

ProNET-80, an 80 Mbits/second token-ring LAN.

Our experiments were performed on an implementation of a λ-calculus evaluator,

which is based on compiled graph reduction techniques (Peyton Jones, 1987), but

without many of the optimizations. The evaluator accepts a functional program

written in the usual λ-calculus notation (enhanced with named functions), and

produces target code in C. The evaluator processes are realized as Unix processes,

that is, spawning a task to reduce some subexpression is implemented by forking a

Unix process. This implementation takes advantage of the automatic load-balancing

of the MOSIX system.

The CG algorithm (Aharoni, Feitelson and Barak, 1992) is used to decide when

to spawn new tasks for parallel execution. This algorithm balances the amount of

local computation with the cost of distributing the tasks. That is, the algorithm

ensures that for every parallel task spawned, an amount of work that equals the

cost of the spawn is performed locally. Three different versions of the CG algorithm

were used, where each version applies a different sharing-management scheme. The

first is a CG algorithm (Dup) that always duplicates work, that is, sharing is

never exploited and thus a shared expression may be evaluated several times. The

second is a CG algorithm (Exp) that always exploits sharing, that is, work is never

duplicated. The third is a CG algorithm (CSM) that uses the CSM algorithm as its

sharing-management scheme.

Table 1 compares the performance results of the above distributed implementa-

tions (Dup, Exp, and CSM), and a serial algorithm (Ser), which performs ordinary

graph reduction on a single PE. The four implementations are applied to the func-

tions Bin(), Massive() and Useless(). The table gives the execution time (in seconds)

of these implementations, as well as their speedup in comparison with CSM (the
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Table 1. Performance of the CSM algorithm

Execution times (sec) Speedup ratios

Function Ser Dup Exp CSM Ser/CSM Dup/CSM Exp/CSM

Bin 1310 246 246 246 5.32 1 1
Massive 1457 452 362 323 4.51 1.4 1.12
Useless 2346 410 510 415 5.65 0.99 1.23

CG algorithm that uses the CSM sharing-management scheme) when running on

eight PEs.

The function Bin() performs a purely heavy parallel computation by expanding a

full balanced binary tree. This function is meant to test the performance of the CSM

algorithm when there is absolutely no sharing. The function Massive() performs a

parallel computation with many computation-intensive shared expressions (Bin(14)).

This function tests the performance of the system when there is much useful sharing.

The function Useless() performs a parallel computation with many computationally

small shared expressions. This function tests the performance of the system when

all the shared expressions are computationally small and their sharing would not be

exploited by an optimal algorithm that knows their size.

The experimental results reinforce the contribution of the CSM algorithm to dis-

tributed graph-reduction system. The algorithm exploits the sharing of computation-

intensive expressions while avoiding the communication overhead of realizing the

sharing of computationally small expressions. This is shown in the experiments,

where the CSM algorithm outperforms both a parallel algorithm that always ex-

ploits sharing and a parallel algorithm that always duplicates the evaluation of

shared expressions. The low overhead (up to 1%) maintain the system’s perfor-

mance in almost every case.

10 Applying further optimizations to the CSM algorithm

The CSM algorithm is designed to work on a wide range of graph-reduction-

based models that support speculation. This section discusses the possibility of

incorporating the CSM algorithm in graph-reduction models that apply various

optimization techniques to the classic graph-reduction algorithm.

The substitution operation (β-reduction) is a frequent and relatively expensive

operation, and is therefore a target for many optimizations. The CSM algorithm does

not use this operation (unless the sharing-process scheme described in section 5.2 is

used) and therefore, these optimizations should not interfere in its work.

Many graph-reduction models optimize the structures that represent the graph.

The CSM algorithm does not traverse the graph (unless the sharing-process or the

sending-process schemes described in sections 5.2 and 5.3 are used) and therefore
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these optimizations should not interfere in its operation. Nevertheless, the algorithm

does depend on the existence of the notion of a node. That is, the ability to identify

and locate an expression (and its transformation) via an id. Without this assumption

it is rather difficult to exploit sharing.

The use of compilation techniques has been a great contribution to the efficient

execution of graph reduction. The CSM algorithm can be incorporated in the

compiled code without too much difficulty.

Finally, we note that the CSM algorithm takes advantage of the DFS nature of

the evaluation in developing efficient and simple mechanisms. The algorithm might

not work as efficiently in models that do not preserve this property.

11 Conclusions and future research

We have described an efficient run-time algorithm that is able to manage the

sharing of subexpressions across a loosely-coupled distributed system. The CSM

algorithm that was presented takes advantage of ideas from the field of competitive

algorithms to optimize the handling of shared expressions. The algorithm exploits

the sharing of computation-intensive expressions, but it duplicates the evaluation

of computationally small expressions. This desired goal is achieved without having

any a priori information about the amount of computation that is required for

evaluating the shared expression. We have shown that the CSM algorithm competes

well with the hypothetical optimal algorithm, which does have all the information

that is needed about the future evolution of the program. The algorithm does not

require any programmer intervention, is easy to implement, and has low overhead.

One problem that has been left open is the question of how to spawn tasks, that

is, how to send subexpressions (subgraph) for evaluation from one PE to another.

One alternative is to copy the whole spawned subgraph into the address space of

the destination PE. Another alternative is to send a remote pointer pointing at the

graph in the address space of the source PE. Although this paper assumes the former

scheme, in fact both schemes can be incorporated into the CSM algorithm, while

still maintaining its deadlock-free nature. Note that it is not clear which scheme

is more cost effective. On the one hand, the former scheme might waste work on

copying parts of the spawned graph that are not needed in its evaluation, while the

latter remote-pointer scheme suffers from a considerable overhead in the amount

of communication between the PEs. The solution probably lies in a scheme that

somehow balances between these two schemes. The solution to this problem might

also be based on competitive principles. In the mean time, until this problem is

properly addressed, one of the referees of this paper suggested a scheme whereby

only physically small graphs would be copied, while a remote pointer would be sent

for large graphs.

We assume in this paper that the result of any spawned expression can be returned

in a single, fixed-sized message. This assumption does not hold in cases where the

result includes a large graph. The handling of large results is in fact a problem in any

distributed-memory systems. Future work will include investigating the possibility
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of alleviating this problem by applying type checking schemes that only allow the

spawning of subgraphs that are guaranteed to return small subgraphs as results.

The CSM algorithm assumes that if the speculative computation of the initial C

evaluation steps on some shared expression do not fully evaluate this expression,

then the expression’s graph should revert to its original form. Section 4 suggests that

the DFS nature of the evaluation can be used to perform this operation efficiently.

Nevertheless, future work should include a closer inversigation of the details of the

speculative-computation support that is required by the algorithm.

Further future work will also include enhancing the CSM algorithm with infor-

mation obtained by various compile-time analysis methods such as sharing analysis,

granularity analysis, and strictness analysis. And in addition, investigating the sta-

tistical distribution of the amount of work involved in the evaluation of functional

expressions. Finding this distribution will enable to change the value of C and get an

improved (statistical) ratio between CSM and the hypothetical optimal algorithm.
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