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Trifactorisable groups

Elizabeth Pennington

The group G is called trifactorisable if G has three

subgroups, A, B , and C such that G = AB = BC = CA .

Obviously the structure of the group G will be restricted by

the structure of these subgroups. In this paper i t will be

shown that a finite group G is tr-separable if and only if i t

satisfies D and has a trifactorisation with two factors

Tr-closed and the third, C say, ir-separable. In this case we

show that the IT- and ir'-lengths of G can be at most one

more than those of C , and so i t is this factor which "controls"

the structure of G . Similar results are proved for

IT-solubility and solubility.

Kegel in his paper [3] introduced the notion of trifactorisable groups

as groups G having subgroups A, B and C such that G = AB = BC = CA .

Obviously the structure of the group G will be restricted by the

structure of these subgroups . In this paper i t will be shown that a finite

group G satisfying D is ir-separable if and only if i t has such a

trifactorisation in which two factors are ir-closed and the third factor,

C say, is TT-separable. In this case we show that the TV- and the

v'-lengths of G can be at most one more than that of C , and so i t is

this factor which controls the structure of G .

This work rests heavily on the following result due to Wielandt [4],

15-7, P. 70.

If A and B are subgroups of the finite group G such that
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AB9 = B9A for all element g of G then

[A, B) < AM n B*3 «i G .

Throughout this paper a l l groups considered will be f ini te , IT will

denote a set of primes and IT' i t s complement. G denotes a Hall

TT-subgroup of G . The group G is ir-closed if the n-elements of G

generate a normal TT-group. The group G satisfies E if G has at

least one Hall TT-subgroup; i t satisfies D i f there exists precisely one

conjugacy class of Hall ir-subgroups and if every TT-subgroup of G is

contained in a Hall ir-subgroup of G . 0 (G) denotes the largest normal.

TT-subgroup of G .

For any group G the upper TT-series is formed as follows:

where

Tf i f £ is even,

a = •
TT1 i f i is odd,

and O~(G/H) denotes the inverse image in G of the group 0^{G/H) with

respect to the projection G -»• G/H . The terms of the upper TT'-series

wil l be denoted by Q. .

G is TT-separable i f the upper TT-series reaches G , in which case

the TT-length of G , denoted IJ.G) » is the number of non-trivial

TT-factors in the series .

G is ir-soluble i f and only i f i t is p-separable for a l l primes p

in IT .

Wieland+'s result is used to prove part (2) of the following lemma.

LEMMA. Let G = AB be a finite group satisfying D^ and suppose

both A and B satisfy E . Then:

( l ) there exist Hall -n-subgroups of A and B such that
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A is a Hall ^-subgroup of G ;

(2) if A and B are it-closed then [A^, B ] c O^G) ;

(3) if there is a subgroup C satisfying E^ suoh that

G = AB = BC = CA then there is a g € G and Hall ^-subgroups

of A, B and C such that A^ = B^ = C9^^ is a Hall

it-subgroup of G and G = AB = BC9 = C9A .

Proof. (1) See [ 2 ] , VI.It.6, p. 676.

(2) A^B^ = B^A^ by ( l ) . Take any g = ba € G ; then

A B9 = A ^ = [A B ) a = (B A f = B^A .

So Wielandt's Theorem applies and [A^, B^] <M G . But \A^, flj is a

ir-group and so is contained in 0 (G) , as the normal closure of a

subnormal ir-group is a iT-group.

(3) For any g = ca € G , AC9 = {AC)a = d2 = G and so

G = AB = BC9 = C?A for a l l g € G . By ( l ) , A^B^ = G^ . But C^ c G^

for some C^ and some g € G , so ^ C ^ c G^ , and comparing orders gives

equality. Similarily, B C9 = G .

Any ir-separable group has a t r i fac tor i sa t ion G = AB = BC = CA with

two factors, A and B say, ir-closed and the third ir-separable. Take

A to be a Hall tr-subgroup of G , B a Hall IT '-subgroup of G and

C = G . The following theorem shows that the converse is also t r u e .

THEOREM. Let G = AB = BC = CA be a finite group satisfying D^

with A and B n-closed subgroups and C ^-separable. Then G is

•^-separable and 0 (C) c 0^(G) and 0^,(C) c 0^ ^,(G) .

Now assume i f possible that there are t r i fac tor ised groups with the

above structure not satisfying the theorem, and l e t G be such a group

having minimal order.
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Suppose 0 (G) # < 1> . Let denote the natural homomorphism

G -*• G/0(G) = G . The group G has the same structure as G but is of

smaller order, hence G is ir-separable. But G = G/0 (G) and 0 (G)

are ir-separable, so G is ir-separable. But

O^C) <=_ O~(C) c 0~(G) = 0v(G)

and

contradict ing the choice of G . So ^ ( G ) = <1> .

Suppose now that G has two d i s t inc t minimal normal subgroups, M

and N . Both factor groups G/M and G/W are tr-separable by the

minimality of G and hence so is t h e i r d i rect product. G embeds into

G/M x G/N , and so G i s TT-separable. Further one has

a n d

n 0^ V,(G/N) = Y < G .

Let I be a Hall ir-subgroup of X , then Y £ 0^ ^i(G/M) and so

I ^ o ' l f / i K ) . Similar ly , y^ £ (T^G/N) and so ^ c ^ . But

[AM, 0 ^ , ( 0 ] C M and [ w , OTr'(G)J c jy ,

so [X, 0 ^ , ( 0 ] c A/ n iV = <1 > and X cent ra l i ses 0^,{G) . But G i s

inseparable and 0 (G) = <1> , so 0 r(G) contains i t s cent ra l i ser (see

[ ? ] , 6 .3 .2 , p . 228), t ha t i s , J^ £ X £ 0^ ,(G) . Since ^ ( G ) does not

contain any non- t r iv i a l if-subgroups, one gets 0^(C) = <1> = Y^ and

0 ,{C) c y = Y , c 0 ,(G) . This contradicts the choice of G . Thus the

group has a unique minimal normal subgroup M .

Suppose that A = <1 > . Then by the lemma, G = B = C and so

C itiC O
G = a = C _c C , and C contains a non-trivial normal subgroup of G ,
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that i s , C 3 M . Thus M is n-separable" and so is G . Also one has

0 (C) c O~(C/M) c 0 (G/M) c C c N' [o
7l — 7T — 7T C / 7 T

Thus

0 v ( C ) < O^G/M) < G and. O ^ C ) c 0^(G) = < 1 > .

As G is TT-separable, one gets G = G G , , and since

E c £ HG[O^,(C)) , one has

and s o 0^,(C) SL^^I^G) . Th i s i s a g a i n a c o n t r a d i c t i o n and s o A # <1> .

S i m i l a r l y , B * < 1 > .

By t h e lemma, [d^ , B.J C 0^(G) = <1> . L e t g = ab i G , t h e n

A , B = < 1 > . But A and B a r e h o t hA , B =

non-tr ivial normal subgroups of G and so contain M , so M is an

abelian IT'-group and centralises every Hall ir-subgroup of G . Further,

G i s 7r-separable. Now 0 (C) cO~(G/M) = PM where P is a Hall

7r-subgroup of 0~(G/«) and P < PM < G , so P = < 1 > = 0 (C) and 0 {G/M)

i s t r i v i a l . But

0 ^ , ( 0 c O^^G/M) = O~,(G/M) c 0^ , (0 .

This final contradiction completes the proof.

This theorem has as an obvious corollary, Satz 1 of [3] .

COROLLARY 1. Let G be a finite group satisfying D . Then G is

•n-olosed if and only if there are subgroups, A, B , and C of G , all

•n-closed and satisfying G = AB = BC = CA .

That, in the si tuation of the theorem, 0^,(C) is not necessarily

contained in 0 ,{G) i s shown in the following example.
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Le t G b e any i r - s e p a r a b l e g roup w i t h 0 ,(G) = < 1> . Take as A a

Hall u-subgroup of G , as B = 0^{G)G^, where G , i s any Hall

TT'-subgroup of G and as C any compliment to 0 (G) in G . Then 4

and B are ir-closed but ^ ' ( C ) i <?.(<?) = < 1 > • This example shows that

the theorem cannot be extended to characterise ir-soluble groups (even i f

C i s u-soluble) without added r e s t r i c t i ons , for take 0 (G) non-solubl-e

in the above. Further, in the example, the ir-length of G i s greater by

one than that of C . That this i s the maximal difference possible is

shown by the following corollary.

COROLLARY 2. Let G be a finite IT-separable group with subgroups

A} B , and C of G such that G = AB = BC = CA with A and B

•n-alosed; then:

(1) if 0 (G) = <1> 3 then P.[O = P.{G) n C for any natural

number i , and \(C) = \(G) . Anyway, Z (G) - \(c) + 1 ;

(2) Q.(C) ~ Q-(G) n C for all natural numbers i and

(3) if A and B are also y'-closed, then I (c) = I (G) and

Proof, ( l ) Suppose 0 (G) = <1> . By the theorem, one has

Obviously, P±{G) n C c P ^ C ) and so P1(C) = P^G) n C .

Assume now tha t P-(G) n C = P.{C) for a l l i £ n . Let a = u i f

i i s even and a = IT' i f i i s odd. Then

t n + l n
which is a a-group. So P~Tc) i s a n o r m a l O-

n
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C/P(C) and so Pn+1(G) n C £ Pn+AC) . But

O'(CPn(6)/PB(G))O ( C P n ( 6 ) / P B

by the theorem and discuss ion above. So P-(G) n C = P.(C) for a l l

n a t u r a l numbers i •.

Suppose now II.C) = k , then C = P 2 k + 1 ( O = P
2 f c + 1 ^ n C " L e t

denote the homomorphism G •*• G/P' . (G) . Then

c =

and this group is ir-closed. So G = AB - BC = Ĉ  i s fr-closed by

Corollary 1, and

( ) 1 + (*-D = * = (̂O •

I f 0 (G) # < 1 ) , c o n s i d e r G / 0 , (G) . T h e n 0 J f i l O _ , _ ( C ) ) = < 1 > ,
Jl fj ^ | | II II it

and so

(2) By the analogous argument for t h e T T ' - s e r i e s , one has

Q.{G) n C = Q.(C) for a l l n a t u r a l numbers i .

Suppose now ^ ( C ) = 6 \ then C = Q . (C) = £„ •_,,(<?) n C . Let

denote the homomorphism G •* G/Q -(G) . Then C = C/Q .(C) i s ir-closed

and hence so i s G . So

I ,(G) 5 1 + J , [Q .(G)) = 1 + 3 = Z_i(C) + 1 .

(3) I f A and B are i r ' -c losed then C = Q2-+AC) and c/^2j-i
<'C

i s a ir-closed group. So as above, G/Q^. AG) i s w ' -c losed and

G/Q ,{G) i s a i r ' -g roup , and Z ,(G) = j = lvi(C) .

S i m i l a r l y , Z^G) = Z^fC) .

For any group G , the F i t t i n g subgroup F(G) i s the l a r g e s t normal
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nilpotent subgroup of G . The Fitting series of G is defined by

FAG) = F{G) , FAG) = F~[G/F. AG)) for i > 1 .

If G is soluble, and n is the least integer such that G = F (G) , then

n is called the Fitting length of G .

COROLLARY 3. (l) Let the finite group G be of the form

G = AB = BC = CA where A and B are n-alosed with nilpotent Hall

v-subgroups and C is it-soluble; then G is v-soluhle.

(2) If A and B are nilpotent and C is soluble, then G is

soluble and F.(C) = F.{G) n C . Further the Fitting length of G is

equal to that of C .

Proof. ( l ) Let p be any prime in TT . Then A and B are both

p-closed and C i s p-separable . Hence, by the theorem, G i s

p-separable . As t h i s i s t rue for a l l primes p € ?r the group G i s

TT-soluble.

(2) The s o l u b i l i t y of G follows from ( l ) .

Let p be any prime dividing the order of G ; then A and B are

p-closed and by the theorem, 0 (C) c 0 (G) . Thus F^C) c F (G) . But

obviously F (G) n Cc FAC) and so FA.C) = FA.G) n C . Suppose now tha t

F.{C) = F.(.G) n C for a l l natural numbers i 5 n . Then

= F ~ { C / F n ( C ) ) = F - [ C / F n ( G ) n C ) = P " [CFAG) / F ( G ) )

But

{F^AG)nc)F(C) ̂  [P^AG)nC)FlG) F^AG)

Fn[C) = FIG) £ FAG) •

which is a nilpotent group. So ^M+1(
G) n C c ?n+AC) c

 F
n+1^

G') n C •

Let the Fitting length of C be k . Then F^iC) = C = F-AG) n C .

Let ~ denote the homomorphism G •* G/F,AG) . Then

C = CP, AG)IF, AG) = C/F, n(C) is nilpotent, so G is nilpotent by
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Corollary 1. Then G = FAG) , and the Fitting length of G is equal to

the Fitting length of C .

It would be convenient if the two parts of this corollary could be

combined into a single statement involving some form of series for the

tr-soluble case, say defining the ^-Fitting subgroup to be

F^°) = °T[<^
 X Fi°^G'>) > w h i c h reduced to the Fitting series in the

soluble case. It seems however as if this is Impossible as the hypothesis

of the first part of the corollary is not strong enough to ensure that

0 ,(G) contains 0 ,(C) . This is shown in the above example by taking IT

to be the single prime p .

Finally, it may be pointed out that the arguments presented here

shorten the arguments in [3D considerably.
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