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Adic Topologies
for the Rational Integers

Kevin A. Broughan

Abstract. A topology on Z, which gives a nice proof that the set of prime integers is infinite, is char-

acterised and examined. It is found to be homeomorphic to Q , with a compact completion homeo-

morphic to the Cantor set. It has a natural place in a family of topologies on Z, which includes the

p-adics, and one in which the set of rational primes P is dense. Examples from number theory are

given, including the primes and squares, Fermat numbers, Fibonacci numbers and k-free numbers.

1 Introduction

There is a nice topology on Z, highlighted in reference [2], which enables a very
elegant proof to be given that the number of rational primes is infinite. In this paper
we develop properties of this topology, define a class of metrics which generate it,
establish a natural family of topologies (the adic topologies) of which this is the finest

and which includes the p-adic topologies, and give some examples from number
theory.

The motivation behind this work is to provide some tools which will assist with
the description and comparison of sets of integers, which are of number theoretic
interest.

2 Topologies for Z

Definition of (Z, τ ): for each a ∈ Z and b ∈ Z with b ≥ 1, let

Na,b = {a + nb : n ∈ Z}

Then for each a and for b1 ≥ 1, b2 ≥ 1

Na,b1b2
⊂ Na,b1

∩ Na,b2

so the family (Na,b) is a base for the neighbourhoods of each point a and generates a
topology, τ on Z, called here the full topology.

Now generalize this idea. For each a ∈ Z let Ga be a multiplicative sub-semigroup
of N with 1 and let G = (Ga : a ∈ Z). Then let τG be the topology on Z generated by
B = (Na,b : a ∈ Z, b ∈ Ga), which is a sub-base.
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712 Kevin A. Broughan

If G ⊂ G ′ then τG ⊂ τG ′ . Therefore τG ⊂ τ for all families G. Therefore, in this
class of topologies on Z, the topology τ , with Ga = N for all a, is the finest. Hence

the designation “full” topology for τ .
We call topologies in this family “adic” topologies.

Example 2.1 If Ga = {1} for each a, we obtain the indiscrete topology. In what

follows, by the term semigroup we mean a sub multiplicative semigroup of N with 1
which, unless otherwise stated, is non-trivial in that it contains an element b > 1.

Example 2.2 Let p be a rational prime and, for each a ∈ Z, let Ga be the semigroup

generated by p, i.e. Ga = {pn : n = 0, 1, 2, . . . }. Then τG is the classical p-adic
topology.

Example 2.3 Examples where the semigroups (Ga) depend on a would include the

semigroup generated by the prime divisors of a, by the maximal prime powers divid-
ing a, by the powers of a, or by the multiples of a (with in each case special definitions
being made for special values like a = 0).

Example 2.4 Let m ∈ N be fixed with m ≥ 1. Define, for each a ∈ Z,

Ga = {b ≥ 1 : (a, b)|mr for some non-negative integer r}

Then G = (Ga) generates τm, the so called m-topology. Here Ga depends on a.

All adic topologies make the multiplication · continuous.

Definition 2.1 If Ga = G is independent of a ∈ Z, we say τG is flat and write τG

instead of τG.

Definition 2.2 We say the semigroup G is divisor dense if for all n ∈ N there is a
b ∈ G such that n|b. If each Ga is divisor dense we say G is divisor dense.

Definition 2.3 If the semigroup G is such that a ∈ G and b|a implies b ∈ G we say
G is divisor complete. This is equivalent to G being generated by its prime elements.
If each Ga is divisor complete we say G is divisor complete.

Flat topologies make addition + continuous. If G is divisor dense, then B is a base
for τG. The semigroup collection G which generates the topology τm is neither divisor
complete nor flat.

Theorem 2.1 If the shift maps f±(n) = n ± 1 are continuous and G divisor complete,

then G is flat.

Proof If b ∈ Ga then f−1
± (Na,b) is open so there is a b ′ with b|b ′ such that b ′ ∈ Ga+1.

But this implies b ∈ Ga+1 so Ga ⊂ Ga+1. Using the left shift we obtain the reverse

implication, so Ga = Ga+1. Since this holds for all a, G is flat.

If m = 1 so Ga = {b ≥ 1 : (a, b) = 1} we generate the so-called coprime topology
τ1. Note that in this case, each G is divisor complete.
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Theorem 2.2 The space (Z − {0}, τ1) is T2, a second countable, non-compact space

with no isolated points.

Proof The topology is T2: If x < y let p be a prime number with y − x < p. Then

Nx,p ∩ Ny,p = ∅ since, if not, y − x = np for some integer n, which is impossible. It
is second countable, being a first countable topology on a countable set. Since, for all
primes p:

Z \ N0,p =

p−1
⋃

a=1

Na,p

and for every a satisfying 1 ≤ a ≤ p − 1 we have (a, p) = 1, each N0,p is closed in
the coprime topology. If (pi) is an enumeration of all primes, (N0,pi

) has the finite
intersection property, with empty intersection. Hence τ1 is not compact. There are
no isolated points since the topology is weaker than the full topology.

Note that G0 = {1} and N0,1 = Z, so Z is the only open set containing 0 and
(Z, τ1) fails to be T1.

Example 2.5 In the coprime topology the set of prime integers is dense, i.e. P̄ = Z.
This follows directly from Dirichlet’s theorem [1]. Indeed the result P̄ = Z in τ1 is
equivalent to Dirichlet’s theorem.

Definition 2.4 We say the topological space (X, τ ) has large inductive dimension
zero if for every pair of disjoint closed sets A and B there exists a set C , which is
both closed and open, such that A ⊂ C and C ∩ B = ∅. If this is the case we write

Ind(X) = 0.

Theorem 2.3 Given any semigroup G, the space (Z, τG) is T1, first countable, and

makes Z a topological ring in which the usual operations are continuous. It is also

metrizable and has Ind(Z) = 0.

Proof 1. τG is T1: Given x and y in Z with x 6= y let b be an element of Gx = G

with b > x − y. (Such an element exists because of the assumption G 6= {1}.) Then
y 6∈ Nx,b.

2. Z is first countable: (Na,b : b ∈ G) is a countable base for the neighbourhoods
of a.

3. Z is a topological ring: This follows directly because, for all x and y ∈ Z and
b ∈ G:

Nx,b + Ny,b ⊂ Nx+y,b and Nx,b · Ny,b ⊂ Nxy,b.

4. Since Z is countable and first countable, it is second countable. Since, for every
b ∈ G

Z =

⋃

0≤a<b

Na,b

and the union is disjoint, each Na,b is closed as well as open. Therefore the topology
has small inductive dimension zero and is T2. Therefore [3] Ind(Z) = 0, so the space
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is also normal. Hence by Urysohn’s metrization theorem, the topology is metrizable.

Theorem 2.4 The space (Z, τG) is homeomorphic to Q with the topology inherited

from the real numbers.

Proof By the theorem of Sierpinski [9], the rationals are characterized topologically
by the properties metric, countable and having no isolated points. The only property
to prove is the last, which follows immediately because every non-empty open subset

of τG contains a set Na,b so is infinite.

3 Completions

A non-archimedean quasi-valuation on a ring R is a function v : R → [0,∞) such
that, for all a and b in R:

v(0) = 0,(1)

v(a) > 0 for a 6= 0,(2)

v(a + b) ≤ max{v(a), v(b)},(3)

v(ab) ≤ min{v(a), v(b)}.(4)

A pseudo-valuation has (4) replaced by v(ab) ≤ max{v(a), v(b)} and a valuation
by v(ab) = v(a)v(b), see [5].

Below we will refer to a non-archimedean quasi-valuation as simply a valuation.

Note that if a|b then v(b) ≤ v(a) and that for each strictly positive real number δ,
{x ∈ R : v(x) ≤ δ} is a closed ideal in R in the topology induced by v.

Construction of the completion of a ring with a quasi-valuation proceeds in the

normal manner [5].

Let G be a semigroup. Define a particular quasi-valuation on Z as follows: let
1 = n0 < n1 < n2 be a strictly increasing sequence of elements of G with n1|n2|n3 · · ·
and such that for all i ∈ G there is a j such that i|n j . For example, G = N, ni = i!.

If a = 0 let v(a) = 0. Otherwise let 〈a〉 = max{ni : ni |a} and then set v(a) =

1/〈a〉.

Theorem 3.1 The function v is a non-archimedean quasi-valuation on Z such that the

associated metric d(x, y) = v(x − y) generates the topology τG.

Proof Since both topologies are homogeneous we need only consider neighbour-
hoods of 0. Because B(0, 1/n j] = n j Z, each B(0, 1/n j] is open in τ . Conversely,
given i ∈ G there is a j with i|n j |n j+1 and therefore

B
(

0,
1

n j

)

= N0,n j+1
⊂ N0,i .
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Definition 3.1 Let G be a semigroup. We say a sequence (xn) of integers is G-
Cauchy if for all i ∈ G there is an Ni such that for all n, m ≥ Ni , i|(xn − xm). By

Cauchy we mean N-Cauchy.

Definition 3.2 If (xn) and (yn) are two G-Cauchy sequences we say they are equiv-
alent if for all i ∈ G there is an Ni such that for all n ≥ Ni , i|(xn − yn).

Definition 3.3 If (xn) is a sequence of integers and xo an integer we say (xn) con-
verges to xo if for all i ∈ G there is an Ni such that for all n ≥ Ni , i|(xn − xo). When

this is so we write xn → xo.

Example 3.1 Let (αi) be any sequence of integers and for each n ∈ N let xn =
∑n

j=1 j! α j . Then (xn) is Cauchy.

Definition 3.4 If G is a semigroup, ZG is the completion of Z with respect to the

valuation vG.

Theorem 3.2 The ring ZG can be identified with (1) the set of equivalence classes of G-

Cauchy sequences, with (2) the completion of (Z, τG) as a topological ring, with (3) the

inverse limit

Z
G ≈ lim

←
b∈G

Z/bZ,

and, if G is divisor complete, with (4)

Z
G ≈

∏

p∈G

Zp

where the product is of rings of p-adic integers, one for each rational prime p in G.

Proof (1) Let (xn) be G-Cauchy. Given b = ni ∈ G there is an Nb ∈ N such that
b|xn − xm for all n, m ≥ Nb. Then v(b) ≥ v(xn − xm). But 〈b〉 = ni which can be
made arbitrarily large. Hence (xn) is v-Cauchy.

Conversely, given N ∈ N, let (xn) be such that v(xn−xm) < 1/N for all sufficiently
large n, m. Then 〈xn − xm〉 ≥ N so there is an ni with ni ≥ N and ni |(xn − xm). The
result now follows because given b ∈ G we can chose N so b|ni .

(2) This follows directly from (1) since vG induces the topology τG on Z.

(3) If (xn) is a G-Cauchy sequence in Z and b ∈ G is given, then for all n, m

sufficiently large, xn ≡ xm mod b. So each sequence maps to a well defined class in
Z/bZ. It is easy to see that this map is independent of the representative for each
element of the completion ZG and that these maps commute with the natural sur-

jections Z/bZ → Z/cZ when b|c. Hence the completion may be identified with the
inverse limit

Z
G ≈ lim

←
b∈G

Z/bZ,

with the ordering for the limit being induced by divisibility.
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(4) The given inverse limit can be specified with a compatible system of residue
representatives (xb), i.e. such at xm ≡ xn mod m whenever m|n. To specify an element

of Zp, a similar compatible system (xpn ) must be given. If G is divisor complete, then
all prime powers appear and the identification follows as an application of the ring
theoretic version of the Chinese Remainder Theorem.

Corollary 3.1 The space ZG, is homeomorphic to the Cantor set {0, 1}ℵ0 .

Proof Since vG gives rise to a non-archimedean metric, the completion also is non-
archimedean, so is totally disconnected. It is also totally bounded since Z is a dense
totally bounded subset. Hence the completion is metric and compact. It is also infi-
nite and has no isolated point, since the same is true of Z. These properties charac-

terise the Cantor set, see e.g. [8].

Theorem 3.3 The completion ZG has no nonzero nilpotent elements. Each element

b ∈ G is a non-zero-divisor in ZG. If G is divisor dense, then ZG has characteristic zero.

Proof 1. ZG has no non-zero nilpotent elements x: Let xm
= 0 where x = [(xn)].

Then for all i ∈ G there is an Ni such that im|xm
n for all n ≥ Ni , since G is a semigroup.

Hence i|xn for all n ≥ Ni and therefore x = 0.
2. Let b ∈ G and let a be an element of Ẑ such that b · a = 0. Let a = [(ai)] where

(ai) is Cauchy. Then bai → 0 so for all i ∈ G there is an Ni such that i|ba j for all

j ≥ Ni . Applying this to bi implies i|a j and hence a j → 0 so therefore a = 0. Hence
b is a non-zero-divisor.

3. ZG has characteristic zero: let p be a prime number and let a be an element of
ZG such that p · a = 0. Since G is divisor complete there is a b ∈ G such that p|b.

Then b · a = 0 so a = 0.

The following is a concrete realization of the result [4] for zero dimensional com-
pact rings:

Theorem 3.4 Let G be a semigroup. There exists a family (In : n ∈ G) of ideals in ZG,

that consists of sets that are both open and closed (hence compact), satisfies a|b ⇒ Ib ⊂
Ia for all a, b ∈ G, and is a basis of neighborhoods of 0 in ZG.

Proof If b ∈ G let Ib = N0,b, where the closure is taken in ZG and Na,b is the same

doubly infinite arithmetic progression in Z defined above. Since N0,b is an ideal, so is
Ib.

Claim: ZG
=

⋃b
a=1 N0,b where the union is disjoint. To see this note firstly that

⋃b
a=1 N0,b = Z̄ = ZG. If x ∈ Na,b ∩ Na ′,b, then there are Cauchy sequences (xn) and

(x ′n) such that a + xnb → x and a ′ + x ′nb → x. But this means that for all i ∈ G,
i|(a + xnb− x) and i|(a ′ + x ′nb− x) for all n ≥ Ni so i|(a− a ′ + (xn − x ′n)b). Choosing

i = b we get b|(a − a ′) so a = a ′. Therefore the union is disjoint. This implies each
Ib is open as well as closed.

We can write Ib = bZG (since if (bxn) is Cauchy so is (xn)), and therefore a|b
implies Ib ⊂ Ia.
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Finally note that, for each b ∈ G, Ib = {x ∈ ZG : v(x) ≤ 1/n j} where n j is the
integer appearing in the definition of v with n j = max{ni : ni |b}, so the (Ib) are a

basis of neighborhoods of 0 and generate the topology on ZG.

Theorem 3.5 Let p ∈ G be a rational prime. Then p is prime in ZG.

Proof Let p = xy where x = [(xn)] and y = [(yn)] where (xn) and (yn) are Cauchy.
Since p|(xn yn − p) for all n ≥ N1, p|(xn yn) so p|xn or p|yn, and thus either p|xn or
p|yn for an infinite number of integers n ∈ N.

Suppose p|xn for an infinite number of n ∈ N. Then, since (xn) is Cauchy, p|xn

for all n ≥ N2. Let pzn = xn for these n. Then (zn) is Cauchy, and if we let z = [(zn)],
p = pzy in ZG. Therefore i p|(pzn yn − p) for all i ∈ G with i ≥ N3, so i|(zn yn − 1)
and hence 1 = zy in ZG. Therefore x = pz where z is a unit, so x is prime in ZG.

Example 3.2 Let p ∈ G be a rational prime and I = N0,p = pẐ be the principal
ideal generated by p. It follows of course from the above theorem that I is maximal.
However we illustrate these ideas with a direct proof: Let M be an ideal such that

I ⊂ M and x ∈ M \ I. Since x 6∈ I, p -x so x = [(xn)] where (xn) can be chosen such
that p -xn for all n. For each n ∈ N, let y1

n and y2
n be integers satisfying y1

nxn + py2
n =

1. Since ZG is sequentially compact, there exists a subsequence (n j) of N such that

y1
n j
→ y1, y2

n j
→ y2, and xn j

→ x in Ẑ. If follows that yx + py = 1 so 1 ∈ M. Hence
I is maximal.

4 Closed Subsets and Mappings for (Z, τ )

In this section the topology is always the full topology τ .

Theorem 4.1 For k = 1, 2, 3, . . . , let Sk =
{

nk : n ∈ N ∪ {0}
}

. If k is even then Sk

is closed. If k is odd then

Sk = Sk ∪ {−Sk}.
In both cases the closure of Sk is perfect in (Z, τ ).

Proof 1. Let k = 2l be even and suppose a ∈ Sk \ Sk. Then Na,3a2 ∩ Sk 6= ∅ so there
exist integers x, y such that

a + 3xa2
= a(1 + 3xa) = yk.

But (a, 1 + 3xa) = 1 so, for some b|y with b ≥ 1, a = −bk. Then y2l + b2l
= 3xa2 and

( y

b

) 2l

+ 1 = −3xa.

But this is impossible since the left hand side is congruent to either 1 or 2 mod 3 and
3 divides the right hand side.

2. Let k > 2 be odd and let a ≥ 1, b ≥ 1 be given. Chose d > 0 with
d = −a mod b. Then there is a c with −ak + bc = dk so N−ak,b ∩ Sk 6= ∅. Therefore

−ak ∈ Sk.
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Conversely, if a 6∈ Sk and for all b ≥ 1, Na,b ∩ Sk 6= ∅, then Na,a2 ∩ Sk 6= ∅, so
a + a2x = yk for integers x, y and therefore a = −dk for some d ≥ 1.

3. To show Sk is perfect, observe that since n! → 0, (−n! + a)k → ak so every k-th
power is a limit of distinct k-th powers. Hence Sk has no isolated points.

4. If k = 1 then Z = S1 = S1 ∪ −S1.

Theorem 4.2 The closure of the set of prime integers in (Z, τ ) is

P̄ = P ∪ {−1, 1}.

Proof If x ∈ Z \ {−1, 0, 1} then Nx,2|x| ∩ P is {x} if x ∈ P and ∅ otherwise, since
x + 2n|x| = x(1 ± 2n). Thus P includes none of its cluster points and no point in
the complement of P ∪ {−1, 0, 1} is in P̄. By Dirichlet’s theorem, for all b ≥ 1,
N±1,b ∩ P 6= ∅ so ±1 ∈ P̄. Finally 0 6∈ P̄ since N0,4 ∩ P = ∅.

Theorem 4.3 If k ≥ 1 let Pk be the set of integers with absolute value having exactly k

prime factors (including multiplicity). Let Po = {−1, 1}. Then, for all k ≥ 0:

(a) Po ∪ · · · ∪ Pk = Pk,

(b) Pk ∪ Pk+1 = Pk+1,

where the unions in each case are disjoint.

Proof First two observations. For each a ∈ Z:

(1) for all b ≥ 1 there is a c ∈ Na,b with the number of prime factors Ω(c) = Ω(a)+1,
namely c = a + 2nab, where n has been chosen so that 1 + 2nb is prime,

(2) if Ω(a) = k then all elements c of Na,2|a| have Ω(c) ≥ k.

(a) By (1), Pk ⊂ Pk+1 so the left hand side is a subset of the right hand side. By
(2), for j > k, Pk+1 ∩ P j = ∅. Since

Z =

∞
⋃

k=0

Pk ∪ {0}

it follows that

Pk+1 ⊂ Po ∪ · · · ∪ Pk+1 ∪ {0}.
But 0 is not in Pk+1 since every element c of N0,b \ {0} has Ω(c) ≥ Ω(b), and Ω(b)
can be made arbitrarily large. Hence the right hand side is a subset of the left hand

side and (a) follows.

(b) This is really just a restatement of (a).

Another way to express (a): the set of integers with less than or equal to k prime
factors is closed in (Z, τ ).

Theorem 4.4 For all a, b ∈ Z the maps x → ax + b are closed and open for (Z, τ ).
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Proof Since the maps x → −x and x → x + b are homeomorphisms, we need only
show that for a ≥ 1 the map x → ax is closed.

Let F ⊂ Z be closed and let xn ∈ F be such that axn → α in τ . Then for all i ≥ 1
there is an Ni ≥ 1 such that for all n ≥ Ni , i|(axn − α). Choose i = a to show a|α.
Let α = aβ so i|a(xn − β). Now choose i = a j to see that j|(xn − β) so xn → β.

Hence β ∈ F so the mapping is closed.

For all non-zero a, aNr,s = Nar,|a|s so the maps are open also.

Theorem 4.5 Let p ∈ Z[x] be a polynomial. Then p : (Z, d) → (Z, d) is uniformly

continuous.

Proof If ni |(x − y) then ni |(p(x) − p(y)) so 〈p(x) − p(y)〉 ≥ x − y.

The potential domain of application of this result is clear: first show it is true
for a multinomial p : Z[x1, . . . , xn] → Z. (Note that multinomials are continuous,

but not necessarily uniformly continuous.) Use uniform continuity to extend each
multinomial to a continuous mapping p̂ : Ẑ[x1, . . . , xn] → Ẑ, so the set F = p̂−1{0}
is a compact subset of Ẑn. Then use compactness of study properties of F, for example
its size.

5 Examples

If F is a compact subset of P, then F is a finite set. This is because compact subsets
are closed and have no cluster points.

Dirichlet’s theorem on primes in an arithmetic progression was used in Theo-
rem 4.1 to show that P̄ = P ∪{−1, 1}. Conversely, this relationship implies a special
case of Dirichlet’s theorem, usually proved using cyclotomic polynomials, namely
that there exist an infinite number of primes in every arithmetic progression of the

form an + 1 and an − 1 for every a ≥ 1. To see this consider the case an + 1. Since
N1,a ∩ P 6= ∅ there is a prime p1 and integer n1 such that p1 = an1 + 1. The result
now follows inductively, first replacing N1,a by N1,a \ {p1} etc.

Now let the set of primes be divided into two disjoint subsets, P = A t B. Let 〈A〉
represent the symmetric multiplicative semigroup in Z generated by A, i.e.

〈A〉 = {±p1
α1 · · · pm

αm : m ∈ N, αi ≥ 0, pi ∈ A}.

Theorem 5.1 The interior of 〈A〉 is empty in (Z, τ ) if and only if the number of primes

in B is infinite.

Proof Let |B| < ∞ so F =
⋃

p∈B N0,p is closed in (Z, τ ). If P = Z \ F then P is open
and non-empty, because if q 6∈ B is prime, then q ∈ P. If n ∈ P

n = ±
∏

pαi

i

where no pi ∈ B. Hence n ∈ 〈A〉. Therefore P ⊂ 〈A〉 so the interior is not empty.
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Now let the interior of 〈A〉 6= ∅, so some Na,b ⊂ 〈A〉. Then Na,b = (a, b)(α + βZ)
where (α, β) = 1. But given p ∈ P, p|β implies that for all n ∈ Z, p - (α + nβ), and

p -β implies there is an n ∈ Z such that p|(α+ nβ). Hence the only primes which can
be missing from A are among prime divisors of β, which are finite in number. Hence
B has a finite number of elements.

We say a subset A of a topological space X is discrete if all points of A are isolated
in X. In the theorem below, the metric d is the same as that defined in Theorem 3.1
above.

Theorem 5.2 Let A be a non-empty subset of Z with 0,±1 6∈ A and (a, b) = 1 if

a, b ∈ A with a 6= b. If A is complete in (Z, d), then A is finite.

Proof For each a ∈ A, Na,2|a| ∩ A = {a}, so the derived set A ′ = ∅ and A is

discrete. Embed A in the standard completion (Ẑ, d̂) of (X, d) using the standard
mapping: a goes to the class of the constant sequence with value a. Then since A is
complete it is closed hence compact in the completion, hence sequentially compact in
the completion, therefore in Z, so it is compact in Z. Since A is discrete and compact

it must be finite.

Example 5.1 For n = 0, 1, . . . , let fn = 22n

+ 1 so F = { fn} is the Fermat numbers.
Then F is closed and discrete in (Z, τ ): Let fni

→ α 6= 0 with n1 < n2 < · · · . Since

|α|
∣

∣ ( fni
− α) for ni sufficiently large, α| fni

. Therefore α|( fni
, fni+1

) = 1 so α = ±1.
But 1 6∈ F̄ since F ∩ N1,3 = ∅.

Also 0 6∈ F̄ since N0,2 ∩ F = ∅, and finally,−1 6∈ F̄ since 4 - (22ni
+ 1 − (−1)).

Hence F is closed in (Z, τ ). It is discrete since ( fn, fm) = 1 for n 6= m.

Example 5.2 Let M = {mp = 2p − 1 : p ∈ P} be the Mersenne numbers. Then M

is closed and discrete in (Z, τ ).
We assume the following well known property of divisors of the Mersenne number

mp when p is an odd prime: If n|mp then n ≡ ±1 mod 8 and n ≡ 1 mod p, see for
example [7].

Firstly 0 6∈ M̄ since mp ∈ N0,2 ∩ M implies 2|mp which is impossible.
If α 6= 0 is such that mpi

→ α then α|mpi
so α ≡ 1 mod pi . But we can choose

p1 < p2 < · · · , and in particular such that |α| < pi , so necessarily α = 1. If then
mp ∈ N1,4 ∩ M, there is an integer n such that 2p − 1 = 1 + 4n which is impossible
for p ≥ 2. Hence M is closed.

Let mp be a cluster point of M. Then there is a prime q 6= p such that 2q − 1 ∈
Nmp ,2p+1 so, for some integer n, 2p −1 + n2p+1

= 2q −1. Hence 2q
= 2p(2n + 1) which

is impossible, and therefore M is discrete.

Example 5.3 Let S f = {±n : n ≥ 2 squarefree}. Then S f is perfect in (Z, τ ): S f

is closed since if the squarefree sequence ni → α then α|ni so α is squarefree. Every
point of S f is a cluster point because if a is squarefree and b ≥ 1 then Na,b \ {a}
contains a square free element: write a + nb = (a, b)(α+ nβ) where (α, β) = 1. Since
the arithmetic progression α + nβ has an infinite number of prime values, chose one
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which does not divide (a, b) so that the corresponding a + nb will be square free and
distinct from a.

Example 5.4 Let U = {un : n = 0, 1, 2, . . . } be the Fibonacci numbers where

u0 = 0, u1 = 1 and un+2 = un+1 + un for all n ≥ 0. Then

1. The point 0 is a cluster point of U , i.e. 0 ∈ U ′. This is because for all b ≥ 1,
there is an n such that b|un.

2. Every point congruent to 4 mod 8 is not in Ū : Looking at a full cycle of the
Fibonacci numbers mod 8 shows that no Fibonacci number is congruent to 4 mod 8.
This can be written U ∩ N4,8 = ∅.

3. Similarly it may be shown that U ∩ N6,12 = ∅ and also that U ∩ N7,21 = ∅.

4. More generally, it follows from Proposition 5.1 following this summary, that if

(i, j) = 1 or 2 then there is a b ≥ 1 such that a = uiu j implies U ∩ Na,b = ∅.

5. Summary: It follows from 2, 3 and 4 above that the following points of Z \ U

are not in Ū : {−6,−4, 4, 6, 7, 10, 12}.

6. Finally we show the point −1 is in the closure of U : Let n be a given whole
number. Eventually the Fibonacci numbers repeat mod n. Working backwards, we
see that the sequence 0, 1, 1 mod n appears at the start of each repeating segment.

Work back two steps to see that 0, 1, 1 must be preceded by −1, 1. In particular there
are Fibonacci numbers congruent to −1 mod n so N−1,n ∩U 6= ∅ for each n.

7. Conjecture: The closure of U in (Z, τ ) is U ∪ V where V = {(−1)n+1un :
n ∈ N}.

Some numerical evidence for the truth of this conjecture comes from considera-
tion of the intersection of the compliment of the basic open sets Na,b with the follow-

ing given values of a and b, all being such that their intersection with U is empty:

a ∈ {4, 6}, b = 8,

a ∈ {4, 6, 7, 9}, b = 11,

a ∈ {6}, b = 12,

a ∈ {4, 6, 7, 9}, b = 13,

a ∈ {4, 6, 10, 12, 14}, b = 16,

a ∈ {6, 7, 10, 11}, b = 17,

a ∈ {4, 6, 7, 9, 11, 12, 14}, b = 18,

a ∈ {4, 6, 7, 9, 10, 12, 14}, b = 19,

a ∈ {4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19}, b = 21,

a ∈ {4, 7, 16, 19}, b = 23,

a ∈ {4, 6, 9, 11, 12, 14, 15, 18, 19, 20, 22}, b = 24,

a ∈ {4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27}, b = 29

To check these, simply consider the values of the Fibonacci numbers modulo b

https://doi.org/10.4153/CJM-2003-030-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-030-3


722 Kevin A. Broughan

for one complete period. The intersection of their compliments exactly identifies
{U ∪V} ∩ [−1000, 1000].

The following proposition is used in item 4 above.

Proposition 5.1

(a) Let (i, j) = 1, i, j ≥ 3. Then

un = uiu j + uiu jui j l

has no solution in integers n ≥ 3 and l ∈ Z.

(b) If (i, j) = 2, i, j ≥ 3. Then

un = uiu j + uiu jui j/2l

has no solution.

Proof (a) Let n ≥ 3, i, j ≥ 3, (i, j) = 1, and l ∈ Z be such that

(1) un = uiu j + uiu jui j l

Then ui |un and u j |un and therefore i|n and j|n and therefore i j|n so ui j |un. Equa-
tion (1) then implies ui j |uiu j . But (ui , u j) = u(i, j) = u1 = 1, so ui j = uiu j .

If α =
1+
√

5
2

then we can write un = [ αn
√

5
+ 1

2
] therefore

αi j

√
5
− 1

2
≤

( αi

√
5

+
1

2

)( α j

√
5

+
1

2

)

so

(2) αi j ≤ ai+ j

√
5

+
αi + α j

2
+

3
√

5

4
.

But 1 < α and therefore αi j ≤ cαi+ j where c =
1√

5
+ 1

2
+ 3
√

5
4

. Therefore

i j ≤ log c

log α
+ i + j.

where 2 < i, j. This equation has no solutions, hence neither does (1).

(b) Let n ≥ 3, l ∈ Z and i, j ≥ 4 be such that (i, j) = 2. Let

(3) un = uiu j + uiu jui j/2l.

Using a similar argument to that given in (a) it follows that

(4) ui j/2 = uiu j .
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Let i = 2r and j = 2s so u2ru2s = u2rs. Therefore

α2rs

√
5
− 1

2
≤

( α2r

√
5

+
1

2

)( α2s

√
5

+
1

2

)

.

Using the same argument as that given in (a), but replacing α by α2, we obtain the
inequality

rs ≤ log c

2 log α
+ r + s

where r, s ≥ 2, so rs < 2 + r + s. The only solution to this inequality is (r, s) = (2, 3)
or (3, 2). In that case

uiu j = u4u6 = 24 6= 144 = u12

so equation (4) is never true. Therefore (3) has no solutions.
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