
Canad. Math. Bull. Vol. 57 (4), 2014 pp. 708–720
http://dx.doi.org/10.4153/CMB-2014-004-9
c©Canadian Mathematical Society 2014

Strong Asymptotic Freeness for Free
Orthogonal Quantum Groups

Michael Brannan

Abstract. It is known that the normalized standard generators of the free orthogonal quantum group
O+

N converge in distribution to a free semicircular system as N → ∞. In this note, we substantially
improve this convergence result by proving that, in addition to distributional convergence, the opera-
tor norm of any non-commutative polynomial in the normalized standard generators of O+

N converges
as N → ∞ to the operator norm of the corresponding non-commutative polynomial in a standard
free semicircular system. Analogous strong convergence results are obtained for the generators of free
unitary quantum groups. As applications of these results, we obtain a matrix-coefficient version of
our strong convergence theorem, and we recover a well-known L2-L∞ norm equivalence for non-
commutative polynomials in free semicircular systems.

1 Introduction

Given a closed subgroup G of the compact Lie group UN of N × N unitary matri-
ces over C, a fundamental mathematical problem is the computation of polynomial
integrals over G. That is, we consider the ∗-algebra Pol(G) ⊆ C(G) of polynomial
functions on G generated by the N2 standard coordinate functions

{ui j}1≤i, j≤N ⊂ C(G); ui j(g) = (i, j)-th coordinate of the matrix g ∈ G,

and seek to evaluate the integrals

hG( f ) =

∫
G

f (g) dg
(

f ∈ Pol(G)
)
,

where dg denotes the Haar probability measure on G. Equivalently, this amounts to
determining the joint distribution of the standard coordinates {ui j}1≤i, j≤N , viewed
as bounded random variables in L∞(G, dg).

The need to compute polynomial integrals for various examples of compact ma-
trix groups arises in many areas of mathematics and physics, including group repre-
sentation theory, statistical physics, random matrix theory and free probability. For
most infinite subgroups G ⊆ UN , the evaluation (or even the approximation) of ar-
bitrary polynomial integrals is a non-trivial task. Even for the most natural examples,
such as the orthogonal and unitary groups ON and UN , the computation of polyno-
mial integrals remains an active area of research. See, for example, [1, 14, 16, 25].
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In the context of polynomial integrals over ON or UN , one is often interested in
their behavior in the large N limit. In this regime, the calculations are simplified by
the fact that the normalized random variables {

√
Nui j}1≤i, j≤N ⊂ L∞(ON , dg) (re-

spectively L∞(UN , dg)) are asymptotically independent and identically distributed
N(0, 1) real (respectively complex) Gaussian random variables; see [17]. For exam-
ple (in the orthogonal case), if G = {gi j}i, j∈N denotes an i.i.d. N(0, 1) real Gaussian
family on some standard probability space (Ω, µ) with expectation E =

∫
Ω
· dµ, then

for any (non-commutative) polynomial P ∈ C〈Xi j : i, j ∈ N〉, we have

lim
N→∞

hON

(
P({
√

Nui j}1≤i, j≤N )
)

= E
(

P(G)
)
.

The above equality essentially says that for large N, the value of a polynomial inte-
gral over ON can be approximated by the corresponding (often simpler to compute)
Gaussian integral. An analogous convergence statement holds for polynomial inte-
grals over UN .

In [32], S. Wang introduced natural non-commutative analogues of the orthog-
onal and unitary groups: the free orthogonal and free unitary quantum groups O+

N

and U +
N . These objects are compact quantum groups (in the sense of S. Woronowicz

[35]) and are given in terms of the pairs

O+
N =

(
C(O+

N ),∆o

)
and U +

N =
(

C(U +
N ),∆u

)
,

where C(U +
N ) is the universal C∗-algebra generated by N2 elements {vi j}1≤i, j≤N sub-

ject to the relations which make the matrices V = [vi j] and V̄ = [v∗i j] unitary in

MN

(
C(U +

N )
)

, and C(O+
N ) = C(U +

N )/〈vi j = v∗i j〉. That is, C(O+
N ) is the univer-

sal C∗-algebra generated by N2 self-adjoint elements {ui j}1≤i, j≤N subject to the re-
lations which make the matrix U = [ui j] unitary. The coproduct ∆u : C(U +

N ) →
C(U +

N )⊗min C(U +
N ) is the unique unital C∗-algebra homomorphism defined by

∆u(vi j) =

N∑
k=1

vik ⊗ vk j , 1 ≤ i, j ≤ N,

giving C(U +
N ) a (bisimplifiable) C∗-bialgebra structure. The formula for the coprod-

uct ∆o : C(O+
N ) → C(O+

N ) ⊗min C(O+
N ) is the obvious analogue. Note that the C∗-

algebras C(O+
N ) and C(U +

N ) are free analogues of the commutative function algebras
C(ON ) and C(UN ), respectively.

Since G = O+
N ,U

+
N is a compact quantum group, it admits a Haar state

hG : C(G)→ C [35], which is the non-commutative analogue of the left and right
translation-invariant Haar measure on a compact group. More precisely, hG is the
unique state satisfying the following ∆-bi-invariance condition

(hG ⊗ id)∆(a) = (id⊗ hG)∆(a) = hG(a)1C(G), a ∈ C(G).

Note that for O+
N and U +

N , the Haar state is tracial [32]. As a consequence of the
existence of the Haar state, one can also consider in this non-commutative context
the problem of computing polynomial integrals over O+

N and U +
N . More precisely, if
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{ui j}1≤i, j≤N and {vi j}1≤i, j≤N denote the generators of C(O+
N ) and C(U +

N ), respec-
tively, then we want to compute all joint ∗-moments

hO+
N

(ui(1) j(1)ui(2) j(2) · · · ui(k) j(k)), 1 ≤ i(r), j(r) ≤ N, 1 ≤ r ≤ k, k ∈ N,

hU +
N

(vε(1)
i(1) j(1)v

ε(2)
i(2) j(2) · · · v

ε(k)
i(k) j(k)), 1 ≤ i(r), j(r) ≤ N, ε(r) ∈ {1, ∗},

1 ≤ r ≤ k, k ∈ N.

As in the classical case, the precise computation of these moments is extremely dif-
ficult for a fixed dimension N. However, as N →∞, T. Banica and B. Collins [4] have
shown that joint distributions of {

√
Nui j}1≤i, j≤N and {

√
Nvi j}1≤i, j≤N are modeled

by the free probability analogues of real (respectively complex) Gaussian systems.
Before stating their result, we remind the reader of some basic facts about free prob-
ability. For more information on these and related concepts, we refer the reader to
the monograph [26].

Definition 1.1

(i) A non-commutative probability space (NCPS) is a pair (A, ϕ), where A is a unital
C∗-algebra andϕ : A→ C is a state (i.e., a linear functional such thatϕ(1A) = 1
and ϕ(a∗a) ≥ 0 for all a ∈ A). Elements a ∈ A are called random variables.

(ii) Let (A, ϕ) be a NCPS. A family of ∗-subalgebras {Ar}r∈Λ of A is said to be freely
independent (or free) if the following condition holds: for any choice of indices
r(1) 6= r(2), r(2) 6= r(3), . . . , r(k − 1) 6= r(k) ∈ Λ and any choice of centered
random variables variables xr( j) ∈ Ar( j) (i.e., ϕ(xr( j)) = 0), we have the equality

ϕ(xr(1)xr(2) · · · xr(k)) = 0.

(iii) A family of random variables {xr}r∈Λ ⊂ (A, ϕ) is free if the family of unital
∗-subalgebras

{Ar}r∈Λ; Ar := alg(1, xr, x
∗
r ),

is free in the above sense.
(iv) A family of random variables S = {sr}r∈Λ ⊂ (A, ϕ) is called a free semicircular

system if S is free and each sr ∈ S is self-adjoint and identically distributed with
respect to ϕ according to Wigner’s semicircle law. That is,

ϕ(sk
r ) =

1

2π

∫ 2

−2
tk
√

4− t2 dt, k ≥ 0, r ∈ Λ.

(v) A family of random variables C = {cr}r∈Λ ⊂ (A, ϕ) is called a free circular
system if C is free and each cr ∈ C has the same distribution as the operator
s1+is2√

2
, where {s1, s2} is a standard free semicircular system.

(vi) Let SN = {x(N)
r }r∈Λ ⊂ (AN , ϕN ) be a sequence of families of random variables

and S = {xr}r∈Λ ∈ (A, ϕ) be another family of random variables. We say
that SN converges to S (or SN → S) in distribution as N → ∞ if, for any non-
commutative polynomial P ∈ C〈Xr : r ∈ Λ〉, we have

lim
N→∞

ϕN

(
P(SN )

)
= ϕ

(
P(S)

)
.
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Remark 1.2.

(i) Note that, just like classical independence, the joint moments of a freely inde-
pendent family {xr}r∈Λ ⊂ (A, ϕ) can be computed from the individual mo-
ments of each variable xr using the definition of freeness.

(ii) In the context of free probability theory, a free semicircular (circular) system
is the free probability analogue of a standard real (complex) N(0, 1)-Gaussian
family.

We are now in a position to state the asymptotic free independence result of Banica
and Collins.

Theorem 1.3 ([4, Theorems 6.1 and 9.4]) Let S = {si j : i, j ∈ N} be a free semi-
circular system and let C = {ci j : i, j ∈ N} be a free circular system in a NCPS
(A, ϕ). For each N ∈ N, let SN = {

√
Nui j}1≤i, j≤N ⊂

(
C(O+

N ), hO+
N

)
and CN =

{
√

Nvi j}1≤i, j≤N ⊂
(

C(U +
N ), hU +

N

)
be the normalized generators of C(O+

N ) and C(U +
N ),

respectively. Then

SN → S and CN → C in distribution as N →∞,

i.e., for any k ∈ N, 1 ≤ i(r), j(r),≤ N, ε(r) ∈ {1, ∗} and 1 ≤ r ≤ k, we have

lim
N→∞

Nk/2hO+
N

(ui(1) j(1)ui(2) j(2) · · · ui(k) j(k)) = ϕ(si(1) j(1)si(2) j(2) · · · si(k) j(k))

lim
N→∞

Nk/2hU +
N

(vε(1)
i(1) j(1)v

ε(2)
i(2) j(2) · · · v

ε(k)
i(k) j(k)) = ϕ(cε(1)

i(1) j(1)c
ε(2)
i(2) j(2) · · · c

ε(k)
i(k) j(k)).

Theorem 1.3 shows that, in an approximate sense, the generators of O+
N and U +

N

are modeled by free (semi)circular random variables. In particular, if we denote by
L∞(O+

N ) and L∞(U +
N ) the von Neumann algebras generated by the GNS construc-

tions associated to the corresponding Haar states, then Theorem 1.3 suggests that
these von Neumann algebras may share some analytic properties with the free group
factors L(Fk) (k ≥ 2). Over the last decade this has indeed been shown to be the
case. See for example [13, 18, 21, 30, 31]. Unfortunately, the approximation result of
Theorem 1.3 has yet to find a direct application to the study of the analytic structures
of L∞(O+

N ) and L∞(U +
N ). One reason for this is that the combinatorial “Weingarten

methods” used to establish this theorem provide very little information about the
rate of approximation to a free (semi)circular system.

By exploiting a certain connection between O+
N and Woronowicz’s deformed

SU−q(2) quantum group [34] (where N = q + q−1), Banica, Collins and Zinn-Justin
computed the spectral measure of each generator ui j ∈ C(O+

N ) relative to the Haar
state in [6]. Using this fact, the authors were able to substantially improve the approx-
imation result of Theorem 1.3 for a single generator ui j of O+

N by showing that
√

Nui j

superconverges (in the sense of H. Bercovici and D. Voiculescu [9]) to a semicircular
variable s ∈ (A, ϕ). In particular, this implies that for any polynomial P ∈ C[X],
not only do we have that P(

√
Nui j) → P(s) in distribution, but we also have the

convergence of corresponding operator norms:

lim
N→∞

‖P(
√

Nui j)‖L∞(O+
N ) = ‖P(s)‖L∞(A,ϕ).
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We note that this norm convergence result is not at all clear from the methods of
Theorem 1.3.

The main result of this note is the non-commutative multivariate analogue of
the above norm convergence result. Before stating our main theorem, we recall the
notion of strong convergence for random variables, as defined by C. Male in [24]:
Let (A, ϕ) and (AN , ϕN ) (N ∈ N) be NCPS’s and let S = {xr}r∈Λ ∈ (A, ϕ) and
SN = {x(N)

r }r∈Λ ⊂ (AN , ϕN ) be a sequence of families of random variables. We say
that SN → S strongly in distribution as N →∞ if SN → S in distribution and

lim
N→∞

‖P(SN )‖L∞(AN ,ϕN ) = ‖P(S)‖L∞(A,ϕ)

for all non-commutative polynomials P ∈ C〈Xr : r ∈ Λ〉.
Our main result follows.

Theorem 1.4 Let S = {si j : i, j ∈ N} be a standard free semicircular system in a
finite von Neumann algebra (M, τ ) and let

SN = {
√

Nu(N)
i j : 1 ≤ i, j ≤ N} ∪ {0 : i or j > N} ⊂ (C(O+

N ), hO+
N

)

be the (normalized) standard generators of O+
N . Then

SN −→ S strongly in distribution as N →∞.

The above strong asymptotic freeness result answers a question posed in Section 6
of [7] on the mode of convergence to free independence of the joint distribution of
the standard generators of O+

N . This result should also be compared with other recent
strong asymptotic freeness results for independent random matrix ensembles. See for
example [15, 20, 24].

The key ingredient we require for our proof of Theorem 1.4 is R. Vergnioux’s

property of rapid decay (property (RD)) for the discrete dual quantum groups Ô+
N

[31]. We show that property (RD) for the quantum groups {Ô+
N}N≥3 allows us to

approximate to any desired degree of accuracy (uniformly in N) the operator norm
of a fixed non-commutative polynomial in the variables {

√
Nu(N)

i j }1≤i, j≤N by its
non-commutative Lp-norm, for some sufficiently large even integer p. This trans-
fer from L∞ to Lp-norms then allows us to immediately deduce Theorem 1.4 from
Theorem 1.3.

The remainder of the paper is organized as follows: In Section 2, we remind
the reader of some basic facts on quantum groups, focusing mainly on the exam-
ple of O+

N . We then prove Theorem 1.4 in Section 3 and end with some applications
of our result and concluding remarks in Section 4. In particular, we consider the
analogous strong convergence result for U +

N (Corollary 4.1), strong convergence for
polynomials with matrix coefficients (Corollary 4.2), and an application to L2-L∞

norm inequalities for polynomials over free semicircular systems (Corollary 4.3).
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2 Preliminaries on O+
N

Our main reference for the theory of compact quantum groups will be the book [29].
All unexplained terminology can be found there. For the remainder of the paper we
write N = {1, 2, 3, . . . } and N0 = N ∪ {0}.

2.1 Peter–Weyl Decomposition of L2(O+
N )

Denote by Pol(O+
N ) ⊂ C(O+

N ) the dense ∗-subalgebra generated by the canonical
generators {u(N)

i j }1≤i, j≤N ⊂ C(O+
N ). We recall that by general compact quantum

group theory, the Haar state is always faithful on Pol(O+
N ). Denote by L2(O+

N ) the
GNS Hilbert space obtained by completing Pol(O+

N ) with respect to the sesquilinear
form 〈x|y〉 = hO+

N
(y∗x), and let L∞(O+

N ) ⊂ B
(

L2(O+
N )
)

denote the von Neumann
algebra generated by Pol(O+

N ) acting on L2(O+
N ) by (extending) left multiplication.

In the following, we simultaneously identify Pol(O+
N ) with its image as a σ-weakly

dense subalgebra of L∞(O+
N ) and as a norm-dense subspace of L2(O+

N ) via the GNS
construction.

The irreducible representations of the quantum group O+
N were first studied by

Banica in [2], and this gives rise to a natural orthogonal decomposition of L2(O+
N )

in terms of finite dimensional subspaces spanned by matrix elements of these irre-
ducible representations.

Rather than discussing representations of compact quantum groups, we choose
to describe this “Peter–Weyl” decomposition of L2(O+

N ) intrinsically as follows. For
each k ∈ N0, define a subspace Hk(N) ⊂ Pol(O+

N ) by setting

H0(N) := C1Pol(O+
N ), H1(N) := span{u(N)

i j }1≤i, j≤N ,

Hk(N) := H1(N)Hk−1(N)	Hk−2(N), k ≥ 2,

where H1(N)Hk−1(N) := span{xy : x ∈ H1(N), y ∈ Hk−1(N)}. The fact that the
above recursive definition for Hk(N) makes sense follows from the analysis of the
representation theory of O+

N in [2]. Moreover, we have the following result.

Theorem 2.1 ([2]) For each k ∈ N0, there is a unique (up to isomorphism) uni-
tary representation U k of O+

N whose matrix elements span Hk(N). Conversely, every
irreducible unitary representation of O+

N arises this way. Moreover, the representations
{U k}k∈N0 satisfy the tensor product decomposition rules

U n �U k ∼=
⊕

0≤r≤min{k,n}
U n+k−2r, n, k ∈ N0.

As a consequence, we have the following orthogonal decomposition

L2(O+
N ) = `2 −

⊕
k∈N0

Hk(N),

and the following multiplication “rule”

xy ∈
⊕

0≤r≤min{k,n}
Hn+k−2r(N), x ∈ Hn(N), y ∈ Hk(N).
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2.2 Quantum Numbers

Fix 0 < q < 1. Recall that the q-numbers and q-factorials (see for example [23]) are
defined by the formulas

[a]q =
qa − q−a

q− q−1
=

q−a+1(1− q2a)

1− q2
, [a]q! = [a]q[a− 1]q · · · [1]q, a ∈ N.

Note that as q→ 1, [a]q → a.

2.3 The Property of Rapid Decay

Using Theorem 2.1, we can define a length function ` : Pol(O+
N ) =

⊕
k∈N0

Hk(N)→
N0 by setting

`(x) = min
{

n ∈ N0 : x ∈
⊕

0≤k≤n
Hk(N)

}
, x ∈ Pol(O+

N ).

The main tool we will use to establish the strong asymptotic freeness for the gen-
erators of L∞(O+

N ) is Vergnioux’s property of rapid decay (RD) [31], which provides a
way to estimate the L∞-norm of any x ∈ Pol(O+

N ) in terms of its length `(x) and its
(much easier to compute) L2-norm. The main estimate we require is as follows, and
should be compared to U. Haagerup’s fundamental inequality for free groups (see
[19, Lemma 1.3]).

Theorem 2.2 ([31, Theorem 4.9]) For each l ∈ N0, let Pl : L2(O+
N )→ Hl(N) be the

orthogonal projection. There exists a constant DN > 1 such that for any n, k, l ∈ N0,
x ∈ Hn(N) and y ∈ Hk(N), we have

‖Pl(xy)‖L2(O+
N ) ≤ DN‖x‖L2(O+

N ) ‖y‖L2(O+
N ).

Combining Theorem 2.2 with the fusion rules from Theorem 2.1, we obtain an
essentially equivalent statement of property (RD) that is in a form more suitable for
our purposes.

Corollary 2.3 For each x ∈ Pol(O+
N ), we have

‖x‖L2(O+
N ) ≤ ‖x‖L∞(O+

N ) ≤ DN

(
`(x) + 1

) 3/2‖x‖L2(O+
N ).

Proof It suffices to prove that for each n ∈ N0, x ∈ Hn(N), we have

‖x‖L∞(O+
N ) ≤ DN (n + 1)‖x‖L2(O+

N ).

Indeed, since any x ∈ Pol(O+
N ) can be written as x =

∑
0≤n≤`(x) xn where xn ∈

Hn(N), we then have

‖x‖L∞(O+
N ) ≤

∑
0≤n≤`(x)

DN (n + 1)‖xn‖L2(O+
N ) ≤ DN

(
`(x) + 1

) 3/2‖x‖L2(O+
N ).
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Now fix x ∈ Hn(N), ξ =
∑

k∈N0
Pkξ ∈ L2(O+

N ) and write

‖xξ‖2
L2(O+

N ) =
∑
l∈N0

‖Pl(xξ)‖2
L2(O+

N ) =
∑
l∈N0

∥∥∥ ∑
k∈N0:Pl(xPkξ)6=0

Pl(xPkξ)
∥∥∥ 2

L2(O+
N )

≤
∑
l∈N

( ∑
k∈N0:Pl(xPkξ)6=0

DN‖x‖L2(O+
N ) ‖Pkξ‖L2(O+

N )

) 2
,

where in the last line we have used Theorem 2.2. Now observe that by Theorem 2.1,
the sets {k ∈ N0 : Pl(xPkξ) 6= 0} and {l ∈ N0 : Pl(xPkξ) 6= 0} are both finite
and have cardinality at most n + 1. Applying these facts and the Cauchy–Schwarz
inequality to the above inequality, we obtain

‖xξ‖2
L2(O+

N ) ≤ D2
N‖x‖2

L2(O+
N )

∑
l∈N0

(n + 1)
( ∑

k∈N0:Pl(xPkξ) 6=0

‖Pkξ‖2
L2(O+

N )

)
= (n + 1)D2

N‖x‖2
L2(O+

N )

∑
k∈N0

( ∑
l∈N0:Hl(N)⊂Hn(N)Hk(N)

‖Pkξ‖2
L2(O+

N )

)
≤ D2

N (n + 1)2‖x‖2
L2(O+

N )

∑
k∈N0

‖Pkξ‖2
L2(O+

N ) = D2
N (n + 1)2‖x‖2

L2(O+
N ) ‖ξ‖2

L2(O+
N ).

3 Main Result

In this section, we will give a proof of Theorem 1.4. Our strategy will be to first use
the property of rapid decay to show that for any fixed non-commutative polynomial
P ∈ C〈Xi j : i, j ∈ N〉 and any ε > 0, there is a fixed p = p(P, ε) ∈ (2,∞) such
that the non-commutative Lp-norm of P(SN ) ∈ Pol(O+

N ) is within ε of its L∞-norm
for all N. It is an elementary fact that for each N, there is a p = p(P, ε,N) which
obtains the required approximation. The key point here is that we can select a single
p ∈ (2,∞) that works for all N.

Using this uniform Lp-L∞-estimate, we are able to prove Theorem 1.4 by trans-
ferring the problem of norm convergence of polynomials to a question about conver-
gence in distribution.

3.1 Uniform Lp-L∞-estimates

We start with a lemma which contains the key computation of this article.

Lemma 3.1 Let DN be the constant appearing in Theorem 2.2. Then DN can be
chosen so that limN→∞ DN = 1. In particular, (DN )N≥3 is uniformly bounded.

To prove this lemma, we will actually revisit and refine the proof of Theorem 2.2
given in [31].

Proof Fix n, k, l ∈ N0, x ∈ Hn(N) and y ∈ Hk(N). If U l is not equivalent to
a subrepresentation of U n � U k, then Pl(xy) = 0 and there is nothing to prove.
Otherwise, there exists some 0 ≤ r ≤ min{k, n} such that l = n + k − 2r. Let
Vl,Vk and Vn denote the Hilbert spaces on which the representations U l, U k and U n
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act, respectively, and let tr : C ∼= V0 → Vr ⊗ Vr be the unique (up to multiplication
by T) O+

N -invariant isometry. Uniqueness of tr follows from Theorem 2.1. Now we
identify each representation U k with the “highest weight” subrepresentation of U�k

in the canonical way (see [2]), and let pk : (CN )⊗k → Vk the orthogonal (Jones–
Wenzl) projection. Using the map tr and the projections pn, pk, pl, we can define the
following canonical O+

N -invariant contraction:

φn,k
l := (pn ⊗ pk)(id(CN )⊗(n−r) ⊗ tr ⊗ id(CN )⊗(k−r) )pl : Vl ⊂ (CN )⊗l → Vn ⊗ Vk.

According to Lemmas 4.6 and 4.8, and Theorem 4.9 of [31] (see also Section 4.2
of [12] for an analogous calculation for quantum permutation groups), the following
norm inequality holds for x ∈ Hn(N), y ∈ Hk(N):

‖Pl(xy)‖L∞(O+
N ) ≤

( dimVk dimVn

dimVl(dimVr)2

) 1/2 ‖x‖L2(O+
N ) ‖y‖L2(O+

N )

‖φn,k
l ‖2

.

Fix 0 < q < 1 such that N = q + q−1. Note that q→ 0 as N →∞. In [2] it is shown
that dimVk = [k + 1]q for all k ∈ N0, so we can take

DN = sup
(n,k,l)∈N3

0

( [k + 1]q[n + 1]q

[l + 1]q[r + 1]2
q

) 1/2
‖φn,k

l ‖
−2

and analyze its large N (⇔ small q) behavior.
As a first observation, note that

(1− q2)3 ≤ (1− q2)(1− q2n+2)(1− q2k+2)

(1− q2r+2)2(1− q2l+2)
=

[k + 1]q[n + 1]q

[l + 1]q[r + 1]2
q

≤ (1− q2)−2.

So

lim
q→0

sup
(n,k,l)∈N3

0

( [k + 1]q[n + 1]q

[l + 1]q[r + 1]2
q

) 1/2
= 1

and it suffices to restrict our attention to the quantity ‖φn,k
l ‖−2.

In [2], Banica showed that the monoidal C∗-tensor category generated by the fun-
damental representation U = [u(N)

i j ] of O+
N is isomorphic to the Temperley–Lieb

category TL(q + q−1). Through this isomorphism, the linear map [r + 1]1/2
q φn,k

l de-
fined above corresponds to a three-vertex with parameters (n, k, l) in TL(q + q−1).
See [23] for the definition of TL(q + q−1) and three-vertices. In particular, the results
of Section 9.9–9.10 and Lemma 8 in [23] give an explicit expression for the norm of
a three-vertex with parameters (n, k, l). Translating this result back to O+

N , we obtain

1 ≤ ‖φn,k
l ‖
−2 =

[r + 1]q[l + 1]q![n]q![k]q!

[l + 1 + r]q![n− r]q![k− r]q![r]q!

=
r∏

s=1

[1 + s]q[n− r + s]q[k− r + s]q

[l + 1 + s]q[s]2
q

=
r∏

s=1

(1− q2+2s)(1− q2n−2n+2s)(1− q2k−2r+2s)

(1− q2l+2+2s)(1− q2s)2

≤
( r∏

s=1

1

1− q2s

) 3
≤
( ∞∏

s=1

1

1− q2s

) 3
.
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Since this last infinite product is finite and converges to 1 as q → 0, it follows that
limN→∞ DN = 1.

We are now ready to state our result on uniform Lp-L∞ estimates. In the follow-
ing, recall that SN = {

√
Nu(N)

i j : 1 ≤ i, j ≤ N}∪ {0 : i or j > N} denotes the family
of standard normalized generators of Pol(O+

N ).

Proposition 3.2 Let P ∈ C〈Xi j : i, j ∈ N〉 and ε > 0. Then there exists an even
integer p = p(P, ε) ∈ 2N such that

‖P(SN )‖L∞(O+
N ) ≤ (1 + ε)‖P(SN )‖Lp(O+

N ) (N ≥ 3).

Proof Let r = deg P and xN = P(SN ) ∈ Pol(O+
N ). Then we have `(xN ) ≤ r and

`
(

(x∗N xN )m
)
≤ 2rm for all m ∈ N. Fixing m ∈ N and applying Corollary 2.3, we

then have

‖xN‖L∞(O+
N ) = ‖(x∗N xN )m‖1/2m

L∞(O+
N )

≤
(

DN

(
`
(

(x∗N xN )m
)

+ 1
) 3/2
‖(x∗N xN )m‖L2(O+

N )

) 1/2m

=

(
DN

(
`
(

(x∗N xN )m
)

+ 1
) 3/2

) 1/2m

‖xN‖L4m(O+
N )

≤
(

DN (2rm + 1)3/2
) 1/2m‖xN‖L4m(O+

N ).

Applying Lemma 3.1, we can find an m = m(r, ε) ∈ N such that D1/2m
N (2rm+1)3/4m ≤

1 + ε for all N ≥ 3. Taking p = 4m will then do the job.

The proof of Theorem 1.4 now follows easily.

Proof of Theorem 1.4 Let xN = P(SN ) ∈ Pol(O+
N ), x = P(S) ∈ (M, τ ), and ε > 0.

Since ‖x‖L∞(M) = limp→∞ ‖x‖Lp(M), we can choose m ∈ N large enough so that
‖x‖L2m(M) ≥ ‖x‖L∞(M) − ε. Applying Theorem 1.3, we have

‖x‖L2m(M) = τ
(

(x∗x)m
) 1/2m

= lim
N→∞

hO+
N

(
(x∗N xN )m

) 1/2m
= lim

N→∞
‖xN‖L2m(O+

N ),

which yields

‖x‖L∞(M) − ε ≤ ‖x‖L2m(M) = lim
N→∞

‖xN‖L2m(O+
N ) ≤ lim inf

N→∞
‖xN‖L∞(O+

N ).

On the other hand, by Proposition 3.2, there is a p = p(P, ε) ∈ 2N such that

‖xN‖L∞(O+
N ) ≤ (1 + ε)‖xN‖Lp(O+

N ), N ≥ 3.

Applying Theorem 1.3 once again, we obtain

lim sup
N→∞

‖xN‖L∞(O+
N ) ≤ lim sup

N→∞
(1+ε)‖xN‖Lp(O+

N ) = (1+ε)‖x‖Lp(M) ≤ (1+ε)‖x‖L∞(M).

As ε > 0 was arbitrary, we conclude that limN→∞ ‖xN‖L∞(O+
N ) = ‖x‖L∞(M).
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4 Some Applications and Consequences

4.1 Strong Asymptotic Freeness for U +
N

Let X(k) = {x(k)
i }i∈I and Y (k) = {y(k)

j } j∈I be two sequences of families of non-

commutative random variables and assume that (X(k))k∈N and (Y (k))k∈N converge
strongly in distribution to families X and Y , respectively. It has recently been shown
by P. Skoufranis [28] (see also [27] for an alternate proof) that if in addition we as-
sume that the familes X(k) and Y (k) are free for each k, then {X(k),Y (k)} −→ {X,Y}
strongly in distribution.

Let {v(N)
i j }1≤i, j≤N denote the canonical generators of Pol(U +

N ). It was shown

in [3] that the joint distribution {v(N)
i j }1≤i, j≤N (with respect to the Haar state) can be

modeled in terms of the “free complexification” of the generators {u(N)
i j }1≤i, j≤N of

Pol(O+
N ). More precisely, let z be a unitary in a NCPS (A, ϕ) whose spectral measure

relative to ϕ is the Haar measure on T (i.e., z is a Haar unitary), and assume z is free
from {u(N)

i j }1≤i, j≤N . Then the families

{v(N)
i j }1≤i, j≤N and {zu(N)

i j }1≤i, j≤N

are identically distributed (i.e., have the same joint ∗-moments).
Combining the preceding two paragraphs with Theorem 1.4 yields the following

corollary.

Corollary 4.1 Let C = {ci j : i, j ∈ N} be a standard free circular system in a finite

von Neumann algebra (M, τ ) and let {v(N)
i j : 1 ≤ i, j ≤ N} be the standard generators

of Pol(U +
N ). Then

{
√

Nv(N)
i j : 1 ≤ i, j ≤ N} ∪ {0 : i or j > N} −→ C

strongly in distribution as N →∞.

4.2 Polynomials with Matrix Coefficients

We remark that by a standard ultraproduct technique (see for example Proposi-
tion 7.3 in [24]), the strong convergence of a sequence of families of random vari-
ables is equivalent to the (a priori stronger) condition of norm convergence for non-
commutative polynomials with matrix coefficients.

Corollary 4.2 Let S = {si j : i, j ∈ N} be a standard free semicircular system in a

finite von Neumann algebra (M, τ ) and let SN = {
√

Nu(N)
i j : 1 ≤ i, j ≤ N} ∪ {0 :

i, j > N} be the standard normalized generators of Pol(O+
N ). Then for any k ∈ N and

any non-commutative polynomial P ∈ Mk(C)⊗ C〈Xi j : i, j ∈ N〉, we have

‖P(SN )‖Mk(C)⊗L∞(O+
N ) → ‖P(S)‖Mk(C)⊗M .

Of course, the analogous result also holds for the generators of U +
N .
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4.3 L2-L∞ Norm-inequalities for Free Semicircular Systems

By taking limits in Corollary 2.3, and applying Lemma 3.1 and Theorem 1.4, we
obtain the following L2-L∞ norm inequality for a free semicircular system. A similar
inequality was was first obtained by M. Bozejko [11] and was re-proved by P. Biane
and R. Speicher using combinatorial methods (see [10, Theorem 5.3.4]).

Corollary 4.3 Let S = {si : i ∈ I} be a standard free semicircular system in a finite
von Neumann algebra (M, τ ) and let P ∈ C〈Xi : i ∈ I〉. Then

‖P(S)‖L2(M) ≤ ‖P(S)‖L∞(M) ≤ (deg P + 1)3/2‖P(S)‖L2(M).

4.4 Concluding Remarks

It would be natural to try to adapt the arguments of this paper to establish the
strong convergence of certain polynomial functions over other classes of quantum
groups, such as Wang’s quantum permutation groups S+

N [33] or the free easy quan-
tum groups studied by Banica and Speicher in [8]. For the quantum permutation
groups S+

N , all of the tools are in place: a Weingarten calculus for polynomial integrals
over S+

N was developed by Banica and Collins in [5], and the author proved a prop-
erty (RD) result for S+

N in [12]. Unfortunately, the analogue of Proposition 3.2 that
one would require still does not follow immediately. This is because the constant DN

derived in our property (RD) result for S+
N turns out to grow quadratically in N. It is,

however, quite plausible that a more precise analysis in the proof of property (RD)
for S+

N could still yield a uniformly bounded sequence of associated constants DN .

Acknowledgements This research was supported by an NSERC Postdoctoral Fel-
lowship. The author also wishes to thank Benoı̂t Collins for stimulating discussions
which improved an earlier version of this work.

References
[1] S. Aubert and C. S. Lam, Invariant integration over the unitary group. J. Math. Phys. 44(2003),

6112–6131. http://dx.doi.org/10.1063/1.1622448
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