
JFP 14 (6): 613–622, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S095679680400512X Printed in the United Kingdom

613

FUNCTIONAL PEARL

On tiling a chessboard

RICHARD S. BIRD

Programming Research Group, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

(e-mail: richard.bird@comlab.ox.ac.uk)

Teacher: Good morning class. Today I would like you to construct a program for

finding out how many ways a chessboard can be tiled with dominoes. For those

who don’t play games, a chessboard is a 8 × 8 board divided into 64 squares, and

a domino is a 2 × 1 tile which can cover two squares of the board either vertically

or horizontally. For example, a 2 × 2 board can be covered with two dominoes in

exactly two ways, with both dominoes horizontal or both vertical.

Fun: Sounds like a fun problem. I would start by thinking about a function tilings ::

(Int , Int) → [Tiling] such that tilings (m , n) returns a list of all the distinct tilings

of an m × n board. There seems no harm to me in generalising the problem right

at the start. Having constructed tilings we can compose it with length to get the

answer. That’s the great thing about lazy functional programming, you can separate

a program into its component parts and program compositionally without loss of

efficiency.

Data: Well, you can’t tile a 3 × 3 board, or any rectangular board with two odd-

numbered sides, without leaving a hole somewhere. Let me think of a suitable data

structure for Tiling . It should be a list of pairs of numbers, each pair representing the

two squares that are covered by a single domino. I know a neat way of numbering

the squares of a chessboard that . . .

Set: Data, why do you always want to plunge straight in with a data structure?

We have no idea of how we want to process elements of Tiling yet, so no idea of

what to represent. And Fun, why do you always immediately go for lists? We might

want a tree of tilings or some other structure to represent the set of possible tilings.

I would think about a function tilings with type (Int , Int) → Set Tiling and worry

about the representation later.

Rel: I would go further than Set and think about a relation tiling :: (Int , Int) �

Tiling that returned an arbitrary tiling. As you know, I think of relations as

nondeterministic functions. Of course, we have to ensure that every legitimate tiling

was a possible outcome of tiling .

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

614 Richard S. Bird

Set: Rel, there you go again wanting to bring relations into everything. This is

clearly a problem about sets, so why won’t set-valued functions suffice?

Rel: Simplicity of notation. I can think of a relation putDomino :: Tiling � Tiling

that adds one more domino to a partial tiling. You have to think of a function

putDomino :: Tiling → Set Tiling that returns all the ways a single domino can be

added. Consequently, when you want to compose two putDomino functions you have

either to bring in a set comprehension, or use union and mapSet all over the place.

Both of these add to the complexity of expressions. I, on the other hand, can use

relational composition. Right at the end we can lift everything to the set level, but

the notational overhead is less if we stick to relations for most of the reasoning.

Set: I don’t see that it makes much difference, but since Rel and I agree basically

about how to start, I am willing to go along with this relational stuff. In fact, I can

see how to specify the problem using putDomino; we have

tiling (m , n) = putDominoN · empty

where N = �m ∗ n/2�. The relation empty returns an empty tiling, and Pn composes

the relation P with itself exactly n times.

Fun: Yes, of course. I was already thinking of decomposing my tilings function into

a repetition of putDomino functions when I proposed it. Given putDomino it is easy

to code up the result as a Haskell program. There will be a lot of backtracking on

encountering dead-ends, but one of the advantages of lazy functional programming

is that we don’t have to program the backtracking ourselves. Indeed this was

emphasized as one of the great points about lazy functional programming when it

was first proposed.

Rel: True, but a program without backtracking is going to be faster than one with

it. Let me abbreviate putDomino simply to the letter P , and empty to E . To avoid

backtracking we want a refinement Q ⊆ P so that, again with N = �m ∗ n/2�,

QN · E = PN · E (1)

range (Qn · E) ⊆ domain Q for 0 � n < N (2)

Equation (1) says that we don’t lose any full tilings by considering Q rather than P ,

and (2) says that any partial tiling that has been constructed using Q can always

have another Q applied to it, so backtracking isn’t needed.

In fact we can go further. Since Q ⊆ P we can take Q = S · P where S ⊆ id , so S

is what is called a coreflexive relation. You can think of S as a filter that allows only

“safe” tilings through. Now it is easy to show by induction that (1) follows from

S · E = E (3)

S · PN · E = PN · E (4)

S · Pn+1 · E = S · P · S · Pn · E for 0 � n < N (5)

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

Functional pearl 615

Equation (3) says that the empty tiling is safe, and (4) that the full tiling is safe.

Equation (5) is a little trickier to interpret, but it says that given any safe nonempty

tiling we can always remove a domino to give a safe tiling. From (5) we get

S · Pn · E = Qn · E , and (1) follows from this and (4).

Set: I see that. Since S ⊆ id we have S ·P ·S ·Pn ·E ⊆ S ·Pn+1 ·E , so the interesting

direction is S · Pn+1 · E ⊆ S · P · S · Pn · E , which has the interpretation you have

just given. See, Rel, I remember that relational composition is monotonic under

inclusion. And surely (5) is also necessary for (1) because if some safe (n + 1)-tiling

is not achievable by applying a safe move to a safe n-tiling, then we will miss all of

its completions, and (2) says that there is at least one such completion. But how do

you simplify (2)?

Rel: Well, range X ⊆ domain Y just in the case that X ⊆ Y T · Y · X , where Y T

denotes the converse of Y . The converse of a relation is just like the transposition

of a matrix, so we will use the same notation. Now,

range (Qn · E) ⊆ domain Q

≡ {above remark}
Qn · E ⊆ QT · Q · Qn · E

≡ {since (5) implies Qn · E = S · Pn · E}
S · Pn · E ⊆ QT · S · Pn+1 · E

≡ {since Q = S · P}
S · Pn · E ⊆ (S · P)T · S · Pn+1 · E

≡ {since (S · P)T = PT · S T = PT · S as S T = S for a coreflexive S }
S · Pn · E ⊆ PT · S · S · Pn+1 · E

≡ {since S · S = S for a coreflexive S }
S · Pn · E ⊆ PT · S · Pn+1 · E

Hence (2) is equivalent to

S · Pn · E ⊆ PT · S · Pn+1 · E (6)

And (6) says that given any safe partial tiling we can always add a domino to give a

safe tiling. So a safe tiling has to be one to which you can add or remove a domino

and leave a safe tiling.

Fun: I don’t really see where all this is leading.

Set: Rel’s point is that if we can find an appropriate definition of a safe tiling,

and only construct bigger safe tilings out of smaller ones, then we will still get all

possible tilings without having to backtrack: all safe tilings can be completed to a

full board. The interesting question now is: What is a safe tiling?

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

616 Richard S. Bird

Data: How about taking a safe tiling as one that contains no holes? Its certainly

true of the empty and full tiling, and I bet we can show that your conditions are

met, Rel.

Set: I think you would lose your bet, Data. Consider a full board but with the

top-left and top-right squares missing. This contains no holes, and we can tile this

shape to reach the position, but the trouble is we cannot complete the tiling with

an extra domino. By the way, I nearly said remove the bottom-left and top-right

squares but, as every puzzle solver knows, these two squares have the same colour,

so one cannot tile this shape with dominoes. Every domino covers two squares of

different colours, so in any partial tiling the number of covered White squares equals

the number of covered Black squares.

Data: Well, how about no holes and the unfilled squares all belong to connected

components of even size?

Fun: That may work, but isn’t it going to be hard to keep track of the connected

components? We want safe positions that are easy to recognize.

Rel: I am still thinking about (5) and (6); surely the proof that we can add a domino

should be similar to the proof that we can remove one. There is a duality here that

we are not exploiting. Suppose we let D , pronounced “dual”, be a nondeterministic

function that takes a tiling t and returns some tiling of the squares not covered by

t . So D together with t tiles the whole board. In symbols,

D · Pn · E = PN −n · E for 0 � n � N (7)

In particular, the dual of the empty board is a full board and conversely. We also

have

D · P = PT · D (8)

In words, if we can obtain a tiling by adding a domino and then taking a dual,

then we can obtain the same tiling by first taking the dual and then removing some

domino. Equation (8) also holds on the full board because both sides denote the

empty relation. Now I think we can show that (5) and (6) are the same thing if we

also assume that S · D = D · S , that is, the dual of a safe tiling is a safe tiling of the

dual. Let us assume (5) holds, which by a change of variable is equivalent to

S · PN −n · E = S · P · S · PN −n−1 · E

for 0 � n < N . Taking the dual of the left-hand side, we have

D · S · PN −n · E

= {assuming D · S = S · D}
S · D · PN −n · E

= {by (7)}
S · Pn · E

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

Functional pearl 617

Doing the same for the right-hand side, we have

D · S · P · S · PN −n−1 · E

= {assuming D · S = S · D}
S · D · P · S · PN −n−1 · E

= {using (8)}
S · PT · D · S · PN −n−1 · E

= {using D · S = S · D again, and then (7)}
S · PT · S · Pn+1 · E

So we have proved (6). I am sure we can go the other way, but it’s enough that we

have reduced two proofs to one.

Data: Well, I can’t follow all your details, but I do see that we want a safe tiling

to be one whose dual is also safe. That obviously prevents us defining a safe shape

as one with no holes, as its dual can have a very big hole! Let me think. (Pause.)

I know! Let a safe tiling be one that looks like a step function. Suppose we start

tiling in the bottom left-hand corner of the board. Then the step shape will be one

that descends in steps from somewhere from up the left-hand side to the “floor” of

the board. The dual of this step shape will also be a step shape, provided we view

it from the top-right corner.

We can represent such a shape by a sequence of integers (vi , hi) for 0 � i � k

for some k . The value v0 is the drop from the top of the board to the top step (so

v0 � 0), and h0 > 0 is the width of step number 0. Then vi > 0 and hi > 0 give the

drop to and the width of step number i , and finally vk > 0 and hk � 0 is the final

drop and the distance to the bottom-right corner. For a chessboard the starting

step is [(8, 8)] and the final step is [(0, 8), (8, 0)]. Here is a picture of the step shape

[(1, 1), (2, 1), (2, 2), (2, 2), (1, 2)]:

h0 h1 h2 h3 h4

v0

v1

v2

v3

v4

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

618 Richard S. Bird

Set: There is another way to represent your step shape, namely by a sequence

SESSESSEESSEESEE

of moves, where S denotes a move South, and E a move East. The inital shape is

S 8E 8 and the final shape is E 8S 8. Perhaps we should keep this alternative in mind

as well.

We still have to prove that the step shape is safe. I agree that both the empty

and full tilings are step shapes, but that is not enough. Can we add a domino to a

non-full step shape and leave a step shape?

Let’s see. Suppose we cannot add a domino to the top step. This will happen if

either v0 = 0, when there is no room, or (v0, h0) = (1, 1). In the second case only a

horizontal domino would fit but it would overhang the remaining steps. But if we

can’t add a domino to the second step as well, then we also have (v1, h1) = (1, 1).

Etcetera, until at the end we have either (vk , hk) = (1, 1) or hk = 0. So it seems that

the one kind of step shape we can’t add a domino to is a “real” set of steps with

each step having a unit drop and width! We therefore have to show that a real set

of steps can’t be built by tiling according to our rules.

Oh, but this is obvious, isn’t it? Every step in a real set of steps has the same

colour, either Black or White. It follows that a real set of steps covers more of one

colour than the other. Since each domino covers both a Black and a White square,

a real set of steps cannot be covered by dominoes. I suppose Rel would like to see

this proof conducted through a formal calculation with dots and relations, and not

a variable in sight.

Rel: Yes I would: calculation is the sincerest form of proof. But I don’t want to

spend time on it as your argument is quite convincing. By my previous reasoning,

your proof is enough to show that we can always remove a domino from a non-

empty step shape and leave a step shape. In fact, we can see directly that a real set

of steps is the only kind we can’t remove dominoes from. Anyway, I am itching to

represent these placements of dominoes symbolically.

Fun: Before you do, there is a problem. I agree that systematically placing dominoes

to maintain a step shape is a good idea, but if we do it in all possible ways we

will surely create exactly the same tiling many times over. Somehow we have got

to either generate each tiling just once, or find some way of filtering out duplicates.

The problem with Data’s simple representation is that two different tilings may end

up having the same step shape, so the information provided by the step shape alone

is not going to be sufficient to identify duplicates.

Set: That’s true. But Data’s representation is so neat that I would like to stick with

it. That means finding a way to generate each possible tiling just once. (Pause.)

Dili: While you lot have been chattering away I have been diligently working out

the 4 × 4 case by hand. There are 36 ways to tile a 4 × 4 board. There are five ways

to tile a 4 × 2 board, so putting two of these side by side gives 25 ways. Another

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

Functional pearl 619

nine are obtained by putting two 2 × 4 boards above one another – not counting

those tilings that fall into the first case. Finally, there are two ways to tile a board

that cannot be split into two subtilings side by side or above one another. And

25 + 9 + 2 = 36. Would you like to see them?

Data: No thanks, but that information will be a useful check when we come to

construct the program. Returning to the problem, think of the tree that represents

the possible safe tilings. The root of the tree is the empty board and we want all the

leaves to be at depth N labelled with the distinct full tilings. Each edge represents

the action of one putDomino. Now, we have to ensure that each safe partial tiling

appears exactly once in the tree, so two distinct tilings mustn’t give the same result

by adding dominoes. Then we would get a directed graph rather than a tree. More

precisely, suppose T1 and T2 are distinct tilings, and P1 and P2 are two instances of

putDomino; then we want to forbid T1 + P1 = T2 + P2.

Well, obviously, P1 �= P2, otherwise T1 and T2 would be the same tiling, and P1

and P2 can’t be vertical and horizontal dominoes placed on the same step because

they wouldn’t result in the same step shape. So P1 and P2 have to be dominoes

placed on different steps. (Pause.)

Rel: Can’t we solve the problem by only putting dominoes on the highest steps that

they fit? The troublesome situation arises because one can add two dominoes P1

and P2, placed on different steps, to the same step shape T . Then T1 = T + P2

and T2 = T + P1. If we follow my strategy, then one of T1 and T2 will never be

generated, so the problem doesn’t arise.

Fun: No, that doesn’t quite work. Consider the “Stonehenge” shape of two vertical

dominoes with a horizontal one across the top. If we follow your strategy then, after

placing the leftmost vertical domino, we have to put the next domino vertically on

top of it, so we can never build Stonehenge!

Set: Interesting. One can adopt the stratgey of placing a horizontal domino only at

the highest place it will fit, because either a vertical domino can also be placed there,

or can be placed on the square in some other part of the tree when a vertical wall

of sufficient height has been built on the left. The problem is with vertical dominoes

only.

I think I can see the way forward now. There is no problem if P1 and P2 have

different orientations but are placed on the same step, nor if both P1 and P2 are

horizontal dominoes. So suppose that P1 is a vertical domino placed on a higher

step than than domino P2. Let us allow the move P1 now, but prevent it from

happening in some other descendant of the step shape by leaving a little pebble on

the step on which P1 sits, meaning that in other parts of the tree only a horizontal

domino can be placed there (if it can, of course).

Data: I see. So we want to represent a step not by a pair of integers but by a triple

(p, v , h) in which p is either Free or Pebble. A step (Free, v , h) means we are free

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

620 Richard S. Bird

to place either a vertical or horizontal domino on the step (if either or both are

possible), but a value (Pebble, v , h) means that only a horizontal domino may be

placed there if at all possible.

Here is how we process the step shape [(p0, v0, h0), . . . , (pk , vk , hk)]. We pass over

steps (p, v , h) for which v ∗ h � 1 because no dominoes can be placed on them,

so suppose we are now considering (pi , vi , hi) where vi ∗ hi > 1. Suppose first that

pi = Free. If vi � 2 and hi � 2, then we can place either a vertical or a horizontal

domino on the step, so we do both. If vi � 2 and hi = 1, then we place a vertical

domino on the step, and, in searching further down the list, record the fact that we

have done so by leaving the step (Pebble, vi , hi) behind. In the remaining case vi = 1

and hi � 2 we simply place a horizontal domino.

Fun: We might as well do this as a program! I propose defining the types

> data State = Free | Pebble

> type Step = (State,Int,Int)

> type Shape = [Step]

Agreed, Shape records only the step shape and not the tiling that leads to it, but

our problem is only to count the number of tilings, not to enumerate them. I am

going to represent putDomino by a function that takes a Shape and returns a list of

Shape without duplicates. Here is the definition, which follows the scheme proposed

by Rel, Set and Data:

> putDomino :: Shape -> [Shape]

> putDomino [] = []

> putDomino ((Free,v,h):steps)

> | v>=2 && h>=2 = [horizontal v h steps, vertical v h steps]

> | v>=2 && h==1 = [vertical v h steps] ++

> map (cons (Pebble,v,h)) (putDomino steps)

> | v==1 && h>=2 = [horizontal v h steps]

> | otherwise = map (cons (Free,v,h)) (putDomino steps)

> putDomino ((Pebble,v,h):steps)

> | v>=1 && h>=2 = [horizontal v h steps]

> | otherwise = map (cons (Pebble,v,h)) (putDomino steps)

We still have to define horizontal and vertical, but I think the main structure is

clear. The definition of cons x xs is, of course, just x:xs.

Set: Can’t we just program horizontal and vertical by

> horizontal v h steps = (Free,v-1,2):(Free,1,h-2):steps

> vertical v h steps = (Free,v-2,1):(Free,2,h-1):steps

Placing either kind of domino introduces a new step; in the horizontal case the

height of v is reduced by 1 and the step has width 2. The new step has height 1

and width h − 2. Similar remarks apply to the vertical case. Ah, not quite. These

definitions can introduce “virtual” steps with height or width 0.

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

Functional pearl 621

Rel: I don’t think that is a big problem: virtual steps can be merged with real steps

above or below them. You want to change the definitions to read

> horizontal :: Int -> Int -> Shape -> Shape

> horizontal v h steps

> | h>2 || null steps = (Free,v-1,2):(Free,1,h-2):steps

> | otherwise = (Free,v-1,2):(p,v’+1,h’):steps’

> where (p,v’,h’):steps’ = steps

> vertical :: Int -> Int -> Shape -> Shape

> vertical v h steps

> | h>1 || null steps = (Free,v-2,1):(Free,2,h-1):steps

> | otherwise = (Free,v-2,1):(p,v’+2,h’):steps’

> where (p,v’,h’):steps’ = steps

Fun: Well, that doesn’t get rid of virtual steps at the head of the list. I see now that

the way to do that is to modify my definition of cons to read

> cons :: Step -> Shape -> Shape

> cons (p,v,h) ((Free,0,h’):steps) = (p,v,h+h’):steps

> cons (p,v,h) steps = (p,v,h):steps

I think we are almost done now. We can define

> tilings :: (Int,Int) -> [Shape]

> tilings (m,n) = putnDominos d [[(Free,m,n)]]

> where d = (m*n) ‘div‘ 2

> putnDominos :: Int -> [Shape] -> [Shape]

> putnDominos 0 = id

> putnDominos d = putnDominos (d-1) . concat . map putDomino

> main = print (length (tilings (8,8)))

I agree now that all that relational stuff was useful in the beginning, and it certainly

led Data to think about step shapes, but we were always heading for a functional

program.

Dili: For square boards you can double the speed of your program by always

starting off with a horizontal tile in the bottom-left corner. Then by symmetry you

get exactly half the possible tilings, so double the final answer.

Teacher: Thank you all, I think you have collaborated very well indeed. There

is another way to program the problem though. Go back to Set’s alternative

representation of step shapes as sequences of S and E moves. Consider the grammar

SSE → ESS | SXE

SEE → EES

XEE → EES

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

622 Richard S. Bird

The first rule corresponds to either adding a vertical domino or leaving a pebble

on the step. The second rule is interpreted as adding a horizontal domino, and the

third rule as replacing the pebble by a horizontal domino. Given a starting value

of S 8E 8, the problem is to count the number of leftmost derivations that lead to

a final shape E 8S 8. A leftmost derivation corresponds to adding a domino on the

highest step. There is a fairly simple closure algorithm to implement the problem

but I won’t go into details since I suspect that the advantages and disadvantages of

the second method (no arithmetic, but a less compact representation of shapes) is

counter-balanced by the advantages and disadvantages of yours.

You may like to know that there are 12,988,816 possible tilings of the chessboard.

In fact, there is a formula for the number of tilings of an m × n rectangle. It occurs

in Concrete Mathematics, by Graham, Knuth and Patashnik, as Bonus problem 51

in Chapter 7. The formula is

2mn/2
∏

1�j�m

1�k�n

(
cos2 jπ

m + 1
+ cos2 kπ

n + 1

)1/4

(The exponent 1/4 is missing in early printings, but was corrected in the ninth

printing.) According to the authors, the proof is not easy and “really beyond the

scope of this book”.

Acknowledgements

This pearl was inspired in part by Edsger Dijkstra’s note “Nondeterministic

construction of an arbitrary witness” (EWD 1229, January 1996). Dijkstra used

the S and E representation, although he was concerned only with the problem

of generating every tiling, not with the trickier problem of generating every tiling

without duplicates.

I showed an earlier draft of this pearl to Don Knuth when he visited Oxford.

He made several suggestions for improvement and pointed out the existence of the

formula above. If I had known about it, and I certainly should have, then perhaps

the pearl would not have been written. Nevertheless, I am deeply grateful to him

for taking the time to make comments. I am also grateful to four anonymous

referees who made a number of constructive comments, most of which have been

incorporated into the dialogue.

https://doi.org/10.1017/S095679680400512X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400512X

