
ANZIAM J. 51(2009), 1–9
doi:10.1017/S1446181109000364

AN APPROXIMATE MATRIX INVERSION PROCEDURE BY
PARALLELIZATION OF THE SHERMAN–MORRISON

FORMULA

KENTARO MORIYA ˛ 1, LINJIE ZHANG2 and TAKASHI NODERA3

(Received 11 February, 2009; revised 5 November, 2009)

Abstract

The Sherman–Morrison formula is one scheme for computing the approximate inverse
preconditioner of a large linear system of equations. However, parallelizing a
preconditioning approach is not straightforward as it is necessary to include a sequential
process in the matrix factorization. In this paper, we propose a formula that improves
the performance of the Sherman–Morrison preconditioner by partially parallelizing the
matrix factorization. This study shows that our parallel technique implemented on a
PC cluster system of eight processing elements significantly reduces the computational
time for the matrix factorization compared with the time taken by a single processor.
Our study has also verified that the Sherman–Morrison preconditioner performs better
than ILU or MR preconditioners.

1. Introduction

In this study we consider the solution of large and sparse linear systems of equations

Ax = b, (1.1)

where the coefficient matrix A is of the order of n × n and the solution vector x and
right-hand side b are n × 1 vectors. Since iterative methods often require a large
number of iterations to solve a linear system of equations (1.1), it is usually necessary
to use some kind of a preconditioning technique. Recently, Bru et al. [1] proposed
computing a preconditioner based on the Sherman–Morrison formula, and showed
that it consistently performed well. However, it is not an easy task to parallelize
the computation of the preconditioner in such a formula, since the kth column vector
depends on the first k − 1 column vectors in the matrix factorization.

1Head Office, Nikon System Inc., Japan; e-mail: kmoriya@nikon-sys.co.jp.
2College of Mathematical Sciences, Ocean University of China, Japan; e-mail: zhanglinjie@hotmail.com.
3Department of Mathematics, Faculty of Science and Technology, Keio University, Japan;
e-mail: nodera@math.keio.ac.jp.
c© Australian Mathematical Society 2010, Serial-fee code 1446-1811/2010 $16.00

1

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

2 K. Moriya, L. Zhang and T. Nodera [2]

In this study, we propose a technique that partially parallelizes the computation
of this preconditioner. Two test problems demonstrate that the parallel performance
of our technique implemented on a PC cluster system is significantly faster than the
solution of the problems by the use of a single processor. We also demonstrate that our
technique can accelerate the convergence of the residual norm.

2. The Sherman–Morrison preconditioner

In the recurrence equation,

Ak = Ak−1 + pk qT
k , (2.1)

where Ak and Ak−1 are nonsingular matrices and pk , qk are nonzero vectors. When
the Sherman–Morrison formula is applied to Equation (2.1),

A−1
k = A−1

k−1 − r−1
k A−1

k−1 pk qT
k A−1

k−1, (2.2)

where
rk = 1+ qT

k A−1
k−1 pk . (2.3)

Summing Equation (2.2) from k = 1 to k = n gives

A−1
= A−1

0 −

n∑
k=1

r−1
k A−1

k−1 pk qT
k A−1

k−1, (2.4)

where A−1
= A−1

n . Equation (2.4) can be expressed as

A−1
0 − A−1

=9�−14T, (2.5)

where

9 =
[

A−1
0 p1, A−1

1 p2, . . . , A−1
n−1 pn,

]
, �−1

= diag
[
r−1

1 , r−1
2 , . . . , r−1

n

]
and

4=
[
qT

1 A−1
0 , qT

2 A−1
1 , . . . , qT

n A−1
n−1

]
.

Define

uk := pk −

k−1∑
i=1

vT
i A−1

0 pk

ri
ui , vk := qk −

k−1∑
i=1

qT
k A−1

0 ui

ri
vi , (2.6)

so that A−1
k−1 pk = A−1

0 uk and qT
k A−1

k−1 = vT
k A−1

0 are satisfied. Substituting these two
relations into Equations (2.3) and (2.5),

rk = 1+ qT
k A−1

0 uk (2.7)

and
A−1

0 − A−1
= A−1

0 U�−1V T A−1
0 , (2.8)

respectively, where U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn). Note that A0,
pk and qk are still included in the relations (2.6), and these values have to be

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

[3] An approximate matrix inversion procedure 3

determined. The matrix A−1
0 − A−1 should approximate the inverse of A. According

to Bru et al. [1], the simplest method for achieving this approximation is to take

A0 = s I, pk = ek, qk = (ak
− sek)

T, (2.9)

where ak and ek are the kth column vectors of A and the kth entry of the identity vector
is 1.0, respectively. Bru et al. [1] demonstrated that s = 1.5× ‖A‖∞ is a suitable
choice for this scalar in (2.9). If we adopt this selection approach (2.9), Equations
(2.6) and (2.7) are transformed to

uk = pk −

k−1∑
i=1

(vi)k

sri
ui , (2.10)

vk = qk −

k−1∑
i=1

qT
k ui

sri
vi , (2.11)

rk = 1+
(vk)k

s
, (2.12)

where (vk)k is the kth entry of vk . If we set the left-hand side of Equation (2.8) to be
equal to the preconditioner M−1, the formula for computing the preconditioner is then

M−1
= s−1 I − A−1

= s−2U�−1V T. (2.13)

Since M−1 is the product of U, �−1 and V T, it can be computed by using
Equations (2.10)–(2.12). From Equation (2.13) it is clear that M−1 differs from A−1

only in its diagonal entries. To reduce computational costs, not all of the nonzero
entries of U and V are computed; significantly small entries are usually neglected.

3. Parallel implementation

3.1. Parallel matrix decomposition The drawback of computing M−1 using
Equation (2.13) is that the computation of uk and vk where k = 2, . . . , n is dependent
on the vectors u1, . . . , uk−1, v1, . . . , vk−1, and the scalars r1, . . . , rk−1. The
parallelization of these computations is therefore not straightforward and so we
propose a parallel technique that computes Equations (2.10) and (2.11).

3.2. Allocation of uk, vk and rk to PEs Assuming that the orders of matrices U ,
� and V are n and the number of processing elements (PEs) is d , the (ml + 1)th to
(l + 1)mth column vectors of U , V and diagonal entries of �−1 are allocated to the
lth PE, where m is the number of column vectors and diagonal entries are covered by
one PE. In the case of the matrix U , for instance, the allocation is given by

U = {u1, . . . , um︸ ︷︷ ︸
PE0

, um+1, . . . , u2m︸ ︷︷ ︸
PE1

, , un−m+1, . . . , un︸ ︷︷ ︸
PEd−1

},

where PEl is the lth PE for l = 0, . . . , d − 1.
An additional assumption we have made is that n can be divided by d , with

m = n/d . Note, however, that we can also proceed when n is not divisible by d . This

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

4 K. Moriya, L. Zhang and T. Nodera [4]

is solved through an allocation where the zeroth to (d̃ − 1)th PEs cover bn/dc + 1,
and the d̃th to (d − 1)th PEs cover bn/dc column vectors and diagonal entries, where
d̃ = n mod d and bn/dc is the integer part of n/d .

3.3. Parallel implementation of the preconditioner From Equations (2.10) and
(2.11) we know that uk and vk depend on u1, . . . , uk−1, v1, . . . , vk−1 and
r1, . . . , rk−1. Owing to this dependency, under normal circumstances the lth PE is
unable to start computing these vectors until the zeroth to (l − 1)th PEs have finished
computing. However, the computation of Equations (2.10) and (2.11) can be partially
parallelized. These two equations can be separated into three terms:

uk = pk −

lm∑
i=1

(vi)k

sri
ui −

k−1∑
i=lm+1

(vi)k

sri
ui , ∀k = lm + 1, . . . , (l + 1)m, (3.1)

vk = qk −

lm∑
i=1

qT
k ui

sri
vi −

k−1∑
i=lm+1

qT
k ui

sri
vi , ∀k = lm + 1, . . . , (l + 1)m. (3.2)

The second term of the right-hand sides of Equations (3.1) and (3.2) cannot be
computed until values are received from the other PEs, but the third term can be
computed without values from any other PE. The problem is that the computation
of the third term cannot be started until all of the vectors included in the second term
have been received. If PE0 transfers u1, . . . , um and v1, . . . , vm to the other PEs
after computing all of these vectors, it cannot work with the other PEs simultaneously.
However, if PE0 computes only m̃ (<m) column vectors, it can work with the other
PEs in parallel after transferring these vectors, since PE0 still has the remaining column
vectors to compute. During the first step, while PE0 is computing the first to m̃th
column vectors, the other PEs are idle.

During the second step, however, PE0 computes the (m̃ + 1)th to 2m̃th column
vectors and transfers them while the other PEs update their covering column vectors
uk and vk using the column vectors u1, . . . , um̃ and v1, . . . , vm̃ , received from PE0
during the first step. During step three, while PE0 is computing the (2m̃ + 1)th to 3m̃th
columns, the other PEs are updating their covering column vectors using the column
vectors um̃+1, . . . , u2m̃ and vm̃+1, . . . , v2m̃ received from PE0 during step two.
Subsequent steps follow a similar pattern. Defining Gk = {uk, vk, rk}, G1, . . . , Gk−1
are required for the computation of Gk . Based on this, Gk (k = 1, . . . , n) can be
computed in parallel as shown in Figure 1.

When PE0 has finished computing its covering Gk , PE1 then works in the same way
as PE0, and transfers its covering Gk to the PEs from PE2 to PEd−1. During this stage,
although PE0 is idle, the other PEs can work in parallel. Here, m̃ is defined as the block
number, and the appropriate block number will be dependent on the specifications of
the system. The scheme of parallelization is shown in Figure 2, where tolU and tolV
are the thresholds. Entries of uk and vk lower than these thresholds are neglected.

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

[5] An approximate matrix inversion procedure 5

FIGURE 1. A parallel scheme for computing Gk .

FIGURE 2. The parallel implementation of the Sherman–Morrison preconditioner for the lth PE.

4. Numerical experiments

We used a PC cluster system with four nodes configured with the Linux Fedora
Core 4 operating system. Each node was configured with two Pentium Xeon 3.6 GHz
processors and 1 GB memory. The total number of PEs was eight. The MPI
communication library was used. The main experiments were used to analyse the
parallel performance of the computation of the Sherman–Morrison preconditioner

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

6 K. Moriya, L. Zhang and T. Nodera [6]

TABLE 1. The relationship between the number of blocks and the computation time of the Sherman–
Morrison preconditioner for Example 1. The column containing underlined computation times shows the
optimum value of m̃.

m̃ 4608 2304 1152 576 288 144 72 36

(a) tolU, tolV= 0.1 67 51 49 48 48 48 48 48
time (s)

(b) tolU, tolV= 0.01 471 365 325 318 317 317 318 312

based on the proposed technique, and test the convergence of the preconditioned
GMRES(m) algorithm [3]. Regarding the convergence test, as well as the present
preconditioner, we also applied the ILU factorization and the MR method [2] to
the GMRES(m) algorithm in order to compare the performance of the present
preconditioner with these alternative preconditioners. The stopping criterion was

‖r i‖2

‖b‖2
< 10× 10−12, (4.1)

where r i was the i th step of the GMRES(m) algorithm. We parallelized the
implementations of all of the preconditioners as well as the GMRES(m) algorithm.

EXAMPLE 1. Consider the boundary value problem described by Simoncini [4] given
by the solution of a partial differential equation

−
d

dx

[
{exp(−xy)}ux

]
−

d

dy

[
{exp(xy)}u y

]
+ 10.0(ux + u y)− 60.0u = f (x, y),

u(x, y)|∂2 = 1+ xy,

in the region 2= [0, 1]2. We discretized this problem using a five-point difference
scheme with 1922 grid points to obtain a linear system of order 36,864. In the
initial experiments we determined the computation time of the Sherman–Morrison
preconditioner for this system for a selection of values of m̃.

The data in Table 1 shows that the computation of the Sherman–Morrison
preconditioner is most efficient when m̃ = 36. Based on this, we set m̃ to 36 in the
following experiments. We also used a different number of PEs to analyse the parallel
performance of this preconditioner which was computed using this technique.

Table 2 shows that a speedup of around a factor of six or seven is
possible when eight PEs are used, where s̃ = s/(1.5 ‖A‖∞) and s = 1.5 ‖A‖∞ or
s = 1.5 ‖A‖∞ ×10. See Table 3 for the convergence test of the preconditioned
GMRES(m) algorithm. Note that the computation time of the GMRES(m) algorithm
includes the preconditioning time.

In Table 3, the parameters “tol” and “imax” are the thresholds of the dropoff and
iteration of the MR method, respectively. When using the ILU or MR preconditioners,

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

[7] An approximate matrix inversion procedure 7

TABLE 2. The parallel performance of the computation time of the Sherman–Morrison preconditioner for
Example 1.

Number of PEs

s̃ 1 2 4 8

100 1.00 1.95 3.83 7.01
101 1.00 1.85 3.45 6.11

TABLE 3. The computation time of the iterations required to satisfy criterion (4.1) for Example 1. SM
represents the Sherman–Morrison preconditioner and imax the number of iterations of the MR method.
The computation time of GMRES(m) algorithm includes the preconditioning time and “–” denotes cases
where the residual norm could not converge within two hours.

Iterative solver

Preconditioner GMRES(20) GMRES(30) GMRES(40)

Name Time Time Iter Time Iter Time Iter

SM(tolU, tolV= 0.1, s̃ = 100) 48 – – 200 12514 111 4453
SM(tolU, tolV= 0.1, s̃ = 101) 87 92 341 94 465 95 477
SM(tolU, tolV= 0.01, s̃ = 100) 315 346 1160 331 565 327 382
SM(tolU, tolV= 0.01, s̃ = 101) 560 605 1075 578 425 578 396

ILU(0) 0.24 – – – – – –
ILU(1) 0.35 – – – – – –
ILU(2) 0.48 – – – – 28 934

MR(tol= 0.1, imax= 2) 60 – – – – – –
MR(tol= 0.1, imax= 1) 25 – – – – – –
MR(tol= 0.01, imax= 2) 65 – – 159 10616 – –
MR(tol= 0.01, imax= 1) 29 – – – – 87 6021

the GMRES(m) algorithm sometimes converged much faster than was the case when
using the Sherman–Morrison preconditioner. However, since in most cases these two
preconditioners were ineffective, their use did not lead to a converged solution. On the
other hand, with only one exception, the GMRES(m) algorithm with the Sherman–
Morrison preconditioner converged. Therefore, it seems that this preconditioner
performs more robustly than the other two preconditioners.

EXAMPLE 2. We studied two kinds of linear systems, coefficient matrices of which
are described in Table 4 (see also [5]).

In both of these linear systems, all of the entries of the right-hand side b were 1.0.
As in Example 1, we measured the appropriate m̃, analysed the parallel performance
and compared the performance of the three kinds of preconditioners by using the
GMRES(m) algorithm. The results are presented in Tables 5–7.

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

8 K. Moriya, L. Zhang and T. Nodera [8]

TABLE 4. The properties of the coefficient matrices in Example 2.

Name Nonzeros Order Feature

ecl32 347,097 51,993 Circuit simulation
af23560 460,456 23,560 Transient stability analysis of a Navier–Stokes solver

TABLE 5. The relationship between the number of blocks and the computation time of the Sherman–
Morrison preconditioner in Example 2. Columns containing an underlined computation time show the
optimum value of m̃ for a given case.

(a-1). ecl32, tolU, tolV= 0.1
m̃ 6500 3250 1625 813 407 204 102 51
Time (s) 241 175 157 159 160 161 161 161

(a-2). ecl32, tolU, tolV= 0.01
m̃ 6500 3250 1625 813 407 204 102 51
Time (s) 1371 1090 942 901 896 902 911 913

(b-1). af23560, tolU, tolV= 0.1
m̃ 2945 1473 737 369 185 93 47 24
Time (s) 1477 1196 1059 1007 989 1003 1027 1027

TABLE 6. The parallel performance of the computation time of the Sherman–Morrison preconditioner in
Example 2.

Number of PEs

s̃ 1 2 4 8

100 1.00 1.67 2.84 4.45
101 1.00 1.60 2.72 4.37

Note that for the case tolU, tolV= 0.01 for the system af23560, the preconditioner
did not converge within two hours, and thus its results are not shown in Table 5. Table 6
shows the parallel performance of the Sherman–Morrison preconditioner when using
the af23560 system. As can be seen, computing this preconditioner using eight PEs is
about 4.5 times faster than when using a single PE. Table 7 also shows the computation
time and iterations for the preconditioned GMRES(m) algorithm. However, since
this iterative solver with the ILU or MR preconditioner did not converge in every
single case considered, no results are shown for these preconditioners. In contrast, the
GMRES(m) algorithm using the Sherman–Morrison preconditioner converged when
using the af23560 system where tolU, tolV= 0.1, and when using the ecl32 system

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000364

[9] An approximate matrix inversion procedure 9

TABLE 7. The computation time of the iterations required to satisfy (4.1) for Example 2. SM denotes
the Sherman–Morrison preconditioner and “–” denotes cases where the residual norm could not converge
within two hours. The computation time of the GMRES(m) algorithm includes the preconditioning time.

Iterative solver

Preconditioner GMRES(20) GMRES(30) GMRES(40)

Name Time Time Iter Time Iter Time Iter

(a) ecl32 SM(tolU, tolV= 0.1, s̃ = 100) 157 – – – – – –

SM(tolU, tolV= 0.1, s̃ = 101) 234 – – – – – –

SM(tolU, tolV= 0.01, s̃ = 100) 956 1016 797 988 408 971 231

SM(tolU, tolV= 0.01, s̃ = 101) 1343 1427 819 1387 415 1365 221

(b) af23560 SM(tolU, tolV= 0.1, s̃ = 100) 1068 1161 759 1147 621 1138 549

SM(tolU, tolV= 0.1, s̃ = 101) 2175 2311 740 2285 649 2266 544

where tolU, tolV= 0.01. Thus, it can be seen that only this particular preconditioner
is effective for the convergence of the residual norm.

5. Conclusions

A technique that allows the parallel implementation of the Sherman–Morrison
preconditioner has been explored in this study. Application of this technique to two
numerical test problems demonstrated that the computation of this preconditioner
by this technique using eight PEs was 4.5–7 times faster than when using a single
PE. The numerical results of the convergence test also showed that the Sherman–
Morrison preconditioner often performed more effectively than either the ILU or MR
preconditioners.

References

[1] R. Bru, J. Credán, J. Marín and J. Mas, “Preconditioning sparse nonsymmetric linear systems
with the Sherman–Morrison formula”, SIAM J. Sci. Comput. 25 (2003) 701–715.

[2] M. Grote and T. Huckel, “Parallel preconditioning with sparse approximate inverses”, SIAM J.
Sci. Comput. 18 (1997) 838–853.

[3] Y. Saad and M. K. Schultz, “GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput. 7 (1986) 856–869.

[4] Y. Simoncini, “On the convergence of restarted Krylov subspace method”, SIAM J. Matrix Anal.
Appl. 22 (2000) 430–452.

[5] “University of Florida sparse matrix collection”, online
http://www.cise.ufl.edu/research/sparse/matrices.

https://doi.org/10.1017/S1446181109000364 Published online by Cambridge University Press

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
https://doi.org/10.1017/S1446181109000364

