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KEPLER-POINSOT-TYPE REALIZATIONS OF REGULAR MAPS 
OF KLEIN, FRICKE, GORDAN AND SHERK 

BY 
E. SCHULTE AND J. M. WILLS 

ABSTRACT. The paper describes polyhedral realizations for Felix 
Klein's map {3, 7}8 of genus 3, for Gordan's map {4, 5}6 of genus 4, and 
for two maps of genus 5, the Klein-Fricke map of type {3, 8} and Sherk's 
map of type {4, 6}. The polyhedra have self-intersections but high sym
metry and thus are close analogues to the Kepler-Poinsot-polyhedra. 

1. Introduction. In his famous work on elliptic functions Felix Klein constructed 
a regular map on a Riemann surface of genus 3 that plays the key role for the 
transformation of the equation of degree 7, just as the icosahedron does for the trans
formation of the quintic equation (cf. [12, 13, 4]). This map has 168 orientation 
preserving automorphisms which is the maximum number on a Riemann surface of 
genus 3 (cf. Hurwitz [11]). Another representation of this surface is given by Klein's 
quartic 

x*y + y*z + Z3JC = 0, 

which is a plane algebraic curve (of order 4) in homogeneous complex variables 
(cf. [12], p. 446). 

About the same time Gordan found a regular map on a Riemann surface of genus 4 
with exactly 120 orientation preserving automorphisms which is the maximum number 
on a Riemann surface of genus 4 (cf. [8], compare also [7, 23]). Gordan's map was 
rediscovered later by Brahana and Coxeter (cf. Coxeter—Moser [4], p. 139). 

Gordan also gave a representation of his map as a sextic ([8], p. 379) which, by a 
suitable transformation (A. Duma, private communication), can be reduced to the 
quintic 

je 2 / + y V + x'yz - xz4 = 0, 

which is a plane algebraic curve in homogeneous complex variables. 
These maps are particular instances of Coxeter's regular maps {/?, q}r with groups 

PGL(2, 7) of order 336 and C2 x S5 of order 240, respectively. The rotation group of 
the former is the simple group PSL(2, 7) (cf. [4]). 
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Bearing in mind that the (reflexible) regular maps are the most natural topological 
generalizations of the Platonic solids, sharing with them the flag-transitivity of the 
automorphism group, it is of interest to look for polyhedral realizations of regular maps 
in Euclidean 3-space £3. The recent discovery of polyhedral models for Klein's map 
{3, 7}8, for 6 of Coxeter's 4-dimensional regular skew polyhedra and for Dyck's regular 
map {3, 8}6 were first steps in this direction (cf. [16, 17, 18], see also McMullen-
Schulz- Wills [15]). However, the realization of Dyck's {3, 8}6 could only be obtained 
by allowing self-intersections as in the case of the Kepler—Poinsot-polyhedra 
(cf. Coxeter [3]). This reflects that the realizability of a regular map as a polyhedron 
without self-intersections seems to be a very rare property. 

The purpose of this short note is to describe polyhedral realizations of Kepler— 
Poinsot-type for Klein's map {3, 7}8, Gordan's map {4, 5}6, and two maps of genus 5, 
the Klein-Fricke map of type {3, 8} and Sherk's map of type {4, 6} (cf. 114], Ch. 7, 
[20], p. 17, and [7], p. 54). By a polyhedron of Kepler-Poinsot-type (KP-type) we 
mean a finite family P of plane (Jordan-)polygons in E7, that fit together like the faces 
of a map on a surface but has self-intersections, and whose union has the rotation group 
or the full symmetry group of some Platonic solid. In fact, in all known cases only 
convex polygonal faces occur. We require 'minimal self-intersections', that is: if F and 
G are vertices, edges or faces of P with F D G 41 0, then F H G shall either be a vertex, 
an edge or a face of P, or be a point set of dimension less than dim(F) and dim(G). 

Our model of Klein's {3, 7}8 has the octahedral rotation group of order 24 as its 
symmetry group, analogous to the infinite non-polyhedral model which Klein described 
in [13], p. 466-469. 

Comparing our new model of {3, 7}8 with that in [16] (where the tetrahedral rotation 
group is the symmetry group) it seems that higher symmetry can only be obtained by 
allowing self-intersections. Both models of Klein's {3, 7}8 are chiral in the sense that 
they occur in a right hand version and in a left hand version (cf. [3]). 

The model of the Klein-Fricke map of type {3, 8} has the tetrahedral rotation group 
as its symmetry group. Identifying antipodal vertices turns this polyhedron into the 
model for Dyck's map {3, 8} on a surface of genus 3 described in [18], thereby gaining 
full tetrahedral symmetry. This gives a geometric proof of the fact that the Klein-
Fricke map is a 2-fold covering of Dyck's map. 

In the other two cases the symmetry group is the full octahedral symmetry group, so 
these models have the maximal possible symmetry. 

Finally we mention that for our realizations of Klein's and Gordan's regular maps the 
symmetry group acts transitively on the vertices, whereas our realization of Sherk's 
map is face transitive under its symmetry group. 

For an introduction to the theory of regular maps the reader is referred to [4]; for the 
connections to Riemann surfaces compare also the survey article of Duma [5]. 

2. Construction of the polyhedra. The construction of the four polyhedra follows 
essentially the same line. In each case the polyhedron is derived from some Archi
medean solid or a pair of Archimedean solids by removing certain faces of the solids 
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{3 7}8 Fig. 1 / = 4 ( 6 , 2 1 , 1 4 ) 

{3, 7}8 Fig. 2 

{3, 7}8 Fig. 3 

and suitably joining these holes by tunnels. Then the polyhedron has self-intersections 
but within each tunnel any two faces do not intersect except for vertices and edges. 

The proof of isomorphism with the map is then similar to those of [ 16, 18]. Starting 
from a topological diagram of the polyhedron the regularity is checked by proving the 
existence of certain automorphisms p and a, where p cyclicly permutes the edges 
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bounding one face and cr cyclicly permutes the edges surrounding one vertex of that 
face (cf. [4]). As a map on a surface of genus 3, 4 or 5 cannot be chiral (that is, 
irreflexible in the sense of [4]) the automorphism group must then be flag-transitive 
(cf. Garbe [7]), and thus the polyhedron is regular. Once the regularity is known the 
isomorphism with the map in question is easily obtained from the complete list of 
regular maps on a surface of genus 3, 4 or 5, respectively (cf. [ 19], [7J). 

Figure 1 shows how a polyhedral model of Klein's map {3, 7}8 can be derived from 
the snub cube by suitably joining any two antipodal square faces by a 'tunnel', which 
is combinatorially the mantle of a quadrangular antiprism. (In Figure 1 only one tunnel 
is drawn.) Considering polygons on the boundary of the snub cube that become part of 
a Petrie polygon (cf. [4]) for our polyhedron we see there is a unique way of construc
ting the polyhedron such that these Petrie polygons have length 8. This is also the length 
of the antiprismatic Petrie polygons given by the three tunnels. The symmetry group 
of the polyhedron is the octahedral rotation group (isomorphic to S4) and is transitive 
on the vertices of the polyhedron. In particular, the automorphism p above can be 
realized by a Euclidean rotation in one of the equilateral triangles. 

Starting from the Schlegel diagram of the snub cube (cf. Griinbaum [9]) in Fig
ure 2 a diagram of the polyhedron is obtained by representing within three suitable 
quadrangular faces of the Schlegel diagram the eight faces of the respective tunnel. 
Now, labelling the vertices of our diagram by the numbers 1,. . . , 24 as in Figure 2, 
and rearranging the diagram in the way maps are usually drawn leads to the map of 
Figure 3. Here, the automorphism a (defined with respect to the vertex 10) is given by 

a = (7 13 11 24 23 9 8)(1 22 4 17 14 16 21) 
(2 12 5 20 3 18 6) 

Thus the polyhedron is regular and, being a regular polyhedron of type {3, 7} and 
genus 3, necessarily isomorphic to Klein's {3, 7}8. Another proof of isomorphism is 
obtained by directly comparing our Figure 3 with Figure 4 in [16]. 

The polyhedral model for Gordan's map {4, 5}6 is constructed in a similar fashion 
from the truncated octahedron (cf. Figure 4). Here, the hexagonal faces are removed, 
and any pair of antipodal hexagonal holes is then joined by a prismatic tunnel, giving 
four tunnels with six rectangular faces each. The symmetry group of the polyhedron is 
the octahedral group and is transitive on the vertices. Again the automorphism p is 
given by a Euclidean rotation in one of the square faces. 

The existence of cr is checked by means of a diagram of the polyhedron derived from 
the Schlegel diagram of the truncated octahedron by representing within four hexagonal 
faces the six faces of the respective tunnel (see Figure 5). Labelling the vertices by 
1,. . . , 24 and turning this diagram into the map of Figure 6 proves the existence of cr 
(defined with respect to the vertex 1), in particular 

CT = (2 16 6 9 7)(8 17 15 10 24) 
(3 22 12 20 5)(4 18 21 19 14). 
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R 5 } 6 Fig. 4 / = 6(4, 10,5) 

{4, 5}6 Fig. 5 

{4, 5}6 Fig. 6 

Being regular, of type {4, 5}, and genus 4, our polyhedron must be isomorphic to 
Gordan's {4, 5}6 (cf. [7]). 

A polyhedral model for Sherk's regular map of type {4, 6} and genus 5 is obtained 
from a pair of homothetic cubes by removing all their faces and then joining each hole 
of the outer cube to the antipodal hole of the inner cube by a prismatic tunnel, giving 
six tunnels with trapezoidal faces each (see Figure 7 which shows an orthogonal 

https://doi.org/10.4153/CMB-1987-023-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-023-9


160 E. SCHULTE AND J. M. WILLS [June 

projection along a common diagonal of the two cubes, which is a 3-fold rotation axis 
of the polyhedron). Again, the symmetry group is the octahedral group but this time 
is transitive on the faces. Here, neither p nor a is realizable by a symmetry. 

A diagram for the polyhedron can be derived from a pair of Schlegel diagrams of 
cubes (see Figure 8). Here, the second Schlegel diagram representing the inner cube is 
not drawn in the usual way. Its faces are 'separated', and vertices with the same label 
have to be identified. Now, turning this diagram into the map of Figure 9 shows that 

a = (4 5' 7 4' 5 7')(1' 3' 8')(1 3 8)(2 2') 

has the required properties with respect to the vertex 6. Clearly, a2 is just the Euclidean 
120°-rotation about the diagonal 6 2 of the outer cube. On the other hand, choosing the 
face F with vertices 6,7, \' and 4' the automorphism p defined with respect to F turns 
out to be 

p - (6 7 T 4')(2 3' 5' 8)(3 5 8' 2')(1 4 6' 1'). 

This can be checked by a new figure of the map, in which F becomes the central face. 
Finally, as there is only one regular map of type {4, 6} on a surface of genus 5 (cf. [7]), 
our polyhedron must be isomorphic to Sherk's map. 

Our model of the Klein-Fricke map of type {3, 8} is constructed from a pair of 
homothetic icosahedra by removing all their faces and joining suitable hexagonal 
'paths1 by 'tunnels'. These hexagonal 'paths' are obtained as follows. 

First observe that on the boundary of a 3-cube a hyperplane passing through the 
centroid and orthogonal to a diagonal cuts out (the boundary of) a regular hexagon. This 
way the four diagonals give four hexagonal paths covering all the vertices and edges 
of the cuboctahedron. Inserting suitable diagonals into the six square faces of the 
cuboctahedron gives a dissection of its boundary that is combinatorially isomorphic to 
the boundary complex of the icosahedron. Now turning this dissection into the complex 
of the regular icosahedron provides four hexagonal paths in the graph of the icosa
hedron. These four paths are linked by a net of eight triangular faces of the icosahedron 
corresponding to the eight triangular faces of the cuboctahedron (see Figure 10). 

Assume now that a pair of homothetic icosahedra is given with the vertices labelled 
1,. . . , 12 and 1',. . . , 12', respectively (where /' corresponds to /, for / = 1,. . . , 12). 

Choosing on the two icosahedra the same sets of four hexagonal paths together with the 
respective nets of eight triangular faces, and joining corresponding paths by twelve 
triangles that fit together like the faces in the mantle of a hexagonal antiprism gives in 
fact a model of the map in question. However, the twelve triangles have to be chosen 
as shown in the diagram of Figure 11 : first the hexagonal 'bases' have to be twisted and 
then joined antiprismatically. Altogether the polyhedron has 24 8-valent vertices and 
64 (= 2-8 + 4-12) triangular faces. 

For the proof of isomorphism with the Klein —Fricke map we only have to prove 
regularity, since there is only one regular map of type {3, 8} and genus 5 (cf. [7]). Again 
the automorphism p is realizable by a Euclidean rotation in one of the eight faces on 
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{4, 6; 5} Fig. 7 7=4(4, 12,6) 

{4, 6; 5} Fig. 8 

-\1 3, 

{4, 6; 5} Fig. 9 
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{3, 8; 5} Fig. 10 

{3, 8; 5} 

*^ 'V 

V9 N JO l' 3 Vl2 ' - 7 

\ 6 _ 1 h 3_4 

9' 7' 12 10' 

Fig. 11 

^ ;6' - '̂ 

^ ? 1 3 ' 

S"* 3 6 ti 9 

{3, 8; 5} Fig. 12 

the outer icosahedron. To check the existence of CT we turn the diagram of Figure 
into the map of Figure 12. Then 

cr = (2 4' 11' 10 5' T 8 7)(3 6 3' 6') 
(9 9')(1 8' 7' 2' 4 11 10' 5) 

https://doi.org/10.4153/CMB-1987-023-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-023-9


1987] KEPLER-POINSOT-TYPE REALIZATIONS 163 

has the required properties with respect to the vertex 12'. Note that the symmetry group 
of the polyhedron is the tetrahedral rotation group consisting of rotations in 'outer' 
triangles and half-turns about the midpoints of the six missing edges of the outer 
icosahedron. 

One of the most interesting features of this construction is that it reveals the fact that 
the Klein—Fricke map is a 2-fold covering of Dyck's map {3, 8}6. In fact, identifying 
antipodal vertices in our model gives exactly the model for {3, 8}6 described in [18]). 
Note that then the Petrie-polygons of lengths 12 (within the 'tunnels') collapse to 
Petrie-polygons of lengths 6. 

Concluding we remark that polyhedra with certain transitivity properties of the 
symmetry group have also been studied in [10] and [22]. 
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