EQUALITY OF DECOMPOSABLE SYMMETRIZED TENSORS

RUSSELL MERRIS

Let V be an n-dimensional vector space over the field F. Let $\otimes^{m} V$ be the m th tensor power of V. If $\sigma \in S_{m}$, the symmetric group, there exists a linear operator $P\left(\sigma^{-1}\right)$ on $\otimes^{m} V$ such that

$$
P\left(\sigma^{-1}\right) x_{1} \otimes \ldots \otimes x_{m}=x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)}
$$

for all $x_{1}, \ldots, x_{m} \in V$. (Here, $x_{1} \otimes \ldots \otimes x_{m}$ denotes the decomposable tensor product of the indicated vectors.) If c is any function of S_{m} taking its values in F, we define

$$
\begin{equation*}
\theta=\sum_{\sigma \in S_{m}} c(\sigma) P(\sigma) \tag{1}
\end{equation*}
$$

The linear operator θ on $\otimes^{m} V$ is called a symmetrizer. Symmetrizers provide the vehicle for connecting the irreducible representations of S_{m} with those of the full linear group [1]. In the form
(2) $\frac{\lambda(\mathrm{id})}{o(G)} \sum_{\sigma \in G} \lambda(\sigma) P(\sigma)$,
where G is a subgroup of S_{m} and λ is an irreducible F-character of G, symmetrizers have proved useful in the discovery of inequalities for certain matrix functions (e.g. [3]). In this latter connection, the following questions arise very naturally: Let
(3) $x_{1} * \ldots * x_{m}=\theta x_{1} \otimes \ldots \otimes x_{m}$.

For which vectors $x_{1}, \ldots, x_{m} \in V$, is it the case that $x_{1} * \ldots * x_{m}=0$? Moreover, when can it happen that $x_{1} * \ldots * x_{m}=y_{1} * \ldots * y_{m} \neq 0$? (Naturally, such information is very important to the study of these decomposable symmetrized tensors (3). Surpringly, the answers are not known in general.)

1. Example. If $G=S_{m}$, and λ is the alternating character in (2), the range of θ is the space of skew symmetric tensors. In this case, $x_{1} * \ldots * x_{m}$ is commonly written $x_{1} \wedge \ldots \wedge x_{m}$. It is a classical result that $x_{1} \wedge \ldots \wedge x_{m} \neq 0$ if (and only if) x_{1}, \ldots, x_{m} are linearly independent. Moreover, if $x_{1} \wedge \ldots \wedge x_{m}=y_{1} \wedge \ldots \wedge y_{m} \neq 0$, then $\left\langle x_{1}, \ldots, x_{m}\right\rangle=\left\langle y_{1}, \ldots, y_{m}\right\rangle$, i.e., the space spanned by x_{1}, \ldots, x_{m} is the same as the space spanned by y_{1}, \ldots, y_{m}.
[^0]Recently, Marcus and Gordon [3, Lemma 1] extended the above result as follows: Let F be the field of complex numbers. Let θ be defined by (2), where λ is a linear character on $G(\lambda(\mathrm{id})=1)$. If $x_{1} * \ldots * x_{m}=y_{1} * \ldots * y_{m}$, $m<n$, and if $\left\{x_{1}, \ldots, x_{m}\right\}$ is a linearly independent set, then $\left\langle x_{1}, \ldots, x_{m}\right\rangle=$ $\left\langle y_{1}, \ldots, y_{m}\right\rangle$.
In his book [2, p. 136], Marcus reproves the result in the more general case that F is an arbitrary field of characteristic 0 . He also makes clear that if $m \leqq n$ and $x_{1} * \ldots * x_{m}=0$, then x_{1}, \ldots, x_{m} are linearly dependent.

In this note, we extend the classical skew symmetric theorem still further.
2. Theorem. Let F be an arbitrary field. Let $c: S_{m} \rightarrow F$ be an arbitrary function. Let θ ve defined as in (1). If $x_{1} * \ldots * x_{m}=y_{1} * \ldots * y_{m} \neq 0$, then $\left\langle x_{1}, \ldots, x_{m}\right\rangle=\left\langle y_{1}, \ldots, y_{m}\right\rangle$. Moreover, if c is not identically zero, and if x_{1}, \ldots, x_{m} are linearly independent, then $x_{1} * \ldots * x_{m} \neq 0$.

Proof. We will make use of the fact that the dual space of the space of m-linear functionals on V is a model for $\otimes^{m} V$, in which

$$
x_{1} \otimes \ldots \otimes x_{m}(\phi)=\phi\left(x_{1}, \ldots, x_{m}\right) .
$$

Suppose first that $x_{1} * \ldots * x_{m}=y_{1} * \ldots * y_{m} \neq 0$. Let $W=\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Since $x_{1} * \ldots * x_{m} \neq 0$, there exists an m-linear $\phi: W \times \ldots \times W \rightarrow F$ such that $x_{1} * \ldots * x_{m}(\phi) \neq 0$. Since every m-linear ϕ is a linear combination of products of linear functionals, there exist f_{1}, \ldots, f_{m} in the dual space of W such that

$$
x_{1} * \ldots * x_{m}\left(\prod_{t=1}^{m} f_{t}\right) \neq 0
$$

Now, if $y_{i} \nexists W$, we may extend each f_{t} to $\left\langle W, y_{i}\right\rangle$ by defining $f_{t}\left(y_{i}\right)=0$, $1 \leqq t \leqq m$. Then

$$
\begin{aligned}
0 & \neq x_{1} * \ldots * x_{m}\left(\prod_{t=1}^{m} f_{t}\right) \\
& =y_{1} * \ldots * y_{m}\left(\prod_{t=1}^{m} f_{t}\right) \\
& =\sum_{\sigma \in S_{m}} c\left(\sigma^{-1}\right) \prod_{t=1}^{m} f_{t}\left(y_{\sigma(t)}\right) \\
& =0,
\end{aligned}
$$

since for each σ there is a t such that $\sigma(t)=i$, and $f_{t}\left(y_{i}\right)=0$. This contradiction proves that $\left\langle y_{1}, \ldots, y_{m}\right\rangle \subset\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Clearly the proof is symmetric.

Suppose, now, that x_{1}, \ldots, x_{m} are linearly independent. Then

$$
\left\{x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)}: \sigma \in S_{m}\right\}
$$

is a linearly independent set. Thus,

$$
x_{1} * \ldots * x_{m}=\sum_{\sigma \in S_{m}} c\left(\sigma^{-1}\right) x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)}=0
$$

if and only if $c(\sigma)=0$ for all $\sigma \in S_{m}$.

References

1. H. Boerner, Representations of groups (American Elsevier, 1970).
2. M. Marcus, Finite dimensional multilinear algebra, Part I (Marcel Dekker, 1973).
3. M. Marcus and W. R. Gordon, Rational tensor representations of Hom (V, V) and an extension of an inequality of I. Schur, Can. J. Math. 24 (1972), 686-695.

Instituto de Fisica e Matemática,

 Av. Gama Pinto, 2, Lisbon 4, Portugal
[^0]: Received February 21, 1974.

