EQUALITY OF DECOMPOSABLE SYMMETRIZED TENSORS

RUSSELL MERRIS

Let V be an n-dimensional vector space over the field F. Let $\otimes^m V$ be the mth tensor power of V. If $\sigma \in S_m$, the symmetric group, there exists a linear operator $P(\sigma^{-1})$ on $\otimes^m V$ such that

$$P(\sigma^{-1}) x_1 \otimes \ldots \otimes x_m = x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)},$$

for all $x_1, \ldots, x_m \in V$. (Here, $x_1 \otimes \ldots \otimes x_m$ denotes the decomposable tensor product of the indicated vectors.) If c is any function of S_m taking its values in F, we define

(1) $\theta = \sum_{\sigma \in S_m} c(\sigma) P(\sigma).$

The linear operator θ on $\otimes^m V$ is called a *symmetrizer*. Symmetrizers provide the vehicle for connecting the irreducible representations of S_m with those of the full linear group [1]. In the form

(2)
$$\frac{\lambda(\mathrm{id})}{o(G)} \sum_{\sigma \in G} \lambda(\sigma) P(\sigma),$$

where G is a subgroup of S_m and λ is an irreducible F-character of G, symmetrizers have proved useful in the discovery of inequalities for certain matrix functions (e.g. [3]). In this latter connection, the following questions arise very naturally: Let

$$(3) \quad x_1 * \ldots * x_m = \theta x_1 \otimes \ldots \otimes x_m$$

For which vectors $x_1, \ldots, x_m \in V$, is it the case that $x_1 * \ldots * x_m = 0$? Moreover, when can it happen that $x_1 * \ldots * x_m = y_1 * \ldots * y_m \neq 0$? (Naturally, such information is very important to the study of these *decomposable* symmetrized tensors (3). Surpringly, the answers are not known in general.)

1. Example. If $G = S_m$, and λ is the alternating character in (2), the range of θ is the space of skew symmetric tensors. In this case, $x_1 * \ldots * x_m$ is commonly written $x_1 \wedge \ldots \wedge x_m$. It is a classical result that $x_1 \wedge \ldots \wedge x_m \neq 0$ if (and only if) x_1, \ldots, x_m are linearly independent. Moreover, if $x_1 \wedge \ldots \wedge x_m = y_1 \wedge \ldots \wedge y_m \neq 0$, then $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m \rangle$, i.e., the space spanned by x_1, \ldots, x_m is the same as the space spanned by y_1, \ldots, y_m .

Received February 21, 1974.

1022

Recently, Marcus and Gordon [3, Lemma 1] extended the above result as follows: Let F be the field of complex numbers. Let θ be defined by (2), where λ is a linear character on G (λ (id) = 1). If $x_1 * \ldots * x_m = y_1 * \ldots * y_m$, m < n, and if $\{x_1, \ldots, x_m\}$ is a linearly independent set, then $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m \rangle$.

In his book [2, p. 136], Marcus reproves the result in the more general case that F is an arbitrary field of characteristic 0. He also makes clear that if $m \leq n$ and $x_1 * \ldots * x_m = 0$, then x_1, \ldots, x_m are linearly dependent.

In this note, we extend the classical skew symmetric theorem still further.

2. THEOREM. Let F be an arbitrary field. Let $c: S_m \to F$ be an arbitrary function. Let θ ve defined as in (1). If $x_1 * \ldots * x_m = y_1 * \ldots * y_m \neq 0$, then $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m \rangle$. Moreover, if c is not identically zero, and if x_1, \ldots, x_m are linearly independent, then $x_1 * \ldots * x_m \neq 0$.

Proof. We will make use of the fact that the dual space of the space of *m*-linear functionals on V is a model for $\otimes^m V$, in which

$$x_1 \otimes \ldots \otimes x_m(\phi) = \phi(x_1, \ldots, x_m).$$

Suppose first that $x_1 * \ldots * x_m = y_1 * \ldots * y_m \neq 0$. Let $W = \langle x_1, \ldots, x_m \rangle$. Since $x_1 * \ldots * x_m \neq 0$, there exists an *m*-linear $\phi : W \times \ldots \times W \to F$ such that $x_1 * \ldots * x_m(\phi) \neq 0$. Since every *m*-linear ϕ is a linear combination of products of linear functionals, there exist f_1, \ldots, f_m in the dual space of W such that

$$x_1*\ldots*x_m\left(\prod_{i=1}^m f_i\right)\neq 0.$$

Now, if $y_i \notin W$, we may extend each f_i to $\langle W, y_i \rangle$ by defining $f_i(y_i) = 0$, $1 \leq t \leq m$. Then

$$0 \neq x_1 * \dots * x_m \left(\prod_{t=1}^m f_t \right)$$

= $y_1 * \dots * y_m \left(\prod_{t=1}^m f_t \right)$
= $\sum_{\sigma \in S_m} c(\sigma^{-1}) \prod_{t=1}^m f_t(y_{\sigma(t)})$
= $0,$

since for each σ there is a *t* such that $\sigma(t) = i$, and $f_t(y_i) = 0$. This contradiction proves that $\langle y_1, \ldots, y_m \rangle \subset \langle x_1, \ldots, x_m \rangle$. Clearly the proof is symmetric.

Suppose, now, that x_1, \ldots, x_m are linearly independent. Then

$$\{x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)} : \sigma \in S_m\}$$

is a linearly independent set. Thus,

$$x_1 * \ldots * x_m = \sum_{\sigma \in S_m} c(\sigma^{-1}) x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)} = 0$$

if and only if $c(\sigma) = 0$ for all $\sigma \in S_m$.

References

- 1. H. Boerner, Representations of groups (American Elsevier, 1970).
- 2. M. Marcus, Finite dimensional multilinear algebra, Part I (Marcel Dekker, 1973).
- 3. M. Marcus and W. R. Gordon, Rational tensor representations of Hom (V, V) and an extension of an inequality of I. Schur, Can. J. Math. 24 (1972), 686-695.

Instituto de Fisica e Matemática, Av. Gama Pinto, 2, Lisbon 4, Portugal

1024