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The humble pendulum is often invoked as the archetype of a simple, gravity driven,
oscillator. Under ideal circumstances, the oscillation frequency of the pendulum is
independent of its mass and swing amplitude. However, in most real-world situations,
the dynamics of pendulums is not quite so simple, particularly with additional
interactions between the pendulum and a surrounding fluid. Here we extend the realm
of pendulum studies to include large amplitude oscillations of heavy and buoyant
pendulums in a fluid. We performed experiments with massive and hollow cylindrical
pendulums in water, and constructed a simple model that takes the buoyancy, added
mass, fluid (nonlinear) drag and bearing friction into account. To first order, the model
predicts the oscillation frequencies, peak decelerations and damping rate well. An
interesting effect of the nonlinear drag captured well by the model is that, for heavy
pendulums, the damping time shows a non-monotonic dependence on pendulum mass,
reaching a minimum when the pendulum mass density is nearly twice that of the fluid.
Small deviations from the model’s predictions are seen, particularly in the second and
subsequent maxima of oscillations. Using time-resolved particle image velocimetry
(TR-PIV), we reveal that these deviations likely arise due to the disturbed flow
created by the pendulum at earlier times. The mean wake velocity obtained from PIV
is used to model an extra drag term due to incoming wake flow. The revised model
significantly improves the predictions for the second and subsequent oscillations.

Key words: nonlinear dynamical systems, particle/fluid flow, wakes

1. Introduction
The first known study on pendulums dates back to Galileo Galilei in 1605.

The story goes that Galileo observed the lamplighter pushing one of the swaying
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chandeliers in the Pisa cathedral. Galileo timed the swings with his pulse and
concluded that, although the amplitude decreased, the time of each swing remained
constant. Half a century later this observation inspired Christiaan Huygens to invent
the pendulum clock, which until 1930 has set the standard for accurate timekeeping.
Based on Newton’s laws of motion Huygens could derive that an ideal, frictionless
pendulum has a period T = 2π

√
L/g for small amplitudes, where L is its length,

and g the acceleration due to gravity (Huygens 1986). However, as is well known
to any clockmaker, real pendulums are often far from ideal. Even in vacuum, and
when friction is negligible, one has to take into account the finite amplitude and
mass distribution of the pendulum in order to correctly predict its period. When
a pendulum swings in a fluid such as air or water, additional fluid forces have to
be taken into account. In fact, it was through careful observations of deviations
from ideal pendulum motion that the nature and strength of many of these fluid
forces were brought to light. Concepts like buoyancy, added mass and fluid friction
(viscosity) emerged concurrently with the study of pendulums swinging in different
fluid environments (Stokes 1851).

In recent years there has been a renewed interest in the use of simple pendulums to
probe fluid–structure interactions. Neill, Livelybrooks & Donnelly (2007) conducted
experiments on steel and brass pendulums oscillating in different fluids. Their results
agreed fairly well with the motion predicted by taking the buoyancy and added
mass into account, implying that viscous corrections played only a minor role in the
oscillation frequency. In an extension to this, Bolster, Hershberger & Donnelly (2010)
conducted experiments on a pendulum oscillating in a viscous fluid. In all of the above
studies, the researchers focused on small amplitude vibrations of dense pendulums in
viscous fluids, where the dynamics could be reasonably modelled using the ideal flow
approximation, with the inclusion of a linear drag in the equation of pendulum motion.
Many studies have focused on the flow disturbances induced by an oscillating body
in a fluid. For one-dimensional oscillations at low to moderate Reynolds numbers, the
effect of a body’s oscillation on the wake around it has been studied in some detail
(Tatsuno & Bearman 1990; Tatsuno & Karasudani 1993). Various types of wakes have
been quantified depending on the body oscillation frequency, velocity, fluid viscosity
and the characteristic length scale of the problem. More recent studies have addressed
the influence of flow disturbances on pendula stability. Obligado, Puy & Bourgoin
(2013) found that the equilibrium of a pendulum facing an incoming flow displays
both bi-stability and hysteresis. Further, flow disturbances due to incoming turbulence
can modify the stability map by changing the drag acting on the pendulum.

Here we extend the scope of pendulum–fluid interaction studies to the regime of
large amplitude motions of heavy and buoyant cylindrical pendulums in a dense fluid.
We have performed controlled experiments in which we simultaneously track the
motion of the pendulum and the flow field around it, in a regime where the Reynolds
number (based on the cylinder diameter) Re∼ O(104). The control parameter in our
experiment is the cylinder to fluid density ratio m∗ ≡ ρp/ρf . The ratio of the cylinder
diameter to the pendulum length D/L, the fluid properties (ρf and ν) and the release
angle (θ0 = 90◦) are fixed. We vary m∗, covering both buoyant (m∗ < 1) and heavy
(m∗> 1) pendulums. We build on the knowledge of buoyancy, added mass and inertial
drag to construct a basic model for the pendulum motion, which we compare in detail
to the experiments. We find that a reduced added mass as compared to the ideal flow
case leads to better agreement between experiment and model predictions. We use
insights from particle image velocimetry (PIV) measurements to model a higher-order
fluid–structure interaction, by which initially induced fluid motions affect the force
on the pendulum at later instants.
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FIGURE 1. (Colour online) Schematics of the experimental set-up for (a) heavy and
(b) buoyant pendulums. (c) Cylinder mass was varied by inserting brass disks into the
hollow cylinder. (d) Experimental set-up used for performing particle image velocimetry
(PIV) measurements.

2. Experiments

The experiments were conducted using a cylindrical pendulum, with length L =
203 mm, diameter D = 32 mm and span W = 300 mm. This resulted in a cylinder
span to diameter ratio W/D ≈ 10. The cylinder attached to the pendulum arm was
constructed from polyvinyl chloride (PVC) pipe sealed with two plastic caps. Masses
could be inserted inside the pipe (see figure 1c), which let us study both heavy and
buoyant pendulums in water.

The pendulum was placed in a water tank (800 mm × 400 mm × 500 mm), and
pivoted on a metal rod (radius R = 3 mm), which was fixed to the walls using
suction cups. The wire connecting the cylinder to the pivot axis had a diameter of
1.2 mm. This was thick enough to not bend during oscillations, while also providing
low resistance to the flow. The cylinder ends remained at least 1.3D away from
the side walls. The lowest position of the heavy cylinder during its motion was 5D
above the base of the water tank, and similarly, the highest position of the buoyant
cylinder during its motion was 5D below the water level. Schematics of the basic
experimental arrangement for the heavy and buoyant cases are shown in figures 1(a)
and 1(b), respectively.

The release mechanism consisted of a semicircular cavity with two curved metal
wire segments. The cylinder was held against the semicircular cavity, and locked in
place by the metal wires. The release was done by pulling the wire, which ensured a
gentle release of the pendulum without creating disturbances in the water. By inverting
these parts, the buoyant pendulums could also be released without disturbing the water.
The release position was at a 90◦ angle from the vertical. A waiting interval of 15 min
ensured that any residual flow from a previous run had damped out.
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A high-speed camera (Photron Fastcam 1024PCI) was used to record the pendulum
motion. The cylinder movement was detected using a circle detection method (Mathai
et al. 2015). The standard deviation of error in centre detection was approximately
0.27 mm for all cases, i.e. <1 % of the pendulum diameter. Additionally, we
performed time-resolved particle image velocimetry (TR-PIV) to measure the flow
field surrounding the pendulum. The flow was seeded with fluorescent polystyrene
tracer particles (diameter ≈125 µm). The seeding particle size was small enough
to have both a small Stokes number and a small Stokes/Froude ratio (Mathai et al.
2016). A high-speed Laser (Litron LDY-303HE) along with cylindrical optics was
used to create a light sheet through the mid-section of the cylinder. Mirrors were
placed as shown in figure 1(d), which ensured that the shadows cast by the cylinder
were removed by reflected light. This enabled us to have well-lit tracer particles all
around the cylinder. A double-frame camera (Imager sCMOS) was used at a frame
rate of 25 frames per second. The particle seeding density for PIV was such that
an interrogation window contained around 6 particles, which is considered good for
accuracy. The inter-pulse time 1t was varied from 1 to 3 ms. 1t was optimised by
ensuring that most of the tracer particles remained within the interrogation window,
with a maximum movement ≈1/4th of the window width. The PIV analysis was
done with two stage processing and 50 % overlap using LaVision software.

3. Model equation of motion
The equation of motion of a pendulum oscillating in a fluid can be expressed by

Newton’s law in the angular form:

I
d2θ

dt2
=

∑
τ . (3.1)

Here, θ is the angular position of the pendulum with respect to the equilibrium
position, I the moment of inertia of the system and τ the net torque acting on the
system (see figure 2a). The pendulum mass and moment of inertia come mostly from
the cylinder at a distance L from the rotation axis. Since 2L/D > 10, the cylinder
moment of inertia about its mass centre Icm = mD2/8 is negligible compared to the
pendulum moment of inertia mL2. The effect of the pendulum accelerating through
the fluid is modelled by means of an added mass ma. Therefore, the effective mass
of the system can be written as meff =m+ma. With these approximations, we model
the system as a point mass with a moment of inertia: Ip =meff L2.

The torques acting on the system can be written as
∑
τ =

∑
r × F, where F are

the individual forces, and r the corresponding arm lengths. The forces acting on the
system are gravity Fg ≡ ρpVg, buoyancy FB ≡ ρfVg, fluid drag FD and a bearing
friction Ff ≈µf FN (see figure 2a). Here, ρp and ρf are the particle and fluid densities,
respectively, V is the cylinder volume, µf is the friction coefficient and FN ≈ (FB −

Fg) cos θ is the normal force acting at the bearing. The tension due to the centrifugal
force is negligible. The Galileo number Ga ≡

√
gD3|m∗ − 1|/ν. The velocity scale

in Ga is a gravitational velocity vg =
√

gD|1−m∗|. The Reynolds number is defined
as Re = vmaxD/ν, where vmax is the measured maximum velocity of the cylinder
in the first swing. We note that Ga ∼ O(103–104) gives a predictive estimate of
the Re range in the experiment (see table 1). The drag force may be written as
FD = (1/2)ρf ApCDv

2
p , where CD is the drag coefficient, Ap is the projected area of

the cylinder and vp ≡ Ldθ/dt is the instantaneous cylinder velocity (Batchelor 2000).
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FIGURE 2. (Colour online) (a) Schematic of the cylindrical pendulum at an instant when it
swings to the right. Blue arrows indicate the forces on the pendulum: buoyancy FB, weight
Fg, drag FD, normal force due to the pendulum arm FN and a bearing friction Ff . The
dashed arrow and vp denote the instantaneous velocity of the cylinder. (b) Angular position
(θ ) versus time for m∗ = 4.98 and m∗ = 1.16 cases. (p1) and (p2) – peak deceleration
points.

Heavy Buoyant
m∗ 4.98 4.15 3.65 2.82 2.20 1.79 1.37 0.95 0.75 0.54 0.33
Ga× 10−3 35.8 31.8 29.2 24.2 19.6 15.8 10.9 3.8 9.0 12.2 14.6
Re× 10−3 33.7 30.9 28.8 24.7 20.6 16.9 11.9 4.2 10.0 13.7 16.6

TABLE 1. Ga and Re for a selected number of mass-density ratios m∗ used in the
experiment.

By defining m∗ ≡ ρp/ρf and t̃ ≡ t
√

g/L, the equation of motion can be written in
non-dimensional form as

m∗eff
d2θ

dt̃2
=−k sin θ − c

∣∣∣∣dθdt̃

∣∣∣∣ dθ
dt̃
− h|cos θ | sgn

(
dθ
dt̃

)
, (3.2)

where m∗eff = (m
∗
+m∗a); k= |m∗ − 1|; c= (1/2)CDApL/V ; and h=µf |m∗ − 1|R/L.

In order to solve (3.2), m∗a, CD and µf have to be set. It is well known that added
mass coefficients m∗a for oscillating cylinders depend on a variety of parameters,
including the frequency of oscillation, distance to boundaries, free surfaces, etc. Most
studies have focused on the case of cylinders near a free surface and for small
oscillations (Dong 1978; Tatsuno & Bearman 1990; Konstantinidis 2013; Koo & Kim
2015; Mathai et al. 2017, 2018). However, in complex situations with relative motions,
curved trajectories and unsteady three-dimensional wakes with flow separation, m∗a can
deviate significantly from the two-dimensional potential flow added mass coefficient.
Moreover, the fact that the cylinder span is finite will induce a three-dimensional
(3-D) flow near the cylinder ends, allowing some fluid to move to the sides. Therefore
the cylinder motion is expected to accelerate less fluid in the 3-D case as compared
to 2-D potential flow. Nevertheless, to begin with, we choose the 2-D potential flow
added mass coefficient of an infinite cylinder, m∗a = 1.0.

The drag coefficient range in our experiments could be estimated from the range of
Re (see table 1). We begin with a simplified mean drag coefficient CD ≈ 1.2 based
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FIGURE 3. (Colour online) (a) Contour plot of θ versus time t and mass-density ratio
m∗. (b) Phase portraits from numerical solution of (3.2) showing the evolution of angular
velocity ωpend versus angular position θ for m∗= 0.02 and m∗= 1.98 cases. Note that these
cases were chosen with identical driving: |FB−Fg|. Phase portraits obtained for available
experimental data (not shown here) show similar behaviour.

on the Reynolds number range in our experiments (Lienhard 1966). Note that the
influence of Reynolds number and vortex shedding on CD are not included at this
stage, and will be discussed later. µf is expected to lie in the range [0.2–0.3] for
lubricated steel-on-steel contact. We estimated µf ≈ 0.2, based on tests performed
using very heavy pendulums in air, since in these cases the drag and added mass
forces were at a minimum.

Figure 2(b) shows θ versus t predicted by the model for heavy pendulums with
m∗ = 1.16 and m∗ = 4.98. Clearly, the amplitude decay and oscillation frequency
depend on the mass density ratio. With this in mind, we explore the predictions for
a range of m∗, covering heavy and buoyant underwater pendulums.

4. Results
4.1. Model predictions

We first present some typical pendulum motions predicted by the model equation of
motion. In figure 3(a), we show a contour plot of the angular position θ versus time
t for continuous variation of m∗. We notice a clear asymmetry about m∗ = 1 line,
which separates the heavy cases from the buoyant cases. For instance, the oscillation
frequency is slightly higher for a buoyant cylinder as compared to a heavy cylinder
that has identical driving |FB − Fg|. On the buoyant side (m∗ < 1), the oscillations
damp faster with decreasing m∗, owing to the decreasing inertia. Other aspects of the
pendulum motion are altered in going from m∗> 1 to m∗< 1. In figure 3(b), we show
the phase portraits of two cases, one buoyant (m∗= 0.02) and other heavy (m∗= 1.98),
with identical driving |FB − Fg|. The low mass-density ratio of m∗ = 0.02 chosen
here corresponds to a cylinder made from a very light material such as expanded
polystyrene (Mathai et al. 2015). The buoyant pendulum with (m∗= 0.02) accelerates
quickly, reaching a high angular speed in a short period of time. At the same time,
owing to its low inertia, which in this case comes entirely from the fluid (or m∗a), the
motion damps out quickly. Therefore, the peak angular displacement at first minimum
θ0 is lower for the buoyant pendulum as compared to the heavy pendulum (m∗= 1.98),
while the peak angular velocity reached ωpeak is higher for the buoyant cylinder.
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FIGURE 4. (Colour online) (a) Normalised oscillation frequency f ∗ from experiment
and model (3.2). Here, f is averaged over the first four oscillations, and normalised by
fsp = (1/2π)

√
g/L. For the full equation of motion, using potential flow added mass

m∗a = 1.0 leads to an underprediction of f ∗. For a reduced m∗a = 0.53, the predictions
of (3.2) match well with the experiments. Remarkably, an undamped model for a small
amplitude simple pendulum, and with the same m∗a= 0.53, reproduces the curve, providing
evidence that the nonlinear drag plays only a weak role in the oscillation frequency f ∗.
The green curve shows that an undamped model with large initial amplitude θ0 = π/2
underpredicts the oscillation frequency. (b) Peak pendulum deceleration, amax versus m∗.

4.2. Model versus experiment
We now present a one-to-one comparison between the model and experiment. In
figure 4(a), we show the normalised frequency of oscillation. As expected, the
frequency of oscillation has a clear dependence on the mass ratio m∗. When the
pendulum mass density is close to the fluid density (or m∗ → 1), the frequencies
are low. For heavy cylinders, the frequency increases with m∗, and asymptotically
approaches the frequency of a large amplitude simple pendulum f ∗π/2. The predictions
of the model (3.2) are given by the blue and red dashed curves. The blue curve
corresponds to the prediction when the potential flow added mass m∗a = 1.0 is used.
This slightly underpredicts the oscillation frequency. A best fit to the data is obtained
for m∗a = 0.53. Thus, for CD = 1.2, m∗a = 0.53 and µf = 0.2, the frequency predictions
of the model are in good agreement with the experiments for both buoyant and heavy
cylinders.

It is interesting to compare the predictions of the model (3.2) when the drag
and the bearing friction are ignored altogether. The solid green curve in figure 4(a)
shows the frequency prediction for large amplitude oscillations when the potential
flow added mass alone is accounted for. This underpredicts the oscillation frequency.
However, when the same undamped model is used for small amplitude oscillations,
the predictions improve significantly (see solid blue curve). This is because the
nonlinear drag is highly effective in quickly reducing the oscillation amplitudes to
modest values. A further improvement is obtained upon using a reduced added mass
of m∗a = 0.53. Neill et al. (2007) had noted that linear drag had only a small effect
on the oscillation frequency. Here we found that the same holds for the nonlinear
drag term.

The frequency of oscillation represents an averaged quantity for the pendulum
motion considered here. A more sensitive quantity would be the peak deceleration amax
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of the oscillating pendulum, which signifies the instant when the largest force acts
on the pendulum. Following the initial instants of release of the cylinder, a peak
in the deceleration is experienced when the cylinder reaches the end of the first
swing, i.e. points such as (p1) and (p2) in figure 2(b). In figure 4(b), we compare the
experimentally measured peak deceleration with the predictions of the model (3.2).
The peak deceleration changes significantly with m∗, and the model predictions are
in reasonable agreement with the experimental measurements. Interestingly, the value
of the added mass coefficient has only a minor role in amax. Instead, the fluid drag
has a leading role in the peak deceleration of the pendulum. Thus, the frequency
curve (figure 4a) provides a probe that singles out the added mass effect, while the
deceleration curve (figure 4b) probes mainly the nonlinear drag’s effect.

Figure 3(a) also provides insight into an interesting aspect of the oscillation decay
for heavy pendulums. For m∗> 1 cases, the oscillations decay quicker with increasing
m∗. This occurred despite the higher inertia of heavier pendulums, and seems counter-
intuitive based on our common knowledge of pendulums oscillating in air. However,
this trend cannot continue to large m∗, since in the limit of very large inertia (m∗� 1)
the decay rate should reduce with m∗. This implies the existence of an optimal heavy
pendulum (m∗opt> 1) for which one observes the quickest damping. We will provide an
approximate model to predict m∗opt, corresponding to the quickest damped pendulum.

4.3. Amplitude decay
The initial damping is determined mainly by the nonlinear drag; therefore, we ignore
the bearing friction force in the equation of motion (3.2). This yields: m∗eff d

2θ/dt̃2
=

−k sin θ − c|dθ/dt̃|dθ/dt̃. In the absence of fluid drag (c = 0), the solution is given
by θ(t̃) = θ0 cos ω0 t̃, with ω0 =

√
k/m∗eff , and θ0 the initial angle. If the damping

constant c is small such that the pendulum amplitude is approximately constant over
one period, we can assume that the solution is still approximately the same, but with
a maximum amplitude θm(t̃) which slowly decays in time. Consequently, the energy
in the oscillations evolves as E(t̃)≈ (1/2)kθm(t̃)2. The overall decay rate of the energy
can be equated to the average work done by the drag force over one period T=2π/ω0:

dE
dt̃
=
ω0

2π

∫ 2π/ω0

0
FD(t̃)θ̇(t̃) dt̃. (4.1)

Using E(t̃) ≈ (1/2)kθm(t̃)2 and FD = −cθ̇ 2, we obtain a differential equation for
the slowly varying envelope θm(t) of the form: dθm/dt̃ ≈−B(m∗)θ 2

m, where B(m∗)=
(4c/3π)

√
|m∗ − 1|/(m∗ +m∗a)3. This yields the time to decay to a certain fraction

(1− α) of the initial amplitude θ0 as τ̃(1−α) = (α/(1− α))/θ0B(m∗).
For m∗ > 1, and using the best fit m∗a = 0.53, B has a maxima at m∗opt ≈ 1.75. In

other words, for a given θ0 the damping is the quickest when the pendulum is nearly
twice the density of the fluid. Alternately, one could plot the amplitude envelope θm
after a dimensionless time τ̃ref ≡ τref /

√
L/g for different m∗. This yields an expression

θm = 1/B(m)τ̃ref + (1/θ0). In figure 5(a,b) we show comparisons between the model
and experiment for τ̃60 % and θm, respectively, versus mass-density ratio m∗. The black
symbols denote the model predictions by solving the full equation of motion (3.2).
The black curve shows the prediction by the approximate model described above. Note
that we first fit an envelope to the amplitude decay, using the maxima (peaks) of θ
versus t curve, i.e. a curve that grazes through the maxima of the amplitude curve.
The optimal damping at m∗opt ≈ 1.75 is clearly visible in both the simulations and the
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FIGURE 5. (Colour online) (a) Time to decay 60 % of the initial amplitude τ̃60 % versus
mass-density ratio m∗. (b) Amplitude envelope θm versus m∗ after a time τref = 3π

√
L/g.

For the heavy pendulums, an optimal m∗ and optimal f ∗ are visible in both experiment
and simulations. (c) τ̃60 % versus normalised oscillation frequency f ∗ = f /fsp, where fsp =

(1/2π)
√

g/L. (d) θm versus f ∗ at τref = 3π
√

L/g. Note that (c,d) show heavy cases only.
The basic model overpredicts the decay time and amplitude envelope for all cases.

reduced model. The blue data points are from experiment. A similar behaviour with
a minima at an optimal m∗ is visible in the experiments. At the same time we note
that both τ̃60 % and θm are lower in the experiment. Further, the optimal m∗ value in
experiment is slightly lower as compared to the model predictions. For very heavy
pendulums (m∗� 1), the damping B∝ 1/m∗, which leads to the linear relation τ̃60 %∝

m∗. This is also the commonly encountered situation for pendulums oscillating in air.
The above discussed non-monotonic damping behaviour may be understood as

the interplay between the higher speeds achieved by the heavier pendulums, and
the nonlinear growth of the drag in proportion to the square of the speed. The
phenomenon observed here may hold some analogies to the added damping for
oscillating cylinders (Dong 1978), which is usually expressed in terms of the
oscillation frequency. Therefore, in figure 5(c,d) we plot τ̃60 % and θm, respectively,
as a function of the normalised oscillation frequency f ∗. The θm plot shows a clear
minima at f ∗ ≈ 0.6. Similar to the m∗ plots (figure 5a,b), the model overpredicts
both τ̃60 % and θm, which occurs despite using the optimal added mass coefficient
m∗a = 0.53 determined earlier. Clearly, the origin of these must lie in the inadequacy
of the simplified drag model used (CD = 1.2). Nevertheless, the constant CD case
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can be viewed as the most basic model, which captures many essential features of
the damping. Using a higher value of CD seems the logical choice. In the following
we will show that accounting for a few phenomenological effects can improve the
predictions. We will introduce these modifications to the model and equation of
motion.

4.4. Drag corrections
Firstly, the influence of the instantaneous Re on CD can be taken into account. This
leads to a faster decay at small amplitudes (or small vp), since CD is higher at lower
Reynolds numbers (Hoerner 1965). Secondly, the forces due to vortex shedding behind
the cylinder could be modelled into the drag term. The drag coefficient in the presence
of vortex shedding may be approximated as CDvs = CD(1 + k sin ωvst), where k ∼
0.1 (Govardhan & Williamson 2000), and ωvs = 2πStvp/D is the vortex shedding
frequency. Here St is the Strouhal number (Govardhan & Williamson 2005), vp the
cylinder velocity and D the cylinder diameter. This leads to a marginal reduction in
the predicted peaks of the oscillations.

Figure 6(a,b) compares the experiment and model predictions for the angular
position θ versus time t for a heavy pendulum with m∗ = 4.98. The oscillation
frequency matches well between the experiment and the model. However, deviations
are seen in the second peak of oscillation, marked as (r) in figure 6(b). The deviation
persists for all of the subsequent oscillations. This suggests that the major factor
causing the deviations between the model and experiment is still missing in the
equation of motion.

4.5. PIV and wake corrections
To understand the origin of the deviation in the second and subsequent peaks of the
oscillations, we employed high-speed PIV to quantify the flow around the cylinder
during its motion. Figure 6(c) shows the normalised velocity and vorticity fields at a
time instant when the cylinder is moving towards the right during its first swing (point
(p) in figure 6a). The wake behind the cylinder is clearly visible, while the flow ahead
of the cylinder has negligible vorticity i.e. nearly irrotational (figure 6c (right)). The
wake is unsteady and is expected to induce unsteady forces on the cylinder during its
swing.

One can expect that the mean drag on the cylinder at this instant is fairly predicted
by the nonlinear drag term FD in the equation of motion (3.2). Consequently, the first
swing of the pendulum is captured well by our model. Next we focus at a later instant
in time (point (q) in figure 6a,b), when the cylinder has just completed its first swing
and is returning to the left. Figure 6(d) shows the velocity and vorticity fields at this
instant. In this case, however, the cylinder is moving towards a disturbed background
flow. The horizontal velocity plot (see left-side plot of figure 6d) indicates that the
cylinder faces an incoming flow to the right. The effect of this disturbed flow is not
taken into account in our model. Therefore, as the cylinder travels further through the
disturbed flow, it experiences a greater resistance than what is predicted by the drag
term in our model. Figure 6(e) shows the flow field at the instant when the cylinder
completed its reverse swing (point (r) in figure 6a,b). By this time, the original wake
in front of the cylinder appears to have dissipated.

One of the approximations of our model is that the cylinder velocity vp nearly
equals the relative velocity vrel between the cylinder and the flow. However, the
PIV snapshots reveal a strong mean flow after the first swing of the pendulum. This
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FIGURE 6. (Colour online) (a) Angular position θ versus time t for m∗ = 4.98. The
red curve shows the model predictions. (b) Shows zoom-in of the second swing. The
model overpredicts the maximum amplitude (point marked as (r) in a,b). (c–e) Normalised
horizontal velocity Ux/v0 (left) and normalised vorticity ω/(v0/D) (right) at the three
instants marked in (a) as (p), (q) and (r), respectively. Here, v0 is the measured maximum
speed of the pendulum.

disturbed flow in the wake could result in vrel deviating significantly from vp, which is
the likely reason for the overprediction of the maxima of the second and subsequent
oscillations. We look at the mean fluid velocity Uf at different angular positions in
the cylinder wake. Figure 7(a) shows details of the 2D × 2D window at a selected
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FIGURE 7. (Colour online) (a) Schematic showing the estimation of mean wake velocity
Uf from a sample PIV flow field. A sample video of the PIV flow field is provided
as supplemental material available at https://doi.org/10.1017/jfm.2018.867. Uf is computed
inside a 2D× 2D window located at a selected angular position θsel. (b) Decay of wake
velocity Uf in time at various angular positions θsel. tpass is the time when the cylinder
passed θsel. The initial oscillation of the wake shows clear indication of vortex shedding.
However, after this phase the wake decay is smooth. Inset shows the same plot on log–log
scale. While at short times Uf shows oscillations, the long-time decay shows a power law
decay.

angular position θsel used in the estimation of Uf . The evolution of Uf in time t− tpass

is shown in figure 7(b). Here, tpass is the time when the cylinder passed θsel. The
wake decay shows some interesting characteristics. Initially, Uf oscillates, which is a
clear indication of vortex shedding in the cylinder wake during the initial moments
after the cylinder has passed θsel. We also see variations in the peak for different
angular positions θsel. This part of the curve is highly unsteady and difficult to model.
However, later in time Uf decays in a gradual and monotonic way. The inset to the
figure shows the same plot on log–log scale. The long-time decay appears to follow
a power law decay.

Several studies have addressed the decay of wakes for rising and falling particles
(Wu & Faeth 1993; Bagchi & Balachandar 2004). These revealed many aspects
of the temporal and spatial decays of wakes behind spheres in quiescent fluids,
and in turbulent flows. Alméras et al. (2017) disentangled the wake decay behind
rising bubbles into near wake and far fields, with their characteristic decay rates.
The wake decay observed in figure 7 also represents the combined effect of
the local decay of the wake and the advection of the wake with a velocity Uf ,
i.e. dUf /dt = (∂Uf /∂t) + (Uf /L)(∂Uf /∂θ). These terms can be very difficult to
disentangle for the wide range of m∗ (or Re) in our experiments. Alternatively, one
can look at the wake velocity at locations just upstream of the cylinder during its
return swing. Figure 8(a) shows the normalised wake velocity Ũf as a function of
normalised angular position θ∗ for four different mass ratios. Here Uf is normalised
by the pendulum speed at equilibrium position of each m∗ case, thus representing
a characteristic speed for that m∗. For the heavier pendulums, vp0 is comparable to
the gravitational velocity scale vg, but it deviates as m∗ is reduced. Similarly, the
maximum angle reached by the pendulum at the end of its first swing θmax (point
(q) in figure 6a,b) is used in the normalisation for θ . For clarity, we also show the
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FIGURE 8. (Colour online) (a) Decay of the normalised wake velocity Ũf versus
normalised angular position θ∗. The wake velocity is normalised by the pendulum velocity
at equilibrium position during the first swing vp0, and the angular position is normalised
by the peak angular position at the end of the first swing θmax. Both vp0 and θmax can be
found by solving (3.2), and do not require any input from PIV. The normalisation leads
to a reasonable collapse of the data despite the wide variation in Reynolds number from
Re ∼ 4000 (for m∗ = 1.16) to Re ∼ 34 000 (for m∗ = 4.98). Note that the arrow of time
is pointing opposite to the arrow of θ , as indicated in (a). (b) Error (%) in the peak
amplitude after including the history force due to wake flow. The coloured bands show
the error ranges for the original and revised model. The dashed lines show the mean errors
for the two models, which decreases from 14.8 % (for the original model) to 3.8 % (for
the revised model).

arrow of increasing time, indicating that the return swing starts at θ∗ → 1. With
these normalisations the data show a reasonable collapse. It is remarkable that the
data collapse despite the large variation in m∗: [1.15, 4.98], which corresponds to a
Reynolds number variation of almost a decade (Re ∈ [4000, 34 000]). At the initial
instant, i.e. when θ∗→ 1, the cylinder sees a large incoming flow velocity. As the
pendulum swings back to θ∗ ∼ 0, the wake velocity has almost completely decayed.
Beyond this we observe a surprising increase in the incoming flow velocity. This
increase arises from the cylinder wake during the first swing, where the pendulum
had its highest swing velocity. Since the cylinder velocity at this position was large,
the wake has not decayed completely.

We obtain an approximate fit for the variation of Ũf versus θ∗ (see figure 8a). With
the wake flow modelled using Ũf (θ

∗) shown above, we can include the effect of the
incoming flow through a modified drag term: FDf ≈ (1/2)ρf ApCD(vp − Uf )

2, where
Uf = Ũfvp0. This can be implemented as a modified torque that replaces the original
drag term in (3.2). The modified equation of motion reads:

m∗eff
d2θ

dt̃2
=−k sin θ − c

∣∣∣∣dθrel

dt̃

∣∣∣∣ dθrel

dt̃
− h|cos θ |sgn

(
dθ
dt̃

)
, (4.2)

where the relative angular velocity dθrel/dt̃= (vp −Uf )/
√

Lg. Note that (4.2) requires
no new input parameters, and works for the full range of Reynolds number in our
experiments, i.e. Re ∈ [4000, 34 000]. The improvements in the predictions of the
amplitude decay are presented in figure 8(b), which shows the error in the predicted
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amplitude of the second peak of oscillation for all mass ratios (m∗ > 1) studied. The
predictions of the revised model are shown along with those of the original model.
Accounting for the wake flow results in significant improvement in the second peak
for all m∗ cases. The mean error reduces from ∼14.8 to 3.8 % after including the
influence of the wake flow into the equation of motion. These results demonstrate the
importance of fluid–structure coupling for pendulums oscillating at large amplitudes
in viscous fluids.

5. Conclusions and discussion
In this work, we have studied the large amplitude oscillations of heavy and buoyant

cylindrical pendulums in water. The oscillation frequency and peak deceleration of the
pendulum depend on the mass-density ratio m∗. Accounting for buoyancy and added
mass alone, as done in previous investigations (Neill et al. 2007), does not provide
a complete picture of the dynamics. We have developed a basic theoretical model,
which accounts for the nonlinear drag force and the bearing friction in addition to
the buoyancy and the added mass. With the inclusion of these terms, the model
predictions are in reasonable agreement with the experimental observations for a
wide range of mass ratios. The added mass coefficient in experiment is found to be
m∗a=0.53, i.e. lower that the two-dimensional (2-D) potential flow value for a cylinder.
A reduced m∗a as compared to the 2-D potential flow added mass can be expected,
given that the flow is viscous and three-dimensional, and also due to the finite span
of the pendulum. This result is consistent with existing literature on oscillating bodies
in viscous fluids (Dong 1978; Konstantinidis 2013; Koo & Kim 2015).

The theoretical model presented here provides fair predictions of the oscillation
frequency and peak decelerations for a wide range of m∗. However, the model
overpredicts the peak oscillation amplitudes for the second and subsequent oscillations.
Introducing a Reynolds number dependent drag, along with vortex shedding forces,
can provide marginal improvements to the model predictions. While modelling CD
as a function of Re improves the later oscillations, the vortex shedding term mainly
influences the first oscillation.

Particle image velocimetry (PIV) measurements have revealed that the major factor
causing the deviations between experiment and the simplified model is the disturbed
flow surrounding the cylinder, which was not accounted for in the original model. We
have used insights from PIV measurements to obtain a simple model for the incoming
wake flow for a wide range of mass ratios. With this history force modelled, the
revised model predictions are significantly improved; the mean error reducing from
14.8 to 3.8 %. The predictions are also improved for other mass ratios for which PIV
experiments were not performed.

Even with the wake history force included, the current model is still quite basic.
In reality, the dynamics is highly nonlinear, with changes in direction, curvilinear
trajectories and wide variations in instantaneous Re. Under such conditions, exact
analytical expressions for the drag, added mass and history forces are not available.
Fully resolved direct numerical simulations (immersed boundary (Mittal & Iaccarino
2005), or Physalis (Naso & Prosperetti 2010)) can provide better insights into the
flow-induced forces. On a different note, the present experiments have shown the
importance of fluid drag for a bluff body oscillating in a fluid. An interesting
extension to the study would be to use a more streamlined body, for which the
nonlinear drag would be less dominant. In the absence of major flow separations, we
can expect the frequency and dynamics to conform slightly better with a potential
flow based added mass.
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