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Abstract

We compute the center of the ring of PD differential operators on a smooth variety over
Z/pnZ, confirming a conjecture of Kaledin (private communication). More generally,
given an associative algebra A0 over Zp and its flat deformation An over Z/pn+1Z, we
prove that under a certain non-degeneracy condition, the center of An is isomorphic to
the ring of length-(n+ 1) Witt vectors over the center of A0.

1. Introduction

1.1 Let Xn be a smooth scheme over the spectrum Sn of the ring of length-(n+ 1) Witt vectors
Wn+1(k) over a perfect field k of characteristic p, let X0 be its special fiber over k, and let
DXn =DXn/Sn

be the sheaf of PD differential operators (see [BO78]) on Xn. We prove in
Theorem 3 that the center Z(DXn) of DXn is canonically isomorphic to the ring of Witt vectors
Wn+1(S·TX0) over the symmetric algebra of the tangent sheaf of X0. For n= 0 we recover the
classical isomorphism (see, e.g., [BMR08])

Z(DX0)' S·TX0 (1.1)

given by the p-curvature map. The general result was conjectured by Kaledin (private
communication). For p 6= 2, he even proposed a construction of the map

Wn+1(S·TX0)→ Z(DXn).

1.2 In fact, we prove a more general result. Let An be a flat associative algebra over Wn+1(k),
where n > 0. Set

Ai =An ⊗Wn+1(k) Wi+1(k) for 06 i6 n,

and let Z(Ai) be the center of Ai. The first-order deformation A1 yields a natural biderivation
on Z(A0) (see § 2.1, formula (2.2)),

{ , } : Z(A0)⊗k Z(A0)→ Z(A0).

We shall say that the deformation An of A0 is non-degenerate if Spec Z(A0) is smooth over k
and the biderivation { , } is associated with a non-degenerate bivector field, µ ∈

∧2 TZ(A0), on
Spec Z(A0).

If z is an element of Z(A0) and z̃ ∈An is a lifting of z, then for every 06 i6 n the element
piz̃p

n−i ∈An is central and does not depend on the choice of z̃. We prove in Theorem 1 that
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for p 6= 2, the map

φn :Wn+1(Z(A0))→ Z(An) (1.2)

defined by the formula

φn((z0, z1, . . . , zn)) =
n∑
i=0

piz̃p
n−i

i (1.3)

is a homomorphism of rings, and if the deformation An of A0 is non-degenerate, then φn is an
isomorphism. Note that the left-hand side of (1.2) depends only on the algebra A0 and not on
the deformation An.

1.3 For p= 2, the map φn given by formula (1.3) is neither additive nor multiplicative1 and,
in fact, even if the deformation An is non-degenerate, Zn need not be isomorphic to Wn+1(Z0)
as an abstract ring (see Remark 3.4). However, if An is non-degenerate and, in addition, the
differential 2-form ω = µ−1 ∈ Ω2

Z(A0) associated with { , } is exact, i.e. ω = dη, then we can correct
our map (1.3) as follows. The Poisson algebra Z(A0) has a restricted structure in the sense of
Bezrukavnikov and Kaledin [BK08]: if z ∈ Z(A0) and tz is the corresponding Hamiltonian vector
field on Spec Z(A0) i.e. dz = itzω, we set

z[p] = Lp−1
tz itzη − it[p]

z
η ∈ Z(A0), (1.4)

where t[p]z ∈ TZ(A0) is the pth power in the restricted Lie algebra of vector fields and Ltz is the
Lie derivative. For p= 2 we define

φn((z0, z1, . . . , zn−1)) =
n−1∑
i=0

2i
(
z̃2
i + 2z̃[2]

i

)2n−i−1

+ 2nz̃n. (1.5)

We prove in Theorem 2 that the map φn :Wn+1(Z(A0))→ Z(An) given by the above formula is
an isomorphism of rings.

1.4 According to an observation of Belov-Kanel and Kontsevich [BK05], for every smooth
scheme Xn over Sn, the bivector field on Z(DX0)' S·TX0 induced by the deformation Xn

equals, up to sign, the bivector field on S·TX0 induced by the canonical symplectic structure
on the cotangent bundle T∗X0

. In particular, the former bivector field is non-degenerate and the
associated differential form has a canonical primitive η ∈ Ω1

T∗X0

. Thus, as a corollary of the above
results, we find a canonical isomorphism of sheaves of rings

φn :Wn+1(S·TX0)' Z(DXn). (1.6)

2. Main result: odd characteristic case

2.1 Let Rn be a commutative algebra flat over Z/pn+1Z, with n > 0. For 06m6 n we set

Rm =Rn ⊗Z/pn+1Z Z/pm+1Z.

By a level-n deformation of a flat associative R0-algebra A0 we mean a flat associative
Rn-algebra An together with an isomorphism An ⊗Rn R0

∼=A0. Given such An, we denote by Am

1 We are grateful to Pierre Berthelot for pointing out this problem.
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Differential operators on a smooth variety over Z/pnZ

the corresponding algebra over Rm. We will write

Am
r−−→Am−1, r(x) = x mod pm

for the reduction homomorphism. The preimage of x ∈ pAm ⊂Am under the isomorphism

Am−1
p−−→ pAm

is denoted by (1/p)x. We will write Zm = Z(Am) for the center of Am. The following lemma is
straightforward.

Lemma 2.1. Let x ∈ Zi and y ∈ Zj , where 06 i6 j 6 n, and let x̃, ỹ ∈An be liftings of x and
y, respectively. Then:

(1) [x̃, ỹ ]≡ 0 mod pj+1;

(2) [x̃, ỹ ] mod pi+j+2 ∈ Zi+j+1;

(3) the element (1/pj+1)[x̃, ỹ] mod pi+1 ∈ Zi is independent of the choice of liftings x̃ and ỹ;

(4) the Rn-linear map

Zi ⊗Rn Zj → Zi, x⊗ y 7→ 1
pj+1

[x̃, ỹ] mod pi+1 (2.1)

is a derivation with respect to the first argument;

(5) the element (x̃)p mod pi+2 lies in Zi+1 and is independent of the choice of the lifting x̃.

In the case where i= j = 0, the map (2.1) deserves special notation:

{ , } : Z(A0)⊗R0 Z(A0)→ Z(A0), {x, y}=
1
p

[x̃, ỹ] mod p. (2.2)

By assertion (4) of the lemma, { , } is a derivation with respect to each argument. We also remark
that if n > 1, the map { , } satisfies the Jacobi identity; this can be seen by dividing the identity

[x̃, [ỹ, z̃]] + [z̃, [x̃, ỹ]] + [ỹ, [z̃, x̃]] = 0

by p2 and reducing the result modulo p. Thus, if n > 1, the bracket { , } defines a Poisson
structure on Z0.

We shall say that An is a non-degenerate deformation of A0 if Z0 is a smooth R0-algebra and
the map { , } is associated with a non-degenerate bivector field µ ∈

∧2 TZ0/R0
; that is,

{x, y}= 〈µ, dx ∧ dy〉
for every x, y ∈ Z0. By viewing µ as Z0-linear isomorphism T ∗Z0/R0

→ TZ0/R0
and taking its inverse

TZ0/R0
→ T ∗Z0/R0

, we obtain a differential 2-form, ω = µ−1 ∈ Ω2
Z0/R0

. The form ω is closed if and
only if the bracket { , } is Poisson.

We remark that our non-degeneracy condition depends only on the reduction of An modulo p2.

2.2 Let Wm+1(Z0) be the ring of length-(m+ 1) Witt vectors of Z0. For 06m6 n we define a
map

φm :Wm+1(Z0)→Am

by

φm(z0, . . . , zm) =
m∑
i=0

piz̃ p
m−i

i , (2.3)

where z̃i is a lifting of zi ∈ Z0 in Am.
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Claim 2.2. The map φ is well-defined and the image of φ is contained in Zm:

φm :Wm+1(Z0)→ Zm. (2.4)

Proof. If z̃i and z̃′i are liftings of zi, then by Lemma 2.1(5) we have

(z̃i)p
m−i ≡ (z̃′i)

pm−i
mod pm−i+1 ∈ Zm−i,

which implies that

pi(z̃i)p
m−i

= pi(z̃′i)
pm−i ∈ Zm. 2

2.3 In order to state our main theorem, we need to introduce some notation. Let Rn and Rm be
as in § 2.1. Then, for any commutative R0-algebra Z0 and 06m6 n, the ring of Witt vectors
Wm+1(Z0) has a Wm+1(R0)-module structure induced by the homomorphism R0→ Z0. Also,
since Rm is commutative, the map φm :Wm+1(R0)→Rm is a homomorphism and thus defines a
Wm+1(R0)-module structure on Rm. We define the ring of relative Witt vectors Wm+1(Z0/Rm)
to be the quotient of the tensor product

Wm+1(Z0)⊗Wm+1(R0) Rm

by the ideal generated by elements of the form

V j(x · z)⊗ 1− V jz ⊗ φm−j(x) with z ∈Wm+1−j(Z0), x ∈Wm+1−j(R0),

where V is the Verschiebung operator. Note that for any z ∈Wm+1−j(Z0) and a ∈Rm−j , the
tensor V jz ⊗ a makes sense as an element of Wm+1(Z0)⊗Wm+1(R0) Rm, since pm+1−jV jz = 0.
We remark that if F denotes the Frobenius operator, then we have

V j(F j(x) · z)⊗ 1 = x · V jz ⊗ 1 = V jz ⊗ φm−j(F jx)

in Wm+1(Z0)⊗Wm+1(R0) Rm. In particular, if R0 is perfect, then

Wm+1(Z0)⊗Wm+1(R0) Rm
∼−→Wm+1(Z0/Rm).

We are now ready to state our main result.

Theorem 1. Suppose p 6= 2. Then, for every flat associative algebra An over Rn and every
06m6 n, the maps φm :Wm+1(Z0)→ Zm and

Φm :Wm+1(Z0/Rm)→ Zm, Φm(z ⊗ a) = aφm(z) (2.5)

are ring homomorphisms. If, in addition, the deformation An is non-degenerate, then Φm is an
isomorphism.

The proof of this theorem occupies the rest of this section.

2.4 We begin with some general remarks on Witt vectors. It is well known (see, e.g., [Mum66,
§ 26]) and easy to show that the polynomials

ψi(x, y) =
(x+ y)p

i−1 − (xp + yp)p
i−2

pi−1
for i > 1, (2.6)

ψ1(x, y) = x+ y (2.7)
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have integral coefficients and satisfy the recursive formula

ψi+1(x, y) =
p∑
j=1

(
p

j

)
pj(i−1)−iψi(x, y)j(xp + yp)(p−j)pi−2

(2.8)

for i > 1. We claim that for every commutative ring Z and all x, y ∈ Z, one has the following
equation in Wn(Z):

x+ y =
n−1∑
i=0

V iψi+1(x, y). (2.9)

Here we write x= (x, 0, . . . , 0) for the Teichmüller representative of x in Wm(Z) and V for the
Verschiebung operator Wm(Z)→Wm+1(Z). Indeed, it suffices to check the identity (2.9) for
Z = Z[x, y]. In this case, the ghost map Wn(Z)→ Zn given by the Witt polynomials Wm is an
injective homomorphism. Thus it is enough to check that the ghost coordinates of both sides of
(2.9) are equal. We have

Wm(x+ y) = (x+ y)p
m−1

=
m−1∑
i=0

piψi+1(xp
m−i−1

, yp
m−i−1

)

=
m−1∑
i=0

piψi+1(Wm−i(x),Wm−i(y)) =Wm

( n−1∑
i=0

V iψi+1(x, y)
)
,

where we have used that Wi ◦ V = pWi−1. This proves (2.9).
We are interested in describing ring homomorphisms from Wn(Z) to a given ring.

Lemma 2.3. Let Z0, Z1, . . . , Zn−1 be commutative rings. Suppose that we are given two families
of maps χ(i) : Z0→ Zi and π : Zi→ Zi+1, i= 0, . . . , n− 1, such that the following conditions
hold:

(a) χ(i) is multiplicative and π is additive;

(b) for any x, y ∈ Z0, pπ(xy) = π(x)π(y), and if 06 i6m6 n− 1, then

χ(m)(x)πiχ(m−i)(y) = πiχ(m−i)(xp
i
y);

(c) for any x, y ∈ Z0 and 06m6 n− 1,

χ(m)(x+ y) =
m∑
i=0

πiψi+1(χ(m−i)(x), χ(m−i)(y)).

Then the maps ϕm :Wm+1(Z0)→ Zm defined by

ϕm(z0, . . . , zm) =
m∑
i=0

πiχ(m−i)(zi) (2.10)

are ring homomorphisms, and

πϕm−1 = ϕmV. (2.11)

Proof. Formula (2.11) is clear. We prove that ϕm is a ring homomorphism using induction on m.
We have that ϕ0(z) = χ(0)(z). By assumption, χ(0) is multiplicative and, by using property (c),
it follows that χ(0) is additive. Hence ϕ0 is a ring homomorphism. Now suppose that ϕl is a ring
homomorphism for l < m. Let x= (x0, . . . , xm) ∈Wm+1(Z0), let x′ = (x1, . . . , xm) ∈Wm(Z0),
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and let w be another element of Wm(Z0). Then, using the induction assumption and (2.11), we
obtain

ϕm(x+ V w) = ϕm(x0 + V (x′ + w))
= ϕm(x0) + ϕm(V (x′ + w))
= ϕm(x0) + πϕm−1(x′ + w)
= ϕm(x0) + ϕm(V x′) + ϕm(V w)
= ϕm(x) + ϕm(V w).

Thus, for any x ∈Wm+1(Z0) and w ∈Wm(Z0), we have

ϕm(x+ V w) = ϕm(x) + ϕm(V w). (2.12)

This implies that it suffices to check additivity of ϕm on Witt vectors of the form z. Upon
adjusting equation (2.9), we have

z + z′ = z + z′ −
m∑
i=1

V iψi+1(z, z′). (2.13)

Therefore, using (2.11) together with (2.12) and induction, we see that

ϕm(z + z′) = ϕm

(
z + z′ −

m∑
i=1

V iψi+1(z, z′)
)

= ϕm(z + z′)− ϕm
( m∑

i=1

V iψi+1(z, z′)
)

= ϕm(z + z′)−
m∑
i=1

πiψi+1(ϕm−i(z), ϕm−i(z′))

= ϕm(z + z′)−
m∑
i=1

πiψi+1(χ(m−i)(z), χ(m−i)(z′))

= χ(m)(z + z′)−
m∑
i=1

πiψi+1(χ(m−i)(z), χ(m−i)(z′)).

Hence, by property (c), it follows that ϕm(z + z′) = χ(m)(z) + χ(m)(z′), which implies that ϕm
is additive.

Since ϕm is additive, it suffices to check multiplicativity on Witt vectors of the form V iz.
We have V iz · V jz′ = piV i(z · V j−iz′). Notice that pπ(xy) = π(x)π(y) implies that piπi(xy) =
πi(x)πi(y). If i 6= 0, then, using this fact along with the facts that ϕm is additive and ϕmV =
πϕm−1 by induction, it follows that

ϕm(V izV jz′) = ϕm(piV i(z · V j−iz′))
= piπi(ϕm−i(z) · ϕm−i(V j−iz′))
= πiϕm−i(z) · πiϕm−i(V j−iz′)
= ϕm(V iz) · ϕm(V jz′).
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If i= 0, then we have z · V j(z′) = V j(zp
j
z′) and, using property (b), it follows that

ϕm(z · V jz′) = ϕm(V j(zp
j
z′))

= πjϕm−j(zp
j
z′)

= πjχ(m−j)(zp
j
z′)

= χ(m)(z) · πjχ(m−j)(z′)

= ϕm(z) · ϕm(V jz′). 2

2.5 To show that the map φm in Theorem 1 is a ring homomorphism, we check that for Zi =
Z(Ai) the maps χ(i) : Z0→ Zi and π : Zi→ Zi+1 defined by χ(i)(z) = z̃p

i
and π(z) = pz satisfy

the conditions of Lemma 2.3. The only assertions that merit proof here are the multiplicativity
of χ(m) and property (c), which is implied by the following identity:2

piψi+1(x̃p
j
, ỹp

j
) = (x̃p

j
+ ỹp

j
)p

i − (x̃p
j+1

+ ỹp
j+1

)p
i−1

(2.14)

for all x̃, ỹ ∈Am that are central modulo p and every pair i, j with i+ j =m.

Suppose that elements x̃, ỹ ∈Am+1 are central modulo pm+1, i.e. their reductions in Am lie
in Zm. Then, by Lemma 2.1, we have that [x̃, ỹ] ∈ Zm+1 ∩ pm+1Am+1. Using this property, one
proves inductively that for all n> 1,

(x̃ỹ)n = x̃nỹn −
(
n

2

)
x̃n−1ỹn−1[x̃, ỹ],

(x̃+ ỹ)n =
n∑
i=0

(
n

i

)
x̃iỹn−i −

(
n

2

)
(x̃+ ỹ)n−2[x̃, ỹ].

As
(
p
2

)
is divisible by p (here we use that p 6= 2), it follows that

(x̃ỹ)p = x̃pỹp, (2.15)

(x̃+ ỹ)p =
p∑
i=0

(
p

i

)
x̃iỹp−i. (2.16)

The multiplicativity of χ(m) is derived from (2.15) by induction. Let us check (2.14). When
i= 1, formula (2.14) follows directly from (2.16). For i > 1, by using induction on i we get

(x̃p
j

+ ỹp
j
)p

i
= ((x̃p

j+1
+ ỹp

j+1
)p

i−2
+ pi−1ψi(x̃p

j
, ỹp

j
))p

= (x̃p
j+1

+ ỹp
j+1

)p
i−1

+ pi
p∑
l=1

(
p

l

)
pl(i−1)−iψi(x̃p

j
, ỹp

j
)l(x̃p

j+1
+ ỹp

j+1
)(p−l)pi−2

,

and (2.14) follows from the recursive formula (2.8).

Thus φm is a homomorphism. Let us check that the homomorphism

Wm+1(Z0)⊗Wm+1(R0) Rm→ Zm, z ⊗ a 7→ aφm(z)

2 Although formula (2.14) may seem to be the definition of the polynomial ψi+1, it is in fact false when p= 2.

Because x̃pj

and ỹpj

are not central in Am, one cannot evaluate ψi+1 on these elements in Am. Instead, one

evaluates ψi+1 on x̃pj

and ỹpj

in Aj , where they are central, and one gets a well-defined element of Am upon
multiplying by pj .
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descends to a homomorphism from the quotient ring Wm+1(Z0/Rm). Indeed, for z ∈Wm+1−j(Z0)
and x ∈Wm+1−j(R0), we have

φm(V j (x · z)) = pjφm−j (x · z) = φm−j(x)φm(V jz).

This shows that the homomorphism Φm is well-defined.

2.6 It remains to prove that if the deformation An is non-degenerate, then the homomorphism
Φm :Wm+1(Z0/Rm)→ Zm is an isomorphism. When m= 0, Φ0 is clearly an isomorphism. Now
assume that Φl is an isomorphism for all 06 l < m+ 1. For a positive integer i, we denote by

F iZ0/R0
: Z(i)

0 = Z0 ⊗F i
R0

R0→ Z0

the ith iterate of the relative Frobenius map.
In order to show that Φm+1 is an isomorphism, we need the following result.

Proposition 2.4. Let r(Zm+1)⊂ Z0 be the image of the reduction map; then r(Zm+1) =
Im(Fm+1

Z0/R0
).

Proof. We retain the assumption that Φl is an isomorphism for all 06 l < m+ 1. The
containment r(Zm+1)⊃ Im(Fm+1

Z0/R0
) is clear by Lemma 2.1(5).

Let y ∈ Zm and x ∈ Z0, and let x̃, ỹ ∈An be liftings of x and y. Then the element
[ỹ, x̃]/pm+1 mod p ∈ Z0 is independent of the liftings. Moreover, by Lemma 2.1(4), the map

Πy : Z0→ Z0, x 7→ [ỹ, x̃]/pm+1 mod p (2.17)

is a R0-linear derivation, Πy ∈ TZ0/R0
. Identifying TZ0/R0

with Ω1
Z0/R0

, we get a linear map

Π : Zm→ Ω1
Z0/R0

, y 7→ iΠyµ
−1. (2.18)

Note that if y ∈ Zm is the reduction mod pm+1 of some element ỹ ∈ Zm+1, then Π(y) = 0.

Lemma 2.5. The image of an element (z0, . . . , zm)⊗ a ∈Wm+1(Z0/Rm) under the composition

S = Π ◦ Φm :Wm+1(Z0/Rm) ∼−→ Zm −→ Ω1
Z0/R0

is given by the formula

S((z0, . . . , zm)⊗ a) = a
m∑
i=0

zp
m−i−1
i dzi, (2.19)

where a ∈R0 is the reduction of a modulo p.

Proof. We start with the following claim.

Claim 2.6. If x ∈ Z0, z ∈ Zi and x̃, z̃ ∈An are any liftings, then we have

[z̃p, x̃]≡ pz̃p−1[z̃, x̃] mod pi+3. (2.20)

Indeed,

[z̃p, x̃] =
p−1∑
j=0

z̃p−j−1[z̃, x̃]z̃j

=
p−1∑
j=0

(z̃p−1[z̃, x̃]− z̃p−j−1[z̃j , [z̃, x̃]]).
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Since z ∈ Zi, we have [z̃, [z̃, x̃]] mod pi+3 ∈ Zi+2. Thus z̃p−j−1[z̃j , [z̃, x̃]]≡ jz̃p−2[z̃, [z̃, x̃]] mod
pi+3 and

p−1∑
j=0

(z̃p−1[z̃, x̃]− z̃p−j−1[z̃j , [z̃, x̃]]) ≡
p−1∑
j=0

(z̃p−1[z̃, x̃]− jz̃p−2[z̃, [z̃, x̃]])

≡ pz̃p−1[z̃, x̃]−
(
p

2

)
z̃p−2[z̃, [z̃, x̃]] mod pi+3.

Since p 6= 2, we have
(
p
2

)
≡ 0 mod p and thus

(
p
2

)
[z̃, [z̃, x̃]]≡ 0 mod pi+3, which gives (2.20).

The claim above implies, by induction, that for every i> 0 and x, z ∈ Z0 we have

[z̃p
i
, x̃]≡ piz̃pi−1[z̃, x̃] mod pi+2.

Thus, we conclude that[ m∑
i=0

piz̃p
m−i

i , x̃

]
≡ pm

m∑
i=0

z̃p
m−i−1
i [z̃i, x̃] mod pm+2,

which implies the desired result. 2

The following result will also be used in the next section.

Lemma 2.7. Let p be a prime number (not necessarily odd), let Z0 be a smooth R0-algebra,
and let S :Wm+1(Z0/Rm)−→ Ω1

Z0/R0
be the morphism (the ‘Serre morphism’) defined by

formula (2.19). If z ∈Ker S, then the image of z under the map

α :Wm+1(Z0/Rm)→ Z
(m)
0 , (z0, . . . , zm)⊗ a 7→ z0 ⊗ a

is contained in the image of the relative Frobenius map F
Z

(m)
0 /R0

: Z(m+1)
0 → Z

(m)
0 , so that we

have the following diagram.

Ker S � � //

��

Wm+1(Z0/Rm)

α
��

Z
(m+1)
0

� �

F
Z

(m)
0 /R0

// Z
(m)
0

Proof. Recall (see, e.g., [Ill79]) that for every smooth R0-algebra Z0 we have the Cartier
isomorphism

C−1 : Ω1

Z
(1)
0 /R0

= Ω1
Z0/R0

⊗FR0
R0

∼−→H1(Ω·
Z0/R0

)⊂ Ω1
Z0/R0

/d(Z0),

x dy ⊗ a 7→ axpyp−1dy for x dy ∈ Ω1
Z0/R0

, a ∈R0.

More generally, for each positive integer i we shall define a R0-module Di together with a R0-
linear map

C−i : Ω1

Z
(i)
0 /R0

→Di.

The first R0-module D1 is just the quotient of Ω1
Z0/R0

by the subspace d(Z0) of exact forms.
Assuming that Di and C−i are already defined, we define Di+1 to be the quotient of Di by
C−i(d(Z(i)

0 )) and C−i−1 to be the composition

Ω1

Z
(i+1)
0 /R0

C−1

−−−−→ Ω1

Z
(i)
0 /R0

/d(Z(i)
0 ) C−i

−−−−→Di+1.
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As C−1 is injective, C−i is injective as well. By construction, Di is a quotient of Ω1
Z0/R0

; we
denote by β : Ω1

Z0/R0
→Di the projection. Then we have the following commutative diagram.

Wm+1(Z0/Rm) S //

α

��

Ω1
Z0/R0

β

��
Z

(m)
0 C−md

// Dm

If z ∈Ker S, then C−md(α(z)) = 0 and thus d(α(z)) = 0. Therefore α(z) lies in the image of the
relative Frobenius map. 2

Now we can finish the proof of Proposition 2.4. As we have observed above, if y ∈ Zm is the
reduction mod pm+1 of an element ỹ ∈ Zm+1, then Π(y) = 0. Consider the following commutative
diagram.

Zm+1

��

// Zm

Φ−1
m

��

r // Z0

Ker S � � // Wm+1(Z0/Rm) α // Z
(m)
0

Fm
Z0/R0

OO

Z
(m+1)
0

? _
F

Z
(m)
0 /R0oo

(2.21)

By Lemma 2.7, the map α : Ker S α−−→ Z
(m)
0 factors through Z

(m+1)
0

F
Z

(m)
0 /R0−−−−−−−→ Z

(m)
0 . Thus, the

reduction map r factors through Z
(m+1)
0

Fm+1
Z0/R0−−−−−−→ Z0. 2

To finish the proof of Theorem 1, we need the following general property of relative Witt
vectors.

Lemma 2.8. For every R0-algebra Z0, we have a right exact sequence of Rm+1-modules

Wm+1(Z0/Rm)→Wm+2(Z0/Rm+1)→ Z0 ⊗Fm+1
R0

R0→ 0,

where the first morphism takes z ⊗ a ∈Wm+1(Z0/Rm) to V z ⊗ a and the second morphism is
induced by the projection Wm+2(Z0)→ Z0 onto the first coordinate.

Proof. Consider the exact sequence of Wm+2(R0)-modules

0 // Wm+1(Z0) V // Wm+2(Z0) // Z0
// 0. (2.22)

We remark that the action of Wm+2(R0) on Wm+1(Z0), viewed as a submodule of Wm+2(Z0), is
given by the homomorphism

Wm+2(R0) F−−→Wm+1(R0)→Wm+1(Z0).

Thus, the tensor product of (2.22) with Rm+1 can be identified with the sequence

Wm+1(Z0)⊗Wm+1(Rp
0) Rm

V⊗ Id−−−−−→Wm+2(Z0)⊗Wm+2(R0) Rm+1→ Z0 ⊗Fm+1
R0

R0→ 0,

which is right exact. Here Rp0 denotes the image of the Frobenius morphism R0→R0. One checks
that the composition of V ⊗ Id with the projection

Wm+2(Z0)⊗Wm+2(R0) Rm+1 −→Wm+2(Z0/Rm+1)

72

https://doi.org/10.1112/S0010437X12000462 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000462


Differential operators on a smooth variety over Z/pnZ

factors through the surjection

Wm+1(Z0)⊗Wm+1(Rp
0) Rm�Wm+1(Z0)⊗Wm+1(R0) Rm�Wm+1(Z0/Rm).

This gives the sequence displayed in the lemma. 2

Now we finish the proof that Φm+1 is an isomorphism. Consider the following commutative
diagram.

Wm+1(Z0/Rm) //

f

��

Wm+2(Z0/Rm+1) //

Φm+1

��

Z0 ⊗Fm+1
R0

R0 //

Φm+1
��

0

0 // Zm+1 ∩ pAm+1
// Zm+1

//

r

((QQQQQQQQQQQQQQQQQQQ
Zm+1

Zm+1 ∩ pAm+1

//

� _

��

0

Z0

Here the top row is the right exact sequence from Lemma 2.8, f :Wm+1(Z0/Rm)→ Zm+1 ∩
pAm+1 equals pΦm, which is an isomorphism by the induction assumption, and, finally, the
morphism Φm+1 : Z0 ⊗Rm+1 ' Z(m+1)

0 → Zm+1/(Zm+1 ∩ pAm+1)⊂ Z0 is equal to Fm+1
Z0/R0

. By
Proposition 2.4, Φm+1 is an isomorphism. It follows that Φm+1 is an isomorphism as well.

3. Main result: characteristic 2 case

3.1 Throughout this section, Rn is a commutative algebra flat over Z/2n+1Z, where n > 0, and
An is a flat associative Rn-algebra. We will also assume that the deformation An of A0 is non-
degenerate and denote by ω ∈ Ω2

Z0/R0
the corresponding non-degenerate 2-form. Although the

map Wn+1(Z0)→ Zn defined by equation (2.3) is neither additive nor multiplicative, we explain
in this section that if ω is exact, formula (2.3) can be corrected to yield an isomorphism of
Rn-algebras,

Wn+1(Z0/Rn) ∼−→ Zn.

Our construction depends on the choice of a primitive η ∈ Ω1
Z0/R0

, ω = dη. Define a map

Z0→ Z0, z 7→ z[2] (3.1)

by the formula

z[2] = Ltz itzη − it[2]z
η ∈ Z(A0), (3.2)

where tz ∈ TZ0/R0
is the Hamiltonian vector field corresponding to z, i.e. dz = itzω, t[2]

z ∈ TZ0/R0

is its square in the restricted Lie algebra of vector fields, and Ltz is the Lie derivative. We remark
that the map z 7→ z[2] depends only on the class of η in the quotient Ω1

Z0/R0
/d(Z0).

Lemma 3.1. For every x, y ∈ Z0, we have

(x+ y)[2] − x[2] − y[2] = {x, y}, (3.3)
{x[2], y}= {x, {x, y}}, (3.4)

(xy)[2] = y2x[2] + x2y[2] + xy{x, y}. (3.5)
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Proof. Define a map Q : TZ0/R0
→ Z0 by the formula

Q(θ) = Lθiθη − iθ[2]η for θ ∈ TZ0/R0
. (3.6)

Then, for every θ1, θ2 ∈ TZ0/R0
, by using the identity (θ1 + θ2)[2] = θ

[2]
1 + θ

[2]
2 + [θ1, θ2] and

Cartan’s formula we find that

Q(θ1 + θ2)−Q(θ1)−Q(θ2) = Lθ1iθ2η + Lθ2iθ1η − i[θ1,θ2]η = iθ1iθ2ω. (3.7)

Using itxityω = {x, y}, equation (3.3) follows. Next, for every z ∈ Z0, by using the identity
(zθ)[2] = z2θ[2] + z(Lθz)θ one obtains

Q(zθ) = zLθ(ziθη)− z2iθ[2]η − z(Lθz)iθη = z2Q(θ). (3.8)

Thus, we conclude that

(xy)[2] =Q(xty + ytx) = x2Q(ty) + y2Q(tx) + xyitxityω,

which proves (3.5). Finally, for (3.4) it suffices to check that t[2]
x = tx[2] or, equivalently, that

i
t
[2]
x
ω = it

x[2]
ω. We have

it
x[2]
ω = dx[2] = d(Ltxitxη − it[2]x

η) =−Ltxitxω + L2
txη + i

t
[2]
x
ω − L

t
[2]
x
η. (3.9)

Since Ltxitxω = d{x, x}= 0 and L2
txη = L

t
[2]
x
η, the right-hand side of (3.9) equals i

t
[2]
x
ω as

required. 2

Remark 3.2. Equations (3.7) and (3.8) show that the quadratic form Q on the Z0-module TZ0/R0

is a quadratic refinement of the symmetric form ω. In fact, for every smooth R0-algebra Z0 in
characteristic 2, one can define a refined de Rham complex

(S·Ω1
Z0/R0

, d̃) = Z0→ Ω1
Z0/R0

→ S2Ω1
Z0/R0

→ · · ·

to be the initial object in the category of commutative DG algebras A over R0 equipped with a
homomorphism Z0→A. By the universal property, the DG algebra (S·Ω1

Z0/R0
, d̃) maps to the

de Rham DG algebra (
∧· Ω1

Z0/R0
, d̃). The quadratic form Q∈ S2Ω1

Z0/R0
is identified with d̃η.

Remark 3.3. In [BK08, Definition 1.8], Bezrukavnikov and Kaledin introduced the notion of a
restricted Poisson algebra in characteristic p. If p= 2, a restricted Poisson algebra is just a Poisson
algebra Z0 over R0 together with a map Z0→ Z0, z 7→ z[2], satisfying equations (3.3), (3.4)
and (3.5). According to [BK08, Theorem 1.11], a smooth Poisson algebra Z0 with a non-
degenerate Poisson bracket admits a restricted structure if and only if the associated symplectic
form ω is exact. If ω = dη, then the formula

z[p] = Lp−1
tz itzη − it[p]

z
η

defines a restricted structure on Z0 (cf. [BK08, Theorem 1.12]).

The main result of this section is the following theorem.

Theorem 2. LetRn be a flat commutative algebra over Z/2n+1Z, and letAn be a flat associative
algebra over Rn such that the center Z0 is smooth over R0 and the bracket { , } : Z0 ⊗ Z0→ Z0

is associated with an exact symplectic form ω = dη. Then, for every 06m6 n, the map

φm :Wm+1(Z0)→ Zm
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given by

φm(z0, . . . , zm) =
m−1∑
i=0

2i
(
z̃2
i + 2z̃[2]

i

)2m−i−1

+ 2mz̃m

is a ring homomorphism. Moreover, the induced homomorphism

Φm :Wm+1(Z0/Rm)→ Zm, Φm(z ⊗ a) = aφm(z) (3.10)

is an isomorphism.

The proof of this theorem occupies the next two subsections.

Remark 3.4. The construction in Theorem 2 can be partially generalized to the case where ω is
not exact. To indicate this generalization, let An be a non-degenerate deformation over Rn, and
let µ= ω−1 ∈

∧2 TZ0/R0
be the corresponding bivector field. Let P be a quadratic refinement of

µ, which is a preimage of µ under the canonical projection

S2TZ0/R0
→
∧2

TZ0/R0
.

Then the map

hP : Z0→ Z0, hP(z) = 〈P, dz ⊗ dz〉
satisfies the following properties (cf. (3.3) and (3.5)):

hP(x+ y)− hP(x)− hP(y) = {x, y},
hP(xy) = y2hP(x) + x2hP(y) + xy{x, y}.

We note that if ω is exact, then the choice of a primitive η, with dη = ω, specifies a quadratic
refinement Q= d̃η ∈ S2Ω1

Z0/R0
of ω (Remark 3.2), which in turn gives rise to a quadratic

refinement P of µ. In this convention we have that z[2] = hP(z).
Coming back to the general case, the proof of Theorem 2 given below extends directly and

shows that the map

ΦP,m :Wm+1(Z0/R0)→ Zm

given by

ΦP,m((z0, . . . , zm)⊗ a) = a

( m−1∑
i=0

2i(z̃2
i + 2h̃P(zi))2m−i−1

+ 2mz̃m

)
is a ring homomorphism for every m and an isomorphism for m= 1. However, for m> 1, the
morphism ΦP,m need not be surjective.

In fact, in general, the center Zm of a non-degenerate deformation need not be isomorphic
to the Witt vectors Wm+1(Z0/R0). For example, let A2 be the quotient of the free
algebra over Z/8Z on generators x, y by the ideal (xy + yx). We have that Z0 =A0 =
F2[x, y] and Z2 = Z/8Z[x2, y2] + 4A2. Therefore, it follows that W3(Z0)/2-torsion∼=W2(F2[x, y])
and Z2/2-torsion∼= Z/4Z[x2, y2]. In particular, Z2/2-torsion is flat over Z/4Z, whereas
W3(Z0)/2-torsion is not flat. Therefore W3(Z0) and Z2 cannot be isomorphic. Notice that the
associated symplectic form of this deformation is xy dx dy, which is closed but not exact.

3.2 Now we give a proof of Theorem 2. We will show that φm+1 is a homomorphism and that
Φm+1 is an isomorphism simultaneously. It is clear that φ0 = Φ0 are isomorphisms.
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Consider the general case. In everything that follows we will assume that φl is a
homomorphism and Φl is an isomorphism for all 06 l 6m. We will need the following result.

Lemma 3.5. If x ∈ Z1, y ∈ Zi with 16 i6m, and x̃, ỹ ∈An are any liftings, then

[x̃, ỹ]≡ 0 mod 2i+2.

Proof. We may assume that m> 1 (otherwise, the statement is empty). Then, by our induction
hypothesis, the map Φ1 :W2(Z0/R1)→ Z1 is surjective. Thus, it suffices to check the lemma for
x̃ of the form x̃= w̃2 + 2ṽ with w̃, ṽ ∈An central modulo 2. We have

[x̃, ỹ] = [w̃2 + 2ṽ, ỹ]
= w̃[w̃, ỹ] + [w̃, ỹ]w̃ + 2[ṽ, ỹ]≡ 0 mod 2i+2,

since the elements [w̃, ỹ] and y are central modulo 2i+1. 2

Corollary 3.6. If x, y ∈ Zi with 16 i6m and x̃, ỹ ∈Ai+1 are any liftings, then we have

(x̃ỹ)2 = x̃2ỹ2,

(x̃+ ỹ)2 ≡ x̃2 + 2x̃ỹ + ỹ2.

Let π : Zi→ Zi+1 be given by π(z) = 2z and χ(i) : Z0→ Zi be defined by χ(i)(z) = (z̃2 +
2z̃[2])2i−1

for 0< i6m+ 1 with χ(0)(z) = z. We will use Lemma 2.3 to show that φm+1 is a
homomorphism. Let us check that χ(i) is multiplicative. For i= 1, using the formula (3.5) we
have that

χ(1)(xy) = x̃2ỹ2 − x̃[x̃, ỹ]ỹ + 2(xy)[2]

= x̃2ỹ2 − 2xy{x, y}+ 2(x2y[2] + y2x[2] + xy{x, y})
= χ(1)(x)χ(1)(y).

The general case now follows from Corollary 3.6.
Next, we show property (b) of Lemma 2.3, which is the following identity:

(x̃2 + 2x̃[2])2j
(ỹ2 + 2ỹ[2])2j−i ≡

(
(x̃2i

ỹ)2 + 2 ˜(x2iy)[2]
)2j−i

mod 2j−i+2

for every 06 i6 j 6m. If i= 0, then this is equivalent to χ(j) being multiplicative. Assume that
i > 0. By Corollary 3.6, it follows that

(x̃2 + 2x̃[2])2j
(ỹ2 + 2ỹ[2])2j−i ≡

(
(x̃2 + 2x̃[2])2i

(ỹ2 + 2ỹ[2])
)2j−i

mod 2j−i+2;

thus, to show the desired result, it suffices to check that

(x̃2 + 2x[2])2i
(ỹ2 + 2y[2])≡ (x̃2i

ỹ)2 + 2(x2i
y)[2] mod 4.

Now (x̃2 + 2x[2])2i ≡ x̃2i+1
mod 4. Hence we have

(x̃2 + 2x[2])2i
(ỹ2 + 2y[2]) ≡ x̃2i+1

(ỹ2 + 2y[2])

≡ (x̃2i
ỹ)2 + 2x2i+1

y[2]

≡ (x̃2i
ỹ)2 + 2(x2i

y)[2] mod 4,

where the last congruence is implied by (3.5).
Let us check property (c) of Lemma 2.3. It suffices to prove the following claim.

Claim 3.7. (a) If x, y ∈ Zm+2−j with 1< j <m+ 2 and x̃, ỹ ∈Am+1 are any liftings, then

2j−1ψj(x, y) = (x̃+ ỹ)2j−1 − (x̃2 + ỹ2)2j−2
mod 2m+2.
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(b) If x, y ∈ Z0, then for 1< j 6m+ 1 we have

2j−1ψj(x, y) = χ(j−1)(x+ y)− (χ̃(1)(x) + χ̃(1)(y))2j−2
mod 2j .

If j = 2, then part (a) follows from Corollary 3.6. Now assume that property (a) holds for
26 l < j; then the recursive definition of ψ, equation (2.8), and the induction hypothesis imply
that

2j−1ψj(x, y)≡ 2((x̃+ ỹ)2j−2 − (x̃2 + ỹ2)2j−3
)(x̃2 + ỹ2)2j−3

+ ((x̃+ ỹ)2j−2 − (x̃2 + ỹ2)2j−3
)2

modulo 2m+2. Applying Corollary 3.6 to the right-hand side, we obtain the desired result. Now
let us consider property (b). If j = 2, then by using (3.3) we get

χ(1)(x+ y)− (χ(1)(x) + χ(1)(y))≡ 2xy mod 4,

which is the desired result. Now, assuming that property (b) holds for 26 l < j, we find that

χ(j−1)(x+ y) = ( ˜χ(j−2)(x+ y))2 = ((χ̃(1)(x) + χ̃(1)(y))2j−3
+ 2j−2 ˜ψj−1(x, y))2

= (χ̃(1)(x) + χ̃(1)(y))2j−2
+ 2j−1(x2 + y2)2j−3

ψj−1(x, y).

The result then follows from the congruence ψj(x, y)≡ ψj−1(x, y)(x2 + y2)2j−3
mod 2.

We have shown that πi and χ(i) for 06 i6m+ 1 satisfy the conditions of Lemma 2.3; hence
φm+1 is a homomorphism.

3.3 It remains to show that Φm+1 is an isomorphism. As in the odd characteristic case, it suffices
to check that

r(Zm+1) = Im(Fm+1
Z0/R0

), (3.11)

where r : Zm+1→ Z0 is the reduction map and Fm+1
Z0/R0

: Z(m+1)
0 → Z0 is the (m+ 1)th iterate of

the relative Frobenius map. Let Π : Zm→ Ω1
Z0/R0

be the map defined by formulas (2.17) and
(2.18).

Lemma 3.8. The image of an element (z0, . . . , zm)⊗ a ∈Wm+1(Z0/Rm) under the composition

S = Π ◦ Φm :Wm+1(Z0/Rm) ∼−−→ Zm→ Ω1
Z0/R0

is given by the formula

S((z0, . . . , zm)⊗ a) = a

m∑
i=0

z2m−i−1
i dzi (3.12)

where a ∈R0 is the reduction of a modulo 2.

Proof. We start with the following fact.

Claim 3.9. If x ∈ Z0, z ∈ Zi with 0< i6m, and x̃, z̃ ∈An are any liftings, then we have

[z̃2, x̃]≡ 2z̃[z̃, x̃] mod 2i+3. (3.13)

Indeed, we have

[z̃2, x̃] = z̃[z̃, x̃] + [z̃, x̃]z̃
= 2z̃[z̃, x̃]− [z̃, [z̃, x̃]].
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Since [z̃, x̃] mod 2i+2 ∈ Zi+1, Lemma 3.5 implies that [z̃, [z̃, x̃]]≡ 0 mod 2i+3, and the result
follows.

Formula (3.13) implies, by induction, that for z ∈ Z1 and i > 1, we have

[z̃2i−1
, x̃]≡ 2i−1z̃2i−1−1[z̃, x̃] mod 2i+2. (3.14)

On the other hand, for x, z ∈ Z0, by using (3.4) we obtain3

[z̃2 + 2z̃[2], x̃] = [z̃2, x̃] + 2[z̃[2], x̃]

= 2z̃[z̃, x̃] + [z̃, [z̃, x̃]] + 2[z̃[2], x̃]

≡ 2z̃[z̃, x̃] + [z̃, [z̃, x̃]] + [z̃, [z̃, x̃]]

≡ 2z̃[z̃, x̃] mod 8.

This fact, along with (3.14), implies that for every x, z ∈ Z0 one has

[(z̃2 + 2z̃[2])2i−1
, x̃]≡ 2i(z̃2 + 2z̃[2])2i−1−1z̃[z̃, x̃] = 2i+1z2i−1{z, x} mod 2i+2,

which proves the result. 2

The above lemma and Lemma 2.7 together imply (3.11). Thus Theorem 2 is proven.

4. Applications

Let Sn be a flat scheme over Z/pn+1Z, and let Xn
fn−−→ Sn be a smooth scheme over Sn.

For 06m6 n we set Xm =Xn × Spec Z/pm+1Z fm−−−→ Sn × Spec Z/pm+1Z = Sm. One has the
following relative Frobenius diagram.

X0

f0
&&NNNNNNNNNNNNNN

FX0/S0 // X
(1)
0

f ′0
��

πX0/S0 // X0

f0

��
S0

FS // S0

(4.1)

Since the relative Frobenius morphism FX0/S0
:X0→X

(1)
0 is a homeomorphism, the functor

FX0/S0∗ induces an equivalence between the category of Zariski sheaves on X0 and that on X(1)
0 .

We shall also identify the categories of Zariski sheaves on Xn and on X0.

We will write DXm/Sm
for the sheaf of PD differential operators on Xm (see [BO78, § 2]) and

Zm for its center. One has a canonical isomorphism of f ′−1
0 OS0-algebras on X

(1)
0 ,

FX0/S0∗(Z0)' S·T
X

(1)
0 /S0

(4.2)

given by the p-curvature map (see, e.g., [OV07, Theorem 2.1]). If n > 0, the construction from
§ 2.1 applied to affine charts of fn :Xn→ Sn yields a biderivation

{ , } : Z0 ⊗f−1
0 OS0

Z0→ Z0,

3 This is the only place in the proof of Theorem 2 which depends on formula (3.4) and, thus, does not extend to
a more general setup such as that of Remark 3.4.
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which can be interpreted via isomorphism (4.2) as a bivector field

µ ∈ Γ
(
T∗
X

(1)
0 /S0

,
∧2

TT∗
X

(1)
0 /S0

/S0

)
on the cotangent space, T∗

X
(1)
0 /S0

. On the other hand, the cotangent space to any smooth scheme

has a canonical 1-form (the ‘contact form’)

ηcan ∈ Γ
(
T∗
X

(1)
0 /S0

, Ω1
T∗

X
(1)
0 /S0

/S0

)
,

whose differential ωcan = dηcan is a symplectic form.

Lemma 4.1. We have that µ−1 =−ωcan.

Proof. This is proven in [BK05, Lemma 2] for Xn = Am
Sn

. The general case follows since the
statement is local for étale topology.

If Z is a sheaf of commutative algebras on a site Y , the presheaf U 7→Wn+1(Z(U)) is a
sheaf denoted by Wn+1(Z). More generally, using the construction from § 2.3, for a sheaf Rn of
commutative algebras flat over Z/pn+1Z and a sheaf Z of commutative R0-algebras, one defines
the sheaf of relative Witt vectors Wn+1(Z/Rn) together with a surjection

Wn+1(Z)⊗Wn+1(R0) Rn�Wn+1(Z/Rn).

Theorem 3. There is a canonical isomorphism of sheaves of f ′−1
0 OSn-algebras on X

(1)
0 ,

Wn+1(FX0/S0∗(Z0)/f ′−1
0 OSn) ∼−→ FX0/S0∗(Zn). (4.3)

Proof. Let U ⊂Xn be an affine open subset lying over an open affine subset W = SpecRn ⊂ Sn.
Then Rn is a flat algebra over Z/pn+1Z and An = Γ(U, DXn/Sn

) is a flat algebra over Rn. By
(4.2), the center Z(A0) of its reduction modulo p is isomorphic to

S·TO(U)/R0
⊗FR0

R0,

which is smooth over R0. Moreover, Lemma 4.1 shows that the deformation An is non-degenerate
and the associated 2-form is the differential of a canonical 1-form, −ηcan. Thus, by Theorems 1
and 2, we get a canonical isomorphism

Φn :Wn+1(Z(A0/Rn)) ∼−→ Z(An).

There exists a unique isomorphism of sheaves of algebras (4.3) that induces Φn for each pair
U, W as above. 2

Combining (4.3) with (4.2), we find an isomorphism

Wn+1(S·T
X

(1)
0 /S0

/f ′−1
0 OSn) ∼−→ FX0/S0∗(Zn).

Remark 4.2. The fact that the center of DXm/Sm
depends only on X0→ Sn and not on the

deformation Xn→ Sn is not surprising: the category of quasi-coherent DXm/Sm
-modules on Xm

is equivalent to the category of quasi-coherent crystals on X0/Sn (see [BO78]). In particular, its
categorical center,4 which is just Zn, is isomorphic to the center of the category of crystals.

4 Recall that the center of a category A is the ring of endomorphisms of the identity functor IdA :A→A.
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12 (1979), 501–661.

Mum66 D. Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, vol.
59 (Princeton University Press, Princeton, NJ, 1966).

OV07 A. Ogus and V. Vologodsky, Nonabelian Hodge theory in characteristic p, Publ. Math. Inst.
Hautes Études Sci. 106, 2007, 1–138.

Allen Stewart allens@uoregon.edu
Department of Mathematics, University of Oregon, Eugene, OR 97403, USA

Vadim Vologodsky vvologod@uoregon.edu
Department of Mathematics, University of Oregon, Eugene, OR 97403, USA

80

https://doi.org/10.1112/S0010437X12000462 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000462

	1 Introduction
	1.1 
	1.2 
	1.3 
	1.4 

	2 Main result: odd characteristic case
	2.1 
	2.2 
	2.3 
	2.4 
	2.5 
	2.6 

	3 Main result: characteristic 2 case
	3.1 
	3.2 
	3.3 

	4 Applications
	Acknowledgements
	References



