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Abstract

The increasing popularity of large language models has not only led to widespread use but has also brought various
risks, including the potential for systematically spreading fake news. Consequently, the development of classification
systems such as DetectGPT has become vital. These detectors are vulnerable to evasion techniques, as demonstrated
in an experimental series: Systematic changes of the generative models’ temperature proofed shallow learning—
detectors to be the least reliable (Experiment 1). Fine-tuning the generative model via reinforcement learning
circumvented BERT-based—detectors (Experiment 2). Finally, rephrasing led to a >90% evasion of zero-shot—
detectors like DetectGPT, although texts stayed highly similar to the original (Experiment 3). A comparison with
existing work highlights the better performance of the presented methods. Possible implications for society and
further research are discussed.

Policy Significance Statement

Large language models produce texts that appear indistinguishable from human ones, which is why research
focuses onmachine learning-based detectors. This article demonstrates howvarious state-of-the-art detectors can
be tricked using different techniques. Text-generating models are specifically modified in such a way that they
(a) no longer use the most likely words (parameter temperature), (b) are penalized for certain conspicuous
content (reinforcement learning), or (c) rephrase sentences so slightly that they remain the same in terms of
content but can no longer be recognized as machine-generated (paraphrasing). In short, detectors can easily be
bypassed. The implications for society and research are discussed. Further research is needed to investigate
implications, such as the influence on opinion or fake news in social media.

1. Introduction

As large language models (LLMs) continue to evolve, the necessity for precise differentiation between
human outputs and those produced by LLMs is becoming increasingly critical. Recent developments in
LLMs have significantly improved, particularly in complex reasoning tasks, such as mathematical
problem-solving. These advancements are rapidly closing the performance gap between LLMs and
human capabilities, which had previously been amajor limitation of suchmodels. Due to this close-up, the
difficulty of reliably detecting LLMs has further increased.
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Various concepts helped LLMs to catch up to human-like reasoning capabilities. For example, the
Quiet-STaR approach (Zelikman et al., 2024) reinforces intermediate beliefs generated by the model
before providing a final answer, improving reasoning accuracy. The Agent Q framework (Putta et al.,
2024) combines Monte Carlo Tree Search (MCTS) and Direct Preference Optimization (DPO) to teach
LLMs to perform complex tasks, such as navigating an online store. Other work, including Let’s Verify
Step by Step (Lightman et al., 2024), enhances LLM reasoning performance by breaking tasks into
discrete steps and providing feedback for each step. Likewise, Verification for Self-Taught Reasoners
(V-STaR; Hosseini et al., 2024) refers to a concept in which the LLM generates multiple solutions for a
task, learning from correct answers. A verifier model learns from correct and incorrect responses,
improving the LLM’s reasoning ability, particularly in coding and mathematical tasks.

In light of these rapid advancements, a growing concern is that distinguishing between human-
generated text and LLM-generated text may become even more challenging. Models such as DetectGPT
(Mitchell et al., 2023) and datasets like theHumanChatGPTComparison Corpus (HC3; Guo et al., 2023)
aim to address this challenge. However, further investigation is required to assess the reliability of these
detection models and explore whether they can be circumvented with reasonable effort. Like cryptog-
raphy, every detection method, as shown in the current study, is at risk of being attacked and eventually
circumvented. Such insights lead to the need for additional and robust methods, such as watermarks, to
help clarify the origin of published texts.

This study presents an experimental series to evaluate the reliability of LLM detection models and
explore potential methods for bypassing them. In the first experiment (cf. Section 3), shallow learning
classifiers are evaluated based on a Bag-of-Words (BoW) approach combined with a Naive Bayes
classifier. Although this method is not state-of-the-art, it serves as a benchmark to showcase the influence
of hyperparameters, including temperature, sampling method, and model size on classification
performance. Additionally, the classifiers’ performance is compared to human judgment. Human clas-
sification often focuses on identifying unlikely words, while machine models rely on statistical patterns
(Ippolito et al., 2020). According to Gehrmann et al. (2019), human judgment achieves an accuracy of
only 54% without automated assistance, improving up to 72% with supporting tools. Other studies
similarly report a 50% success rate in detecting GPT-3-generated text (Clark et al., 2021). Using top-p
sampling at 1.0, theNaive Bayes classifier’s detection rate was reduced below 60%, indicating that simple
models may be bypassed without special techniques.

In the second experiment (cf. Section 4), the combination of shallow feature categories and shallow
classifiers is replaced with a BERT-based classifier and corresponding transformer-based embeddings,
yielding a significantly improved accuracy exceeding 90%. This forms the basis for the initial bypassing
approach. In contrast to the one described by Krishna et al. (2024), paraphrasing is not used at this stage.
Instead, reinforcement learning (RL) is employed for model training to preserve the generative model
from detection. This approach builds upon the methodology outlined by Ziegler et al. (2020), which
originally fine-tuned LLMs using human feedback. Special constraints are incorporated into the reward
function to prevent the model from learning trivial bypassing strategies, such as adding special characters
or introducing artifacts. Depending on the LLM’s size, the detection rate reduces from over 90% to below
17% following the RL training. This demonstrates that once the classifier is known and accessible, the
generative model can be adapted to evade it.

In the third experiment (cf. Section 5), a paraphrasing model is applied, similar to the approach
introduced by Krishna et al. (2024). While Krishna et al. focused on general-purpose paraphrasing, the
model presented here is specifically tailored to conceal the generative model from DetectGPT. In this
regard, a new dataset is vital. Here, the original LLM output is further paraphrased multiple times. This
procedure allows us to select the version least likely to be classified as LLM-generated. Inspired by
Mitchell et al. (2023), each single paraphrasing iteration altered approximately 15% of the sentence.
Based on the newly created dataset, a paraphrasing model is trained to hide the original language model.
By applying this paraphrasing model to the output of the Qwen1.5-4B-Chat model (Bai et al., 2023), the
detection rate was iteratively reduced from 88.6% to 8.7%. A comparative analysis uses the DIPPER
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model from Krishna et al. (2024). The presented approach hereby preserves a higher degree of linguistic
similarity to the original text, even after multiple paraphrasing iterations.

In conclusion, this study demonstrates that RL and paraphrasing techniques can effectively bypass
LLM detection classifiers. These results suggest that a classifier can easily be bypassed with sufficient
knowledge. This can be achieved by fine-tuning (RL) or paraphrasing. The findings demonstrate the
potential for malicious actors to circumvent classification. Further, the need for ongoing research into
more robust and adaptive detection mechanisms is underlined.

2. Related work

Since this work combines different fields, this section is subdivided as follows: Firstly, methods for
automatically generating text using LLMs are explained (Section 2.1). Secondly, relevant datasets and
benchmarks are introduced (Section 2.2). Thereafter, detection methods for identifying LLM-generated
content are introduced (Section 2.3). Additionally, possible ways to bypass these classifiers are discussed.

2.1. Automatic text generation

Various approaches have been employed in developing language models capable of generating text. The
most prevalent architecture is based on transformer models, which include GPT and its predecessors like
GPT-Neo-125M, GPT-Neo-1.3B, GPT-Neo-2.7B (Black et al., 2021), GPT-J-6B (B Wang and Komat-
suzaki 2021), OPT-125M, OPT-350M, OPT-1.3B, OPT-2.7B (Zhang et al., 2022), and GPT-2 (Radford
et al., 2019). Other variants encompass Instruct-GPT (Ouyang et al., 2022), Google’s T5 models (Raffel
et al., 2020) as well as their Gemma series (Gemma Team et al., 2024),Metas’s Llama series (Dubey et al.,
2024), Mistral AI’s Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024) series, the Qwen models
(Yang et al., 2024) from Alibaba Cloud, to name just a very few.

These LLMs are often referred to as stochastic parrots (Bender et al., 2021) since they generate
sentences by predicting the next word based on probability distributions. The selection of the token with
the highest probability is known as greedy search. As humans do not always choose the most probable
sequence of words, this purely deterministic approach does not capture the variability in human language
(Holtzman et al., 2020). To introduce randomness, pure random sampling selects tokens proportionally to
their probabilities, increasing diversity but eventually reducing coherence (Bengio et al., 2003). Inter-
mediate approaches have been developed to balance determinism and diversity. These include typical
sampling, which prioritizes tokens near the mode of the probability distribution, and top-k sampling,
which restricts choices to the kmost probable tokens (Fan et al., 2018; Meister et al., 2023). Alternatively,
nucleus sampling dynamically adjusts the candidate set to include only tokens whose cumulative
probability remains below a threshold p (Holtzman et al., 2020). Each method reflects trade-offs between
control, coherence, and creativity.

The temperature parameter is closely associated with creativity. The parameter τ ∈ 0,2½ �modulates the
sharpness of the probability distribution, where higher temperatures (τ > 1) flatten the distribution,
allowing for more diverse and creative outputs but increasing the risk of incoherence. Conversely, lower
temperatures (τ < 1) sharpen the distribution, focusing on high-probability tokens and yielding more
deterministic but less creative text. Different sampling strategies might be combined with τ, tailoring text
generation to specific requirements.

2.2. Datasets and benchmarks

A direct comparison of human versus machine-generated content is provided by the Human ChatGPT
Comparison Corpus (HC3; Guo et al., 2023). This dataset consists of questions regarding various topics,
each answered by an LLM versus real humans.

For question-answering research, Google’s Natural Questions corpus (NQ; Kwiatkowski et al., 2019)
serves as a benchmark. This dataset consists of real user search requests. Using CNN and Daily Mail
articles, another question-answering corpus is provided by Hermann et al. (2015).
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TheCorpus of Linguistic Acceptability dataset (CoLA;Warstadt et al., 2019) comprises sentences that
have been labeled as either grammatically acceptable or unacceptable by human annotators. It might be
used for training LLMs such as DeBERTa-v3-large (He, Gao et al., 2023), serving as a classifier for
evaluating linguistic acceptability.

2.3. Detection techniques

In the social media context discussed here, analyses are built on the users’ behavior or content. While
focusing on content specifically (i.e., posts on X, formerly Twitter), the reader is referred to the literature
review by Alothali et al. (2018) for deeper insights into the behavior-based approach.

Various focus and content-independent detectionmethods exist. According toOrabi et al. (2020), these
can be categorized as graph-based approaches (e.g., Daya et al., 2020), crowdsourcing techniques (e.g., G
Wang et al., 2013), anomaly detectionmethods (e.g., NommandBahsi 2018), andmachine learning (ML)
based approaches (Alothali et al., 2018). This categorization by Orabi et al. can be broken down to
machine- versus human-based techniques since detection is performed either manually (e.g., bot
identification) or by machines, i.e., based on ML or pure statistical anomalies.

2.3.1. Human-based detection
Human performance can be examined in experimental settings. Here, human versus machine-generated
texts are presented to the participants (independent variable). The subjects, who do not know the origin of
the texts, are asked to identify machine-generated ones. Based on a representative random sample, this
procedure allows the estimation of general human accuracy, false alarm rate, etc. (dependent variables).
These scores can not only be compared to those resulting from computer-based classifiers but can also be
used to identify characteristics, i.e., what humans or machines tend to prioritize and what makes them
more likely to fail.

Demonstrated that way, humans tend to prioritize the semantic coherence of the text. At the same time,
machine-based detection methods emphasize statistical properties such as word probabilities and sam-
pling schemes (Ippolito et al., 2020).

Humans seem to know how and what other humans would talk about compared to machines. The fact
that machines can mimic these expressions and content was used by Jakesch et al. (2023): In their
experiment, participants could not distinguish between AI-generated and human-written self-
presentations misled by the AI’s usage of first-person pronouns, contractions, or family topics.

It can be concluded that time and resource-intensive human-based detection does not lead to better
results since humans can easily be deceived by using the above-mentioned factors. This has been
confirmed by Dugan et al. (2020), who introduced a tool for assessing human detection capabilities.
Their demonstration of how easily humans can be deceived underlines the importance of machine- and
statistical-based detection.

2.3.2. Machine-based detection
Many text generation models leave behind specific artifacts whose occurrence is extremely unlikely
compared to human text (Tay et al., 2020). Those probabilities or word frequencies can be examined using
statistical methods (see below). Since a manual calculation is theoretically possible here, these methods
can be considered simple. These are to be distinguished from those methods that require the use of ML
models, such as LLMs, which are therefore considered separately.

Models using the transformer architecture can be used for language generation and detection. The
MultiNLI benchmark (Williams et al., 2018) allows a performance comparison regarding detection: Here,
BERT-large achieves an accuracy of 88% (Lee-Thorp et al., 2022), while RoBERTa and DeBERTa score
90.8% (Y Liu et al., 2019), and 91.1% (He et al., 2021), respectively.

However, for every generator release, BERT-based classifiers such as RoBERTamust be trained again.
Therefore, zero-shot classifiers like DetectGPT become quite handy (Mitchell et al., 2023). These
classifiers only require two models: A duplicate of the model to be tested and a second language model

e29-4 Sinclair Schneider et al.

https://doi.org/10.1017/dap.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/dap.2025.6


introducing random permutations into the test string. However, the permutation models can not handle
short inputs due to their working principle.

Paraphrasing outlines theweak spot of the discussed classifiers. AI-based paraphrasing can be detected
successfully, as shown by Li et al. (2024). However, this technique focuses solely on paraphrasing
detection. Thus, the model is unable to determine whether the original text was human- or machine-
generated. Therefore, paraphrasing can still serve as an effective bypassing technique. For instance, this
technique is used by Krishna et al. (2024) and enhanced by Sadasivan et al. (2024) using recursive
paraphrasing. While Krishna et al. introduced the T5-based DIPPER as their own paraphrasing model,
Sadasivan et al. used DIPPER and other existing models combined without any model training or fine-
tuning. Sadasivan et al. (2024) claim their model generates paraphrases with high text quality and content
preservation based on human ratings on a five-point Likert scale.

The model’s output can be altered not only through a separate paraphrasing model but also through a
reinforcement learning approach that directly modifies the generative model. This method is inspired by
the paper Fine-Tuning Language Models from Human Preferences by Ziegler et al. (2020).

Another approach focuses on circumventing DetectGPT (Mitchell et al., 2023) using a paraphrasing
model (Krishna et al., 2024). The countermeasure suggested by Krishna et al. detects AI-generated
content by comparing it to a database of AI-generated texts. This solution has two significant drawbacks:
First, the provider of this AI model must establish such a service, and second, custom fine-tuned private-
run models are inaccessible (Da Silva Gameiro 2024).

When the underlying generativemodel is known, it can bemodified and hence serve as a classifier after
further training (Zellers et al., 2019). Zellers et al., who originally built up their model for fake news
generation, proved that thismodel is alsomost effective in detecting their own fake news. This implies that
detectors originating from the generative model itself are better at detecting artificially generated fake
news than standard classifiers. Both fake news generators and fake news detectors are combined by
Henrique et al. (2023) as generators and discriminators in the form of a generative adversarial network
(GAN) to demonstrate the attack against a classification model.

2.3.3. Statistical-based detection
After ChatGPT’s introduction (OpenAI, 2022), the frequency of certain words, such as intricate,
meticulously, commendable, or meticulous, has changed significantly in academic literature (Gray
2024a). In particular, these words increased by 50%, and others, such as innovatively even by 60%
compared to pre-2022 levels; for a complete list of words and statistics, see the dataset by Gray (2024b).
While one of these so-called group-1 words may have been used by chance, the multiple use of group-1
words within a text is so unlikely that it can be considered GPT-generated. Gray (2024a) estimates 1%
(60.000 articles) of all 2023 publications to be machine-generated and even predicts a further increase
in 2024.

Several other rule-based models exist, specially designed to identify automatically generated texts.
These rely on improbable word sequences and grammar (Cabanac and Labbé 2021) and similarity
measures such as word overlap (Harada et al., 2021).

A statistical-based countermeasure is the usage of watermarks in generated texts, as suggested by
Kirchenbauer et al. (2023). This approach adds a constant δ to a green list of tokens while they are
autoregressively sampled. So, somewords appear slightly more often than others, although they are in the
right position and do not jeopardize the sentence’s grammar or meaning. Due to the potential of
paraphrasing, detecting machine-generated text using watermarks has limitations. Removing one-quarter
of the watermark tokens can be enough to evade the detection (Kirchenbauer et al., 2023). Additionally,
the generation itself infers with the sampling process of the languagemodel bywithholding certain tokens
and strengthening others.

3. Experiment 1: evasion of shallow detectors

Various variables may affect the accuracy (ACC) of a detector, above all, the type of detector itself. For
example, transformer-based detectors will generally perform better than shallow ones. Although shallow
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detectors are less accurate, they are faster and use fewer resources, making their use in practice seem
realistic (e.g., real-time detection in large social networks). Serving as a benchmark, the focus of the first
experiment is thus on detectors such as Naive Bayes combined with Bag-of-Words (BoW).

The ACC of shallow detectors is considered the dependent variable. From the related work, it can be
deduced that the ACC should be influenced by the now-explained independent variables (i.e., LLM type,
resp. size, sampling strategy, resp. size, as well as temperature).

The OpenAI GPT family has demonstrated that increasing the number of model parameters leads to
significant improvements in language generation. Larger models, however, are particularly effective in
generating longer texts due to their extended context windows. Given that the current scope is generating
short tweets, varying the model size will answer the question of whether larger models also beat smaller
ones when the generated output is short.

Further, the influence of the sampling strategy on the LLM token selection process is examined. It is
assumed that selecting the most probable token at each step (i.e., greedy search) should be the easiest to
detect due to determination. Conversely, pure random sampling should be the most difficult to detect for
machines. However, the texts generated in this way are unusable due to their low coherence and, hence,
noticeable to humans. Consequently, these two sampling strategies only set the borders for the remaining
ones, which are of true relevance. These either limit the number of high-probability tokens k (top k
sampling), consider a cumulative probability threshold p (nucleus p sampling), or are based on the
conditional entropy of token sequences (typical sampling). Although it is unclear which of these strategies
will perform best, previous comparisons by Holtzman et al. (2020) imply that nucleus sampling should be
prior. However, it is unsure whether these results are generalizable to the present context, especially in
combination with the other independent variables.

From the possibility of statistical detection explained above, it can be deduced that the sample size
should also have an effect in addition to the type of sampling. It is hypothesized that as the sample size
increases, the representativeness is enhanced, and thus, the detector’s accuracy is also improved.
Conversely, the ACC decreases for smaller sample sizes.

Last but not least is the influence of temperature, which adjusts the probability distribution for selecting
the next word in the sequence to be predicted. Its definition implies that higher temperatures (τ > 1) lead to
more unusual texts, which are more difficult for machines to detect but might be recognizable to humans
due to incoherence. Conversely, a low temperature (τ < 1) leads to high coherence but also determinability
and is, therefore, easily recognizable by machines. Since these assumptions result from the definition of
the parameter itself, a moderating effect of temperature over the other factors is assumed. In other words,
the effects mentioned should be additive. At least, no indications in the literature make the interaction of a
specific model-sample-temperature combination seem plausible.

3.1. Methodology

The procedure involved several steps: A dataset with real tweets was first filtered to ensure that only real
tweets were involved (Section 3.1.1). This partial dataset was used to fine-tune various LLMs
(Section 3.1.2). The dataset was then completed using LLM-generated synthetic “fake” tweets
(Section 3.1.3), yielding from different hyperparameter combinations (Section 3.1.4). A classifier was
then trained with both real and fake tweets (Section 3.1.5). Using a grid-based approach, the effect of the
independent variables (i.e., hyperparameters) could be measured as a result of the classifier evaluation
(Section 3.2). The multi-step procedure requires the data to be split several times to provide the different
models with unseen data, as depicted in Figure 1.

3.1.1. Dataset
The dataset employed in this study comprises tweets collected between January and February 2020. Due
to the noisy nature of the raw data, a comprehensive set of filtering policies was implemented to refine the
dataset. The following measures secure a clean dataset in one language.
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In the first step, the dataset was restricted to tweets composed in English from authors with less
than 100.000 followers. This measure excluded accounts from companies, sports teams, celebrities, etc.,
primarily used for advertising. Moreover, non-truncated tweets were selected to ensure the text was fully
available, which is essential for training. To guarantee a wide variety of content, follow-up tweets, replies,
quotes, and retweets were discarded. Further, only tweets from users who sent less than 20 tweets per day
made it into the dataset.

After applying thementioned filtering steps, the dataset contained approximately 2million tweets from
136.450 verified accounts. These are set to be real tweets exclusively. For adding fake tweets to the partial
dataset, it was split first for training various LLMs. The dataset was then completed using LLM-generated
synthetical fake tweets. In the next step, the dataset was split up again in order to train a classifier and
check its ACC accordingly.

This procedure is illustrated in Figure 1.

3.1.2. Generative models
Different open-source language models based on the GPT and OPT architecture are fine-tuned for later
tweet generation. Particularly GPT-2 (Radford et al., 2019), GPT-J-6B (BWang and Komatsuzaki 2021),
GPT-Neo-125M, GPT-Neo-1.3B, and GPT-Neo-2.7B (Black et al., 2021). Furthermore, several OPT
variants (125M, 350M, 1.3B, and 2.7B), as referenced in the work of Zhang et al. (2022).

3.1.3. Synthetic tweets
Using a pre-defined sampling strategy and temperature setting, each model generated two sets of 10.000
synthetic tweets for training and evaluation of the detection models, respectively. Examples are provided
in Table 1.

3.1.4. Parameter grid
The independent variables are hyperparameter combinations of a parameter grid, including temperature,
sampling scheme, and -size. Temperature is varied from τmin = 0:8 to τmax = 1:4 in steps of 0:2 (the results
show that this part of τ ∈ 0,2½ � is sufficient, however, for the most analysis the borders were increased to
τ0min = 0:6, using steps of 0:1). Five sampling schemes (greedy search, typical-, top k-, nucleus- and
random sampling) with four sampling sizes (1k, 10k, 50k, and 100k) were used. Thewhole parameter grid
is used for fine-tuning a GPT-2 (1.5B) model and training the classifier, respectively.

Split Real

Split Fake

sample
1mio (50%)

subsample
100k/1mio

90%

10%
100k

100k

100k

100k

 2 mio�
filtered
tweets

Dataset
Classifier

Dataset
Generator

Train.

Test�

Generator
Modell

Fake-Tweets
Training

Fake-Tweets
Evaluation

real Tweets
Training

Trainset
Classifier

real Tweets
Evaluation

Eval.-set
Classifier

trained
Classifier

1st step
Training

2nd step
Evaluation

Figure 1. Data pipeline used for modeling.
Note: A comprehensive filtering policy was used (e.g., only tweets from verified users below the average
amount of daily tweets; English language; no retweets orquoted tweets, etc.). Dataset yield is the basis for
the classifier and generator, respectively. Several models were tested (e.g., pre-trained GPT versions).
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A subsequent analysis is conducted to check if architecture and parameter size have an effect. The
design is reduced to the most promising sampling scheme × size combination (i.e., easily detectable
combinations are excluded from the design). Hence, the outstanding combination was tested for a branch
of nine models with six different parameter sizes, all on the given temperature range. The used models
differed in architectures (OPT vs. GPT) and parameter size, ranging from 125M to 6B.

3.1.5. Detector
A Naive Bayes classifier using BoW features was applied to detect synthetically generated tweets. This
classifier has been chosen for its simplicity and short training time.

A grid-based approach was employed to train the classifier with various parameters (temperature,
sampling strategy resp. size, andmodel architecture resp. size) all of whichwere explained in detail above.

3.2. Results

By definition, the temperature modification for LLM tweet generation led to modified word probability
distributions accordingly. A comparison of human against machine-based quantiles revealed notable
differences in temperatures of τ ≠ 1. This characteristic is illustrated in Figure 2a, where the frequency
distribution is less visible due to logarithmic scaling. Visualized by plotting the density distribution
accordingly, deviations are clearly notable for density distributions resulting from τ ≠ 1 (v.v. less for τ = 1,
cf. Figure 2b). Those depicted differences make it easy to detect variations for statistical-based classifiers,
such as Naive Bayes.

Across models, sampling sizes, and temperature values, the ACC for different sampling strategies was
maximal when using greedy search, as expected, and minimal when using random sampling. In the range
of both strategies, nucleus sampling yielded the best results, followed by typical- and top-k sampling with
similar results. For all sampling schemes, a U-shaped result pattern emerged regarding increasing
temperature values, as depicted in Figure 3b. The same pattern is visible for different sampling sizes,
where larger samples did not only lead to higher detection rates but also to higher gradients for
temperatures diverging from 1 (cf. Figure 3a).

Across temperatures, the different models did not show a clear trend, neither in the model architecture
nor in size. Particularly, both architectures lead to similar results, MACC ≈ 61:80% for both types. Using
Spearman’s ρ showed rather a small positive, then a negative correlation between ACC and parameter
size, bρ= :14 for GPT– and bρ = :13 for OPT models (both not significant). This is visualized for different
OPT– (Figure 3c) andGPTmodels (Figure 3d), using nucleus sampling with p= 0:95 and a sample size of
10k. A repetition of the experiment revealed that outliers (as shown here for OPT-2.7) were unsystematic.

Table 1. Example tweets generated with different models

Model Tweet

GPT–
Neo–125M Kobe says new coronavirus warning on a plane is too difficult to understand.
Neo–1.3B The new album is out now; make sure you have the album download code for free.
Neo–2.7B #ValentinesDay: Today is the day to celebrate the greatness of yourself. And to…1

J–6B “This is how we play games!” Let’s hear “The Box” tonight with @OzzyOsbourne…1

OPT–
125M I’m sure a few will be added in a future update as part of the “Duke” legacy.
350M Good luck on the final stage of your tour!
1.3B Rangers’ Henrik Lundqvist: “I’m not even thinking about’ the trade rumors, …”1

2.7B A very cold, chilly #day for #Lincoln and #Omaha #MorningWeather

Note: Tweets generated with temperature τ = 1:0 and top-50 sampling.
1Example trimmed due to excessive length.
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Notably, the same U-shaped pattern as described for sampling sizes and strategies is also visible across
models: Centered at τ ≈ 1 where ACC is minimal, diverging temperatures lead to an increase in ACC.

3.3. Discussion

Experiment 1 focused on attacking shallow learning detectors to obtain an ACC baseline measure.
Therefore, synthetic tweets were generated with the manipulation of several independent variables. The
ACC of these detectors was then tested using a Naive Bayes classifier combined with BoW.

When the temperature was set to τ = 1, the detection rate was minimal. Notably, there was no (curvi-)
linear relationship between temperature andACC but a U-shaped one centered around τ ≈ 1. At this point,
human and machine-generated word probability distributions were most similar. Vice versa, τ ≠ 1 led to
easily distinguishable distributions and, hence, to higher detection rates. This effect increased the more τ
diverged from its centers. Also, the effect became stronger when sampling sizes increased (v.v. less to not
visible for small samples, e.g., 1k). Regarding sampling methods, the easiest to detect was greedy search
since it works by always selecting the most probable next token, introducing very little entropy (i.e., max.
ACC > 99%). Comparably, the most difficult to detect was randomly sampling all possible next tokens,
introducing more entropy and resulting in detection rates below 60%. However, for the purpose of
coherence, using different sampling schemes is advisable. Here, nucleus sampling led to the best results
(i.e., the lowest ACC). Model architecture and size, however, play a minor role in detecting short texts
(i.e., similar results across architectures and no clear trend of parameter size across models). While larger
models beat smaller ones when the generated output is long, this effect is not true regarding short output
text. One possible explanation for this is the fact that larger models can not display their strength regarding
extended context windows when texts are already small in the first place.

Taken all together, the results show, that shallow learning-based classifiers appeared to perform
insufficient if the generative models produced texts with high entropy and similar word distribution to
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Figure 2. Human-based against machine-based word probability distributions.
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GPT-2 (1.5B) model using random sampling with a sampling size of 10k. (a) Comparison of machine
against human-based word probability distributions (red dashed line marks theoretical perfect mapping).
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distribution).
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human texts. This can be traced back to their working principle since the BoWapproach does not consider
the position in which a certain word is located nor synonyms with the same meaning.

Shallow detectors are resource-sparing classifiers and, therefore, represent a realistic application
example (e.g., monitoring big data streams). At the same time, these detectors can be evaded easily, as
demonstrated here. More advanced, resource-intensive classification models are therefore used in the
field. Those models, such as those based on BERT ones, push the boundaries of the here presented
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Figure 3. Detection rates by temperature for sampling sizes, methods, and generator models.
Note: Comparison of ACC for varying temperatures τ and (a) different sampling sizes (1k–100k tweets)
using random sampling and (b) different sampling types, i.e., typical–, top k = 100, nucleus p= 0:95 and
pure random sampling, all with a 10k sampling size. greedy search is not depicted here, since it always
leads to ACC > 99%. Both sampling sizes and strategies result from the sameGPT-2-1.5Bmodel, whereas
panels (c) depict results for OPT– and (d) for GPT model architectures with various parameter sizes.
Sampling sizes and model parameters are reflected by color shading (i.e., the darker, the bigger). For all
panels, small ACC values indicate a better performance of the generatingmodel. For colorization, see the

online version of this article.
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strategies. Hence, alternative evasion techniques are needed for transformer-based detectors, as presented
in Experiment 2.

4. Experiment 2: evasion of transformer-based detectors

Given their superior performance in text classification, transformer-basedmodels are increasingly preferred
for deployment in production environments. Hence, the previously applied evasion tactics become
insufficient. This raises the question of whether more advanced classification models can also be evaded.

To examine this question, the former described procedure was adopted accordingly on both sides by
replacing the shallow classifier with a transformer-based one and adjusting the evasion strategy as well.

Unlike shallow learning and other deep learning algorithms, transformers make one major improve-
ment: Their self-attention capability, formed by self-attention layers. These layers facilitate the mapping
of tokens into a vector space in relation to their surrounding tokens, resulting in more contextualized
representations.

Simple parameter tuning is insufficient to bypass these attention-equipped transformer models. Hence,
it is vital to use more sophisticated methods. One of those might be reinforcement learning (RL). By using
RL, a model can be guided towards creating a desired output. For example, it is possible to change the
sentiment of a text from negative to positive. Hence, the desired output can also be a non-detectable text.
RL is, therefore, used here to bypass transformers.

However, reinforcement learning’s unpredictable characteristic in finding strategies for reward maxi-
mization comes with the risk of the model learning introducing artifacts to bypass the classifier. To
mitigate this risk, additional guardrails are applied.

4.1. Methodology

The previously used procedure was adapted to evade transformer-based detectors. Firstly, the BoW text
encodings were replaced by a transformer-based classifier (Section 4.1.2). Secondly, to bypass this
classifier, reinforcement learning was used (Section 4.1.3). To further stabilize the learning process, the
RLs reward function was divided into (a) the classical evasion reward (Section 4.1.4) and (b) further
constraints. The latter are not only vital for stabilization but also hinder the RL process to find undesirable
evasion tactics (e.g., introducing artifacts such as extensive usage of special characters).

The procedure was applied to a second scenario, i.e., the generation of fake news, to demonstrate that
this methodology can be adapted to other domains. In this regard, a new dataset was used (Section 4.1.1).
Training and testing procedures were similar and are therefore not again described. However, the
linguistic refinement filters could be simplified to one single rule. In particular, this rule ensured that
generated texts had different starting phrases, thereby maintaining some level of diversity in the output.

4.1.1. Dataset
The human dataset was the same as described in the previous experiment (Section 3.1.1). To complement
the dataset with synthetic tweets, a top-50 sampling with a temperature setting of τ = 1:0 was used.
Additionally, the number of training samples for a BERT classifier was fixed to 100k compared to the
BoW classifiers.

In order to assess the generalizability of the reinforcement learning approach, a second iteration of text
generation using the CNN/Daily Mail dataset from Hermann et al. (2015) was conducted.

4.1.2. Detector
BERTwas used as a primary reference model within the transformer family. This is due to its architecture,
which reassembles the basics of its predecessors, such as RoBERTa and DeBERTa.

Given the considerable resources required to train an entire BERT model, fitting multiple models for
the sake of hyperparameter optimization was discarded.
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4.1.3. Reinforcement learning
The used hyperparameters, such as learning rate, mini-batch size, choice of the optimizer, and threshold
for detecting linguistic acceptability, were based on literature recommendations. For the GPT-Neo-2.7B
model, the linguistic acceptability threshold was reduced from 0.4 to 0.3, as larger models are more prone
to manual interventions. Furthermore, the Adam optimizer was substituted with the Lion optimizer (Chen
et al., 2024), which has reportedly outperformed the former in certain scenarios. During both the
reinforcement learning and evaluation phases, the same sampling method was used to ensure consistency
in results.

The general RL procedure followed the three distinct stages as described byWerra et al. (2020): rollout,
evaluation, and optimization. Since the predefined optimization algorithm was not changed, only the
rollout and evaluation stages are described below in more detail.

Rollout. The first stage, named rollout, entails the generation of synthetic tweets utilizing the language
models described in Section 3.1.2. In this stage, the model is provided with the beginning tokens of an
original tweet and is tasked with completing the sentence. Sometimes, the model generates entire tweets
independently to mitigate the risk of overfitting short text fragments.

Evaluation. During evaluation, the generated texts are submitted to the BERT-based classifier
described in Section 4. If the classifier recognizes the text as human-generated, the reinforcement learning
algorithm receives a positive reward; otherwise, it receives a negative one. In this context, raw logits have
been found to yield optimal performance.

Optimization. The final optimization stage entails the computation of the log probabilities of the tokens
to compare the current language model with a reference model. This step represents a critical element
within the reinforcement learning framework proposed by Ziegler et al. (2020), ensuring that themodified
model does not overfit its generation process.

4.1.4. Reward function
In addition to the detector-based rewards, a carefully handcrafted reward function is introduced to further
guide the text generation process. This function penalizes generated texts that, while classified as human-
like, fail to meet specific linguistic criteria. The reward calculation process is illustrated in Figure 4 and
consists of various rulesets, all of which will be outlined in the following paragraphs. If one or more of
these linguistic rules are violated, the most severe penalty of all individual rules is applied. Conversely,
should themodel generate a synthetic text that satisfies all rules, the reward is equal to its evasion, as given
by the detector model.

The optimization rules were developed by analyzing preliminary training runs, during which both
request and response logs from the reinforcement learning process were examined. While reinforcement
learning can operate without these rules, the resulting outputs are significantly less coherent. For instance,
an unguided model may generate an output such as “Something for Administrator930 Macy’s Displays!
RIP Family Members.” While the detector algorithm did not classify this text as machine-generated, its
core message is clearly questionable. Using the ruleset below, the restriction imposed by the linguistic
acceptability rule would have prevented a positive reward from being assigned to this text.

The thresholds of the further introduced penalization rules are determined by observing the reinforce-
ment learning logs. Looking at why a training run failed helps to iteratively build rule by rule instead of
knowing all the constraints right from the beginning. Another important factor for choosing the right
thresholds is the type of social media text. For example, a tweet might have more special characters and
emojis than a book or newspaper text; consequently, a higher threshold is chosen for these measurements.

For larger models, the reward associated with bypassing the detector algorithm can be multiplied by a
scalar to prioritize the model’s circumvention over producing grammatically or semantically refined
sentences if necessary.

Additional constraints. Special characters. Texts containing more than 25% special characters are
penalized through a linearly decreasing negative reward, reaching the maximum penalty of –1 if the text
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consists entirely of special characters. Special characters include everything except Latin letters, numbers,
and white spaces, while emojis are kept out of the calculation since they are treated in an extra rule. The
number of 25% is backed up by the special character to all character ratio in the trainset of the generative
model, as illustrated in Figure 5a. This ratio might vary with changing text types, such as newspapers or
books.

Repetitions. Besides hallucination, the repetition problem is a well-known issue in natural language
generation and is therefore already scientifically analyzed (Fu et al., 2021). The idea behind the repetition
penalty is to prevent the model from adopting this undesired behavior during the reinforcement learning
phase. A text containing three ormore instances of the sameword is assigned a negative reward of up to –1
when the token is repeated eight times or more. In order not to prevent a natural text from being generated
by this rule, the gold standard train corpus serves as a comparison where repetitions of over two times are
very uncommon, as illustrated in Figure 5b.

Linguistic acceptability. Linguistic acceptability is evaluated using a DeBERTa-v3-large classifier
(He et al., 2023), which has been trained on the Corpus of Linguistic Acceptability (CoLA) dataset
(Warstadt et al., 2019). CoLA comprises sentences that have been labeled as either grammatically
acceptable or unacceptable by human annotators. The trained model assesses the grammatical accept-
ability of a given sentence, and if its score falls below the 40% threshold, a negative reward is assigned.
This reward again is linearly scaled and reaches a value of –1 if the acceptability score drops down to 0%.
For models with more than two billion parameters, the threshold is relaxed up to 30% due to the increased
training difficulty associated with larger models. The thresholds used in this evaluation were determined
empirically rather than sourced from existing literature. Higher thresholds are typically recommended to
enhance linguistic acceptability. However, excessively strict thresholds can impede the reinforcement
learning process, as texts may be persistently classified as non-human, preventing the model from
receiving positive rewards and hindering learning.

Dictionary. Besides introducing artifacts such as special characters, the RL process could also lead to
words that are not part of any dictionary. Since this is not uncommon for tweets, it is important to give the
model a certain amount of freedom to introduce unknownwords. However, this opportunity should not be
used excessively. Therefore, the ratio between total words and unknown words of the original corpus is
taken for comparison as illustrated in Figure 5e. Because it rarely happens that less than 25% of the words
are part of a dictionary, a generation with a lower score generates a negative reward of up to –1 if none of
the words are found in the dictionary.

Linguistic rewards Final Result

[-1,1]

[-1,1]

[-1,1]

[-1,1]

yes

no

Special Characters
≤25% of token

⁝

Repetitions
≤2 word-repetit ions

take the evading
reward

take the smallest
linguistic  reward

Evading reward
Calculate reward for
evading bot classifier

all
linguistic
rewards

>0 ?

Figure 4. Reinforcement learning reward calculation procedure.
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Word Emoji relationship. Emojis are a common way to express emotions on social media. That’s why
they appear so often in social networks like X compared to newspapers or books. However, an overly
excessive use of these expressions could also lead to a text losing its message and being undesirable to
read. Therefore, the ground truth train dataset is once again consulted to find the maximum amount of
desirable emojiswithin one tweet, as demonstrated in Figure 5c. The threshold of giving a negative reward
is reached once a tweet contains more emojis than words (50%).

Number of Emojis. The aforementioned word-emoji relationship might not be sufficient for longer
texts since, in this case, many emojis are possible. A sentence of ten words could include ten emojis,
which is a bit much. This is why, additionally to the sentence length, four or more emojis are given a
negative reward. Such a penalty also aligns with the natural distribution of emojis among tweets
(Figure 5d).

Repetition of the Query.Although not as common as repetitions within a generated text, the repetition
of the query is also a phenomenon that has been observed during RL training analysis. To conquer this
flaw, repeating more than half of the query yields a negative reward.

Special Tokens. The use of special tokens, such as the beginning-of-sentence (BOS) and end-of-
sentence (EOS)markers usedwithin transformer models, is limited to two per tweet. The presence of each
additional special token results in a negative reward of –0.4, with a maximum penalty of –1.

Same start. Output diversity is essential when the model generates tweets without an input query. A
negative reward is imposed if more than 10% of the tweets in a training batch begin with the same word.
This penalty increases linearly, reaching –1 if 20% of the tweets start similarly.

Numbers at the start. To prevent the model from learning to exploit number-based patterns to bypass
the classifier, a penalty is given if generated tweets frequently start with numbers. If more than 10% of
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tweets within a training batch exceed this limitation, the penalty is applied and scaled to a maximum once
the frequency exceeds 20%.

Unknown characters. In some occasions, language models generate filler or unknown characters,
typically caused by the occurrence of unknown characters included in the fine-tuning dataset. A starting
penalty of –0.5 is given upon the first occurrence and decreases further for each consecutive appearance to
prevent this undesirable behavior.

4.1.5. Training log
To better illustrate the internal process, Table 2 provides a sample of the ongoing process, including logs,
documenting queries, responses, and rewards. As outlined in Section 4.1.3, a positive reward is only
assigned when both the query and response were classified as human-generated and none of the
supporting rules produced negative feedback. In these cases, the reward relies solely on the BERT
classifier’s ability to detect generated content.

4.2. Results

Across all evaluated BERTmodels, themeanF1-score was quite high before the RL application,M = 0:94
(SD= 0:01). For the RL application, empirical analysis proved a learning rate of 5 �10�5 and a mini-batch
size of 4, yielding the most optimal results. After this RL application, the mean detection rate decreased
significantly to only M = 0:09 (SD = 0:07).

Further investigations regarding general applicability used the CNN/Daily Mail dataset. Despite the
different domains, similar results were observed. Particularly, the detection rate decreased from F1 = 96%
to onlyF1 = 17% after the RL application. Across applications, RL had a significant effect of d = �16:48,
95%CI �24:14,�8:49½ �. According to Sawilowsky (2009), this effect can be interpreted as huge. All
results are summarized in Figure 6.

4.3. Discussion

Experiment 2 focused on transformer-based detectionmechanisms. The 2.7 billion parameter model, with
its reduced linguistic acceptability threshold, yields notably superior results, although at the cost of
reduced linguistic quality. Particularly, for LLMs such as GPT2 and GPT-Neo models of different sizes
(125M–2.7B), all F1-scores exceeded 92%. This high detection rate can be explained by the enhanced
capabilities in spotting textual patterns.

Although transformer-based classifiers have demonstrated high reliability in distinguishing between
real and machine-generated content, a fine-tuned reinforcement learning approach can effectively bypass
these robust models. The application of RL had a huge effect, decreasing themean detection rates bymore

Table 2. Example of the reinforcement learning process

Query Response Reward

FINAL UPDATE: Chancellor says he has not shown anxiety 0:8019
< |startoftext|> see you this weekend! we’ll be here again cider is back in v 0:9674
< |startoftext|> flush those lemons. This food ain’t good 0:9628
Ozzy Osbourne cancel s gig at studio theatre tonight over coronavirus 2020 forced �0:0089
Today we’ll know soon morning if there’s blood somewhere in �0:1756
The best #adventure this year on 2020, dudes. Can we really �0:2899
< |startoftext|> Yeah it’s weird how local commentators 0:9696

Note: The RL process steps are illustrated line by line.
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than 16 standard deviations to only F1 = 0:09. This proves RL to be a reliable method for bypassing
detectionmechanisms. Furthermore, experiments adapted to the CNN/DailyMail dataset demonstrate the
applicability of this reinforcement learning approach to other text domains. Experiments with the four
open-source models confirm that BERTclassifiers can be bypassed using a reinforcement learning-based
training methodology.

Despite the high detection rates, the potential for the BERTclassifier to overfit to a specific generation
method remains, which could lead to suboptimal performance when applied to other generative models.

5. Experiment 3: evasion of zero-shot-based detectors

Although the approaches of the first two experiments were successful, these attempts have several
limitations. Primarily, the focus was solely on hiding the synthetic origin. Consequently, during RL,
the model could change the content freely if it still made sense and was detected as human-written.

Additionally, the computational cost increases complementary with the parameter decrease of the
model to be adjusted. This makes it increasingly difficult to run the RL approach from a hardware and
stability perspective. Also, access to the original models is necessary to change them. Therefore, RL is
limited to all open source models (i.e., not possible for, e.g., GPT 3 because the weights cannot be
adjusted).

In order to compensate for these disadvantages and to create a general approach that is also valid for
black-box models, an alternative procedure is proposed. This involves outsourcing the change to a new
translation model that preserves the meaning while masking the origin. One of the many advantages of
transformers was the improvement of machine translation.

Themost desired goal of translations is preserving the contentwhile remaining linguisticallywell-written. If
transformers can be used to map from one language to another without changing the content (“translation”), it
could also be possible to map from recognizable to unrecognizable with unchanged content.

For a transition to an experimental setting, maximum content similarity to the original and maximum
unrecognizability are relevant. As with RL, unrecognizability is potentially in discrepancy with other
influencing variables. While there is a risk of artifacts with RL, it can be assumed that content and sentence
quality suffer here. Keeping the unrecognizability constantly high could lead to models, i.e., “translation”
with inappropriate synonyms that are not detectable by classifiers but sound strange to humans. However, if
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all three influencing variables specified above, including sentence quality, are taken into account, this should
lead to sentencesbeing translated (paraphrased) in such away that their LLMorigin is no longer recognizable.

5.1. Methodology

To compensate for the previous language limitations, a new dataset consisting of LLM-answered
questions was created (Section 5.1.1). The answers were paraphrased, and the results were filtered to
obtain the highest coherence and similarity to the original answer while being less likely to originate from
an LLM (Section 5.1.3). The thereby trained paraphrasingmodel (Section 5.1.5) was evaluated by using a
different dataset and compared to reference models (Section 5.2).

5.1.1. Dataset
This experiment utilized the Human ChatGPT Comparison Corpus (HC3; Guo et al., 2023) as the
primary dataset. HC3 contains over 24,000 entries, each consisting of a question answered by both a
human and ChatGPT. Instead of relying on the pre-existing GPT responses, new ones were generated
using the Qwen 1.5-4B model (Bai et al., 2023). This was necessary for the subsequent step, where the
same model was used to calculate log loss for permuted answers. The permutation candidates for training
a paraphrasing model were generated using the T5-3B model without fine-tuning. Optimal permutation
candidates for each answer were selected based on three criteria: Similarity, coherence, and LLM origin
plausibility (via its log loss), as depicted in Figure 7. Themasking and filtering procedures are explained in
detail below. Google’s Natural Questions (NQ) corpus from the Benchmark for Question Answering
Research (Kwiatkowski et al., 2019) was used for evaluation purposes.

5.1.2. Sampling and masking
For each question in the HC3 dataset, a response was generated using the Qwen 1.5-4B model. These
responses were then processed in the followingmanner: First, the answer was split into sentences and then
tokenized using named-entity recognition (NER) to identify entities such as names, places, or numbers. In
order to maintain the core message of a sentence, these tokens were preserved from substitution. For the
remaining tokens, with the exception of the final token in each sentence, all possible 2-tuples of token
combinations were generated for masking purposes. Each sentence could include multiple masks, as long

 Filter criteria
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Figure 7. Pipeline used for training set generation.
Note: Question fromHuman ChatGPTComparison Corpus (Guo et al., 2023) answered by Qwen1.5-4B-
Chat (Bai et al., 2023) and permutated by t5-3b (Raffel et al., 2020). The Log loss (plausibility) is checked
by the generative Qwen-model itself, while the similarity is checked using the sentence transformer all-
MiniLM-L6-v2 (Wang et al., 2020). The acceptability was checked by a DeBERTa (He et al., 2021) model

trained on the CoLA dataset (Warstadt et al., 2019).
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as the masked portion did not exceed 15% of the sentence. From all possible combinations for each
sentence, 10 were randomly drawn. Note that this number can also be chosen higher but was kept small in
order to reduce the computational effort later on. The masked tokens were then filled using the T5 model
(3B; Alisetti 2020) by generating ten paraphrased sentences per masked combination. Duplicates were
discarded, ensuring variability in the output. This approach follows a methodology similar to the one
described by Mitchell et al. (2023).

5.1.3. Filtering criteria
The filtering criteria were designed to select paraphrases that show the lowest likelihood of being
generated by the corresponding large language model (LLM), consequently being difficult to detect as
machine-generated. However, these paraphrases were also required tomaintain a high degree of similarity
to the original text in order to prevent semantic drift (i.e., a high similarity score is desirable). Furthermore,
coherence was a crucial factor in ensuring that the paraphrases remained linguistically correct. Sentences
with high similarity but incoherent or linguistically incorrect structures may evade detection by LLM
classifiers due to unusual word choices. Yet, they are clearly distinguishable from human responses,
making them unsuitable for the intended use. Paraphrases not meeting the mentioned criteria were
discarded, while the best of the remaining ones were chosen.

Similarity. The assessment of semantic similarity was conducted using the all-MiniLM-L6-v2 model
(Wang et al., 2020), which measures the cosine similarity between sentence vectors. This approach
ensured that the selected paraphrases did not deviate excessively from the meaning of the original
sentences, thus preserving the semantic content required for reliable training data.

Coherence. Coherence or linguistic acceptability was evaluated through a DeBERTa classifier
(He et al., 2021), trained on the Corpus of Linguistic Acceptability dataset (CoLA; Warstadt et al.,
2019). This ensured that the paraphrased sentences retained grammatical correctness and avoided
structural errors that might result in linguistically faulty outputs.

LLM origin plausibility. The paraphrased sentences were evaluated using the model Qwen1.5-4B-
Chat itself (Bai et al., 2023), to calculate the log loss. The paraphrase with the highest log loss, indicating
the lowest likelihood of being generated by the model, was selected. This criterion aimed to identify
paraphrases that were most likely to evade detection by the LLM classifier. As shown in Table 3, the
sentence:When you use Tor, youronline activity is encrypted and can’t be traced back to your real identity
is paraphrased with the goal to identify the combination with the highest cross-entropy loss.

5.1.4. Filtering and scoring
Initially, all generated examples with a cosine similarity of less than 0.9 were discarded. For coherence or
linguistic acceptability, two rules were applied. If the original sentence had a coherence score of 0.9 or

Table 3. Example of trainset generation

Paraphrased sentence Cross-entropy loss

When […] encrypted and […] real location. 4:582982
When […] encrypted and […] computer. 4:613022
When […] not visible to most websites and […] true location. 4:570329
When […] encrypted so that it […] ISP. 4:608329
When […] anonymous, and it […] address. 4:626064
When […] secure and […] actual computer. 4:691911
When […] secure and […] true location. 4:651963
When […] anonymous and […] actual home address or computer. 4:637465
When […] anonymous and […] ISP. 4:672797

Note: Original sentence: When you use Tor, your online activity is encrypted and can’t be traced back to your real identity.
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higher, any paraphrased sentences scoring below this threshold were rejected. Likewise, if the original
sentence had a coherence score below 0.9, any paraphrases with a delta greater than ± 0:05 compared to
the original were discarded, allowing only minor linguistic changes. This second delta rule is necessary
because an original sentence may already have been written in a bad linguistic style. So, every
paraphrased sentence would have been discarded. The remaining samples were then sorted by log loss,
with the highest log loss sample being selected for each original sentence. This process yielded a training
set comprising 24.300 paraphrases.

5.1.5. Paraphrasing model
The paraphrasing model is based on the T5-11B transformer (Raffel et al., 2020), trained for three epochs
with a learning rate of α= 10�4. During training, the prompt “paraphrase:” was added to guide the model
in generating paraphrases. T5 stands for Text-to-Text Transfer Transformer, and this is the reason why the
model has been favored over other transformer models and architectures. It takes a task and the actual
input as a combined input and produces the result as an output without additional explanation, introduc-
tion, hints, etc. Therefore, the paraphrasing task is treated similarly to a translation task, with the
difference that the model is taught to introduce minor changes to the original sentences. Since the train
data have been designed only to introduce small changes of about 15% of the tokens, the model can easily
be applied recursively without removing toomuch of the actual meaning while being applied. This allows
for the degree of change that should be applied to the original text to be adjusted.

5.1.6. Comparison models
In order to compare the conducted approach to existing ones in the scientific field, two methods by
Krishna et al. (2024) and Sadasivan et al. (2024) are used. To make the comparison as significant as
possible, the same data are used for Krishna et al. (2024). This is not feasible for Sadasivan et al. (2024)
since their results have been human-rated, as explained below. Therefore, the results are converted for a
better comparison.

Lexical diversity approach. Dipper by Krishna et al. (2024) uses a fine-tuned T5-11B transformer
model. In a single paraphrasing step, the Dipper model takes two parameters, Lexical Diversity andOrder
Diversity. This means that instead of adjusting the degree of change by applying a paraphrasing model
recursively, Dipper uses the parameter Lexical Diversity. Furthermore, Dipper is designed as a general-
purpose paraphrasing model and is not fine-tuned to hide a specific model such as Qwen1.5-4b-chat (Bai
et al., 2023).

Paraphrasing approach.A comparable approach was conducted by Sadasivan et al. (2024), who also
used paraphrasing. Instead of training their own models for the hiding of the machine-generated text, the
authors combined several pre-trained language models. Although optimized regarding detectability, the
authors also report measures regarding grammar or text quality (similar to linguistic acceptability) and
content preservation (comparable with cosine similarity). Both were human-rated on a Likert scale, thus
making them less comparable.

5.2. Results

Without the application of any hiding model, the baseline detection rate was 88.9%, and the linguistic
acceptability was 74.1%. Cosine similarity was, of course, 100%.

After applying the here proposed trained hiding model, all values decreased. The detection rate went
down quite fast and reached 8.7% after 10 permutations. At the same time, both remaining variables were
still quite high: Linguistic acceptability reached 65.5% while remaining 82.6% similarity to the original
sentence. Both variables showed low variance across permutations, with mean values of M = 68:2%
(SD= 2:3%) regarding acceptability and M = 89:0% (SD= 4:5%) for similarity.

Starting with the same baseline values, the comparing model of Krishna et al. (2024) leads to a similar
linguistic acceptability of 72.5%. The detection rate decreased to 15.4%, and the cosine similarity also
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went down, reaching 38.9%. Overall applications, mean acceptability was high with low variance
M = 72:6% (SD = 0:6%), contrarily to the similarity with M = 76:4% (SD= 22:0%).

Hence, the detection rate is more than twice as high as with the proposedmodel, which did not lead to a
significant decrease in similarity.

Results reported by Sadasivan et al. (2024) are less comparable since a different dataset was used.
Additionally, the evaluationwas done by human raters on a Likert scale regarding grammaror text quality
(similar to linguistic acceptability) and content preservation (comparable with cosine similarity). Rescal-
ing their results leads to the following values after five permutations: Acceptability of 76.8% and
similarity of 67.5% were both high, but the detection rate only decreased to 60.9%. Without reporting
the number of permutations, the minimal detection rate is 58.1%.

As the number of paraphrasing iterations increases, the probability of the sentence being identified as
machine-generated (i.e., classifier label = 0) decreases significantly. At the same time, the likelihood of it
being linguistically acceptable remains relatively stable. Furthermore, the degree of semantic similarity
also decreases only marginally.

Both methods’ performance was compared by using ten iterations of the perturbation model and a
lexical diversity range of 0% to 100% for theDippermodel. The benchmarkswere performed on the 1,000
questions sourced from Google’s NQ corpus (Kwiatkowski et al., 2019). After six iterations of recursive
paraphrasing, the detection rate dropped from 88.9% to 14.3%, while maintaining a high cosine similarity
of 88% (cf. Figure 8). In contrast, achieving a comparable result with the Dipper model required setting a
lexical diversity of 100%,which reduced the cosine similarity to 39%. These results demonstrate that fine-
tuning a paraphrasing model to evade detection for a specific generative model can achieve superior
performance compared to a general-purpose paraphrasing model.

Table 4. Example of original answer vs. paraphrases to the question: Who was Michelangelo?

i Response cos

0 Michelangelo was a very famous painter and sculptor from a long time ago. He was
born in Italy and he made many beautiful pictures and statues that people still love
today. Some of his most famous works include the sculpture of David and the
painting of the Sistine Chapel ceiling.

1:00

1 Michelangelo was a very talented painter and sculptor who lived a long time ago. He
was born in Italy and he made many × pictures and statues which are known and
loved today. Some of his more famous works include the sculpture of David and the
painting of the Sistine Chapel ceiling.

0:98

2 Michelangelo was a very talented painter and sculptor that became popular a long
time ago. Hewas born in Italy, where; hemademany × pictures and statues that are
famous and loved today. Some of his more famous works include the sculpture of
David and the painting of the Sistine Chapel.

0:97

3 Michelangelo was a very talented painter and sculptor who lived a long time ago. He
was born in Italy, where he mademany × paintings and statues that are well-known
even today. Some of his best work includes the sculpture of David and the painting
of the Sistine Chapel.

0:95

4 Michelangelo was a very talented painter and sculptor who lived during the
Renaissance . He was born in Italy × and he made many × paintings and statues that
are also well known even today. Some of his best work includes the sculpture of
David and the paintings in the Sistine Chapel.

0:94

Note: Original prompt: “Who was Michelangelo? Explain to me like a child.”. The original answer given by Qwen1.5-4B-Chat is marked as i = 0 and
recursive iterations as I ≥ 1, exemplary for the first four out of ten. Colorization reflects qualitative change across applications: Light color highlights
changes to the previous response, and dark color represents overtaken changes (i.e., changes compared to the original response). Deleted words or
punctuation are xed out. Similarity is quantized as cosine similarly (cos). For colorization, see the online version of this article.

e29-20 Sinclair Schneider et al.

https://doi.org/10.1017/dap.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/dap.2025.6


Summarized, the main advantages of the conducted new approach compared to Krishna et al. (2024)
and Sadasivan et al. (2024) are a lower detectability while preserving a higher cosine similarity as well as a
constant linguistic acceptability.

5.3. Discussion

The evaluation was conducted using Google’s Natural Questions corpus (NQ; Kwiatkowski et al., 2019),
as described in the related work. In contrast to the evaluation method proposed by Mitchell et al. (2023),
this study employs a perturbation technique that modifies the responses of a language model with the
objective of increasing log loss. In particular, a paraphrasing model based on the T5-11B transformer is
employed to generate sentences with increased log loss. This approach enables the generation of
paraphrases that progressively deviate from the original sentence, increasing its distance from the
language model’s typical output. Despite these modifications, the linguistic acceptability of the generated
sentences is preserved.

Experiment 3 proved that post-generation paraphrasing helps to avoid detection. This is particularly
useful for bigger LLMs that are harder to fine-tune or for those that are inaccessible to the user. Although
paraphrasing approaches have already been proven to be applicable (Krishna et al., 2024; Sadasivan et al.,
2024), it is demonstrated that the evasion results are even better if the paraphrasing model is tailored to
hide one specific model. The results outperformed those of Krishna et al. by adding the recursive
paraphrasing feature. The mentioned approach also surpassed Sadasivan et al, who used recursive
paraphrasing, too, but combined several pre-trained paraphrasing models instead of fine-tuning them.
Nevertheless, this comparison has its limitations, since Krishna et al. used a parameter for lexical diversity
instead of recursively applying themodel. Likewise, Sadasivan et al. used a Likert scale instead of a cosine
similarity of sentence vectors to compare the permutations to the original output.

6. Conclusions and outlook

We discussed the improvement of LLMs in terms of reasoning performance, which will further compli-
cate LLM detection in the future. In the literature review, it is noted that LLMs are no longer recognizable
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Figure 8. Results of the proposed model vs. reference models.
Note: Comparison of the results achieved with (a) the proposed model in comparison to (b) the Discourse
ParaphraserDIPPERbyKrishna et al. (2024) and (c) the paraphrasingmodel by Sadasivan et al. (2024).
Sadasivan et al. report values for grammar or text quality (comparable to linguistic acceptability) and
content preservation (matched to similarity), both manually labeled on a Likert scale of 1–5 (scaled here
for better comparability but marked by dashed line representation). Those values are only provided for

permutations 1–5 with detection rates, i.e., it is unclear at which permutation their “best” result
occurred.
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to humans. This makes machine-based LLMdetection vital. In the experimental series, it is shown that all
types of state-of-the-art classifiers can be circumvented with sufficient effort. In particular, shallow
detectors (Experiment 1), transformer-based detectors (Experiment 2), and zero-shot-based detectors
(Experiment 3) were attacked successfully. For simple detectors, a small adjustment of the generative
LLMs proved to be sufficient, such as adjusting the temperature (parameter τ in Experiment 1). However,
more sophisticated detectors, as used in practice, require a better, more elaborate adjustment of the
generative LLMs. During reinforcement learning, these models tend to acquire strategies that make them
unrecognizable to detectors (e.g., inserting strings of special characters). While increasing evasion, these
techniques tend to impede both the syntactical and semantical quality of the altered text. To counteract
these model tendencies, two options were presented. Firstly, such behaviors were penalized during
reinforcement learning by introducing additional constraints (cf. Experiment 2). Secondly, paraphrasing
was employed, where the algorithm filtered results based on the highest similarity to the original answer,
the best linguistic acceptance, and the lowest likelihood of being generated by a language model (i.e., the
lowest log loss, cf. Experiment 3). With an evasion rate of > 90%, the model trained on the resulting
dataset not only outperformed comparable models but also produced results most similar to the original
response.

In the experimental series, the language used on social media, including X (formerly Twitter), was
examined, and the results were generalized to internet language in general. Hence, for any current written
indirect communication on the web, it is currently impossible to tell whether it is coming from a human or
a machine (LLM) if the author took actions to hide the origin of the text. This everlasting battle between
creating new detectors and crafting new evasion techniques will continue. Apart from the latest technical
developments in this cat-and-mouse game, the question arises which implications non-detectable LLM
communication will have. Of course, there are a lot of potential as well as danger. Among these is a
systematic change of opinion, the spread of misinformation, or even fake news. It has been shown that
people adapt their opinions to the majority, as can be seen, for example, by Asch (1956, 2016) in his still
relevant conformity experiments. Although an apparently false opinion was propagated in these experi-
ments, around a third of the test subjects adapted their own opinion to that of the other test subjects (actors)
versus less than 1% without conformity pressure (control). In this regard, a transfer to social media is
highly plausible: Users should hypothetically adapt their opinions to a majority of bots (posting LLM-
based content) as long as those bots share the same opinion uniformly. Further research is needed for
concrete proof. However, if conformity effects can be transferred to social media, it might be possible to
influence the beliefs of citizens consequently. This could have an extreme social impact, such as
influencing elections.

In contrast, a range of advantages exists, resulting from LLMs. For example, the replacement of low-
level work, such as answering frequently asked questions repetitively. However, this also bears risks. For
example, Shumailov et al. (2024a) measured the keystrokes of the agents behind the Mechanical Turk.
Too few keystrokes for too long texts indicate that they must have copied their answers from ChatGPTor
comparable applications instead of writing them themselves. The problem behind this practice lies in the
quality of the resulting answers. When answers are designed to be used for model training but originate
from LLMs in the first place, the performance of new LLMs decreases. In the long run, feeding models
with model output itself leads to systematic model destruction (Shumailov et al., 2024b). This is a real
problem that might become even more relevant in the future, especially if there is no way to classify input
data as human-originated reliably. Already now, over 1% of academic studies are said to be generated by
LLMs or with their help (Gray 2024a). This makes the affected papers useless for long-term model
training. Besides the problem for future model training, Gray also denotes a potential effect on human
behavior: The pure consumption of such textsmight not only influencewhatwe think in terms of facts, but
also how we think to write correctly. That way, LLM text consumption might influence personal writing
habits.

To support informed decision-making in applications where large language models contribute to
hybrid outputs, future research should prioritize the development and implementation of tamper-resistant
watermarking techniques that are compatible with diverse text generation methods. These watermarking
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strategies allow for a clear identification of machine-generated texts while preserving the semantic
integrity of the content, but are yet to be deployed more commonly. Existing approaches range from
lexical and syntactical permutations over logit-based generation patterns to watermarks anchored in the
LLM training procedure (Liang et al., 2024; Liu et al., 2024). From an ethical perspective, the adoption of
watermarking aligns with principles of transparency, accountability, and trustworthiness.

The widespread adoption of undetectable large language models introduces moral challenges, such as
the risks of manipulation of public discourse and the dissemination of biased or wrong narratives.
Addressing these challenges requires a comprehensive approach to mitigation. Besides enhancing
detectability via watermarking techniques, developing regulatory frameworks tailored to the ethical
use of LLMs should be promoted. Further strategies may include promoting collaboration between
developers, policymakers, and ethicists to establish industry-wide standards and guidelines for respon-
sible LLM development. Finally, supporting campaigns to foster critical thinking skills among users to
better evaluate the credibility of information, especially on high-volume platforms such as social media.

To conclude, large language models and their generated content bring huge opportunities to the table,
but this also makes their detection more and more difficult, up to the point that they become undetectable.
Society must know this risk, try to mitigate it as well as possible, and find coping strategies in case
detection becomes impossible.

Data availability statement. Datasets: TheHumanChatGPTComparison Corpus (HC3; Guo et al., 2023) is available at Hugging
Face: https://huggingface.co/datasets/Hello-SimpleAI/HC3. The Natural Questions Corpus (NQ; Kwiatkowski et al., 2019) of
Google’s Benchmark for Question Answering Research that was used for evaluation is also available at Hugging Face: https://
huggingface.co/datasets/google-research-datasets/natural_questions. A script for generating the CNN/DailyMail dataset (Hermann
et al., 2015) is provided at GitHub: https://github.com/google-deepmind/rc-data.Note that the repository contains the script only and
the CNN and Daily Mail articles itself have to be downloaded separately using the Wayback Machine. A processed data set is
provided by NYU: https://cs.nyu.edu/~kcho/DMQA/. The Twitter data set cannot be shared because of Twitter’s restrictions
regarding its privacy policies.Models:The used paraphrase generator with T5 (Alisetti 2020) is available at Zenodo: https://zenodo.
org/records/10731518. The fine-tuning T5-XXL Discourse Paraphraser (DIPPER; Krishna et al., 2024) can be downloaded at
Hugging Face: https://huggingface.co/kalpeshk2011/dipper-paraphraser-xxl. The pretrained language model Qwen 1.5-4B (Bai
et al., 2023) can also be downloaded at Hugging Face: https://huggingface.co/Qwen/Qwen1.5-4B.
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