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THIS SHOCK IS DIFFERENT:
ESTIMATION AND INFERENCE IN
MISSPECIFIED TWO-WAY FIXED
EFFECTS PANEL REGRESSIONS

ARTURAS Juobis
University of Amsterdam and Tinbergen Institute

We investigate the properties of the linear two-way fixed effects (FE) estimator for
panel data when the underlying data generating process (DGP) does not have a linear
parametric structure. The FE estimator is consistent for some pseudo-true value and
we characterize the corresponding asymptotic distribution. We show that the rate
of convergence is determined by the degree of model misspecification, and that
the asymptotic distribution can be non-normal. We propose a novel autoregressive
double adaptive wild (AdaWild) bootstrap procedure applicable for a large class of
DGPs. Monte Carlo simulations show that it performs well for panels of small and
moderate dimensions. We use data from U.S. manufacturing industries to illustrate
the benefits of our procedure.

1. INTRODUCTION

In the last decades, the two-way fixed effects estimator (or simply the FE estimator
in this article) has become a default method for estimating linear panel data models.
Among other things, it became a standard option for causal policy evaluation
analysis, as many researchers use this estimator to jointly adjust for unobserved
unit-specific and time-specific effects. Thus, it comes as a surprise that no general
theoretical results are available that characterize the large sample properties of
the FE estimator when the validity of the postulated additive linear model is
questionable. This article closes this (unfortunate) knowledge gap.
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In this article, we focus on the properties of the FE estimator within the general
framework of misspecified models. The setup we consider is sufficiently general
to accommodate both continuous, discrete, or mixed covariates. The price we pay
for this generality is that we need to assume that both dimensions of the panel
dataset are large, a more typical setting in the industry-level or macro-level panels.
In particular, there has been a great amount of interest in the macro panel data
literature questioning the validity of the (model-based) additive error components
structure. The typical alternative is the multiplicative (interactive/factor) error
components structure (e.g., Pesaran, 2006; Bai, 2009; Juodis and Sarafidis, 2022b,
among others). However, estimation of such nonlinear models introduces some
non-trivial theoretical and empirical trade-offs. For example, the recent results
in Juodis, Karabiyik, and Westerlund (2021) suggest that the popular estimator
of Pesaran (2006) can be highly sensitive to nuisance parameters that control the
strength of the factor estimates.

Given some of the shortcomings of the multiplicative models, it is now evident
in the (macro-) panel data literature that it can be beneficial to pre-test for the
applicability of the simple additive error-components model (see, e.g., Petrova and
Westerlund, 2020; Juodis and Reese, 2022; Kapetanios, Serlenga, and Shin, 2024)
instead of completely ignoring these type of models. However, for this purpose one
should better understand the statistical properties of the simple FE estimator when
the validity of the postulated model is uncertain. For example, when the additive
model structure is completely misspecified (as in Galvao and Kato, 2014). This is
the goal of this article.

1.1. Contributions

The contributions of this article are two-fold.

i) We characterize the asymptotic properties of the FE estimator where all
observed variables are subject to common shocks under a set of minimal assump-
tions on the underlying DGP. We show that generally the convergence rate of the FE
estimator can be as slow as «/min(/N, T), and as fast as /NT. This article extends
the (cross-sectional) independent setup of Galvao and Kato (2014) toward a more
realistic setup where independence only holds conditionally on some unobserved
common shocks. We show that such an extension greatly complicates analysis,
thus justifying that “this (common) shock is different”. For this purpose, we use a
novel proof strategy (inspired by that of Hahn, Kuersteiner, and Mazzocco, 2022)
to derive the joint asymptotic limit theorem as N,T — oo (jointly) for dependent
averages of the data with the corresponding convergence rates of order v'N, v/T,
and +/NT. To the best of our knowledge, this is the first such result in the panel
data literature.

ii) We contribute to the literature on multi-way clustering (see, e.g., (Cameron,
Gelbach, and Miller, 201 1; Thompson, 201 1; Menzel, 2021); Chiang, Hansen, and
Sasaki, 2024) by proposing a novel inference procedure for double index models
where the setup is conditionally independent over cross-sectional dimension, and
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weakly stationary in time-series dimension. Our bootstrap procedure is of great
interest on its own, as it extends the method of Menzel (2021) for panel datasets
with temporal dependence.

1.2. Organization and Notation

The organization of this article is as follows. In Section 2, we introduce the model.
In Section 3, we provide a formal asymptotic expansion of the FE estimator, while
in Section 4, we discuss inference. In Section 5, we conduct a Monte Carlo study to
assess the finite sample performance of the proposed procedure while in Section 6,
we present an empirical application. Section 7 concludes. All proofs, additional
Monte Carlo results, and further discussions are placed in the Supplementary
Material.

We denote by N the size of the cross-sectional dimension, and by T the size
of the time-series dimension of the data. For a generic vector z;, we denote its
time-series, cross-sectional and overall sample averages by 7; = T~! Zthlz,-, t
Z,=N"! Z?]:lzi,f’ and 7 = (NT)~! vazl Zszlz,;,, respectively. We also use the
shorthand notation 3", = >~  and 3, = 3" ,. For any pair of zero-mean cross-
sectional variables (v/,h})’ denote their corresponding unconditional covariance as
X ,w = E[v;h}]. For any pair of zero-mean time-series variables (v/,h;)’, denote
by X, g, their corresponding long-run covariance matrix. We will also make
use of the latter definition for any temporally dependent panel variables (v; ,, h;,l)’.
For any square [m x m] matrix A, denote by diag(A) an [m x 1] vector with the
diagonal elements of A. Denote by I(-) a vector valued indicator function with
all statements evaluated element-wise. Let (2,4, P) be the common probability
space. We use the wpl notation to indicate that the corresponding statement holds
with probability 1 (or almost-surely). Finally, let A < oo denote an arbitrarily large
real number independent of N and T.

2. THE TWO-WAY FIXED EFFECTS ESTIMATOR
2.1. The Estimator

Suppose that we have a panel data set of observable variables {z; ,}i{tzl, or
simply {z;,}. This vector can be further decomposed as z; ; = (y,-,,,x;t)/, such that
{vi .} is the scalar variable of interest, while {x;,} is the K dimensional vector of
policy relevant and additional auxiliary explanatory variables (e.g., covariates and
controls). It is standard to estimate the partial (marginal) effect of all elements in
x;; on y;,, while at the same time conditioning on unit-specific and time-specific
unobserved characteristics. As a result, it is a common empirical practice,' to

I'See, e.g., Berger et al. (2013) and Voigtldnder (2014).
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assume that {y; ,} can be represented by means of the following fully additive linear
regression model:

Vit = ﬂ/xi,t‘i‘ni +fi+vis @

where scalar variable {n;} captures all time-invariant unit-specific unobserved
characteristics relevant for {y; ,}, while {f;} is supposed to account for all common
economy-wide shocks, for example, business cycle, productivity, or health-care
system shocks that impact {y;,} after conditioning on {x;,}. Among other types
of regressors, x; , might contain binary treatment variables D;, € {0; 1} (as in the
classical DiD framework).

In the absence of endogeneity between v; , and x; ;, B can be estimated using the
two-way fixed effects estimator (which we simply label as the FE estimator):

N T
= (Z S ) (Z Zxﬁ*yﬁ)» @)
i=1 =1 i=1 1=1

where x +and y *+ are defined in terms of the deviations from the corresponding
Cross- sect10nal and time-series averages, that is,

1 T

R D TR B e ZZx,s, 3

Jj=1 s=1 ]151

and similarly for y;’Lf.

The FE estimator is consistent for the “true value” 8, and has normal asymp-
totic limit for any fixed T provided that all regressors are strictly exogenous and
the additive structure in (1) is correctly specified. If the regressors are only weakly
exogenous (pre-determined), then the estimator is not fixed T consistent due to
the “Nickell bias” (e.g., Nickell, 1981). However, it remains consistent provided
that T — oo. In that case, the asymptotic distribution is not correctly centered
at zero with a non-negligible asymptotic bias present when N/T — « € (0;00)
(see Hahn and Kuersteiner, 2002; Alvarez and Arellano, 2003). The non-negligible
asymptotic bias corresponds to the leading term of the “Nickell bias”.

Unlike time-series demeaning that removed unit-specific effects {n;}, estimation
of the time-effects {f;} is generally non-consequential even as T — oo. In partic-
ular, it is not a source of an additional incidental parameters (IPP) bias, see Hahn
and Moon (2006). The latter observation, on the other hand, is solely driven by
the linearity of the model and cross-sectional independence of the error terms, and
does not generally hold for nonlinear models (see, e.g., Hahn and Newey, 2004;
Hahn and Kuersteiner, 2011; Fernandez-Val and Lee, 2013; Fernandez-Val and
Weidner, 2016; Chen, Fernandez-Val, and Weidner, 2021b).

2For simplicity, from this point onwards, we refer to the leading term of the “Nickell bias™ as the “Nickell bias”.
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2.2. Model Misspecification

Overall, except for some recent results in the DiD literature with heterogeneous
treatment effects,” there is a limited amount of results on the properties of the
FE estimator under general types of model misspecification. For example, one
can wonder what happens when (1) is just a regression model (linear projection)
and does not necessarily have any structural/causal interpretation? More generally,
available results have very little to say on the following aspects.

(i) Does the probability limit of the FE estimator have a clear population-level
interpretation?

(i) Is it possible to give (1) interpretation in terms of some linear (population)
projection? How should one interpret unobserved components {7;}, {f;}, and
{vi .} in such a case?

(iii) How should one proceed with inference in order to account for potential
violations of the underlying linear additive model?

(iv) Should one report the same type of standard errors and confidence intervals
(CIs) for main empirical models, as well as for the corresponding “robust-
ness checks”?

(v) Is simple clustering, as in the single-index setup of White (1982), a definite
solution to these problems?

This article fills these knowledge gaps, under a set of simplifying restrictions. In
particular, we limit attention to the sampling scheme where both panel dimensions
are large, that is, N,T — oo using the joint limit theory of Phillips and Moon
(1999). This asymptotic approximation scheme is customary in the panel data
literature on misspecified models (e.g., Galvao and Kato, 2014; Okui, 2017).

The contribution of Galvao and Kato (2014) is the closest in its focus to this
article. There the same set of questions for the standard FE estimator are addressed
in the setting where all cross-sectional units are independent. As such, as we argue
later in the article, their results should be seen as a special case of our results
discussed in Section 3 (for a specific choice of trivial o —algebra of common
shocks).

2.3. Main lllustrative Example

In what follows we present the main illustrative example that will be stud-
ied throughout this article—a linear model with misspecified error-components
structure.

Example 1 (Factor model). Consider the following (factor-augmented) DGP
with one regressor

Yit = ,B*xi,t +)\ift+Vi,z» Xt = Vil + Uiy, 4)

3For example, de Chaisemartin and D’Haultfeeuille (2020), Callaway and Sant’ Anna (2021), Imai and Kim (2021),
Sun and Abraham (2021), and Goodman-Bacon (2021).
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where the vectors (vi, u;.), (vi,A:)’, and (f;, ;)" are mutually independent for all
(i,1). Without any loss of generality we further assume that all random variables
are mean zero (unconditionally). If #; , and v;, are uncorrelated for all (i, 7), then
the results of this article can be used to establish that the FE estimator is consistent
for the “pseudo-true” value By, where

E[y:A ] Elfim:]
Ely 1 El72] +Elu; ]

Bo=B"+ (©))
In this example, if either loadings are uncorrelated, that is, E[y;1;] = 0, or factors
are uncorrelated, that is, E[f;m;] = 0, then the FE estimator is consistent for the
“true” value B* that corresponds to the DGP in (4). Intuitively, as A;f; is an
omitted variable, it does not induce cross-sectional omitted variable bias when
N — oo as long as E[y;A;] = 0, while the time-series omitted variable bias is
avoided when T — oo and E[f;m,] = 0. As we consider the asymptotic scheme
where both N,T — oo, consistency with respect to 8* is achieved if either of
the two covariances is zero. However, as we will show later in the article, zero-
correlation conditions alone are not sufficient to further characterize the asymptotic
distribution of the FE estimator. O

This stylized example provides a small snapshot on the type of models covered
in this article. Later in the article another example is studied where model mis-
specification is induced by endogeneity of the regressor. Additional examples, for
example, with nonlinearity or measurement error induced model misspecification,
together with the corresponding pseudo-true values and all stochastic components
relevant for the results in this article are discussed in the Supplementary Matterial.
Several examples of DGPs that fall outside of the scope of this article are also
discussed there.

3. LARGE SAMPLE RESULTS

In this section, we assume that all common shocks are measurable with respect to
the (sub-) o-algebra JF, while all unit-specific time-invariant random variables are
measurable with respect to the (sub-) o-algebra C;. We denote the (sub-) o -algebra
generated by unit-specific and common shocks by D; = F Vv ;.

3.1. Primitive Assumptions

Denote by z;; = (yi ,,x;, )/ a full vector of observables with a typical element

z;};) for h =1,...,K+ 1. The stacked versions of this vector are denoted by
Zl' = (Z,"l, . ,Z,"T)/, foralli = l, cen ,N.

Assumption 1. The DGP for all (i, ¢) is such that for some r > 8 and § > 0.

(a) Conditionally on F, Z; are identically distributed and independent (i.i.d.)
across I.
(b) o-algebras C; are independent across i, and independent of F.
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(h)

(h)
it it

(c) Each element z;  satisfies EHZ

(D;-conditional) o-mixing sequence with mixing coefficient «; ,(m) measur-
able w.r.t. D; such that sup, sup, &; ,(m) = O(m™*) with u =3(r+36)/8.

(d) {(@}, @i — Elzi/|F1))}_, is a covariance stationary (C;-conditional)
a-mixing sequence, with mixing coefficients &; ,(m) measurable w.r.t. C; such
that sup, sup, @; ,(m) = O(m™*) with u = 3(r+38)/é.

’+5|D,-] < A. Moreover, {z;,}L, is a

As usual in the large T panel data literature (e.g., Fernandez-Val and Weidner,
2016) we need to restrict the temporal («¢-mixing) dependence of {z;,} after
conditioning on D;. In the context of correctly specified panel data models, the
notion of conditional mixing has been introduced by Hahn and Kuersteiner (2011),
and it was later used by Su, Jin, and Zhang (2015), Fernandez-Val and Weidner
(2016), and Juodis and Sarafidis (2022a) (among others) to study settings with
common shocks. Furthermore, the dependence of mixing coefficients on r reflects
the natural trade-off between the degree of dependence and the moment bounds of
the process. Moreover, similarly to Galvao and Kato (2014) in part (d) we impose
strict (conditional on C;) time-series stationarity of {z;.}. As the corresponding
statement is not formulated conditional on F, we rule out the settings with non-
ergodic F-measurable shocks, for example, as explicitly allowed in the setting of
Andrews (2005).

The stochastic restrictions presented above are in general more restrictive than
necessary to characterize the asymptotic limit of the FE estimator (both for T
fixed and T — 00), and, in some situations, can be relaxed. For example, the i.i.d.
assumption conditional on F can be relaxed towards exchangeability following
Andrews (2005).

3.2. Consistency

In this section, we discuss consistency and convergence rate properties of the FE
estimator B defined in (2). As an intermediate step, we first derive the asymptotic
expansion of fz, the sample variance-covariance matrix of {z;,} after the TWFE
transformation, that is,

~ 1 —_— -
Z.=r SN G@HETY. (6)
i t

Before doing so, we introduce some additional notation. In particular, given
(Ci-conditional) covariance stationarity of {z;,}, we use Hoeffding (1948)-type
projection arguments to expand z; ;, that is,

Zi =24z A g (7

where p? = Elz;,], 2, = zis — Elzi/|Dil, z, = Elzi.(|D;] — v} — g% — p*, and
v: = Elz;,Ci] — u*, g¢ = Elz;4|F] — p*. Intuitively, {z;,} measures the degree
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of the misspecification of the additive components model, that is, when {z; ,}
has an additive error components structure then z;, = 0 wpl. Similarly, let
0., =z (z/;"), then given covariance stationarity of {z;, — E[z; ,|.F1}, similar
decomposmon arguments as in (7) can be used to expand Q; , as follows:

Q,, =0, +0/,+U? +G? +Elz}, ¢}H)1. ®)

With this notation at hand, we formulate the first main result of this article.

THEOREM 1. Let N,T — oo (jointly) and N/T — k € (0;00), then under
Assumption [

2, =El @+ ZUQ+ ZGQ ZZQ +Op((NT)™'72),
tltl
®)

where

N
1
¥ > U2 =0p(N), (10)

1 o ( o 1 ) .
_ G2+ Y08 | =0T, (1)
e\ T

The following two immediate conclusions can be drawn from this theorem: 1)
the variance-covariance matrix X, is consistent for its population analogue and ii)
associated estimation uncertainty upon replacing the infeasible quantities {z++}

with {z *} is of (at most) order Op((NT)~!/?). Theorem 1 provides a non-trivial
extensmn of the results in Okui (2014), who analyzed the asymptotic properties
of (9) in the univariate setting with correctly specified additive error components
structure.

Generally, the asymptotic rate in (1 1) cannot be further improved upon based on
Assumption | alone. As it is evident from the proof of this theorem, Assumption |
can only be used to establish that the sum of the two corresponding components
is an a-mixing sequence, not that the two components individually form «-mixing
sequences.

As the FE estimator is just a nonlinear transformation of fz, the asymptotic
properties of the FE estimator follow directly subject to the usual population no
multicollinearity condition.

Assumption 2. ¥, E[x (x Y1 s positive definite.

This assumption excludes various types of trivial “low-rank” regressors from
the model. The next corollary confirms that the FE estimator f is consistent with
respect to appropriately defined pseudo-true value S,,.
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COROLLARY 1. Let N,T — oo (jointly) and N/T — «k € (0;00), then under
Assumptions 1 and 2

B = Bo+Op(min(N,T)~"/?), (12)
where
Bo=Elx/" ()17 Bl Py, 13)

Hence, under fairly primitive conditions on the DGP* the FE estimator is
consistent for 8. Moreover, Corollary 1 indicates that the estimator is at least
/min(N, T)-consistent. This is in sharp contrast with the setup of Galvao and
Kato (2014), where the minimal convergence rate is always ~/N. The potential
reduction in the convergence rate is solely explained by the presence of {G,Q}-type
components in (8), that are by construction/assumption excluded from the model
of Galvao and Kato (2014). In Supplementary Material, we show that B, can be
usefully interpreted as the solution to a population partial linear projection problem
for cross-sectionally demeaned variables.

3.3. High-Level Conditions

In what follows we introduce, a set of additional regularity conditions that are
sufficient to rigorously describe the asymptotic distribution of the FE estimator.
These additional assumptions are needed to accommodate serial (temporal)
dependence in {z;,} generated either by common shocks and/or conditionally
independent unit-specific idiosyncratic shocks.

In order to describe the asymptotic properties of the FE estimator, we need to
first characterize asymptotic properties for the sample average of the correspond-
ing influence function

1 —
N—TZZ-"# Z}"'—ﬂox;ﬁ?’)_ (14)
it
For this purpose, we define the (infeasible) influence function that corresponds to

the FE estimator as

Wi, = x:”;r :’f - ﬁé)x:“;r), a15)

4As it was discussed in Section 3.1, these conditions are only marginally stronger than those considered by Galvao
and Kato (2014) in the setting without common shocks.

SIn particular, these assumptions are redundant for the setup with exchangeable double arrays as in Menzel (2021) and
Ferndndez-Val, Freeman, and Weidner (2021), as they are implied by the Aldous—Hoover—Kallenberg representation.
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for all (i,t). Here, the term in the brackets can be defined as the reduced form
projection “error term”
Eit = y;’f—t+ - ﬂ()xz—[+a (16)
such that E[x;"¢; ] = Ok, E[¢; ;] = 0, and E[w; ] = 0x.*

Using (8), the infeasible influence function w; , can be expanded as

Wi =wi+wi +vit+g, 17)

with all terms defined accordingly as transformations of the corresponding ele-
ments of Q; ,, for example, g, = (OK,IK)G?(I, — ,36)/. As w; ; has the “multi-way
clustering” structure, the asymptotic properties of

1 Wi (18)
NT
i t

depend on the corresponding averages of the four individual components in
(17). Unfortunately, Assumption 1 is not sufficiently informative to establish
distributional results for all four components. The need for additional restrictions
is best illustrated by the fact that, while Assumption 1 is sufficient to establish rates
of convergence in Theorem 1, it is silent about the asymptotic distribution of

W= Y Y W 19)
i t

In particular, a- mixing restrictions in Assumption | (c) are not informative about
the asymptotic properties of this term, as w+ is non-stochastic upon conditioning
on D;.

In this article, we address this problem by imposing additional (high-level)
restrictions on the stochastic behavior of the individual components of the influ-
ence function {w;,}.

Remark 1. We would like to note that the approach pursued in this article is
by no means the only approach that can be used to study asymptotic properties
of the FE estimator. In particular, there are at least two alternative approaches
that can be used instead: i) imposing high-level conditions on the full matrix
{Q;;} and ii) imposing low-level parametric restrictions on {z;,} directly. The
latter approach would bring our analysis closer to the setup of Chiang et al.
(2024), and postulate that z; , = f (a;, A, €; ;) for some unobserved function f(, -, -)
and corresponding vectors of unknown finite dimensions. The approach we
take in this article is less restrictive as we only need to specify restrictions on
the Hoeffding-type decomposition of {w;,} without the need to specify directly
restrictions on {e;}, {A;}, {€;}. Evidently, for our high-level sufficient conditions

6Using similar decomposition arguments to those in (7), it can be seen that &; ; = sﬁr wpl.
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specified below should be case-by-case verified for any specific DGP of the form
it =f(a; Ay, €i,t)~7

In what follows we revisit, Example 1 to illustrate the type of structures/DGPs
that restrictions on {w;;} should accommodate.

Example 1 (Continued). In this example,

ir =BT A v, (20)
xZT = Y+ U 21)
Hence,

&ir = Aify +vie + (B* — Bo) (virme + ui0), (22)
Wi = €1 (ViTt + i) (23)

The corresponding components of (17) decomposition are provided by®
Wi = i (Vi + M) + Q™ = Bo)ui i+ Vi) yirmi + (B* — Bo) (], — 1), 24)
wi, = Gy — By (i — Elfim]) — (v — Bl D (n} — Bl D (Bo — 7).

(25)
g = ElLiy](fim — Elfim]) — (Bo — B*) Ely1(f — Elx D), (26)
v; = E[fim (ki — BIAviD) — (Bo — B Bln 1y — Bl D). 27)

In this example, Assumption 1 will be satisfied if we further assume that e.g.,
{(virui s fr)'} is a stationary (jointly) «- mixing sequence of corresponding
size.? Moreover, we need to assume that (vi.r, u;1)" has a finite 8 + 8§ moment, while
(7t1,f7) and (y;, ;)" are uniformly bounded for all (i, 7).

Note how components {v;},{g;}, {wzrt} are solely determined from the misspecifi-
cation of the two-way error components structure in {z; ,}. However, this not true in
general. Our next example illustrates that even if z:rt =0wpl (i.e., the additive error
components structure is correctly specified), the FE estimator can have expansion
of the influence function similar to that in Example 1.

Example 2 (Model with endogenous regressor). Consider the following DGP
with one endogenous regressor

Yit = 5*xi,z + 77,‘@) +fz('V) +Vivie X = n,@ +ft(x) + Tl g, (28)

7As we argue in one of the counterexamples in the Supplementary Material, direct restrictions on {et;}, {A;}, {&; }
alone are not sufficient to rule out some pathological cases, where asymptotic distribution of the estimator is non-
standard. This is also illustrated by the fact that Assumption 3(iv) in Chiang et al. (2024) includes additional high-level
restrictions that explicitly exclude pathological cases with singular long-run variances.

8 Here, we use explicitly the fact that for this example E[u; ,v; ;] = 0 holds.

9Note, that cross-sectional independence of {(v;,,u; )’} is imposed in Section 2.3.
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where the vectors (vi,ui.)', (Vi nfy), ni(x))’, and (m,.f2 . fY) are mutually
independent for all (i, 7). The results of this article can be used to establish that the

FE estimator is consistent for the “pseudo-true” value:
Elyi1E[m]E[v; u; 1]
E[n2]E[u?,]

Bo=p"+ (29)

For example, when E[y;] = 0 and/or E[7;] = 0, the FE estimator is consistent for
the “true” value B*. More generally, in this example

Vil =B+ vivia, (30)
x:rt+ = Tl 4, (31)
Wii = (B* = Bo)m /i, + yirtevi gt (32)
Using this construction, it is easy to see that in terms of the decomposition (17)
Wiy = (B* = Bo)m (u, — Elu 1) + yirty (viti.e — Evi. s 1), (33)
wi, = (vi — Elyi]) (7 — Bl ) Elvi, i 1)), (34)
g = (B* — Bo)(? — Elx ) Eli? 1 + Elyil (, — El, 1) Elvi i ], (35)
v; = (i — ElyiD Elm ] Elvi ju; ). (36)

For this example, Assumption | will be satisfied if we further assume that
{vis, thi g, 70, ,(y) , f,(x))’} is a stationary (jointly) a- mixing sequence of correspond-
ing size. Moreover, we need to assume that (v;,,u; ;)" has a finite 8 + § moment,
while (77,.£”.£%) and (y,, 7", n™)" are uniformly bounded for all (i,7)."” Evi-
dently, Assumption 2 is satisfied as long as

E[(x};")*] = E[(mu;,)*] = E[n}1E[u} ] > 0. (37)

In these two examples, {w;} exhibits two key features: 1) itis a bivariate function
(in terms of C; and D measurable random variables) of some of the unit-specific
and time-specific random variables that impact {z; ;} (but not necessarily of all of
them); ii) it has a factor (low-rank) structure for some fixed rank R.

Motivated by these two observations, we assume that these restrictions also hold
for more general models. In particular, we assume that w:r, can be (smoothly)
approximated in terms of some low-dimensional C; and F measurable unobserved
variables.'!

10t js easy to see that for this example (and some other examples studied in the Supplementary Material), Assumption
1 is unnecessarily restrictive due to the invariance of the FE estimator to (f,<'v) N ,m, 5“), r]f”).

U Eor example, this assumption is naturally satisfied if the data follows a finite dimensional non-linear quantile factor
model as in Chen, Dolado, and Gonzalo (2021a).
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Assumption 3. The second degree projection term of w; , (w;;) satisfies
w;':r[ = w(ci7dt)’ (38)

where: i) ¢; € R% is C;-measurable, uniformly bounded random variable;
ii) d, € R iii) {d,} is a F-measurable, uniformly bounded sequence of random
variables. Furthermore, for any ¢ and d

o0
wie,d) =Yy v @), (39)
=1
where {¢©(-)}=1 and {y©()}¢=; are orthonormal functions in L?(R%) and
L?(R%), respectively.

The models in Examples | and 2 trivially satisfy this assumption by appropri-
ately defining {c;} and {d,} in terms of linear combinations of random variables
in (25) and (34). For more details, we refer to the corresponding discussion in the
Supplementary Material.

Assumption 3 is generally only required if the convergence rate of the FE
estimator is +/NT.!2 In other cases it is redundant, as the asymptotic distribution
of the FE estimator will be primarily determined by the averages of {g,} and {v;}.

Finally, we impose an additional set of regularity conditions on the individual
components of (17). We conform with the notation introduced in Section 1 and set

g=T"'Y g andw} =T"! Z[wl{-t.

Assumption 4. For all (N,T), including N,T — oo, the following conditions
are satisfied.

(a) {v;}is such that: v; = O wp1 or the variance matrix ¥ ,, is non-singular.

() 52 lyell* < A.

(c) {g,} is such that: g, = Ox wpl or the limiting long-run variance matrix,
Yo 1r =limy_, E[Tgg'], is non-singular and non-stochastic.

(d) {(g,.d))'} is a covariance-stationary «-mixing sequence, with mixing coeffi-
cients &(m) such that sup, &, (m) = O(m*) with © = 3(r+68)/8 and r as in
Assumption 1. o

(e) The limiting long-run variance of {w;",}, X1,y 1z = limr_ o E[TW;(Wi)'],

is non-singular and non-stochastic and is such that E[TE(w_f-)ﬂ}'] —
ZWJ‘(WL),,LR - OP(I) When T — OQ.

These conditions control the degeneracy level of the conditional expectations
of {w;,}, such that the resulting convergence rate of FE estimator is restricted
to: W, JT , or \/N_T . In particular, following Davezies, D’Haultfceuille, and
Guyonvarch (2021) and Menzel (2021) we label the setting where v; = g, = 0x
wpl as “degenerate”, and otherwise as ‘“non-degenerate”. In part (d) we assume

leubjeCt to a very mild additional regularity condition that {g,} and {w:’,} are jointly C;-conditional - mixing
sequences.
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that all F-measurable sequences are jointly stationary o-mixing sequences. This
permits a rather straightforward asymptotic limit theory for time averages of the
corresponding quantities.

In this assumption, we rule out the possibility of any “small variances” in the
DGP, that is, we assume that the corresponding (long-run) variances of {v;} and {g,}
are non-degenerate in the limit. As an alternative to this restrictive DGP, we could
follow Menzel (2021) and consider a more general setup where the population
covariance matrices of {v;} and {g,} are drifting sequences in N, T. For example,
Assumption 4 (a) can be easily relaxed without major effects on the asymptotic
distribution of the FE estimator. On the other hand, relaxing non-singularity of
XY o, 1k in part (c) is less straightforward, see the corresponding discussion in the
Supplementary Material.

Finally, we illustrate the meaning of these restrictions for Examples | and 2.

Example 1 (Continued). For the sake of illustration, we further assume that
E[y:1;] =0, such that 8y = 8*. Assumption 4 (a) is satisfied immediately provided
that we assume that the variance covariance matrices of {(y;,;)’} and {(f;,7,)’}
are non-singular. Part (c) is satisfied immediately as g, = 0 wpl, while part (d) is
satisfied given (previously) imposed mixing assumptions on {(f;, 7;)’}. Finally, part
(e) needs to be verified/checked for a given DGP of {(f;,7;)’} and {(u; ;,v;)'}. For
example, if {(f;, ;)'} is an uncorrelated sequence in 7, this condition is immediately
satisfied if {u; ,v;,} has a non-zero long-run variance.

Example 2 (Continued). For the sake of illustration, we further assume that
E[n;] =0, such that 8y = B*. Assumption 4 (a) is satisfied trivially as v; = 0 wp1.
Part (b) is satisfied directly given the structure of {w;ft}, while parts (c) and (d) are
satisfied as long as {(r; — E[r;])} has a non-zero long-run variance and E[y;] # O is
a fixed constant. Finally, part (e) is satisfied as long as long-run variances of both
{m;} and {(v; ;u;, — El[v; (u;])} are non-zero.

3.4. Asymptotic Distribution

Our next theorem characterizes the asymptotic distribution of the FE estimator.
Before doing so, we define the following two quantities that will characterize the
asymptotic bias of the FE estimator

by = 1% PIPIP AT (40)

i st
By = 3 Y e (1)
tq ji

THEOREM 2. Under Assumptions 1-4 with proportional asymptotics N,T — oo
(jointly) and N/T — k € (0;00) the asymptotic distribution of the FE estimator
can take the following two forms:
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i) (Non-degenerate limit) when either X gy g and/or X, are non-singular
matrices then

. 1 1
Vmin(V, T) (B —By+ 2! (;b,(\}’)T + Nb}j})) N3 (42)

where & ~ N(Og, min(1,k ") X, +min(l,k) Xge 1r).

ii) (Degenerate limit) otherwise

- | 1
VNT (/3 —Bo+Z;! Gbﬁ} + Nb%» NS S (43)
with
o0
="+ r el (44)
=1

Here, all random variables in ¢ are jointly Gaussian, group-wise inde-
pendent, and satisfy: a) &+ ~ N(OK, Ewl(wl)/’LR),' b) ¢éﬁ) ~ N(O,1);

c) cov(qﬁé?, éﬁl)) =0 for all ¢ # € d) ¢ ~ N(Ovajm,m);
e)cov (VL) = X2 Bl O @)y @)

For both i) and ii): by = T™'Y, 3", Elx/ [ e; | F14 0p(1) = Op(1) + 0p(1),
and by, = Op(1).

Theorem 2 fully characterizes the leading variance and bias components of
the FE estimator. In the non-degenerate (or “strong misspecification”) case we
find that the asymptotic distribution of the FE estimator is asymptotically normal,
with a potentially slow /min(N,T) convergence rate. The asymptotic variance-
covariance matrix, has a standard double-clustering structure as in Thompson
(2011) and Chiang et al. (2024). On the other hand, for setting ii), the leading
term of the asymptotic distribution can be non-normal (a product of independent
multivariate normal random variables) if both {v;} and {g,} are zero vectors wpl,
but w:’l is non-negligible.

Part ii) of this theorem also covers all correctly specified linear models with
(potentially) weakly-exogenous {x; ,}. In this respect, this result extends the results
in Hahn and Moon (2006) and Chudik, Pesaran, and Yang (2018) to many types
of correctly specified models with D; measurable heteroscedasticity and weak-
dependence structures in the idiosyncratic errors.

Our general setting is responsible for the presence of two additional compo-
nents/bias terms that are not asymptotically negligible when the convergence rate
is »/NT. The first one is the serial-correlation, or the “Nickel bias” common to all
dynamic models (irrespective of the degree of misspecification) estimated after the
FE transformation. As it is evident from Theorem 2, this component can be present
even if the additive error components structure of the model is correctly specified.
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However, there is clear difference between our formulation of the “Nickel
bias”, and the one usually used in the literature. Most papers formulate this bias
unconditionally, that is by assuming that:'?

by =T Y Elx} el +0p(1). @5)
o s#t
As a result, one can further show (see, e.g., Galvao and Kato, 2014):
o0
bz(vl,)T = Z E[xzreri,1+k]+0P(1)~ (46)
k=—00

If the approximation in (45) is correct, then the overall “Nickell bias” can be
consistently estimated, or it can be effectively removed using the Half Panel
Jackknife (HPJ) bias-correction put forward by Dhaene and Jochmans (2015)
(as later done in this article).

Unfortunately, we are not aware of any primitive conditions that ensure that
the approximation in (45) is appropriate (at least when the limiting distribution
is degenerate) for the setting with common (stochastic) shocks.'* However, as
illustrated in the Supplementary Material, this restriction can be checked as long
as additional restrictions on the DGP (especially F) are imposed. We leave
this unsatisfactory result as it is, and in what follows implicitly assume that
approximation in (46) holds.

The second bias term - b,(\i)r - is solely determined by misspecification of the
additive error components structure in the model. In particular, by definition, ¢;,
can be cross-sectionally correlated, causing this component to be non-negligible
asymptotically. For example, from the definition of bl(\%.)T’ it can be seen that
bz(\?,)r = 0x wpl when either: i) the additive error components model in x; ; or y; ; is
correctly specified; ii) JF is a trivial o -algebra.

Fortunately, it can be shown that bi(\i)T is asymptotically negligible under fairly
mild additional regularity conditions.

PROPOSITION 1. Let Assumptions [1-4 be satisfied, and let further assume
that: i) Assumption 1(d) also holds for the stacked vector {(z, ,.....z\ )},
sequence conditionally CN = \/f,v= 1Ciy i) E[xi;rs,-,[wi] = 0x wpl also implies that
E[x:rt+8j,,|CN] = Ok for all (i,j), then:

by = Op(T7'1). (47)

B3For example, Chudik et al. (2018) consider a deterministic form of heteroscedasticity that generates a bias-term
similar to that in b}v],)r- However, their provided high-level condition (19) eventually assumes away the possibility
that heteroscedasticity might play a role in the limit.

14 For example, the B- mixing condition on {z; ;}, as e.g., used by Chiang et al. (2024), together with the Yoshihara’s
inequality is not sufficient to make the desired claim.
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In other words, misspecification-induced cross-sectional dependence is
asymptotically negligible, once we appropriately extend the definition of
“degeneracy” towards more general functions of the data.

Remark 2 (Comparison with Galvao and Kato, 2014). The results in Theorem 2
naturally extend the results in Galvao and Kato (2014), as for their setting w:rt =0
and g, = 0x wpl, foralli=1,...,N,and t = 1,...,T by construction. Thus, the
asymptotic distribution is always normal and the corresponding convergence rate
is always in between /N and +/NT. Moreover, as in their setting F is a trivial
o -algebra it follows that (45) is satisfied wp1 and b,(\%)T = 0x wpl (by construction).

3.5. Bias-Correction

In many applications, T is typically smaller (or of similar magnitude) than N, and
in such situations, inference procedures that neglect the “Nickel bias” b,(vly)r may
be inaccurate. Thus, it is generally preferred to account for this bias term. For
this purpose, we use the HPJ bias-correction approach put forward by Dhaene and
Jochmans (2015).The HPJ estimator 8 is defined as

B =28~ B, +Bs,)/2. (48)

where ES, for /= 1,2 are the corresponding FE estimators based on the half samples
of {z;,:i=1,...,N;t€S;}. Inparticular, assuming that 7" is even, S} = {1, ..., T/2}
and S ={T/2+1,...,T}.

The HPJ approach was used (or suggested as a viable alternative to bias-
correction techniques) in Ferndndez-Val and Weidner (2016); Galvao and Kato
(2014); Okui and Yanagi (2019), and Juodis et al. (2021), among others. The setups
and applications in the aforementioned papers differ substantially, highlighting
the broad range of econometric problems where the Panel Jackknife approach is
applicable.

Theorem 2 is readily available to derive the asymptotic expansion for the
half-panel estimators. Building upon the available results in Chambers (2013) (for
pure time-series components) and Galvao and Kato (2014)/Dhaene and Jochmans
(2015) (for panel components), it can be shown that the half panel jackknife bias-
correction has no variance effects under the maintained stationarity assumptions
in Assumptions | and 4. This conclusion holds irrespective of the degree of model
misspecification.

Despite the asymptotic equivalence between the FE and the HPJ-FE estimators,
evidence from multiple known Monte Carlo studies indicate that variances of the
FE and the HPJ-FE can differ substantially in finite samples (see, e.g., Galvao
and Kato, 2014; Dhaene and Jochmans, 2015). This variance increase can be
related to the higher-order properties of the HPJ procedure, see Hahn et al. (2024)
for a comparative study of higher-order properties of different bias-correction
procedures. In Section 4.4, we show how in practice this additional finite-sample
variation can be accounted for.
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4. AUTOREGRESSIVE DOUBLE ADAPTIVE WILD (ADAWILD)
BOOTSTRAP

In what follows we introduce the AdaWild bootstrap inference procedure. As
discussed previously in this paper, the asymptotic distribution of the FE estimator
(around the pseudo-true value B) is determined by the properties of the corre-
sponding (infeasible) influence function

wii=x e (49)

as previously defined in (15). For the sake of simplicity (and tractability of
the corresponding derivations) in this section we assume that {w;,} is directly
observed. While we believe that the procedure developed below is also applicable
for feasible (estimated) influence function, a formal proof of this conjecture is well
beyond the scope of this article and would require a separate paper on its own. '

Assumption 5. {wi,,}ﬁithzl is observed.

As aresult, the proposed inference procedure is applicable to any (subject to reg-
ularity conditions similar to those in Assumptions 1-4) vector {w;,} of the form:

Wi =wi +w +vi+g +u (50)

where, as in Menzel (2021), u = E[w; ] is the main parameter of interest.

In a nutshell, our suggested procedure combines several types of Wild
(or multiplier) bootstrap methods, and is inspired by the procedure (with model
selection) of Menzel (2021) for the framework with double exchangeable
arrays.'® Unlike Menzel (2021), our proposed inference procedure is suitable
for temporarily dependent (over ¢) and conditionally independent (over i) data as

motivated by Assumption 1.

4.1. The Bootstrap DGP

Let v, =w;—w, g, = w, —w, and w;;’L =w;,— v, — g —w are the “plug-in”
estimates for the components in (17). Let {w;, ,,}lN: , and {w,,b},T:l be two mutually
independent sequences of bootstrap weights (whose characteristics are discussed
formally in Section 4.2) for any b = 1, ..., B bootstrap iteration.

Our suggested bootstrap procedure is based on the bootstrap draws of the form

Wi, =W+ wip(d, OV) + w5 (dy OF,) + 0 pwr W], (51)

for all (i,7) and b = 1,...,B. Here, © is the Hadamard (element-wise) product,
while d, and d, are binary (model selection) indicators (formally defined in
Section 4.2).

I5The complexity of derivations can be appreciated by noting that even extensive derivations in Chiang et al. (2024)
are not complete, as they do not account for the estimation uncertainty stemming from cross-sectional demeaning.
Their derivations only account for time-series demeaning of the data.

161y Supplementary Material, we compare the procedure put forward in this section with the one proposed by Menzel
(2021).
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The proposed bootstrap DGP directly mimics the true decomposition in (17),
except for the presence of binary model selector indicators, d, and d, in (51).
The presence of model selection indicators makes the procedure “adaptive” to the
degree of model misspecification (clustering), i.e., it is used to determine if the
asymptotic distribution is better approximated by case i) or case ii) of Theorem 2.

Without adapting to the degree of model misspecification, the resulting proce-
dure can be shown to be conservative when convergence rate is ~/NT. For further
details we refer to the corresponding discussion in Menzel (2021)."”

The resulting bootstrap statistic is just a sample average of the form

1
= N—TZZwb (52)

Given the bootstrap sample {w};}5_,, bootstrap based CIs for w can be easily
constructed, see Section 4.2.

4.2. Regularity Conditions

In what follows we first specify the DGPs for bootstrap weights {w; ,}Y_, and
{w:p},. Given that in Assumption 1 cross-sectional and time-series dimensions
are not treated symmetrically, the two sets of corresponding bootstrap weights
are also generated differently. In particular, given the conditional independence
assumption over the cross-sectional dimension (Assumption | (a)), the cross-
sectional weights {wi’b}f.\; , are drawn independently over i from N (0, 1).

Using the Autoregressive Wild Bootstrap (AWB) of Friedrich, Smeekes, and
Urbain (2020) the time-series weights {w; ,}"_, are generated recursively'®

oy =Y+ 11—y (53)

For some random initial condition wy;, = &, and a sequence of independent
innovations {5,,;,}?:0. For primarily technical reasons, we suggest to draw all
&, from a standard normal distribution with truncation at [—M;M] (for some
arbitrarily large value 0 < M < A). As the sequence {w;,}, is uniformly
bounded and integrable, the corresponding proof of the bootstrap CLT is simplified
considerably. "

Our next assumption (equivalent to that of Friedrich et al., 2020) imposes
high-level conditions on the bootstrap autoregressive parameter y .

17Intuilively the model selection step serves the same purpose as the negative variance adjustment term in the double-
clustered estimators of Cameron et al. (2011); Thompson (2011), and more recently by Chiang et al. (2024).
180verall, the AWB belongs to the general class of dependent wild bootstrap procedures covered in Doukhan et al.
(2015).

191y practice this restriction plays no major role, as M can be set arbitrarily large (e.g., M = 30). As a result, in
terms of actual bootstrap computations no real adjustments are generally needed. In contrast, Friedrich et al. (2020)
suggested non-truncated weights &, , ~ N(0, 1), as their setting is purely time-series.
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Assumption 6. The bootstrap parameter y satisfies
y =0l/vd (549)
such that for some 6 € (0; 1)
u(T) —» oo, T '?u(T)— 0. (55)

The parameter y can be seen as the corresponding “bandwidth” of AWB (when
comparing with the Dependent Wild Bootstrap of Shao, 2010). In particular,
Assumption 6 implies that y — 1, as T — oo. In applications we suggest setting
y = 0.4, as our preliminary (unreported) simulation results indicate that this value
is more suitable for the typical dataset dimensions considered in applied work (as
opposed to e.g., y = 0.2 and y = 0.6 also considered by Friedrich et al., 2020).

Finally, we discuss how the model selection indicators d, a/n_g d, can be

constructed. Let X, be the sample variance-covariance matrix of wﬁ”, that is,

- 1 — =/
b ()
Then, the procedure of Menzel (2021) can be extended to the multivariate setting
as follows:
N < T
dg =1 (diag (T ;g,gﬂ, — K, Nzw> > 0) . dy =1 (diag (N ;V,ﬂ - K,,,Tzw> > 0).
(57)

Here, kg v > Q, ky,r > 0 are some appropriately chosen non-decreasing sequences.
Scaling by X, ensures scale invariance of the corresponding model selection
procedure.

Assumption 7. As N,T — oo (jointly):
kgn =0p(N), Ky =0p(T). (58)

In general, any sequences satisfying Assumption 7 will consistently select the
model that satisfies Assumption 4. However, for the procedure to be suitable for
the settings with “small” covariance matrices, the choices of «, y and «, 7 have
to be further refined. For example, small kg v (ky,7) favors a “more misspecified”
model with slower convergence rates (and most likely wider CIs). On the other
hand, large kg v (ky, ) favors a “less misspecified” model with a faster convergence
rate and narrower Cls. Based on some preliminary simulation results we suggest
the following values in the model selection step

kg =0.5I(N),  Ky7 = 0.5In(T). (59)

The specific choices of kg y and «, 7, ensure that the additive effects {v;} and
{g,} are allowed to have local-to-zero drifting variances, hence permitting certain
deviations from Assumption 4.
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4.3. Bootstrap Consistency

In this section, we prove consistency (in a sense clarified below) of the AdaWild
procedure. We base our proof strategy upon Lemma 1 in Biicher and Kojadinovic
(2019), which implies that the usual bootstrap convergence (conditional on the
data) is implied by the unconditional joint convergence of the given statistic (in this
case w) and two realizations of the bootstrap statistics, for example, ((W})’, (W5)’)".
This way, the characteristic function based proof strategy of Theorem 2, can be also
used to prove bootstrap consistency.

For the proof strategy in Biicher and Kojadinovic (2019) to be applicable, we
need to impose the following (mild) regularity condition on the sample paths of any
two arbitrary copies of the time-series bootstrap weights, {w; 1} and {w;2}"_,,.

Assumption 8. For any two copies {w; 1}, and {w,>}, of the bootstrap

process (53) the joint process wi;™* = (1, w1, @,2)' ® (wi) satisfies
E[wa** (WZL**)/LF*] - Zwi**(wl**)’,LR = OP(I)s T— o0, (60)
where wi* = T7'3 wi F* = F Vv o({oly) Vv o({w2}l,), and

Xy Lo Loy g = M7 o0 E[TWE (W],
Assumption 8 generalizes Assumption 4 (e) to the extended vector {wilt**}.
Before stating the main result of this section, lets us denote by P*(-) the bootstrap

distribution function given realization of {w;,}.
THEOREM 3. Under Assumptions 1-8 with (N, T) — oo (jointly)
sup [P* (ry, 75 — W) < x) — P (ry, 7 — E[w;,]) <x)| > 0, (61)
x
where ry, T is either:

1) /min(N, T) in the case of a non-degenerate limit when either X qo g and/or
X,y are non-singular;

i1) /NT in the case of a degenerate limit.

This theorem confirms that the proposed bootstrap procedure replicates the
asymptotic distribution of the sample average w in the two cases described in
Theorem 2. Hence, asymptotically valid inference can be conducted using the
suggested bootstrap procedure.

4.4. Feasible Implementation of AdaWild

In this section, we discuss how bootstrap CIs can be constructed in practice for
any linear combination r € RX of the FE and HPJ-FE estimators. In particular,
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Algorithm 1 summarizes the procedure of the former estimator, while Algorithm 2
of the latter.”’ _

For the HPJ-FE estimator, we suggest that for 8 a modified version of the
AdaWild bootstrap statistic is used

Wy, = 2wy, — (W, 5, + W, 5,)/2. (62)
Here, the half-sample averages ), 5, and W), 5, are generated as in (51) while
keeping d, and d, (as well as {w; b}f.v: , and {a)t,b}lT:l) fixed in both sub-samples.
This implementation maximizes the finite sample variation associated with time-
series demeaning of {z;,} in each sub-sample, while other sources of estimation

uncertainty (i.e., dg, d,, and X) are kept fixed.
All bootstrap CIs are constructed using the feasible counterpart of w; ,, that is,

—
Wi = xZ’f ZL:“ —Bx' (63)

In Section 5, we investigate the finite sample properties of the corresponding
feasible AdaWild bootstrap procedures.

Algorithm 1 Bootstrap CI algorithm for the FE estimator.

1: Given the FE estimator ﬁ, construct observed/feasible influence functions
iy e bbbt

{wii} as wi, =x7 78, where €, =yt — Bx,.

Calculate dg, and d,, for given choices of kg y and «,, 7.

forb=1,...,Bdo
Generate bootstrap weights {w; b}f': > oy, b}zT:I for a given choice of y;
Construct bootstrap samples as in Eq.(51);
Construct the corresponding bootstrap sample statistic w}, as in Eq.(52);
Construct the perturbed (bootstrap) FE estimator:

Sk T e
ﬂb = ﬂ +Zx WZ.

8. end for
9: For any r € RX construct (1 — )% nominal coverage bootstrap intervals as:

lorg, = r'p +’q\w/2,r»r/lg +’q\1—a/2,r],
where

Gor = influ € R: P*[F' (B, — B) <ul >},

A A A ol

is the «- quantile of B bootstrap statistics r’ (ﬁz - E).

20For practical considerations and simplicity we consider non-pivotal percentile bootstrap Cls for this purpose. While
pivotal quantities are generally preferred to their non-pivotal counterparts, the former involve explicit estimation of
the long-run variances of {g,} and {wft]A Moreover, we are not aware of any construction of pivotal quantities that
are nuisance parameters free when the asymptotic distribution is degenerate as in Theorem 2.
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Algorithm 2 Bootstrap CI algorithm for the HPJ-FE estimator.

1. Given the three FE estimators (ﬁ, ESI, 352) construct three sets of feasible
influence functions {w; ;}, {wflt}, and {wfzt} as in Step 1 of Algorithm 1.

2. Calculate dg, and d, for a given choice of kg v and k7.

3: forb=1,...,Bdo

4 Generate bootstrap weights {w; ,}Y_,, {w,»}L_, for a given choice of y;

5: Construct bootstrap samples as in Eq.(51) for every set of influence
functions {w; }, {wf't}, and {wf‘,} for a given set of bootstrap weights and d,,
andd,;

6: Construct sample statistics W, W), s,» and W), s, asin Eq.(52);

7: Using Eq.(62) define the perturbed bootstrap FE-HPJ estimator:
~x - P
ﬂb = ﬂ + Z‘x Wp.

s: end for

9: For any r € RX construct (1 — )% nominal coverage bootstrap intervals as:
lyrp, = (rB +%/z,r,r/ﬁ +Gi—ar],
where
Gur =influ e R:P*[F (B, — B) <ul = a),

is the «- quantile of B bootstrap statistics r’ (E; - Zf).

5. SIMULATION STUDY
5.1. The Setup

In this section, we numerically illustrate some of the properties of the proposed
AdaWild procedure. We base our Monte Carlo experiments on the DGP of
Example 1:

Yir=Afi+Vin, X = Vit i (64)

Without loss of generality, we assume that all stochastic variables have zero mean.
In order to account for all combinations of potential convergence rates of the FE
estimator, the factors and the factor loadings are generated in the following way:

vi= i+ 1= 0ivi  mo=pfi+\1- o (65)

Here, A; ~ N(0,1), y;- ~ N(0,1), while {f;} and {r;"} are two independent, zero-
mean Gaussian AR(1) processes with a common AR parameter o, = 0.6 and a unit
variance. This way, {(f;,7,)'} are allowed to be serially and contemporaneously
correlated.

The idiosyncratic component {u; ,} is a Gaussian AR(1) process with an autore-
gressive parameter «,. In what follows we set o, = a;/2 = 0.3, to ensure that
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TABLE 1. Monte Carlo design parameters

or PO Convergence rate Asymptotic distribution Bo FE bias
0.0 0.0 VNT Non-normal 0 0
0.5 0.0 VN Normal 0 0
00 05 JT Normal 0 0
0.5 0.5 J/min(N, T) Normal 0.125 ~ —0.13

Note: Here, o = pyp;./2. See example 1 and the Supplementary Material for further details on B
and b. Here, “FE Bias” is given by 72;117.

in at least one setup the bias term b is non-zero, see Supplementary Material for
the corresponding derivations. Finally, for simplicity we assume that {v;,} is i.i.d.
Gaussian random variable. All initial conditions for dynamic processes are drawn
from their corresponding stationary distributions.

The adequacy of our proposed inference procedure (with respect to the pseudo-
true value fy) is investigated by setting oy = {0.0; 0.5} and p, = {0.0;0.5}. Table 1
provides a summary of the design parameters and their implications for the
asymptotic distribution of the FE estimator.

For each specification, M = 10000 Monte Carlo replications are performed. We
report empirical rejection frequencies for nominal level of 5% for sample sizes of
N ={50,100,200,500} and T = {20, 50, 100} using B = 999 bootstrap replications.
We report the mean bias and the RMSE of the HPJ-FE estimator, as well as the
average length of the bootstrap CIs. All aforementioned statistics are reported after
scaling by the parametric rate ~/NT. We also report the mean values of model
selection variables d, and d, as defined in (57).

The Supplementary Material contains further Monte Carlo results for the
multiple extensions of the current setup.

Below we separately discuss the simulation results for each of the designs from
Table 1.

5.2. Results: Panel Convergence Rate +/NT

The results for the setup with pr = 0.0 and p, = 0.0 are summarized in Table 2.
For this setup the asymptotic distribution of the FE estimator is non-normal, while
the rate of convergence is +/NT. Below we summarize the main findings.

Estimation.  As can be expected, the estimator is almost completely free from
any finite sample bias, even after ~/NT scaling. The RMSE is mostly dominated
by the variance component, which stabilizes for larger values of N and T at around
A 1.25.

Inference. The proposed AdaWild bootstrap procedure performs well, with
empirical rejection frequencies close to the nominal level of 5% even for very
small sample sizes. However, in most cases inference is mildly under-sized.
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TABLE 2. Estimation and inference results for oy = 0.0 and pj = 0.0

Design Estimation Inference Model selection

N T Bias RMSE Size Length #d, =1 #d, =1
50 20 0.0032 1.4403 0.0231 6.9462 0.0447 0.3105
50 50 —0.0048 1.3516 0.0345 5.7509 0.0336 0.1463
50 100 —0.0176 1.2486 0.0411 5.1949 0.0294 0.0938
100 20 —0.0049 1.4541 0.0207 6.7938 0.0179 0.2965
100 50 0.0014 1.2994 0.0299 5.6460 0.0129 0.1410
100 100 —0.0049 1.2504 0.0458 5.1264 0.0118 0.0937
200 20 —0.0228 1.4240 0.0190 6.6797 0.0079 0.2801
200 50 —-0.0172 1.3162 0.0335 5.6186 0.0070 0.1380
200 100 —0.0065 1.2364 0.0402 5.1132 0.0060 0.0923
500 20 —0.0085 1.4293 0.0218 6.6327 0.0033 0.2748
500 50 —0.0138 1.2789 0.0297 5.6182 0.0021 0.1426
500 100 0.0277 1.2446 0.0397 5.1326 0.0029 0.0958

Note: Here, “Bias” is the mean bias of the scaled bias-corrected FE estimator. “RMSE” is the
corresponding Root Mean Squared Error of the scaled bias-corrected FE estimator. “Size” is empirical
rejection frequency for the null hypothesis o = prpx/2. “Length” is the average length of scaled
AdaWild confidence interval. #dg = 1 is the fraction of replications with dg = 1. #d,, = 1 is the fraction
of replications with d,, = 1.

Comparing these results with the corresponding outcomes without bias-correction
(in the Supplementary Material), we conclude that this is primarily driven by the
adjustment of the CIs to account for the HPJ bias-correction. The length of the
corresponding ClIs narrows as N and 7 increase and stabilizes at around ~ 5.

Model Selection. For all values of (N,T) our model selection procedure
correctly selects the model without {g;} component, that is, without time-effects,
in {w;;}. For N > 200 the fraction of simulations with d, = 1 is already below 1%.
On the other hand, as we only consider moderate values of 7, the procedure over-
selects the model with non-zero {v;} component. Performance of this procedure
improves greatly as T increases.

5.3. Results: Cross-sectional Convergence Rate +/N

The results for the setup with pr = 0.5 and p, = 0.0 are summarized in Table 3.
For this setup the asymptotic distribution of the FE estimator is normal, while the
convergence rate is “cross-sectional” +/N. Below we summarize the main findings.

Estimation. As in the previous setup with a faster convergence rate, the
estimator is almost completely free from any finite sample bias, even after ~/NT
scaling. The RMSE is fully dominated by the variance, which increases in 7. This
is in line with the fact that the convergence rate is v/N.
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TABLE 3. Estimation and inference results for oy = 0.5 and pj = 0.0

Design Estimation Inference Model selection

N T Bias RMSE Size Length #d, =1 #d, =1
50 20 0.0099 1.7875 0.0175 8.6154 0.0336 0.6725
50 50 0.0041 2.2388 0.0308 9.6167 0.0221 0.8154
50 100 0.0098 2.7754 0.0380 11.6631 0.0173 0.9570
100 20 —0.0047 1.8058 0.0156 8.6848 0.0144 0.6921
100 50 0.0116 2.1545 0.0260 9.6737 0.0080 0.8307
100 100 0.0090 2.7301 0.0298 11.8501 0.0066 0.9667
200 20 —-0.0119 1.7710 0.0149 8.6200 0.0061 0.6941
200 50 0.0025 2.1906 0.0274 9.7524 0.0040 0.8411
200 100 0.0222 2.7687 0.0276 12.0014 0.0022 0.9740
500 20 —0.0088 1.7965 0.0138 8.6572 0.0020 0.6941
500 50 0.0245 2.2245 0.0248 9.8738 0.0015 0.8563
500 100 —0.0251 2.7574 0.0268 12.0135 0.0007 0.9742

Note: See Table 2 for an explanation.

Inference. Empirical rejection frequencies based on bootstrap Cls are close to
the nominal level of 5% even for very small sample sizes. However, overall the
procedure is rather conservative, as all numbers are (again) smaller than 5%. As
expected, the length of the corresponding CIs widens at the rate /7.

Model Selection.  Similarly to previous setup with /NT convergence rate, for
all values of (N, T) our model selection procedure selects the model without {g,}.
On the other hand, already for small values of T the procedure correctly includes
{v;} in the bootstrap model for the majority (> 67%) of the replications. The
selection rate increases to > 95% as T increases.

5.4. Results: Time-series Convergence Rate +/T

The results for the setup with pr = 0.0 and p, = 0.5 are summarized in Table 4.
For this setup the asymptotic distribution of the FE estimator is normal, while the
convergence rate is a “time-series” /7. Below we summarize the main findings.

Estimation. The results almost perfectly mirror those in Table 3, except that
the RMSE increases in N in this setup. Furthermore, the estimator exhibits a more
visible finite sample bias for larger values of the N/T ratio, that the HPJ bias-
correction is not able to fully account for.

Inference. For small values of T (especially with a large N/T ratio) the pro-
posed inference procedure does not approximate well the finite sample distribution
of the FE estimator. This is not surprising as the convergence rate is +/7 only, and
the wild autoregressive bootstrap procedure should properly capture the temporal
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TABLE 4. Estimation and inference results for or = 0.0 and p; = 0.5

Design Estimation Inference Model selection

N T Bias RMSE Size Length #d, =1 #d, =1
50 20 —0.0445 3.3229 0.0770 11.5604 0.7116 0.2561
50 50 0.0009 3.1461 0.0690 11.2555 0.8370 0.1058
50 100 —0.0097 3.0048 0.0665 10.8595 0.8880 0.0629
100 20 0.0469 4.4759 0.0987 14.7254 0.8924 0.2411
100 50 —0.0557 4.3421 0.0811 14.8138 0.9730 0.1101
100 100 0.0263 4.1260 0.0786 14.2621 0.9900 0.0607
200 20 0.0785 6.1412 0.1014 19.5184 0.9850 0.2282
200 50 —0.0016 5.9081 0.0927 19.6530 0.9994 0.0984
200 100 0.0889 5.6209 0.0900 18.9698 0.9999 0.0599
500 20 0.0970 9.6957 0.1214 29.3018 0.9994 0.2234
500 50 —0.0759 9.1774 0.1049 29.5511 1.0000 0.0997
500 100 —0.0685 8.8175 0.1049 28.7799 1.0000 0.0588

Note: See Table 2 for an explanation.

dependence in {g;}. As a result, as it is common for time-series models, in most
cases rejection frequencies are larger than the nominal 5% level (i.e., the CIs under-
cover the true value). The situation somewhat improves as T increases for fixed
value of N, as predicted by the implied /T convergence rate.

Model Selection. Model selection rates for {v;} almost completely mirror those
in Table 2, and will not be discussed any further. As for the {g,} component,
our proposed procedure correctly selects the model with time-effects in {w;,} for
all combinations of (N, T) in at least 70% of all replications. This rate increases
substantially once N increases (as predicted by the theory). Furthermore, one can
observe that this rate also increases in 7, suggesting the role of the convergence
rate of the FE estimator is also non-negligible in this setup.

5.5. Results: Minimal Convergence Rate /min(N,T)

The results for the setup with oy = 0.5 and p, = 0.5 are summarized in Table 5.
For this setup the asymptotic distribution of the FE estimator is normal, while
the convergence rate is «/min(V, 7). This design is especially challenging as both
{v;} and {g;} have a non-negligible effect for the asymptotic distribution of the FE
estimator. Below we summarize the main findings.

Estimation. This design inherits some of the results discussed previously for
/N and /T convergence rates. However, because of the non-negligible time-series
bias b this design is more complex than a simple combination of previous results.
In particular, despite the use of the HPH bias-correction, the finite sample bias is
still visible and increases with &, and decreases with 7.
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TABLE 5. Estimation and inference results for or = 0.5 and p) = 0.5

Design Estimation Inference Model selection

N T Bias RMSE Size Length #d, =1 #d, =1
50 20 —0.1880 3.2077 0.1117 11.8502 0.6512 0.6276
50 50 —0.0415 3.3836 0.0962 12.8764 0.7974 0.7766
50 100 —0.0494 3.6872 0.0882 14.2196 0.8395 0.9374
100 20 —0.1378 4.4053 0.1247 14.8170 0.8585 0.6408
100 50 —0.0911 4.3135 0.0985 15.7188 0.9618 0.7928
100 100 —0.0602 4.5177 0.0803 16.6853 0.9807 0.9497
200 20 —0.0840 5.9981 0.1260 19.3678 0.9779 0.6579
200 50 —0.0046 5.7628 0.1033 19.9699 0.9992 0.8103
200 100 —0.1202 5.7906 0.0895 20.4272 1.0000 0.9526
500 20 —0.2681 9.1182 0.1473 28.0073 0.9991 0.6604
500 50 —0.0056 8.8576 0.1183 28.9254 1.0000 0.8193
500 100 —0.1020 8.5635 0.1017 28.7945 1.0000 0.9601

Note: See Table 2 for an explanation.

Inference. Inferential results for this design are qualitatively comparable to
those in the +/7 design from Table 4. In particular, the results in Table 5 indicate
that the time-series component {g,} plays an important role in the asymptotic
distribution of the FE estimator. However, as predicted by a slow /min(¥, T') con-
vergence rate, bootstrap Cls (on average) are at least as wide for all combinations
of (N,T) as those in the previous designs. However, the CIs are still relatively
narrow or centered at the wrong point, as the corresponding rejection frequencies
are in the range of 9% — 15%. However, these numbers mark a major improvement
as compared to the similar results without HPJ bias correction as summarized in
the Supplementary Material.

Model Selection. Model selection rates for {g;} and {v;} mirror those in
Tables 3 and 4, respectively. Overall, we observe that it is more challenging to
correctly select the model for {v;}, than for {g,}. There are two main explanations
for this pattern: first, the values of 7" we consider are smaller than those for N;
second, serial correlation of the unobserved components has a sizeable effect for
the construction of the selector variable d, (see also a corresponding remark in the
Supplementary Material).

5.6. Summary

Overall, we find that Theorem 2 serves as a good approximation for the finite
sample distribution of the FE estimator. However, our proposed AdaWild boot-
strap procedure works best when the convergence rate is either /N or +/NT.
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As expected, the performance of the AdaWild procedure is less satisfactory with
either v/T or /min(N, T) convergence rates. While in those cases the model
selection procedure works effectively in selecting the correct model, the AWB
procedure under-estimates sampling uncertainty. As indicated by additional Monte
Carlo simulations summarized in the Supplementary Material, these over-rejection
patterns are solely due to the presence of serially correlated regressors and factors.
Hence, for the settings with mildly correlated factors empirical rejection rates are
expected to be closer to the nominal rates.

6. EMPIRICAL ILLUSTRATION

In what follows we illustrate the AdaWild procedure on a real dataset. For this
purpose, we employ the novel dataset of Voigtlander (2014), who analyzed the
skill bias of technical change in U.S. manufacturing using U.S. input-output data,
combined with the NBER Manufacturing Industries Database. The dataset spans
N = 313 sectors of the US economy over the period of 1958 — 2005 (T = 48).”!

6.1. The Model

Following Yin, Liu, and Lin (2021), we investigate the potential causes of the his-
torically increasing wage inequality between high-skilled and low-skilled workers
in the U.S. manufacturing industries. We consider the simplified version of the
empirical model of Yin et al. (2021)

Wi Hi
ln( L.,Z) _ ai+ﬁ1 ll’l(O'i,z) —|—,32h’1 (L—t> —{—T],"f‘)\,;‘f‘é‘i,tv (66)

WH.i,t it
WLt
workers. The regres:é;;s of interest are: a) o;, the input skill intensity measure;
b) %, the ratio of high and low skilled workers in the sector i. The input skill
inteﬁsity measure o; , was originally constructed by Voigtldnder (2014) using the
weighted average of white-collar workers in other industries than i, with weights
calculated using the Input-Output expenditures.

This dataset has been used by Yin et al. (2021) and Juodis (2022) in the context
of models estimated by CCE estimators. Hence,we compare the results of the FE
estimators”” with those reported by Juodis (2022) for the CCE and the regularized
CCE (rCCE) estimators.”

where the variable

is the relative wage of low-skilled workers to high skilled

21The dataset is available at the data repository of the Journal of Business and Economic Statistics. We consider a
balanced sub-sample as in Juodis (2022).

22 Als0 used in Ciccone and Peri (2005) and Voigtlinder (2014).

23 Note that the results for the CCE and the rCCE estimators are not in any way adjusted for (potential) misspecifica-
tion of the corresponding linear model.
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TABLE 6. Estimation results for the restricted empirical model of y;; =
In(wri1/WH.i1)

Estimator
Xy CCE rCCE FE HPJ-FE
In(oy,;) —0.63 —0.62 —-0.71 —-0.41
(Bootstrap) (—1.01; —0.22) (—1.03; —0.21) (—1.54;0.10) (—1.57;,0.75)
(CCM) (—1.17, —=0.24)  (—0.88;0.05)
(HAC) (—1.70; 0.28) (—1.40; 0.57)
(MW) (=1.21; —=0.20)  (—0.92; 0.09)
In (H,;,/L,;,) 0.40 0.36 0.23 0.15
(Bootstrap) (0.33;0.47) (0.29;0.41) (0.17; 0.33) (0.06; 0.28)
(CCM) (0.18; 0.29) (0.09; 0.21)
(HAC) (0.14; 0.33) (0.06; 0.24)
(MW) (0.14; 0.32) (0.06; 0.24)

Note: 95% Cls in the parentheses. HAC and MW are based on the Newey—West estimator with lag
length L = 4. AdaWild procedure is implemented as described in Section 4.4. o;,, the input skill
intensity measure; H; ;/L; ; the ratio of high and low skilled workers in the i-th sector.

6.2. Estimation Results

Estimation results are presented in Table 6. As advocated by Juodis (2022), for
the CCE and the rCCE estimators we use the cross-sectional bootstrap based Cls.
For the FE and the HPJ-FE estimator we report four types of CIs: i) bootstrap
(AdaWild); ii) “CCM” of Arellano (1987); iii) “HAC” as in Driscoll and Kraay
(1998); 1v) “MW” similar to that in Thompson (2011) and Chiang et al. (2024). For
more details regarding the implementation of ii)-iv), we refer to the Supplementary
Material.

Point estimates. The FE point estimates differ somewhat from the CCE
counterparts, as the estimated coefficient for In(o;,) is smaller (but larger
in absolute value), while the ones on In (WL_,'J/WH.,"[) are also smaller in
absolute values. HPJ correction substantially adjusts point estimates towards 0.
Interestingly enough, these point estimates mostly fall outside the corresponding
CIs for CCE procedures.

Confidence Intervals. The Cls for FE and HPJ-FE estimates of In (WL_,-, /Wi, t)
do not vary much, irrespective of the method used. It is noticeable that the CCM
approach generally results in tightest CIs. These Cls, however, can be grossly
misleading for this regressor, as our model selection procedure indicates that d, = 1
(i.e., {g,} is included in the bootstrap sample). Not surprisingly, the remaining three
procedures (AdaWild, HAC, MW) provide fairly comparable CIs, as they are all
consistent in this setup.
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The above conclusions do not hold for the CIs of In(o; ;). For this regressor, the
CCM and the MW approaches result in comparable CIs while the CIs based on
HAC CIs and AdaWild procedures are noticeably longer.

Overall, these results indicate that, depending on the degree of model misspec-
ification, AdaWild based CIs can either closely resemble Cls based on normal
approximation and clustered standard errors (either in one or multiple dimensions),
or provide completely different results. This conclusion just confirms theoretical
predictions of this article.

7. CONCLUDING REMARKS

In this article, we study the properties of the linear Two-Way FE estimator when the
underlying DGP of observables is left almost completely unspecified. In particular,
we do not restrict the way regressors, unit-level heterogeneity, and common shocks
interact in the DGP. Conditional independence of all variables (once appropriately
conditioned on common shocks) as well as time-series stationarity of the data are
the only major restrictions imposed throughout the article.

We show that the FE estimator is consistent for a well-defined pseudo-true value
under appropriate stationarity assumptions. Using a novel asymptotic approxima-
tion theory with N,7 — oo jointly, we prove that the asymptotic distribution can
be normal as well as non-normal. The corresponding convergence rate can be as
slow as »/min(V, T) and as fast as ~/NT. We use two stylized examples to illustrate
how these properties depend on the way the common shocks enter the model for
observables.

We argue that uniform non-conservative inference is impossible in this setup, as
no inference procedure can accommodate various degrees of convergence rates and
different types of asymptotic distributions. As a solution to this problem we suggest
the AdaWild bootstrap procedure that is point-wise consistent. The procedure is
intuitive and easy to implement by practitioners. Our Monte Carlo results indicate
that this procedure paired with the HPJ bias-correction well approximates the finite
sample distribution of the FE estimator, as long as the time-series component
in the influence function is not dominant. The performance of the suggested
procedure deteriorates when the time-series component dominates the asymptotic
distribution.

The main results in this article are derived under a few simplifying assumptions.
As we mentioned in the article, some of these regularity conditions are imposed
solely for technical reasons and are expected to be inconsequential for the main
conclusion of this article. It remains as an open question in the literature whether
there exists a sufficiently rich generalization of the Aldous—Hoover—Kallenberg
decomposition for the temporarily dependent setup. Finally, it also remains as
an open question under which (interpretable) conditions the “Nickell bias” is
asymptotically non-stochastic. These are some questions we are currently working
on in follow-up projects.
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SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/
S026646662510008X.
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